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Abstract: This study firstly applied a Bayesian symbolic regression (BSR) to the forecasting of
numerous commodities’ prices (spot-based ones). Moreover, some features and an initial specification
of the parameters of the BSR were analysed. The conventional approach to symbolic regression, based
on genetic programming, was also used as a benchmark tool. Secondly, various other econometric
methods dealing with variable uncertainty were estimated including Bayesian Model Averaging,
Dynamic Model Averaging, LASSO, ridge, elastic net, and least-angle regressions, etc. Therefore, this
study reports a concise and uniform comparison of an application of several popular econometric
models to forecasting the prices of numerous commodities. Robustness checks and statistical tests
were performed to strengthen the obtained conclusions. Monthly data beginning from January 1988
and ending in August 2021 were analysed.
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forecasting; spot prices; symbolic regression; variable uncertainty

1. Introduction

The objective of this paper is to apply a novel econometric tool in forecasting various
commodities’ prices. The novelty of the applied method lies in its fusion of two distinct
approaches: symbolic regression (Koza 1998) and Bayesian econometrics (Koop 2017).
The rationale behind such an idea stems from the challenges faced by researchers when
constructing forecasting models, particularly when selecting explanatory variables for
methods such as multilinear regressions. This is a non-trivial task (Tapia Cortez et al.
2018), especially when adopting the (standard) frequentist approach and employing the
commonly used ordinary least squares method to estimate regression coefficients.

Of course, there are some classical techniques available for selecting explanatory
variables, but the issue of model uncertainty still remains a serious challenge. Researchers
sometimes address this problem by using conventional tools such as model averaging
techniques (Steel 2020; Burnham and Anderson 2002). However, applying the frequentist
approach still requires careful analysis and is susceptible to human bias. Moreover, when
dealing with data sets consisting of more variables than the number of observations, the
Bayesian approach often becomes a useful alternative (Koop 2017).

Indeed, a viable solution to this issue is transitioning from the frequentist approach
to the Bayesian one, which generally is an efficient tool in forecasting commodity prices
(Nurmakhanova 2020). In the Bayesian framework, a researcher starts from some prior
knowledge or assumptions on estimated coefficients, which are then updated with the new
information forming the posterior knowledge. Such an approach offers several advantages.
Mathematically, it enables dealing with a higher number of explanatory variables than
observations for each time series. Moreover, it closely resembles the real-life market
scenarios, in which investors can continuously update their econometric models with the
new information in each session, re-estimating coefficients accordingly (Koop 2017).

In other words, the Bayesian approach starts with an initial (prior) belief about the
parameter of interest. As the new information becomes available, this belief is updated,
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leading to the posterior belief. Consequently, a value of the parameter of interest evolves
over time as this new information emerges. It is worth noting that these considerations
not only apply to the technical challenge of selecting explanatory variables for regression
models but are also valid for more complex models (Koop 2017).

Notably, the combination of symbolic regression with Bayesian principles has not
been extensively explored yet, despite both approaches being philosophically well-suited
to address real market problems, as already described (Jin et al. 2019). Thus, the proposed
combination of these two formalisms represents an intriguing endeavour. This can intro-
duce a new econometric tool and contribute to the ongoing scientific discourse surrounding
model uncertainty and variable selection. Surprisingly, limited attempts to integrate these
formalisms have been made yet (Vazquez et al. 2022; Guimera et al. 2020; Jin et al. 2019;
Regolin and Pozo 2005; Zhang 2000).

Nevertheless, it should be noted that Bayesian methods are not always computation-
ally “cheap” in this context (Lan et al. 2022). Moreover, in economics or finance, symbolic
regression has not yet been extensively applied. There are some studies on forecasting
production or emission quotas, but no application to price forecasting (Yang et al. 2015a,
2015b). Symbolic regression itself, which is a well-known tool (Koza 1998; Sinha et al. 2015),
relies heavily on evolutionary algorithms, especially genetic ones (Koza 1998; Bhattacharya
et al. 2016; Sinha et al. 2015; Eiben and Smith 2015).

Interestingly, genetic algorithms have been used in various econometric models, and
were claimed to be very useful (Claveria et al. 2022; Garcia and Kristjanpoller 2019; Claveria
et al. 2016, 2017; Mostafa and El-Masry 2016; Aguilar-Rivera et al. 2015; Sermpinis et al.
2015; Sheta et al. 2013; Hasheminia and Niaki 2006). While widely popular in technical
fields, such as engineering, and nature-oriented sciences, such as ecology and medicine
(Dimoulkas et al. 2018; Klotz et al. 2017; Golafshani and Ashour 2016; Ceperic et al. 2014;
Narotam et al. 2014; Sarradj and Geyer 2014), they have not yet been extensively applied in
economics or finance, especially in the context of variable uncertainty, and particularly for
forecasting commodity prices.

Indeed, if applied to economics and finance, it was rather as modelling, optimisation,
or discovering the “true” equation over some “static” data set (Brabazon et al. 2020). The
true forecasting aim, moreover, with (dynamic, temporal changing) time-series, was rarely
tackled. As a result, these issues create an important research gap, which this paper aims
to fill.

Additionally, in this paper, BSR is compared with other popular forecasting methods
dealing with variable uncertainty. These include, for example, Bayesian-based model
averaging methods, such as Bayesian Model Averaging and Dynamic Model Averaging
(Belmonte and Koop 2014; Koop and Korobilis 2011; Onorante and Raftery 2016; Cross
and Nguyen 2017), and shrinkage methods, such as LASSO regression, which resembles
the ordinary least squares method, but with the optimisation performed over a penalized
function (Steel 2020; Burnham and Anderson 2002). In particular, these methods are
compared in the context of their ability to forecast commodity prices, as each of them has
their own strengths and limitations in this context.

When undertaking this research, some hypotheses were also claimed. First, that
combining symbolic regression with the Bayesian approach can lead to some improvement
in forecasting performance compared to using each approach separately. Secondly, that
the proposed novel method can outperform other currently developed methods, such as
LASSO and RIDGE regressions, Dynamic Model Averaging, Bayesian Model Averaging,
and common conventional approaches such as ARIMA models, etc., in terms of forecast
accuracy. Thirdly, that the recursive implementation of the proposed algorithm, which
aligns with the flow of information from real markets, can further enhance forecasting
performance, as model coefficients are re-estimated and updated in each subsequent period
(Zhao et al. 2021; Tashman 2000).

This paper is organised in the following way. The next section contains a short review
on commodity price determinants and modelling. It also provides references for important
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and interesting reviews about the topics motivating the study and closely linked with
the research described herein. The next section is devoted to a description of the applied
data set. The next section briefly describes the BSR, benchmark models, forecast quality
measures, and other methods applied in this research. The last sections present the obtained
results and conclusions. The additional main advantage of this research is that a large
number of commodities, and a large number of forecasting models suitable to deal with
variable uncertainty issue, are estimated in a unified and consistent way and compared
with each other, contrary to some more tailored research focusing on relatively few methods
each and just some narrowed time-series usually covering different time spans. As a result,
quite a wide insight over many methods is provided in this paper, and they are tested using
many different commodities (time-series) at once in a unified way.

2. Literature Review

Forecasting commodity prices is a challenging but essential task (Drachal 2018b;
Harvey et al. 2018; Arango et al. 2012; Byrne et al. 2013; Gargano and Timmermann 2014).
There is an obvious practical need and a pure scientific interest in exploring novel econo-
metric methods for this purpose (Herrera et al. 2019). However, despite numerous attempts,
it remains difficult to propose an econometric method that consistently outperforms even
simple methods, such as ARIMA models, or the naive method (i.e., the method in which
the last observed value is taken as a one-step ahead forecast). Nevertheless, the ability to
predict commodity prices is highly desirable for investors, policymakers, and governments.
Obtaining a good forecast accuracy is indeed a common challenge in finance, and it raises
further questions about the extent to which commodities prices are predictable at all (Wang
et al. 2015a).

