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Abstract

Modeling high-frequency volatility is an important topic of market microstructure, as it
provides the empirical tools to measure and analyze the rapid price movements. Yet, volatil-
ity at a high frequency often exhibits abrupt shifts driven by news and trading activity,
making accurate estimation challenging. This study develops a change-point duration
(CPD) model to estimate spot volatility, in which price-change intensities remain constant
between events but may shift at random change points. Using simulations and empirical
analysis of Nasdaq limit order book data, we demonstrate that the CPD model achieves
a favorable balance between responsiveness to sudden shocks and stability in volatility
dynamics. Moreover, it outperforms benchmark approaches, including the classical au-
toregressive conditional duration model, nonparametric duration-based estimators, and
candlestick-based measures. These findings highlight the CPD framework as an effective
tool for volatility estimation in high-frequency trading environments.

Keywords: spot volatility; market microstructure; change-point model; price duration

1. Introduction
Volatility in modern electronic markets is highly time-varying, often exhibiting sudden

spikes and clustering driven by news shocks, algorithmic trading, and shifts in market sen-
timent. High-frequency volatility modeling is a core topic in market microstructure because
it directly captures price dynamics at the most granular level. Accurate high-frequency
volatility estimates are essential for market makers, algorithmic traders, and regulators to
manage inventory risk, detect regime shifts, and safeguard market stability against rapid
price movements and noise. However, many existing estimators remain inadequate, as they
often fail to capture both persistence and responsiveness in volatility at fine intervals.

Pioneer studies have focused on the realized volatility estimators to measure integrated
variance over fixed intervals (Andersen & Bollerslev, 1998; Andersen et al., 2003; Barndorff-
Nielsen & Shephard, 2002, 2004). However, these integrated variance measures smooth out
short-lived fluctuations and fail to capture the precise timing of volatility changes. More
recently, growing attention has shifted toward spot volatility estimation. Bollerslev et al.
(2024) and J. Li et al. (2024) have independently proposed distinct nonparametric estimators
for spot volatility, utilizing intraday range data (or candlestick charts).1 Although the newly
proposed nonparametric estimators for spot volatility offer convenient tools for identifying
volatility jumps, their time precision remains insufficient for high-frequency traders (HFTs)
to effectively adapt to the current trading environment and manage their strategies.
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Nowadays, limit order book (LOB) is the dominant mechanism for matching buyers
and sellers, valued for its transparency, efficiency, and support of algorithmic trading. It
provides rich information about market microstructure as it records millions of quotes
and trades with precise time stamps for order submissions, cancellations, and executions.
From these time stamps, various forms of duration data can be constructed, such as inter-
trade duration (the time interval between consecutive trades), price duration (the time
interval that price changes exceed a specified threshold), and others. By exploiting this
rich data source, we propose a new spot volatility estimator designed to capture market
dynamics at the most granular level.

According to the asymmetric information-based models in market microsturcture
theory, “informed traders” trade due to private information on the fundamental value
and “liquidity traders” trade due to exogenous reasons (Easley & O’hara, 1992; Glosten &
Milgrom, 1985). Traders arrive sequentially to the market, and these arrivals are typically
modeled as Poisson processes with different intensities for informed and uninformed
participants (Easley et al., 2008, 2002). Consequently, the durations between trades reveal
information about the underlying event arrival intensities. A pioneering work for mod-
eling duration data is the autoregressive conditional duration (ACD) model developed
by Engle and Russell (1998), which specifies the conditional expectation of duration as a
linear function of past durations and past conditional expectations. Subsequently, many
extensions of the ACD model were developed to capture nonlinear features of duration
data (Bauwens & Giot, 2000; Hujer et al., 2002; Zhang et al., 2001).

Furthermore, if we assume that the underlying price process satisfies Itô semimartingale,
then volatility can be derived from the duration between price-change events (price duration).
The use of price duration for short-term volatility measurement remains relatively uncommon
in the literature. Cho and Frees (1988) were among the first to explore this idea, followed
by Gerhard and Hautsch (2002), who carefully introduced a price-duration-based volatility
estimator. Then, Tse and Yang (2012) extended this line of research within an ACD model
framework. Later, Hong et al. (2023) designed a nonparametric duration-based estimator and
found it to be more efficient compared with noise-robust realized volatility estimators.

This paper introduces a change-point price duration (CPD) model for estimating spot
volatility using high-frequency price durations, constructed from the LOB data. Change-
point models address the common challenge of modeling time series whose parameters
may shift occasionally—a concept first explored in the seminal work of Box and Tiao
(1975). Such models have broad applications across fields like engineering, econometrics,
and biomedicine. A more general statistical framework for the change-point estimation
method was further studied by Lai et al. (2005), who introduced the Bounded Complexity
Mixture (BCMIX) method to improve computational efficiency. Building on this foun-
dation, Z. Li and Xing (2022) applied the framework to measure quote volatility and to
evaluate the liquidity cost. In this study, we extend the approach by modeling jumps in
the intensity of price movements as change points and explicitly linking the intensity to
spot volatility.