2.1. Forecasting Methods Challenges

In particular, the Bayesian symbolic regression (BSR) described by Jin et al. (2019)
seems to be quite a promising forecasting tool. It starts from the assumption that an output
function can be expressed as a linear combination of quite simple component functions.
These functions are encoded (Weiss 2014) using symbolic trees (i.e., binary expression
trees). Bayesian inference with the Markov chain Monte Carlo (MCMC) method is applied
to describe the evolution of these trees structures. Jin et al. (2019) claimed that such a
method leads to an improvement in the forecast accuracy and reduces complexity and
computational issues.

Indeed, the conventional frequentist approach requires certain conditions to be met by
the data set. For instance, the ordinary least squares method assumes the availability of
enough observations to yield “reasonable” estimates of regression parameters. The solution
is obtained by minimizing a specific objective function, requiring the existence and unique-
ness of a solution. This process involves computing the Moore–Penrose pseudoinverse
matrix, which requires certain matrices to be invertible (subject to specific restrictions).
However, these methods become simply infeasible when the number of explanatory vari-
ables exceeds the number of observations in each of the considered time-series (Burnham
and Anderson 2002).

Thus, conventional methods begin with a rigorous pre-selection process of explanatory
variables, heavily reliant on a researcher’s subjective approach. Of course, a researcher is
required to conduct a thorough literature review and carefully choose explanatory variables
for an econometric model based on previous findings and conclusions. Then, the number
of variables is constrained (Burnham and Anderson 2002), but this selection process is a
crucial and challenging task.

Indeed, two significant challenges are common. First, the pre-selection of explanatory
variables is influenced by the researcher’s subjective approach. Although researchers use
their intuition and prior experience to strike a balance between preferences and objectivity,
this remains a highly subjective aspect of any research and is naturally biased by human
preferences. Therefore, seeking a more “automated” tool for this process is a very desirable
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aim. Secondly, in modern research, dealing with “big data” has become quite a norm,
particularly in forecasting commodity prices (Zhang et al. 2023; Liu and Lv 2020). This
means that even after conducting a rigorous literature review, a considerable number of
potentially relevant explanatory variables still remain (Koop 2017). As a result, the con-
ventional frequentist approach becomes inadequate. Indeed, in the context of forecasting
commodity prices, if a researcher would like to incorporate all the explanatory variables
identified through a thorough literature review (Kaya 2016), then the frequentist approach
would still face some significant challenges.

However, another important challenge faced with real markets is determining the
appropriate model structure even after the potentially important explanatory variables have
been pre-selected. For example, researchers must decide whether to construct a multiple
linear regression model or apply certain transformations to the variables. Another example
is making a decision involving whether to consider linear models versus including powers
or logarithms of variables to capture potential non-linear relationships. Unlike the common
econometrics practice that seeks data stationarity, the purpose of these transformations is
to account purely for possible non-linearities (Caginalp and DeSantis 2011).

A common approach to this issue is considering various models and averaging their
results. However, a less explored method is symbolic regression (Koza 1998). This re-
gression analysis automatically explores numerous mathematical expressions to find the
“best fitting” model while balancing accuracy and simplicity to address overfitting and
over-parametrisation issues. The key advantage of symbolic regression, in the context of
the described problems, is its immunity to human bias. It provides an automatic algo-
rithm that simultaneously handles variable selection and model specification, including
variable transformations. To be more precise, symbolic regression starts with an initial
set of model specifications and later expands or explores more complex models derived
from this initial set. Evolutionary algorithms are employed to construct new models
(Eiben and Smith 2015).

These algorithms begin with a “population” of models, which, similar to the Darwinian
theory of evolution, “crossover” with each other. This process requires specific probabilities
to be set up. For example, let f1 and f2 be functions representing two model specifications
(i.e., two multiple regression functions). First, both f1 and f2 can slightly change their
functional forms through “mutation” with a certain probability. Secondly, a new function
can be created with a “crossover” probability by combining a part (e.g., the first few
symbols) from function f1 with another part (e.g., the last few symbols) from function f2.
Subsequently, the “population” of regression models is expanded with the modified f1 and
the modified f2, and their “crossover child”. The most simple approach is to keep these
two probabilities fixed throughout the process (Koza 1998).

Concerning symbolic regression, there is quite a limited number of studies in which
this method would be applied to economic or financial forecasting, especially in a direct
way to forecast commodity prices. Symbolic regression—in this field of science—has been
used mostly in forecasting production (Yang et al. 2015b) or emission quotas (Yang et al.
2015a), and modelling energy consumption (Rueda et al. 2019a, 2019b), etc. Senkerik et al.
(2017a, 2017b) applied a certain hybridisation of symbolic regression based on analytical
programming and differential evolution to forecast exchange rates. Furthermore, some
applications in macroeconomic modelling (i.e., unemployment, inflation, etc.) were made
(Kronberger et al. 2011). Still, computational issues are an important obstacle when applying
symbolic regression and genetic algorithms to certain data sets (Huang et al. 2020).

Orzechowski et al. (2018) provided an extensive benchmarking review of several
genetic programming approaches to symbolic regression based on up-to-date machine
learning methods (e.g., least-angle regression). They explored over 100 regression prob-
lems. In particular, they concluded that symbolic regression outperforms gradient boosting
algorithms, despite its relatively high computational price. Their research has been continu-
ously updated to include the newest improvements of algorithms (La Cava et al. 2021). Still,
the evolution of processes in symbolic regression optimisation (i.e., the desirable genetic
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algorithm employed in symbolic regression) has been improved by several researchers
(Landajuela et al. 2022; Zegklitz and Posik 2021; Kubalik et al. 2020; Hara et al. 2019). For
instance, Haeri et al. (2017) proposed certain modifications to the mutation and crossover
procedures (based on coefficients computed over the data set) in order to reduce bloat
(i.e., uncontrollable growth of the average tree size in symbolic regression). These issues,
as well as a concise review of the advantages and challenges of symbolic regression, are
presented by Smits and Kotanchek (2005). Recently, Haider et al. (2023) continued improv-
ing symbolic regression algorithms, in particular by focusing on issues with the shape the
regression functions and including prior knowledge about it.

In case of variable selection and model uncertainty problems, currently, the most
extensively developed approaches are those involving the use of Bayesian methods. These
methods are based on the assumption that among numerous potentially interesting models,
there exists a “true” model that can be identified. Examples of such approaches are
Bayesian Model Averaging, which has been found useful in macroeconomic modelling,
and its extension, i.e., Dynamic Model Averaging (Steel 2020; Wang et al. 2017; Raftery et al.
2010). These Bayesian methods rely on model averaging techniques. Multiple regression
models are constructed from a set of interesting, potentially important, variables, and each
model is assigned a certain (posterior) probability. These probabilities are then used as
weights in the model averaging procedure. The final forecast is a combination of forecasts
obtained from individual models, resulting in an averaged forecast. There are arguments
in favour of model averaging over simply selecting the model with the highest posterior
probability (Baumeister and Kilian 2015; Wang et al. 2017). Moreover, some researchers
argue that selecting a model with the highest posterior probability is not always the optimal
solution, but, in certain conditions, the “median probability model” may perform better
(Barbieri and Berger 2004).

While model averaging can be performed in the conventional frequentist approach (for
example, using the Akaike Information Criterion as weights), it is still constrained by the
limitations on the ratio between the number of variables and the number of observations,
as already mentioned in the previous part of this paper. Other methods to deal with model
uncertainty include stepwise regression, shrinkage methods (such as LASSO regression),
extreme bounds analysis, s-values, general-to-specific modelling, the model confidence
set approach, and the best subset regression (Steel 2020). However, the motivation behind
the research described in this paper is rooted in the recognition that existing econometric
methods used for forecasting commodities prices have both advantages and drawbacks,
with no single method clearly superior to others. Moreover, the modern landscape for
researchers and practitioners includes quite large and complex data sets. For instance,
the FRED Monthly Database for Macroeconomic Research comprises over 150 time-series,
necessitating specialised econometric methods beyond the conventional ones (FRED 2015).

Another desirable feature of a commodity price model is to be “flexible”. In particular,
in the case of symbolic regression, such “dynamic” approaches are useful and can improve
the forecasting performance. For instance, Wagner et al. (2007) already pointed out that
dynamic (i.e., with a rolling window) estimations for symbolic regression can outperform
static estimations because otherwise, in the case of a time-series, the changing environment
issue is ignored. Secondly, they also considered forecast combination advantages over the
simple selection of the best fitting solution. An improvement in forecasting with rolling
windows was also noticed by Winkler et al. (2015a, 2015b). Furthermore, Lee (1999)
advocated recursive computations for time-series modelling with symbolic regression.
Besides that, in a more general context, Clark and McCracken (2009) advocated combining
recursive and rolling forecasts when dealing with linear models. According to them, such a
procedure might improve the forecast accuracy.

To sum up, the desired properties of an econometric model for commodity prices
include the following features: the ability to handle a large number of variables on a
theoretical basis; “adaptability”, meaning that model coefficients are continuously re-
estimated (updated) as new market information becomes available; the ability to minimise
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the bias towards human decisions, as human subjectivity can influence model outcomes;
and the ability to capture the time-varying importance of different explanatory variables
(Huang et al. 2021). Indeed, addressing these objectives is crucial in developing a robust
econometric approach that can effectively forecast commodities prices in the presence of
complex and dynamic data environments (Chai et al. 2018; Yin et al. 2018; Zhao et al. 2017).

The last property can be briefly justified by a quick look at crude oil prices as an
example. Prior to the 1980s, most models relied mostly on supply and demand factors
to explain oil price movements. On the other hand, a well-documented empirical and
theoretical factor that influences oil prices is the interest rate (Baumeister and Kilian
2015; Arango et al. 2012). However, since the 1990s, more attention has been given to
the impact of exchange rates (Basher et al. 2012; Reboredo 2012; Chen and Chen 2007).
This is because exchange rates can indirectly influence supply and demand forces. The
appreciation or depreciation of an exchange rate can impact the real price paid by importers
(and thus their demand) and affect the real profit of commodity exporters (and thus their
production motivation).

Further, recognizing that the global economic landscape is continuously evolving and
influenced by the process of globalisation, researchers began to focus on the importance of
global economic activity (Wang et al. 2015b). Indeed, commodity markets are usually global
markets with a limited number of significant producing countries and numerous consuming
(importing) countries. As a result, changes in the global economic activity can significantly
impact demand forces, and should be taken into account in a modelling framework.

Furthermore, since the 2000s, researchers have focused on understanding the intricate
links between futures and spot prices. Some have found that factors such as fluctuations in
open interest (i.e., the total number of outstanding options or futures contracts that have
not yet been settled) can serve as better proxies for the futures market than simply using
futures prices (Hong and Yogo 2012). This has led to a growing interest in exploring the
relationship between a given commodity price and various stock market indices. Stress
market indices (for example, the VIX index) have also been found to be useful in this
context. Additionally, policy uncertainty also began to be considered as an important
commodity prices driver (Byun 2017; Chen et al. 2014; Gargano and Timmermann 2014;
Arslan-Ayaydin and Khagleeva 2013).

Consequently, in the example of the oil market, modelling data before the 1980s require
more emphasis on demand and supply variables. In the 1990s, more variables representing
fluctuations in exchange rates should be included, and after the 2000s, additional variables
from the stock markets should be considered. In other words, the state-space of the model
should be allowed to vary in time, in order to account for the changing dynamics of the
commodity market (Nonejad 2019; Wang et al. 2017; Arouri et al. 2010; Cross and Nguyen
2017; Drachal 2016).

2.2. Crude Oil

The first group of oil price determinants is strictly connected to the stock markets.
Several papers pointed out a link between exchange rates and the demand for oil: a change
in a currency’s value in comparison with a currency in which oil is denominated affects the
demand positively (in the same direction). Currency appreciation increases the purchasing
power, and as a consequence, decreases the relative price of oil (Bal and Rath 2015; Reboredo
et al. 2014; Hartley and Medlock 2014; Aloui et al. 2013a, 2013b; Uddin et al. 2013; Tiwari
et al. 2013; Akram 2009). This link has been confirmed for emerging markets as well as for
developed markets (Chen and Chen 2007; Wang et al. 2004). Xu et al. (2019) found that this
impact began especially in the early 2000s, and, moreover, the relationship is non-linear.

Byrne et al. (2013) analysed the role of demand and supply in determining oil prices,
while other studies examined the connection between export in developed countries (Riggi
and Venditti 2015) and policy uncertainty (Andreasson et al. 2016; Bekiros et al. 2015).
Uncertainty shocks hit the real side of an economy, decreasing production and investment
(Bloom 2009), which in turn negatively affects commodity prices. Haigh (2018) analysed
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fundamentals and concluded that in the oil market, supply forces drive prices during
geopolitical tensions, but during economic crises demand forces dominate. Ghalayini
(2017) concluded that oil inventories impact the short-term oil prices. However, in the
long-term the impact of demand, supply, the exchange rate, and speculation in the futures
market is also important.

The effect of gross domestic product, stock market activity, and the volatility of the
stock market on oil prices was also analysed in the literature (Basher et al. 2012; Arouri
et al. 2011; Bernabe et al. 2004; Yousefi and Wirjanto 2004). There is a clear correlation
between economic growth and the growth in demand for oil. In recent years, the emerging
markets were those where the demand for crude oil grew most rapidly (Basher et al. 2012).
Additionally, Mensi et al. (2013) described the process of shock and volatility transmission
between various markets in the globalised economy, finding the S&P’s index significance
in oil price prediction. A shock (e.g., panic, optimism) in a given market, in this case a stock
market, can be easily transferred to a different market, say the commodities market.

Du and He (2015) also found a relationship between the volatility of stock markets
and the oil market, similarly to Smiech and Papiez (2013), who noted such a link between
exchange rates, stock market volatility, and fossil fuels. Recently, the role of oil futures
markets’ financialisaton (Duc Huynh et al. 2020) and of speculative pressures has been
discussed (Diaz-Rainey et al. 2017; Liu et al. 2016; Yin and Yang 2016; Kilian and Murphy
2014; Fattouh and Scaramozzino 2011; Hamilton 2009). Financialisation implies a growing
role for treating commodities and their derivatives as investment assets (UNCTAD 2012).
The investigated mechanism would be the following: an increase (or decrease) in the
speculative demand would affect commodity prices similarly to changes in the “regular”
demand. Sometimes, the level of inventories was taken as a proxy for the pressure on
the market (Hamilton 2009), yet the results were rather ambiguous (Kim et al. 2017). The
very role of inventories might be twofold: they might serve as hedging instruments, used
in order to decrease the risk in an investment portfolio through its diversification, or as
a speculative tool to achieve gains (Irwin et al. 2009). It has been debated how strongly
the financialisation of the oil futures market influenced the commodity’s spot price, albeit
without yet reaching clear results (Carmona 2015; Fattouh et al. 2013).

It has also been pointed out that oil prices have been strongly affected by the demand
growth in rapidly developing Asian countries, most notably by the change in China’s
character from a net petroleum exporter until 1992 to the world’s top importer in 2019,
surpassing the U.S. in 2017 (EIA 2020; Killian and Hicks 2013; Kaufmann 2011; Li and
Leung 2011). For example, Wang and Sun (2017) concluded that economic activity is the
most significant factor driver of oil prices compared with other factors. New emerging
markets boost the demand for oil further, and, consequently, contribute to enhancing the
price growth pressure. Abd Elaziz et al. (2020) obtained promising results in their oil price
forecasting model, employing 10 determinants of the commodity’s prices: exchange rates
(denominated to the U.S. dollar) of the Canadian dollar, Euro, and Chinese yuan, as well as
coal, natural gas, copper, gold, silver, iron, and lagged oil prices. There was a clear positive
correlation between oil prices and all other commodities (the strongest being for copper
and iron: 0.92), while for exchange rates the correlation was negative. In this case, the most
important correlation was found between the oil price and the Canadian dollar exchange
rate (−0.75).