The CPD model assumes an infinite domain for intensity renewal and incorporates
a continuous renewal distribution, providing a more flexible and expansive modeling
framework than the ACD model. Simulation results demonstrate that the CPD model
delivers a stable yet adaptive characterization of volatility by accommodating structural
breaks. We compare the volatility estimator by our CPD model with the ACD model,
the nonparametric duration estimator by Hong et al. (2023), and the optimal candlestick
estimator by J. Li et al. (2024) using real Nasdaq data. The results consistently show that our
model achieves superior performance in capturing volatility shift due to sudden market
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shocks and clustering effects mentioned in the literature on market microstructure (Admati
& Pfleiderer, 1988; Hautsch, 2011).

The paper is organized as follows. Section 2 presents our CPD model and the estimator
for spot volatility based on price durations. Section 3 provides the estimation algorithm for
the CPD model and a simulation study. In Section 4, we apply our model to the Nasdaq
LOB data on 15 April 2013 and compare it with the other three methods for estimating
high-frequency volatility. Finally, Section 5 concludes this paper.

2. Model
2.1. Spot Volatility Measurement via Price Duration

Assume that the (log) price process P is an Itô semimartingale defined on a filtered
probability space (Ω,F , (Ft)t≥0,P) and represented as

Pt = P0 +
∫ t

0
bs ds +

∫ t

0
σs dWs + Jt, (1)

where b is the drift process, σ is the stochastic volatility process, W is a standard Brownian
motion, and J is a pure-jump process driven by a Poisson random measure. Our objective
is to estimate the spot volatility σt at a specific time point t.

Traditional methods for measuring spot volatility were constructed from localized
versions of realized variance (Andersen et al., 2003; Barndorff-Nielsen & Shephard, 2002).
Under the standard high-frequency setting, the price process P is observed on a regular grid
{0, ∆, 2∆, . . . } within a fixed interval [0, T]. Let ri ≡ Pi∆ − P(i−1)∆ denote the i-th return.
For spot volatility estimation, select a bandwidth k and the block-based estimator of the
spot variance σ2

t is

σ̂2
t (k) ≡

1
k∆

k

∑
j=1

r2
(i−1)k+j. (2)

Asymptotically, as the sampling interval ∆n → 0, the conditional spot variance at any time
t is expressed as follows:

σ2(t) := lim
∆↓0

E
[

1
∆
(P(t + ∆)− P(t))2

∣∣∣∣∣Ft

]
, (3)

where Ft represents the information set available at time t.
As shown in Gerhard and Hautsch (2002), Tse and Yang (2012), and Hong et al. (2023),

a duration–based variance estimator can be derived from the relationship between the
conditional intensity function of a point process and the corresponding spot variance.
Treating the sequence of price changes as a point process, let δ denote the price changing
threshold and {tδ

i }i=1,...,n denote the event times when the absolute change in price exceeds
δ. Thus, n, the number of events is subject to the chosen δ.

Define the price-change duration (or simply price duartion) between consecutive
events as

yδ
i := tδ

i − tδ
i−1.

The conditional variance per unit time over the interval [tδ
i , tδ

i+1) is

σ2
(

tδ
i

)
= E

[
1

xδ
i+1

∣∣∣∣∣Ftδ
i

]
· δ2, (4)
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where δ = |Ptδ
i+1

− Ptδ
i
|. According to the point process theory, the associated counting

process N(t) records the number of events up to time t. Its conditional intensity function is

λ(t;Ft) = lim
∆↓0

1
∆

Pr
[
N(t + ∆) > N(t)

∣∣Ft
]
, (5)

representing the instantaneous probability of a new event arrival.
For a price-change process with threshold δ, the return variation in an infinitesimal

interval ∆ is either ±δ. Hence, the spot variance can be rewritten as follows:

σ2(t) = lim
∆↓0

1
∆

Pr
[
|P(t + ∆)− P(t)| ≥ δ

∣∣Ft
]
· δ2

= λδ(t;Ft) · δ2. (6)

Equation (6) shows that measuring spot variance (or volatility by taking its square root)
reduces to estimating the event arrival intensity λδ(t;Ft) for δ-sized price changes. This
formulation underpins the construction of our model.

According to Daley and Vere-Jones (2003), Barndorff-Nielsen and Shiryaev (2015),
and Hautsch (2011), the integrated intensity satisfies

Λ(ti−1, ti) ≡
∫ ti

ti−1

λ(s) ds i.i.d.∼ Exp(1), (7)

where t1, t2, . . . , tn denotes the event arrival times of a point process, and Exp(1) denotes
the exponential distribution with rate parameter 1.

2.2. The Change-Point Price Duration Model

To measure the spot volatility in a high-frequency environment, we propose the
Change-point Price Duration (CPD) model, inspired by the change-point framework of Box
and Tiao (1975) and its computationally efficient extensions by Lai et al. (2005). In general,
change-point models are designed to capture structural breaks in model parameters over
time—changes that may be driven by shifts in market conditions, liquidity shocks, or new
information arrivals. In our setting, the parameter of interest is the price-change intensity,
which we interpret as the instantaneous rate at which the price changes by at least a fixed
threshold δ. A change point corresponds to a sudden shift in this intensity, reflecting an
abrupt change in the underlying volatility regime.