2.3. Natural Gas

The natural gas market is much more segmented than the markets for oil or coal
(Mohammadi 2011) and is not as globalised. While comparing different countries, one must
remember that geographical location, deregulation policies, technological advances, and
trade agreements all play a crucial role in determining gas prices (Olsen et al. 2015). These
factors, increasing transportation and transaction costs, can be impediments to arbitrage,
thus restricting providing homogenous goods, in this case natural oil, at a particular price,
according to the law of one price.
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Due to this commodity’s characteristics, for example, requirements for transport
infrastructure (e.g., pipelines), access to it, and its prices strongly depend on geographical
and infrastructural factors. Having said that, it is not at all surprising that differences
between states can be large. Ji et al. (2014) observed that while North American gas prices
depend on the condition of the global economy, gas prices in Europe and Asia are affected
more by crude oil prices. According to Ji et al. (2014), Europe and Asia, as major gas
consumers, are characterised by a rigid demand for the commodity, so global economic
activity has a relatively small impact on their gas prices. At the same time, these gas
markets are relatively immature compared to America. Namely, their pricing mechanisms
are based to a much greater extent on oil prices, and are less determined by the internal
demand/supply balance.

Some general determinants in the short term include temperature and supply shocks,
while in the long term these include coal and long-term oil prices (Nick and Thoenes
2014; Mu 2007), climate uncertainty (Bistline 2014), and even the release of gas storage
reports (Rubaszek and Uddin 2020; Linn and Zhu 2004). While temperature affects the
amount of gas consumption and, thus, the demand for it, coal (discussed further herein)
can be described as the substitute for this commodity (Obadi and Korcek 2020); the gas
storage reports can be a determinant due to the previously discussed financialisation of
commodity markets. Investors adjust their decisions to the market situation, actualised
with the accessible information. Indeed, Chiou-Wei et al. (2020) found that underground
storage is an important driver of natural gas prices in the U.S. (as well as the weather, oil
price, and macroeconomic news).

Despite the fact that in certain conditions natural gas may be treated as a substitute to
crude oil, their linkage is still sometimes found to be unclear (Atil et al. 2014; Ji et al. 2014;
Brown and Yucel 2008). Here again, as in the case of oil price determinants, the changing
position of the Asian economies is an important factor, affecting gas prices through their
influence on the global supply/demand balance (LaRose 2014; Cornelius and Story 2007).
According to a general relationship, economic growth in Asian countries was followed by
increased energy consumption. As LaRose (2014) pointed out, estimated forecasts give
reason to believe that energy demand in Asia will double in the next 50 years.

2.4. Coal

The basic characteristics of the coal market are the price of the commodity and its
quality (Li et al. 2014). Furthermore, an important role is played by demand for energy and
prices of other fuels (LaRose 2014; Dong et al. 2010). Of course, when the price of substitute
goods (other energy sources) falls, the demand for a given commodity based on the past
price will also drop, and the price will have to adjust. Regnier (2007) found that coal prices
are much less volatile than the price of the other energy commodities, and Yang et al. (2012)
pointed out that much of the coal price volatility and its surges have been caused by China
and its decision to decontrol the commodity’s prices; uncontrolled prices then had to adjust
to the value reflecting production costs and market conditions.

In contrast to past market liberalisations in many countries, the process was not
sudden, but more gradual, starting in the early 2000s. As Yang et al. (2012) noted, one
of the first steps towards coal market liberalisation in China was allowing producers to
sell the excess output on a free market, the initial result of which was coal price increases
and greater volatility; from 2003 to 2010, the price of coal more than tripled. Arora and
Tanner (2013) found some evidence confirming Hotelling’s hypothesis (Hotelling 1931) that
non-renewable commodities are influenced by interest rates. According to Hotelling (1931),
in an efficient market, owners of non-renewable resources will provide a supply only if it
will be profitable in comparison with financial instruments yielding their interest rate.

Similar general observations were made in the case of energy commodities’ depen-
dency on economic growth and size of labour force (Dogan 2016; Wang et al. 2015b; Apergis
and Payne 2010), and on policy uncertainty (Wang et al. 2015a). In the work of Alameer et al.
(2020), the following factors proved to be important determinants of coal prices: copper,



Int. J. Financial Stud. 2024, 12, 34 9 of 56

natural gas, iron, silver, crude oil, and gold prices, as well as the Australian dollar, Indian
rupee, and Chinese yuan exchange rates (denominated to the U.S. dollar). The Pearson
correlation between the other commodities’ prices and coal prices was positive and rather
high (more than 0.80 on average), while for the U.S. dollar to Indian rupee exchange rates
it was weaker (0.470), and for the U.S. dollar to the Australian dollar and the U.S. dollar to
Chinese yuan it was negative (−0.666 and −0.283, respectively).

2.5. Metals

Of course, fundamentals are agreed to play the major role in driving prices of metal
commodities. However, non-fundamental factors can be important, especially in the short-
term horizon (Guzman and Silva 2018). Similar to previously discussed commodities,
metals prices are also significantly affected by the exchange rates (Chen et al. 2010). For
example, Ciner (2017) confirmed that South African rand exchange rates can be used as
a predictor of palladium, platinum, and silver prices. It is of note that South Africa is
one of the leading producers of these resources. According to Prates (2007), especially in
the early 2000s, there was a strong correlation between commodity prices and the global
macroeconomic conditions. Chen (2016) found that the stock prices of resource-based
companies improve metal price forecasting. On the other hand, Kaur and Dhiman (2017)
stated that metal stock returns have a limited impact on metal commodities’ prices. Brown
and Hardy (2019) focused on the Chilean exchange rate and its ability to predict the prices of
non-ferrous metals. Pincheira and Hardy (2021) concluded that the exchange rates of some
commodity exporting countries can be successfully used in forecasting the aluminium price.

Furthermore, in the case of metal commodities, some attempts have been made to
predict the commodity prices based on inventories quotas (Geman and Smith 2013). On
the other hand, financialisation issues are not commonly agreed for metal markets (Mayer
et al. 2019). Weng et al. (2018) employed several financial factors to build iron ore forecasts,
while in a more recent study, Ewees et al. (2020) confirmed the following factors to be
good predictors of iron ore prices: crude oil, gold, scrap, silver, copper, and lagged iron
ore prices; Australian dollar to U.S. dollar and Chinese yuan to U.S. dollar exchange rates;
and inflation rates in the U.S. and China. The correlation with other commodity prices was
strong and positive (with the highest value for crude oil of 0.919), while for exchange and
inflation rates, correlations were rather weaker and negative. For example, the correlation
between the U.S. inflation rate and the iron ore price was −0.297. The authors justified the
choice of variables corresponding to Australian and Chinese economic conditions with the
fact that Australia is one of the biggest producers and exporters of iron ore, and China is
the biggest importer.

Similarly, Alameer et al. (2019a) used the Chilean peso, Peruvian sol, and Chinese yuan
exchange rates; the inflation rates of the U.S. and China; and the prices of gold, silver, iron,
oil, and lagged copper prices in copper price forecasting. Alameer et al. (2019b) provided a
similar list of gold price determinants; instead of Peruvian sol and Chilean peso exchange
rates, they took South African rand and Indian rupee exchange rates (denominated to the
U.S. dollar), and, of course, removed gold as a predictor (since it was a dependent variable).
At the same time, Yuan et al. (2020) successfully applied the opinion score based on web
scraping technology as one of the predictors of gold prices. An algorithm using text mining
methods was employed to retrieve words and phrases describing market sentiments and
an opinion score variable was created. Its application enabled reducing the mean absolute
percentage error for predictions significantly, and thus improved gold price forecasts.

Gangopadhyay et al. (2016) used the stock market index, exchange rate, U.S. bond
rates, oil prices, and the consumer price index to model gold prices in India. Buncic and
Moretto (2015) analysed cooper prices based on numerous potential determinants with
Dynamic Model Averaging. Geopolitical risk was also found as an important factor in
predicting, for example, gold prices. Banerjee et al. (2019) utilised the geopolitical risk
index based on political events highlighted in the major newspapers around the world.
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2.6. Agricultural Commodities

Agricultural products’ prices are, of course, most of all determined by supply and
demand. The latter, as Rezitis and Sassi (2013) noted, is strongly dependent on factors
such as population growth, GDP growth, and changes in consumption. The former, on the
other hand, is determined by weather and climate conditions, harvest areas, and the cost of
fertilizers. Apart from these two groups of variables, crude oil prices and exchange rates
may serve as predictors of agricultural goods prices (Fernandez-Diaz and Morley 2019;
Osathanunkul et al. 2018; Nazlioglu and Soytas 2012).