In the CPD model, we assume that the price-change intensity remains constant be-
tween two consecutive price-change events, i.e., λ(t) = λ(ti−1) for ti−1 ≤ t < ti. Thus,

we will have λiyi
i.i.d.∼ Exp(1) from Equation (7), where yi = ti − ti−1 is the price-change

duration. Rearranging gives the mixture-of-exponentials representation:

yi =
εi
λi

, εi
i.i.d.∼ Exp(1). (8)

The dynamics of λi is modeled as a discrete-time Markov change-point process with
a renewal distribution G(·). At each new event time, the intensity either persists at its
previous value with probability 1 − p or is redrawn from G(·) with probability p:

λi+1 =

λi, with probability 1 − p,

λ
i.i.d.∼ G(·), with probability p.

(9)
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This specification allows the intensity process to remain constant for extended peri-
ods—capturing stable market conditions—interspersed with abrupt shifts to new levels,
representing sudden changes in volatility regimes.

For flexibility and tractability, we assume G(·) follows a Gamma distribution with
shape parameter α and rate parameter β:

G(λ) = Gamma(λ; α, β) =
βα

Γ(α)
λα−1e−βλ, (10)

where Γ(·) is the Gamma function. The Gamma distribution is a natural choice here because
it is the conjugate prior for the exponential likelihood in (8), which facilitates analytical
tractability in estimation.

The economic intuition behind the CPD model is also straightforward. When no
change point occurs (probability 1 − p), the market is in a volatility clustering period,
and the intensity of price change is unchanged. When a change point occurs (probability p),
the market switches into a new regime due to an exogenous shock such as a burst of trading
activity, a sudden shift in order flow, or the arrival of important information. This results in
an updated price-change intensity and, consequently, a new level of price volatility.

2.3. Comparison with Other Models
2.3.1. Compare with ACD Model

The ACD model proposed by Engle and Russell (1998) specifies the conditional expec-
tation of durations as a linear function of past durations and past expectations, i.e.,

yi = φiεi with φi = E
[
yi
∣∣Ft
]

φi = µ +
m

∑
j=0

αjyi−j +
n

∑
j=0

β j φi−j, (11)

where the error term enters multiplicatively and all past information influences current
durations through the conditional mean. The model, which combines transition analysis
with Engle’s ARCH framework, is motivated by the empirical observation that financial
events tend to cluster in time.

The ACD model can be transformed to an equivalent formulation of the conditional inten-
sity model as in Equation (8), by assuming φi ≡ 1/λi. Thus, the only difference between the
CPD and the ACD model is that they assume a different dynamic structure of the underlying
intensity. As the ACD model has a smooth-transition intensity, our CPD model can offer two
theoretical advantages. First, it is better suited to ultra-high-frequency data, where the price
updates often occur in bursts separated by many irregular pauses. The piecewise-constant
structure between change points avoids the need to model complex intra-interval dynamics.
Second, by allowing the new intensity levels to be drawn from a continuous distribution,
the model can accommodate both small and large jumps in volatility.

2.3.2. Compare with Nonparametric Duration-Based Estimator

Compared with the nonparametric duration-based variance (NPDV) estimator of
Hong et al. (2023), the CPD model provides a richer description of volatility dynamics.
NPDV is simple and robust, relying only on counting the number of price-change events
within a fixed interval to approximate integrated variance. While this makes it computation-
ally efficient and resilient to microstructure noise, it cannot capture fine-grained dynamics
of spot volatility or respond sharply to sudden market shifts within an interval. In contrast,
the CPD framework models price durations in event time and explicitly allows for structural
breaks in the underlying intensity, thereby producing more persistent yet responsive spot
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volatility estimates. This makes CPD particularly advantageous in ultra-high-frequency
environments where clustering and abrupt shifts in activity are common.

2.3.3. Compare with Candlestick-Based Estimator

The candlestick-based (or range-based) volatility estimator uses intraday OHLC (open,
high, low, close) data within fixed clock-time intervals to infer spot volatility (Bollerslev et al.,
2024; J. Li et al., 2024). These methods are convenient to implement and often perform
well at moderate or coarse horizons, where OHLC values are reliably observed. However,
in very short intervals of high-frequency data, the candlestick-based estimator may fail to
provide accurate spot measures, since the four distinct prices may not exist or may collapse
due to sparse trading. As a result, candlestick estimators tend to smooth away short-lived
volatility bursts, or even fail to have values, limiting their usefulness for high-frequency
trading applications. By contrast, the CPD model operates directly on tick-level durations,
ensuring that volatility dynamics are captured continuously and with greater precision in
second-level trading environments.

3. Model Estimation and Simulation
3.1. Estimation Algorithm

In this section, we present the estimation algorithm for our CPD model with specifica-
tion of (8), (9), and (10). Given the observed price-change durations {y1, y2, . . . yt, . . . yn}, we
want to estimate model parameters. Moreover, the underlying intensities λt for t = 1 . . . n
are hidden variables that cannot be observed. The Bayesian structure of this change-point
process is shown below in Figure 1. Thus, the joint probability of all observations and
hidden states is as follows:

P(y1n, λ1n) = P(λ1) f (y1|λ1) ·
n

∏
t=2

f (yt|λt)P(λt|λt−1), (12)

where y1n = {y1, y2, . . . yt, . . . yn}, λ1n = {λ1, λ2, . . . λt, . . . λn}, and f (yt|λt) = λte−λtyt .