The influence of oil prices on agricultural product prices might be twofold; first, higher
oil prices result in production cost surges. Second, more expensive crude oil means a higher
demand for biofuels. As Sukcharoen and Leatham (2018) have suggested, these correlations
are particularly important during economic downturns, yet not in times of prosperity. Chen
et al. (2012), as well as Thiyagarajan et al. (2015), added stock market indices to this list, and
Ribeiro and Oliveira (2011) noted the significance of stock quotas and convenience yields
in forecasting commodity price variations. Similarly, Schewe et al. (2017) identified storage
dynamics as crucial in modelling global wheat prices. This factor was also identified
by Hamid and Shabri (2017) for palm oil (amongst production quotas and substitute
commodity prices). Alam and Gilbert (2017) emphasised the role of global economic
conditions, monetary policy, and the U.S. dollar exchange rates, while Hatzenbuehler et al.
(2016) provided an analysis supporting a claim regarding the importance of policy shifts.

Frankel and Rose (2010) proposed a model of agricultural goods prices combining
three important groups of their determinants, namely, global economic activity, speculation,
and monetary policy conditions. The role of economic growth and its influence on demand
increase has been discussed previously, as well as the impact of speculation on commodities
prices. With respect to monetary policy conditions, they noted that low interest rates, apart
from having an effect (also previously discussed) on providing supply (high interest rates
diminish supply, and, consequently, increased prices), have a converse effect of high interest
rates on the cost of keeping inventories. This contributes to decreasing demand and prices.
Such effects were also discussed by Ouyang and Zhang (2020), Etienne et al. (2018), and
Algieri et al. (2017).

Borychowski and Czyzewski (2015) added one important factor, namely, conditions
of trade policy, to some of the aforementioned determinants of food supply. They noted
that export bans, tariffs, and export taxes decrease the supply and restrict providing an
optimal amount of agricultural commodities beyond national borders. This, consequently,
results in higher prices. Based on Finland’s case, Irz et al. (2013) suggested that the most
important determinant of food prices are farm prices, followed by wages in food retail, and
then energy prices, the latter playing only a limited role.

2.7. General Remarks on Commodity Price Predictors

In general, certain common predictors for various commodities can be identified.
Apart from the above-mentioned exchange rates, which were also analysed in the con-
text of the overall commodity market (Pincheira-Brown et al. 2022; Souza et al. 2021;
Ayres et al. 2020; Zhang et al. 2016), and financial factors, it was found that crude oil
and gold prices might enable good forecasts of other commodities’ prices (Lubbers and
Posch 2016; Chen 2015; Al-Qudsi 2010). As previously discussed, it seems that interest
rates can also serve as commodity price predictors (Byrne et al. 2013; Arango et al. 2012).
Gargano and Timmermann (2014) provided a broad study, according to which the most
important predictors were the investment-to-capital ratio and the growth of industrial
production. Ahumada and Cornejo (2015) added supply and demand factors (in particular,
with reference to emerging markets such as China), economic growth, and monetary poli-
cies. Steermer (2018) argued that in the long term, demand forces play a more important
role than supply shocks. This was also confirmed by Jacks and Stuermer (2020). Other
predictors common for various commodities are the U.S. inflation rate, world industrial
production, and the world stock index (Kagraoka 2016). Furthermore, financialisation
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issues were discussed in the context of various commodities (Fishe and Smith 2019; Yan
and Yuan 2019). Moreover, the recent economic growth of several emerging economies
resulted in increasing the demand for commodities (Labys 2006). Tan and Ma (2017) anal-
ysed various commodities and confirmed that macroeconomic uncertainty significantly
impacts their prices.

The above considerations are summarised in Table 1.

Table 1. Most important determinants of commodity prices (except supply, demand, and stocks).

Crude Oil Natural Gas Coal Metals Agricultural Commodities

• economic boost
in Asia

• economic
growth

• exchange rates
• financialisation

of the market
• interest rates

• crude oil prices
• economic growth in

Asian countries
• geographical

conditions
• nature of gas price

mechanisms
• trade agreements

and infrastructure
• weather and climate

conditions

• crude oil and gas
prices

• economic growth
• interest rates
• past market

liberalisation in
China

• economic conditions
(inflation, exchange
rates) of main
importers and
producers

• global macroeconomic
conditions

• market sentiments

• cost of fertilizers
• crude oil prices
• demand for biofuels
• energy prices
• farm prices
• harvest area
• interest rates
• international trade

agreements and
policies

• population growth
• weather and climate

conditions

3. Data

Monthly data starting in January 1988 and ending in August 2021 were used. Such a
time span was chosen due to data availability. The data frequency was selected in a way to
satisfactorily capture changes on the market but to exclude some short-term fluctuations
(e.g., due to speculative activities). On the other hand, a monthly frequency should allow
us to include as explanatory variables some macro data, which are published in quite low
frequencies (Alquist et al. 2013).

Commodity prices were taken from The World Bank (2022) and transformed to loga-
rithmic differences. In particular, the logarithmic difference of the variable Yt was defined
as log(Yt) − log(Yt−1). Such a transformation is quite standard and common in econometric
analysis. In the case of symbolic regression, data transformation is not obligatory. However,
some benchmark models require, for example, stationary time-series. Secondly, even if
not necessary, transformed data can often result in a better forecast accuracy of the final
models (Coulombe et al. 2021; Medeiros et al. 2019; Drachal 2018a). The widest basket
of commodities was attempted to be collected. However, due to missing observations,
etc., 56 time-series of commodities prices were finally considered (monthly averages of
spot prices). They are listed in Table A1 in Appendix A. A detailed description of the
time-series can be found in the original source (The World Bank 2022). The set of ex-
planatory variables was constructed in line with the already presented literature review.
Furthermore, similar variables were used by Guidolin and Pedio (2021), Salisu et al. (2019),
Gargano and Timmermann (2014), and Juvenal and Petrella (2014). The full list is presented
in Table 2. In total, 39 explanatory variables were considered.

In particular, the dividend-to-price ratio was taken as the difference between the
logarithm of U.S. stock dividends (Schiller 2000, 2022) and the logarithm of U.S. stock
prices, i.e., the S&P 500 Index (Stooq 2022). Before taking logarithms, dividends were
aggregated to 12-month moving sums. The price-to-earnings ratio was taken from Schiller
(2000, 2022). It was taken as Cyclically Adjusted Price Earnings Ratio P/E10 (or CAPE). It
is based on the average inflation-adjusted earnings from the previous 10 years.
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Table 2. The list of explanatory variables.

Abbreviation Description

dpr Dividend-to-price ratio
pe Price earnings ratio
str Short-term interest rate
ltr_US Long-term interest rate for the U.S.
ltr_EU Long-term interest rate for the Euro area
ts Term spread
drs Default return spread
cpi U.S. Consumer Price Index for all urban consumers
ppi U.S. Producer Price Index
ip U.S. industrial production
ee U.S. average hourly earnings of production and nonsupervisory employees
M1 M1 money stock for U.S.
M2 M2 money stock for U.S.
gea Killian’s Index of Global Real Economic Activity
une U.S. unemployment rate
AUD Australian dollar to U.S. dollar exchange rate
CAD Canadian dollar to U.S. dollar exchange rate
INR Indian rupee to U.S. dollar exchange rate
reer_AUD Real effective exchange rate based on manufacturing Consumer Price Index for Australia
reer_CAD Real effective exchange rates based on manufacturing Consumer Price Index for Canada
reer_INR Real effective exchange rates based on manufacturing Consumer Price Index for India
reer_US Real effective exchange rates based on manufacturing Consumer Price Index for U.S.
tb_US U.S. trade balance
GSCI S&P GSCI Commodity Total Return Index
oi_USD Dollar open interest
t_ind Working’s dollar T-index
VXO VXO index (implied volatility based on 30-day S&P 100 index at-the-money options)
GPR Global Geopolitical Risk Index (The Benchmark GPR Index)
stocks_US S&P 500 Index
stocks_World MSCI WORLD for developed markets index
stocks_G7 MSCI G7 index
stocks_EU MSCI EU index
stocks_EM MSCI EM for emerging markets index
stocks_CN Hang Seng Index and Shanghai Composite Index glued and rescaled (in December 1990)
ts_BRICS The share of BRIC countries trade in the total global trade
li_US Leading indicator for U.S.
li_G7 Leading indicator for G7 countries
li_EU Leading indicator for the euro area
li_CN Leading indicator for China

The short-term interest rate was taken as the U.S. 3-month treasury bill rate on the
secondary market (FRED 2022). The long-term interest rate was measured using the 10-year
government bond yields for the U.S. and the Euro area (FRED 2022; OECD 2022). The
term spread was measured as the difference between the U.S. long-term and U.S. short-
term interest rates. The default return spread was computed as the difference between
the Moody’s seasoned Aaa corporate bond yield, based on bonds with maturities of
20 years and above (FRED 2022; Moody’s 2022), and the short-term interest rate (understood
as above).