λ1

y1

λ2

y2

λ3

y3

λ4

y4

λn

yn

Figure 1. The Bayesian structure of change-point price duration model.

The parameters to be estimated are (α, β, p), corresponding to the shape and rate of
the Gamma distribution and the change-point probability, respectively. Since the latent
intensity path {λt} is unobserved, direct maximization of the complete log-likelihood
is infeasible. We therefore employ the Expectation–Maximization (EM) algorithm for
parameter estimation, which is a fully parametric approach.

The complete-data log-likelihood can be written as

ℓc({yt}, {λt}) = log G(λ1) +
n

∑
t=1

log f (yt | λt) +
n

∑
t=2

log P(λt | λt−1), (13)

where G(·) is the Gamma renewal distribution and P(λt | λt−1) represents the probability
of λt conditional on its previous intensity.

The EM algorithm alternates between the following:
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• E-step: Compute the expected complete log-likelihood E[ℓc | data], given current
parameter values. This involves evaluating the posterior change-point probability and
the distribution of intensity λt using forward–backward filtering (See Appendix A).
As the prior distribution G(λ) is a Gamma distribution, which is a conjugate prior
for the exponential distribution, the posterior distribution of λt is also a Gamma
distribution. Hence, the posterior distribution of intensity λt is as follows:

f (λt|D) = ∑
1≤i≤t≤j≤n

Πitj · gij(λt), (14)

where gij(λ) ∼ Gamma(α + (j − i + 1), β + ∑
j
i yt) and Πitj represent the change-point

probability that the last changing point occurs at i and the next changing point occurs
at j + 1. The calculation steps of this posterior change-point probability is introduced
in Appendix B.

• M-step: Maximize the expected log-likelihood with respect to α, β, and p. The update
for p has a closed form:

p̂ =
∑n

t=2 P(It = 1 | data)
n − 1

.

It = 1 indicates there is a changing point at the t-th price-change event, i.e., λt ̸= λt−1,
and P(It = 1 | data) represents the probability of a changing point at the t-th price-
change event, given the observed data and old parameters.
Posterior mean estimates of λt are then computed as

λ̂t = ∑
i≤t≤j

Πitj
α̂ + j − i + 1

β̂ + ∑
j
s=i ys

, (15)

where (α̂, β̂) are obtained by solving the likelihood equations numerically. The com-
putation of (α̂, β̂) and Πitj is described in Appendices A and B.

Once the EM algorithm converges, we can again compute the price-change intensities
{λ̂∗

t }n
t=1 based on Equation (15) and the converged estimators of (α̂∗, β̂∗). Consequently,

the estimated spot volatility can be derived from Equation (6). We should note that
the volatility is treated to be fixed between consecutive price-change events.

3.2. Simulation Study

We first evaluate the ability of the CPD model to estimate volatility by simulating a
price series governed by an underlying stochastic volatility process. The simulated results
are shown in Figure 2. As shown, the price exhibits a steady upward drift in the early
period, followed by a sudden fall after approximately 600 s. In the meantime, the volatil-
ity undergoes a structural shift from a low-volatility period to a high-volatility period.
The simulated volatility in Figure 2 is recorded at a sampling frequency of one second.

To apply our model, we construct a series of price-change durations by setting the
price-change threshold. Since the minimum tick size of the simulated price is 0.01, we
just set the price-change threshold for defining price durations to two ticks, i.e., δ = 0.02.
A price-change event is recorded, along with its timestamp, whenever the simulated
price moves up or down by 0.02 units. The time interval between consecutive events
defines the price duration. Figure 3 presents the resulting price-duration series, together
with the corresponding price-change intensities estimated from the CPD model. Since
long durations imply low underlying intensities, we plot the reciprocals of the estimated
intensities in Figure 3 to facilitate a consistent visual comparison. The results indicate that
long (short) durations are associated with low (high) price-change intensities, and that the
intensities exhibit notable persistence.
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Figure 2. Simulated price and volatility under two regimes, separated by the vertical dashed line.

Figure 3. Simulated price durations and estimated intensities.

We then compute the spot volatility using Equation (6) and compare it with the true
simulated volatility in Figure 4. From the results, we can find that the estimated volatility
closely matches the true values. Moreover, the estimates capture the structural shift from a
low-volatility regime to a high-volatility regime.

Figure 4. Simulated and estimated volatility under two regimes, separated by the vertical dashed line.
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4. Real Data Analysis
4.1. Data Environment

We use Nasdaq LOB data for the real data analysis. The data are obtained from LOB-
STER (https://lobsterdata.com/), which provides high-quality LOB data for all Nasdaq
stocks beginning in June 2007. The LOB reconstructed by LOBSTER is based on Nasdaq’s
Historical TotalView-ITCH data. For each active trading day and ticker, LOBSTER produces
two files: a ‘message’ file, which records the events that trigger updates to the LOB within
the specified price range, and an ‘order book’ file, which reports the state of the LOB at each
update. We select 15 April 2013 for the one-day analysis because the unexpected Boston
Marathon bombing significantly affected the stock market on that trading day, triggering
a sharp volatility spike around the event.2 This setting provides an ideal environment to
assess whether our model can capture such abrupt volatility shifts in comparison with
other estimators.

Table 1 presents a sample of the message and order book files for Apple Inc. on 15
April 2013. Panel A shows five recorded events at microsecond precision. Event type 1
corresponds to the submission of a limit order, while type 4 indicates the execution of a
limit order. The direction indicator ‘−1’ denotes an ask-side event, whereas ‘1’ denotes a
bid-side event. Panel B displays the corresponding order book states following each event.
For example, at time 34,209.630561 s (third event), the best ask order 10962867 was fully
executed with the remaining size of 56 at a price of USD 426.79. After this event, the best
ask shifted to the previous second-best level of USD 426.80.

Table 1. The sample message file and order book file of LOBSTER data.

Panel A: Message File

Time (s) Event Type Order ID Size Price Direction

34,209.630122 1 10962867 100 426.79 −1
34,209.630453 4 10962867 44 426.79 −1
34,209.630561 4 10962867 56 426.79 −1
34,209.630623 1 10962881 100 426.69 1
34,209.633680 1 10962942 100 426.79 −1

Panel B: Order Book File

Ask Price 1 Ask Size 1 Bid Price 1 Bid Size 1 Ask Price 2 Ask Size 2 Bid Price 2 Bid Size 2

426.79 100 426.67 100 426.80 100 426.62 12
426.79 56 426.67 100 426.80 100 426.62 12
426.80 100 426.67 100 426.95 100 426.62 12
426.80 100 426.69 100 426.95 100 426.67 100
426.79 100 426.69 100 426.80 100 426.67 100

Based on these two files, we can construct the price series and the price-change
durations. The price is defined as the mid-price, i.e., the average of the best bid and best
ask, which can eliminate the bias in duration-based estimators caused by the bid–ask spread
that is mentioned in Hong et al. (2023). In practice, the choice of price-change threshold
δ involves a trade-off between capturing high-frequency dynamics and mitigating noise.
A larger δ produces longer durations and smoother volatility paths, but may overlook
short-lived fluctuations. Conversely, a smaller δ improves granularity but may be affected
by noise from bid–ask dynamics or order cancellations. As noted by Hong et al. (2023),
a threshold of roughly three times the average bid–ask spread balances bias and efficiency
in nonparametric estimators. In our CPD framework, bias is less of a concern since we
use mid-quote prices to avoid bid–ask effects and construct durations directly from LOB
data to avoid time-discretization. Accordingly, we aim to select a δ value small enough to

https://lobsterdata.com/
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capture granular price dynamics while relying on the change-point structure of the CPD
model to filter out excess noise. For our empirical study, we set δ = 0.03, which strikes this
balance and avoids spurious price changes induced by small order cancellations.

Figure 5 plots the series of price durations for Apple stock on 15 April 2013. On that
day, there are approximately 9000 durations, and the level of these price duartions shows a
very large variation, with the shortest lasting 20 ms and the longest about 70 s.

Figure 5. Price duration series.

4.2. Spot Volatility Measurement

We use the constructed price durations as input to the CPD model to estimate spot
volatility. According to the estimation algorithm presented in Section 3.1, the parameter
estimates are α̂ = 0.23, β̂ = 0.005, and p̂ = 0.22. Based on Equation (15), we further infer
the latent intensities {λt}1...N . The spot volatility σ(t) is then derived from Equation (6).
Specifically, for t ∈ [ti, ti+1), we have

σ2(t) = λ(ti) · (δ)2, t ∈ [ti, ti+1),

since the model assumes intensity to be constant between two consecutive events.
To evaluate model performance, we compare the CPD model with the classical ACD

model introduced in Section 2.3. From the above discussion of the integrated intensity function
(Equation (7)) and the mixture of exponential expression (Equation (8)), the estimated residuals
ε̂t should follow an Exponential(1) distribution. Figure 6 shows that the CPD model residuals
adhere closely to this distribution, whereas the ACD residuals deviate substantially. This
discrepancy likely arises because the ACD model cannot accommodate the large variability in
high-frequency durations, which range from microseconds to tens of seconds.

Moreover, the following Figure 7 further compares the spot volatility estimates from
both models over a period of 1200 s, alongside the corresponding price data. The ACD
model produces highly volatile estimates with sharp spikes whenever prices change sig-
nificantly. By contrast, the CPD model generates volatility estimates that display greater
persistence while still capturing abrupt price shifts.

In addition to comparing our CPD model with the standard linear ACD model,
we also evaluate it against the nonlinear threshold ACD (TACD) model proposed
by Zhang et al. (2001). The results are very similar and are presented in Appendix C.
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Figure 6. Fitted duration residuals by ACD model and CPD model.

Figure 7. Spot volatility estimation by ACD model and CPD model.

4.3. Integrated Variance Measurement

The integrated variance over the interval [0, t] is as follows:

IV(t, t + ∆t) :=
∫ t+∆t

t
σ2(τ)dWτ ,

which is the cumulative variance in returns over a time interval, providing a key measure
of total risk. For portfolio managers, it quantifies exposure over the investment horizon
and supports risk metrics such as Value-at-Risk. In derivative markets, it underlies option
pricing through its link to quadratic variation. For high-frequency market makers, inte-
grated variance guides bid–ask spreads and inventory control, since higher variance signals
greater adverse selection risk, while lower variance allows for more aggressive quoting.