Inflation was measured using the U.S. Consumer Price Index for all urban consumers
and the U.S. Producer Price Index (FRED 2022). Following, for instance, Nonejad (2020),
both of these indices can be important explanatory variables. They were transformed into
logarithmic differences. Additionally, the U.S. average hourly earnings of production and
nonsupervisory employees were taken (FRED 2022). They were also transformed into
logarithmic differences.
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U.S. money stocks (both real M1 and real M2, deflated by the U.S. Consumer Price
Index) were also taken (FRED 2022). These time-series were transformed into logarith-
mic differences.

Industrial production growth was taken and measured using logarithmic differences
of the U.S. industrial production (FRED 2022). Furthermore, the U.S. unemployment rate
was taken (FRED 2022). The economic growth was measured using the commonly used
(if monthly frequency is desired) Kilian’s Index of Global Real Economic Activity (FRED
2022; Kilian 2009, 2019; Kilian and Zhou 2018). Despite some recent concerns, this index is,
indeed, a valid and useful measure (Funashima 2020).

Following, for instance, Cuaresma et al. (2018, 2021), leading indicators were used
(CLI, amplitude adjusted, except for China, for which the normalised index was taken due
to data availability). The U.S., G7, Euro area, and China were considered (OECD 2022).

The trade balance (i.e., exports less imports) for the U.S. was computed in U.S. dol-
lars (United Nations Statistics Division 2022). Due to the existence of seasonal patterns,
12-month differences were taken. Furthermore, the share of BRIC (Brazil, Russia, India, and
China) countries’ trade in the total global trade was computed (United Nations Statistics
Division 2022), as these countries are important players on commodities markets (Ghoshray
and Pundit 2021). Similarly, 12-month differences were taken.

Exchange rates impacts were measured using real effective exchange rates based
on the manufacturing Consumer Price Index for Australia, Canada, India, and the U.S.
Furthermore, the Australian dollar to U.S. dollar exchange rate was taken, as well as
the Canadian dollar to U.S. dollar and Indian rupee to U.S. dollar exchange rates (Stooq
2022; OECD 2022; FRED 2022). The selection of countries was made with a focus on the
largest exporters and importers of commodities and to include so-called “commodities
currencies”. Indeed, according to the WTO (2022), amongst the largest commodities
exporters and importers in 2020 and 2019 were Australia, Brazil, Canada, China, Germany,
India, Japan, Russia, the United Arab Emirates, and the U.S. A similar set of variables was
used by Cuaresma et al. (2018, 2021), Gargano and Timmermann (2014), Chen et al. (2010),
Clements and Fry (2008), and Cashin et al. (2004). These variables were transformed into
logarithmic differences.

Open interest data were taken from the Commodity Futures Trading Commission
(2022). Futures-only based data were used. This data set required some cleaning, for
instance, due to overlapping commodities codes in some cases. Secondly, contracts are
listed in various quantities, which needs to be considered in the computation of the dollar
open interest representing the capital engaged. Finally, open interest data must be con-
sistent with price time-series data (The World Bank 2022; Hong and Yogo 2012; Shilling
1996). In particular, each contract was aggregated to its monthly average, and then the
sum of contracts of all types in a month was taken. The obtained time-series were trans-
formed into logarithmic differences. Furthermore, Working’s dollar T-index was also
computed (Working 1960). This index measures the excess of speculative and hedging
positions (Buyuksahin and Robe 2014). In particular, if CL > CS, where CL denotes long
positions of commercial traders and CS denotes short positions of commercial traders, then
T = 1 + NCS/(CL + CS), where NCS denotes short positions of non-commercial traders.
In the opposite case, T = 1 + NCL/(CL + CS), where NCL denotes long positions of non-
commercial traders. Non-commercial traders are perceived as a source of speculation,
whereas commercial ones are perceived as a source of hedging activities.

Market stress was measured using the VXO index (CBOE 2022; FRED 2022). This
index is a measure of implied volatility computed with the 30-day S&P 100 index at-the-
money options. The currently more popular VIX index was not chosen because this new
volatility index has only been reported and computed since 1990. Additionally, the global
Geopolitical Risk Index (The Benchmark GPR Index) was taken. It is based on counting the
occurrence of words related to geopolitical tensions in 11 leading newspapers (Caldara and
Iacoviello 2022a, 2022b).
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The overall behaviour of prices of a wide basket of various commodities was proxied
using the S&P GSCI Commodity Total Return Index (Bloomberg 2022). It was transformed
into logarithmic differences. Indeed, this index is a common measure of general commodity
price movements in the world economy. It is based on the principal physical commodity
futures contracts. In other words, the returns are calculated on fully collateralised contracts
with full reinvestment (i.e., ones in which the buyers and sellers of a contract make an
additional investment in the underlying asset with a value equal to the futures price).
It is also a broadly diversified (across the spectrum of commodities) composite index of
commodity sector returns. As a result, it aims to represent realizable returns attainable in
the commodities markets. In particular, it consists of 24 commodities: energy products,
industrial metals, agricultural products, livestock products, and precious metals (Downes
and Goodman 2018).

Stock price movements were measured using the S&P 500 Index (Stooq 2022). Addi-
tionally, in order to capture the developing economies’ stock markets, the Hang Seng Index
was taken before December 1990, and the Shanghai Composite Index afterwards (Stooq
2022). Indeed, for instance, China become the biggest oil importer in 2017, overtaking
the position of the U.S., and the trend is going to continue (EIA 2022; Wang et al. 2018).
Furthermore, the MSCI stock market indices were taken (MSCI 2022). In particular, the
MSCI WORLD for developed markets, the MSCI G7 INDEX, and the MSCI EU were taken.
Furthermore, the MSCI EM for emerging markets was taken. All stock market indices were
transformed into logarithmic differences.

If not stated otherwise already, time-series were collected to represent the last observed
monthly value, as this can lead to a better forecast accuracy than, for example, the use of the
mean values from a given month. Furthermore, if time-series follow a random walk, then,
by construction, the aggregated time-series derived from the original one (e.g., averages or
sums) may not follow a random walk. These features were studied in detail in terms of oil
prices by Benmoussa et al. (2020).

Finally, following Koop and Korobilis (2013), the variables were standardised. In
other words, before inserting them into the modelling scheme, the mean was subtracted
and the outcome was divided by the standard deviation. These statistics were estimated
on the basis of the first 100 observations. As a result, the transformed time-series were
approximately stationary, but forward-looking bias was omitted. Moreover, the obtained
time-series had similar magnitudes, which is an important and helpful feature improving
numerical estimations.

The descriptive statistics are presented in Table A2 in Appendix A. Augmented Dickey–
Fuller (ADF), Phillips–Perron (PP), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) sta-
tionarity tests outcomes are presented in Table A3 in Appendix A. Assuming a 10% signifi-
cance level (but for the majority of variables even 5% would be enough), most variables,
with few exceptions, can be assumed to be stationary. Nevertheless, for example, gea is
stationary by construction. This observed discrepancy is because, herein, the time-series
covering a long-term period was trimmed to the shortened period of the analysis.