In this section, we compare the CPD model with two alternative estimators for high-
frequency variance. The first is the nonparametric duration-based variance (NPDV) estima-
tor proposed by Hong et al. (2023). It is defined over the interval [t, t + ∆t] as

NPDV(t, t + ∆t) = δ · N(t, t + ∆t), (16)

where δ is the price-change threshold used to define events in both the CPD model and
the NPDV, and N(t, t + ∆t) denotes the number of price-change events occurring in the
interval [t, t + ∆t]. As shown in Hong et al. (2023), the NPDV performs comparably to
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parametric duration-based estimators such as the ACD model, while outperforming most
of the realized variance estimators in high-frequency environments.

The second one is the optimal candlestick estimator by J. Li et al. (2024). This is
designed as a nonparametric estimator of ‘spot’ volatility and given by

0.811 × (High − Low)− |Close − Open|
Duration of Interval

, (17)

where ‘High’ and ‘Low’ denote the highest price and lowest price in the interval, and ‘Close’
and ‘Open’ are the closing price and opening prices in the interval. As we have mentioned
in Section 2.3, this approach is limited in estimating spot volatility at very fine scales, since
short intervals may not contain four distinct prices. Consequently, we apply it to construct
integrated variance over relatively large intervals.

Together with the CPD and ACD models, we consider four estimators of integrated
variance. Figures 8 and 9 present the results for 10 s and 30 s intervals, respectively, over a
1200 s sample period. The CPD estimator produces relatively persistent variance dynamics
and effectively captures volatility shifts. By contrast, the ACD estimator generates more
volatile patterns with frequent sharp spikes, reflecting sensitivity to abrupt price move-
ments. The NPDV estimator provides a stable fit but tends to understate variance in certain
periods, while the candlestick estimator delivers the smoothest series but misses short-lived
fluctuations due to its reliance on intraday candlestick prices. Moreover, the nonparamet-
ric duration estimator and the candlestick estimator can occasionally take the value of
zero, either because no price-change events occur as defined, or because prices remain
unchanged within some very short intervals. Therefore, our CPD model performs better by
capturing both persistence and responsiveness in high-frequency variance estimation in
these short intervals.

Figure 8. Estimated integrated variance over 10 s.

Furthermore, we estimate integrated variances over 1 min and 3 min intervals, with re-
sults shown in Figures 10 and 11. To accommodate these longer horizons, the last three
trading hours of 15 April 2013 are plotted, with the dashed vertical line marking the Boston
Marathon bombing at approximately 3:00 PM, which triggered an immediate market shock
on that day. Across all methods, a clear surge in market volatility is observed following the
event, confirming the models’ sensitivity to sudden volatility jumps. The CPD estimator
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responds sharply while maintaining persistence, effectively capturing both the magnitude
and duration of the volatility spike. The ACD estimator also detects the shock but produces
noisier estimates with more fluctuations. The NPDV estimator exhibits smoother dynam-
ics but appears to underestimate the magnitude of the shock. The candlestick estimator
provides a similar patten in the low-volatility regime as our CPD model, while it fails to
capture the volatility burst and decaying period following the Boston Marathon bomb-
ing. Although the nonparametric NPDV and candlestick estimator are straightforward to
compute and attractive for quick, large-scale applications, they also sacrifice flexibility in
capturing structural breaks or persistence in volatility. Overall, the CPD model provides
the most balanced characterization of market volatility around the event.

Figure 9. Estimated integrated variance over 30 s.

Figure 10. Estimated integrated variance over 1 min. Vertical dashed line marks the time of Boston
Marathon bombing event.



Int. J. Financial Stud. 2025, 13, 186 14 of 20

Figure 11. Estimated integrated variance over 3 min. Vertical dashed line marks the time of Boston
Marathon bombing event.

5. Conclusions
This paper proposes the CPD model as a new framework for estimating spot volatility

from price durations and demonstrates its advantages in high-frequency settings. Com-
pared with alternative approaches such as the ACD model, the nonparametric duration
estimator, and candlestick-based measures, the CPD model provides a more stable yet
flexible characterization of volatility by accommodating structural breaks and sudden
market shocks. Simulation results show that the CPD estimator closely tracks true volatil-
ity and captures regime shifts, while empirical analysis of Nasdaq limit order book data
highlights its robustness in real markets. Particularly, it outperforms the benchmarks by
capturing both persistence and responsiveness in high-frequency variance estimation in
short intervals, and the application to the Boston Marathon bombing illustrates the model’s
ability to detect abrupt jumps in volatility while avoiding excessive noise. The model also
offers practical value for high-frequency traders and market makers, for whom accurate
and timely volatility estimation is vital to managing risk, setting spreads, and maintaining
profitability. Overall, this work contributes to the market microstructure literature by
introducing a novel duration-based approach that links order book dynamics to volatility
estimation in ultra-high-frequency settings.

Nevertheless, this study has some limitations. First, the analysis is restricted to uni-
variate volatility dynamics, whereas multivariate extensions would be necessary to model
co-movements across assets. Second, the current CPD model can identify shifts in volatility
but cannot predict the direction of jumps using additional order book information. Third,
estimation of the CPD model is relatively computationally intensive, which constrains
its applicability for real-time market monitoring. Addressing these limitations opens up
promising avenues for future research. Extensions could include multivariate CPD models
for systemic risk analysis, integration with liquidity and order-flow variables, and de-
velopment of real-time estimation methods suitable for live trading systems. Exploring
such directions would further enhance the applicability of the CPD framework for both
academic research and practical risk management in high-frequency markets.
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Appendix A. Supplementary EM Steps
We refer to the our previous paper Z. Li and Xing (2022) to estimate the CPD model

because the change-point structure is very similar to that work.
For the CPD model introduced in Section 2.2, the complete log-likelihood function is

given by

ℓ({yn
1 , λn

1}) = log P(λ1) +
n

∑
t=1

log f (yt | λt) +
n

∑
t=2

log P(λt | λt−1), (A1)

where {yt}n
t=1 denotes the observed sequence of price-change durations and {λt}n

t=1 the
unobserved sequence of underlying intensities. Here, P(λ1) is the prior distribution of the
initial intensity, f (yt | λt) the density of yt conditional on λt, and P(λt | λt−1) the transition
probability of λt given λt−1.

In our specification, the initial intensity λ1 is independently drawn from a Gamma
distribution G(·). Conditional transitions follow a Markov change-point process: with prob-
ability p, the intensity renews from G(·), and with probability 1 − p, it remains unchanged.
Thus, the log-likelihood simplifies to

ℓ({yn
1 , λn

1}) = log G(λ1) +
n

∑
t=1

log f (yt | λt)

+
n

∑
t=2

[
log G(λt) · 1(It=1) + log p · 1(It=1) + log(1 − p) · 1(It=0)

]
, (A2)

where It = 1 indicates that a change point occurs at the t-th trade, i.e., λt ̸= λt−1. 1(It=1) is
a indexing function that returns 1 when It = 1 and otherwise returns 0. Similarly, 1(It=0)
equals 1 if there is no change-point at t-th event.

In the E-step, we compute the expected log-likelihood conditional on the observed
durations {yt} and the current parameter estimates. In the M-step, we update (α, β, p)
by maximizing this expected log-likelihood. The procedure iterates until convergence,
yielding both parameter estimates and posterior distributions for the latent intensities.

Appendix A.1. Expected Likelihood

In the E-step, the expected log-likelihood, conditional on D = {y1n, parameters of
last iteration}, is as follows:
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E
(

lc({y1n, λ1n})
∣∣∣D) = E

(
log G(λ1)

∣∣∣D)+ n

∑
t=1

E
(

log f (yt|λt)
∣∣∣D) (A3)

+
n

∑
t=2

E
(

log G(λt) · 1(It=1)

∣∣∣D)
+

n

∑
t=2

[log p · P(It = 1|D) + log(1 − p) · P(It = 1|D)],

where the expectation is taken over the posterior distribution of hidden variables λi.
As shown in Appendix B, the posterior distributions of λt is as follows:

f (λt|D) = ∑
1≤i≤t≤j≤n

Πitj · gij(λt), (A4)

where gij(λ) ∼ Gamma(α+ (j− i + 1), β+∑
j
i yt) and Πitj are the change-point probability

that the last change point occurs at i and the next change point occurs at j + 1, which will
be calculated in Appendix B.

Moreover,

P(It+1 = 1|D) = ∑
1≤i≤t

Πitt P(It+1 = 0|D) = 1 − P(It+1 = 1|D) (A5)

where t ∈ [1, N − 1], and we also set P(I1 = 1|D) ≡ 1.
Therefore,

E(log f (yt|λt)|D) =
∫

λt
log f (yt|λt) · f (λt|D)dλt (A6)

=
∫

λt
(log λt − λtyt) · ∑

1≤i≤t≤j≤n
Πitj · gij(λt) · dλt

E(log G(λt) · 1(It=1)|D) =
∫

log G(λt) · f (λt, It = 1|D)dλt

Since f (λt|D) = ∑
1≤i≤t≤j≤n

Πitj · gij(λt), thus f (λt, It = 1|D) = ∑
t≤j≤n

Πttj · gtj(λt).

Hence, we have the following.

E(log G(λt) · 1(It=1)|D) = ∑
t≤j≤n

Πttj

∫
log G(λt) · gtj(λt)dλt (A7)

Maximization and the Update of Parameters

Once we have the expected log-likelihood in (A3) and write it as a function form with
the following arguments (α, β, p),

lEC(α, β, p) ≡ E
(

lc({y1n, m1n})
∣∣∣D), (A8)

we can perform our maximization step in EM and update our estimations of model parameters.
As only the last two items in (A3) contain parameter p, therefore, by first order

maximization, we have the following.