4. Methodology

Numerical computations were performed in R (R Core Team 2018) and Python (Van
Rossum and Drake 1995). Furthermore, a few packages and libraries were very useful
in this regard, i.e., “NumPy”, “pandas”, and “SciPy” (Harris et al. 2020; The Pandas
Development Team 2020; McKinney 2010).

4.1. Bayesian Symbolic Regression

Bayesian symbolic regression (BSR) was introduced by Jin et al. (2019) and imple-
mented by Jin (2021). This novel approach to symbolic regression aims to overcome certain
difficulties (Korns 2011) with incorporating prior knowledge to genetic programming,
deals with complexity issues in outcomes expressions, and improves interpretability of
the outcomes
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Herein, two approaches were applied. First, the estimation of parameters (for example,
regression coefficients) was performed over some in-sample period (i.e., first 100 observa-
tions), kept fixed, and then applied to out-of-sample forecasting. Second, the in-sample
period was recursively expanded, and in each step a forecast for just one period ahead
was made. In other words, BSR forecast for the period t + 1 was estimated based on the
explanatory variables data set available up to period t. Next, BSR forecast for the period
t + 2 was estimated based on the data set expanded with the new data, i.e., the one available
up to the period t + 1, etc. Such a recursive implementation resembles the real-life market
situation and perspective.

The second crucial aspect of BSR involves enhancing the understandability of the
derived expressions. To achieve this goal, BSR strives to capture succinct yet informative
signals, assuming their structure to be both linear and additive. The prior distributions
describing these components are designed to control the complexity of the obtained expres-
sions, which are represented using symbolic trees (Weiss 2014).

At the heart of BSR lies the utilisation of Markov chain Monte Carlo (MCMC) sam-
pling. This technique is employed to draw samples of these symbolic trees from the
posterior distribution. Despite its computational intensity, Jin et al. (2019) demonstrated
that this approach can even enhance memory utilisation in comparison with the standard
genetic programming methods for symbolic regression. Furthermore, simulations con-
ducted by Jin et al. (2019) showed robustness of BSR across various parameter settings.
Notably, the method exhibited an ability to enhance predictive accuracy when contrasted
with conventional symbolic regression algorithms, specifically those founded on genetic
programming principles.

Herein, only a short outlook on BSR is provided. The full description can be found
in the original paper (Jin et al. 2019). Let yt be the forecasted time series, i.e., the given
commodity price (possibly transformed as described in the previous section). Let x1,t,
. . ., xn,t be the explanatory time series (also possibly transformed). Then, it is assumed
that yt = β0 + β1 * f1(x1,1,t−1, . . ., x1,i,t−1) + . . . + βk * fk(xk,1,t−1, . . ., xk,i,t−1), with xi,j,t
standing for those of explanatory variables (out of n possible ones) which are present in
the i-th component expression, i.e., fi, with j = {1, . . ., n} and i = {1, . . ., k}. The number
of components, k, is fixed and must be set up during the initial stage. Coefficients βi are
estimated with the ordinary least squares method. Jin et al. (2019) claimed that higher
values of k lead to better forecast accuracy, but that this gain diminishes when k becomes
large enough.

Each component expression fi is represented by the symbolic tree constructed from
operators (such as +, *, and 1/x, etc.). Nicolau and Agapitos (2021) and Keijzer (2004)
claimed that the operator lt(x) = a * x + b, with a and b being some real numbers, can improve
the set of construable expressions in a noticeable manner. Indeed, the set of operators must
be specified during the initial stage of BSR. For this purpose, 6 sets of operators were
considered, denoted by F = {1, . . ., 6}, and k = 10 (i.e., k = 10 linear components, denoted
by K = {1, . . ., 10}) were considered. For each commodity, models for all combinations
of F and K were estimated over the data consisting of first 100 observations (i.e., the in-
sample period). Next, the combination minimising root-mean-square error (RMSE) was
selected for further estimations. For robustness, the mean absolute error (MAE) and mean
absolute scaled error (MASE) were analysed (Hyndman and Koehler 2006), but usually the
conclusions were the same as those based on RMSE.

In particular, F = 1 represents the set consisting of unary neg(xi,t) = −xi,t and binary
add(xi,t,xj,t) = xi,t + xj,t operators. F = 2 expands F = 1 with unary square(xi,t) = (xi,t)2. F = 3
expands F = 1 with unary 12 periods back moving average, i.e., ma12(xi,t) = (xi,t + . . . +
xi,t−11)/12, and unary lag(xi,t) = xi,t−1. F = 4 expands F = 2 with binary mul(xi,t,xj,t) = xi,t

* xj,t. F = 5 expands F = 4 with unary inv(xi,t) = 1/xi,t, unary cubic(xi,t) = (xi,t)3, unary
sqrt(xi,t) =

√
xi,t, unary log(xi,t) = ln(|xi,t|), unary ma12, and unary lag. F = 6 expands

F = 1 with the unary operator lt(xi,t) = a * xi,t + b, with a and b being some real numbers.
For example, Yang et al. (2015b) concluded that narrowing to just simple operators can
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save computational time, but does not weaken the power of symbolic regression, keeping
it effective enough in discovering useful model structures. On the other hand, it can
be interesting to consider operators representing some non-linear structures specific to
financial and economic time-series.

The Bayesian approach is employed by considering the Bayesian inference over the
symbolic trees. In particular, the Bayesian regression tree models of Chipman et al. (1998a,
1998b) were implemented, and the methods of Hastie and Tibshirani (2000). A symbolic tree
is represented by g( · ; T, M, θ), with g being some function as above, i.e., g = f1 + . . . + fk. T
denotes the set of nodes, M denotes their features, and θ denotes their parameters. Initially,
uniform priors are taken as they correspond to equal probabilities of selecting possible
operators and node features. A node feature determines whether the given node is a
terminal one, extends to a one, single, or child node, or splits into some two child nodes.
The probability that a given node is terminal is 1 – α(1 + d)−β, with α and β being some
parameters and d being the depth of the node (Jin et al. 2019). Following Jin et al. (2019),
α = 0.4 and β = −1 were used. High values of β control depth of trees and α controls the
symmetric shape of the distribution. The priors for a and b of operators lt were Gaussian
and centred around the identity function (Jin et al. 2019).

The prior–posterior inferences in BSR model were performed with the Metropolis–
Hastings algorithm (Green 1995; Hastings 1970; Metropolis et al. 1953). It was implemented
in such a way that the transition structure penalised high complexity of the outcomes.
Following Jin et al. (2019), M = 50 iterations were performed, as the simulations based on
various data sets suggest that this is large enough to stabilize the structure of the sought
expression (Chen et al. 2016).

Additionally, model averaging schemes were employed. In the basic BSR version, the
outcome is taken from the last iteration. However, let y1, . . ., y50 be the forecasts obtained
from M = 50 iterations. Let w1, . . ., w50 be some weights (such that w1 + . . . + w50 = 1)
ascribed to each of these forecasts. The weighted average forecast is defined as w1 * y1 +
. . . + w50 * y50. Following Steel (2020) and Stock and Watson (2004), two schemes were
considered. The first one considers weights inversely proportional to the mean-squared
errors (MSEs) of the component models. The second considers equal weights for the
component models. In order to sum up to 1, the initial weights were normalised (i.e.,
divided by the sum of all the individual weights).

The weights constructed in the above way, except forecasting, can be used to construct
relative variable importance (RVI). In particular, after the mentioned rescaling, they sum
up to 1. One can sum up the weights of exactly those models which contain a given
explanatory variable. Such a sum defines the RVI of this variable. It can be used as some
rough measure of the importance of a variable as the commodity price predictor (Burnham
and Anderson 2002). Of course, RVI is a number between 0 and 1 by construction. In
case of model selection schemes, one can simply indicate just whether a given explanatory
variable is present or is not present in the selected individual model. Moreover, weighted
average coefficients can be constructed. In particular, if a model averaging scheme would
be narrowed only to linear component models (this is for a given explanatory variable to
be used in all component models in exactly the same functional form), then w1 * θ1 + . . . +
w50 * θ50 can be considered, with θi being the regression coefficient corresponding to the
given explanatory variable in the i-th component model (Drachal 2020; Banner and Higgs
2016; Cade 2015; Burnham and Anderson 2002).