∂lEC(α, β, p)
∂ p̂

=
1
p̂

n

∑
t=2

P(It = 1|D)− 1
1 − p̂

n

∑
t=2

P(It = 0|D)

= 0,
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which gives

p̂ =
∑n

t=2 P(It = 1|D)

n − 1
. (A9)

Consider items in lEC(α, β, p) contain parameters. It can be derived that (α, β)

E
(

log G(λ1)
∣∣∣D)+ n

∑
t=2

E
(

log G(λt) · 1(It=1)

∣∣∣D)
= [α log β − log Γ(α)] · A + (α − 1) · B − β · C, (A10)

where

A =
n

∑
t=1

(
∑

t≤j≤n
Πttj

)
=

n

∑
t=1

P(It = 1|D)

B =
n

∑
t=1

[
∑

t≤j≤n
Πttj ·

∫
λt

log λt · gtj(λt)dλt

]

C =
n

∑
t=1

[
∑

t≤j≤n
Πttj ·

∫
λt

λt · gtj(λt)dλt

]
.

Therefore, by maximizing (A10), we have

α̂ =
C
A

β̂, (A11)

and
A · log β̂ − A · ψ(α̂) + B = 0. (A12)

Thus, combining (A11) and (A12), we can solve the new value of α̂ and β̂. In addition
to the result of p̂ in (A9), we can perform the next EM iteration until the convergence
of estimators.

Appendix B. The Posterior Distribution of λt in EM
Appendix B.1. Forward–Backward Filter

This section outlines the forward–backward filtering procedure for updating the
posterior distribution of λt given {y1, . . . , yn}.

Forward Filter

Let Rt = max{k | Ik = 1, k ≤ t} denote the most recent change point before or at t.
Given (y1t, Rt = s), the density of the posterior distribution of λt is

gst(λt) ≜ f (λt|yt, Rt = s) ∝
t

∏
i=s

f (yi|λt)G(λt). (A13)

The posterior distribution of λt given y1t can be expressed as

f (λt|y1t) =
t

∑
i=1

pit · git(λt), (A14)

where pit = P(Rt = i|y1t) are mixture weights calculated recursively.

Backward Filter

Define R̃t+1 = min{k | Ik+1 = 1, k ≥ t + 1}, i.e., the next change point after t. Let
qt+1,j = P(R̃t+1 = j|yt+1,n).

Then, the posterior distribution of λt given yt+1,n is
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f (λt|yt+1,n) = p · G(λt) + (1 − p)
n

∑
j=t+1

qt+1,j · gt+1,j(λt), (A15)

where the weights qt+1,j can be obtained recursively.

Combination (Forward–Backward Algorithm)

The posterior distribution of λt given the full sample {y1, . . . , yn} is

f (λt|y1n) = ∑
1≤i≤t≤j≤n

Πitj · gij(λt), (A16)

where Πitj is the joint posterior probability of the last change point at i and the next at j + 1.

Appendix B.2. Calculation Steps of the Posterior Intensity Distribution

In practice, the posterior intensity distribution can be evaluated as follows:

• The conditional densities gij(λ) are Gamma distributions, i.e., gij(λ) ∼ Gamma(α +

(j − i + 1), β + ∑
j
t=i yt).

• The next thing is to calculate Πitj. By the foward–backward filter part, we can derive

that Πitj =
Π∗

itj

∑
1≤s≤t≤k≤n

Π∗
stk

, and

Π∗
itj =

p · pit j = t, 1 ≤ i ≤ t

(1 − p)pit · qt+1,j ·
fij

fit ft+1,j
j > t, 1 ≤ i ≤ t,

(A17)

where fij is defined as

fij =
∫ j

∏
t=i

f (yt|λ) · G(λ)dλ.

• The normalizing constants fij are obtained in closed form due to conjugacy:

fij =
Γ(α + j − i + 1) · βα

Γ(α) · (β + ∑
j
t=i yt)α+j−i+1

.

• The forward probabilities pit and backward probabilities qt+1,j are computed recur-
sively, which in turn yield Πitj and hence the posterior f (λt|D).

In summary, the forward–backward algorithm shows that the posterior of λt is a finite
mixture of Gamma distributions, with weights updated recursively. This structure makes
the EM algorithm computationally tractable for high-frequency data.

Appendix C. Comparison with TACD Model
Here, we compare our model with the nonlinear threshold ACD (TACD) model

proposed by Zhang et al. (2001), using the Apple LOB data from 15 April 2013. The results
are plotted in the figures below. From the comparison, we can still find that (1) the residuals
from the CPD model conform closely to the exponential distribution, while those from the
TACD model show substantial deviations; (2) the CPD model produces volatility estimates
that are more persistent and less noisy, whereas the TACD model generates highly volatile
series with frequent sharp spikes; (3) the CPD-based integrated variance estimator captures
structural shifts in volatility more effectively, while the TACD estimator tends to exaggerate
short-term fluctuations and overreact to abrupt price changes.
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Figure A1. Fitted duration residuals by TACD model and CPD model.

Figure A2. Spot volatility estimation by TACD model and CPD model.

Figure A3. Estimated integrated variance over 1 min. Vertical dashed line marks the time of Boston
Marathon bombing event.

Notes
1 These approaches build on earlier work by Gallant et al. (1999) and Alizadeh et al. (2002), who introduced range-based volatility

estimators for modeling and forecasting time-varying volatility.
2 Boston Marathon bombing occured on 15 April 2013. https://en.wikipedia.org/wiki/Boston_Marathon_bombing (accessed on 8

July 2025).

https://en.wikipedia.org/wiki/Boston_Marathon_bombing
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