4.2. Benchmark Models

BSR forecasts were compared with some alternative models. Of course, the standard
symbolic regression with genetic programming (Stephens 2021; Koza 1998) was employed.
Due to computational issues, the population size was taken as 50 and generations were re-
duced to 10. Earlier pre-simulations with some selected commodities’ time-series indicated
that these numbers were high enough and there was no significant gain in forecast accuracy
from taking higher values. On the other hand, lower values reduce the computational time.
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The cross-over probability 0.95 was taken; subtree, hoist, and point mutations probabilities
were set up at 0.01. RMSE was applied as a metric. All in all, these are quite standard
and common specifications (Stephens 2021; Hassanat et al. 2019; Fuad and Hussain 2015).
The set of operators indicated by BSR model was considered for each of the commodity.
(Indeed, an estimation of the recursive BSR model for the applied data took approximately
1.6 h on average; whereas, for example, Dynamic Model Averaging with Occam window
for the same data took approximately 20 min only.)

Bayesian model combination schemes were also considered (Raftery et al. 2010). In
particular, Dynamic Model Averaging (DMA) and Bayesian Model Averaging (BMA).
Following Onorante and Raftery (2016), a dynamic Occam window was applied because
of the large number of explanatory variables. In particular, the cut-off limit was set at
0.25 and the number of models in the combination scheme was reduced to 100 (Drachal
2020). Dynamic Model Selection (DMS) and Bayesian Model Selection (BMS) schemes
were also estimated. Following Koop and Korobilis (2012), an exponentially weighted
moving average method with the parameter κ = 0.97 was used to update the state-space
equation variance. Furthermore, the mentioned dynamic Occam window, also averaging
over models with exactly one explanatory variable, was performed (Drachal 2020). DMA,
as described by Raftery et al. (2010), involves averaging over some time-varying parameters
regressions. In particular, the time-varying parameters regression (with all 39 explanatory
variables) is a special case of DMA, so it is reasonable to consider it as an additional
benchmark model. Two versions were considered: one with a forgetting factor equal to 1
(i.e., no forgetting), and one with the (standard recommendation) forgetting factor equal to
0.99 (Raftery et al. 2010).

Additionally, LASSO and RIDGE regressions were estimated in a recursive way
(Friedman et al. 2010). The λ parameter was separately selected in each recursive step,
with t-fold cross-validation using MSE measure, where t is the time period. Elastic net
regression was also employed. The following mixing parameters {0.1, 0.2, . . ., 0.9} were
used. Moreover, Bayesian versions of LASSO and RIDGE regressions were estimated
(Gramacy 2019).

Finally, the least-angle regression (LARS) was estimated (Hastie and Efron 2013).
Similarly, as before, t-fold cross-validation with MSE was used.

Furthermore, some commonly used models were also employed. In particular, these
were the ARIMA model (in a recursive way), the no-change (NAÏVE) method, and the
historical average. The number of lags for the ARIMA models was specified with the
automatic procedure described by Hyndman and Khandakar (2008).

The list of all estimated models is reported in Table 3.

Table 3. Estimated models.

Abbreviation Description

BSR rec Bayesian symbolic regression (recursive)

BSR av MSE rec Bayesian symbolic regression (recursive) with averaging and weights inversely proportional to MSE

BSR av EW rec Bayesian symbolic regression (recursive) with equal weights

GP rec Symbolic regression with genetic programming (recursive)

BSR fix Bayesian symbolic regression (fixed parameters)

BSR av MSE fix Bayesian symbolic regression (fixed parameters) with averaging and weights inversely proportional to MSE

BSR av EW fix Bayesian symbolic regression (fixed parameters) with equal weights

GP fix Symbolic regression with genetic programming (fixed parameters)

DMA Dynamic Model Averaging with Occam window

BMA Bayesian Model Averaging with Occam window

DMA 1V Dynamic Model Averaging over one-variable component models
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Table 3. Cont.

Abbreviation Description

DMS 1V Dynamic Model Selection over one-variable component models

BMA 1V Bayesian Model Averaging over one-variable component models

BMS 1V Bayesian Model Selection over one-variable component models

LASSO LASSO regression (recursive)

RIDGE RIDGE regression (recursive)

EN Elastic net regression (recursive)

B-LASSO Bayesian LASSO regression (recursive)

B-RIDGRE Bayesian RIDGE regression (recursive)

LARS Least-angle regression

TVP Time-Varying Parameters regression with forgetting factor equal to 1

TVP f Time-Varying Parameters regression with forgetting factor equal to 0.99

ARIMA Automatic ARIMA (recursive)

HA Historical average

NAÏVE No-change method

4.3. Forecast Evaluation

The forecast accuracy was evaluated with nRMSE (normalised root-mean-square error)
and RMSE. In case of comparison between various models for a given commodity, RMSE
was used. However, for comparisons between various commodities, nRMSE was used.
Additionally, mean absolute error (MAE) and mean absolute scaled error (MASE) were
considered (Hyndman and Koehler 2006). nRMSE is understood as RMSE divided by the
mean of the analysed time-series.

When two forecasts from two competing models were compared, it was performed
with the Diebold–Mariano test (Diebold and Mariano 1995) with Harvey et al. (1997)
modification. Multiple forecasts were evaluated with the Model Confidence Set (MCS) of
Hansen et al. (2011). In order to be consistent with RMSE measure, the squared errors loss
functions were used in these tests (Bernardi and Catania 2018).

However, these tests evaluate a forecast’s behaviour over the whole analysed period.
On the other hand, the relative forecast’s accuracies may vary over time. The Giacomini and
Rossi (2010) fluctuation test deals with this issue. As before, squared errors loss function
was applied. For the rolling procedure, the parameter µ = 0.3 was used, which corresponds
to approximately 7.5-year periods.

5. Results

As 39 explanatory variables and 56 commodities were analysed, this section is divided
into sub-sections for reasons of clarity.

5.1. Forecast Accuracy—Measures

Table 4 reports the nRMSE of various estimated models. It can be seen that in few
cases the methods based on symbolic regression resulted in very high errors. GP fix, GP
rec, and BSR rec were most robust against generating such outlier results. ARIMA and
DMA were the methods that most often minimised the nRMSE. In this regard, it should
be noticed that BMA is a special case of DMA (Raftery et al. 2010). The methods based on
symbolic regression rarely minimised the nRMSE. These conclusions are more or less the
same when RMSE, MAE, or MASE are considered (not reported herein).
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Table 4. nRMSE of the estimated models.

BSR rec
BSR av

MSE rec
BSR av
EW rec GP rec BSR fix

BSR av
MSE fix

BSR av
EW fix GP fix DMA BMA

DMA
1V

DMS
1V

BMA
1V

BMS
1V LASSO RIDGE EN

B-
LASSO

B-
RIDGRE LARS TVP TVP f ARIMA HA NAIVE

Brent 0.0992 0.0848 0.0840 0.1099 0.0969 0.0824 0.0882 0.0924 0.0721 0.0738 0.0751 0.0749 0.0742 0.0742 0.0778 0.0815 0.0774 0.0761 0.0781 0.0774 0.0870 0.0875 0.0877 0.6498 0.0925

Dubai 0.0842 0.0761 0.0766 0.1097 0.1576 0.0980 0.0909 0.0908 0.0678 0.0686 0.0707 0.0706 0.0700 0.0700 0.0733 0.0781 0.0743 0.0725 0.0745 0.0815 0.0833 0.0834 0.0843 0.6647 0.0908

WTI 0.1113 1047.6466 0.0937 0.1041 0.1175 3264.9070 2771.7826 0.1352 0.0776 0.0755 0.0768 0.0766 0.0760 0.0760 0.0790 0.0837 0.0792 0.0794 0.0816 0.0798 0.0898 0.0928 0.0905 0.6029 0.0947

Coal_AU 0.1036 0.1102 0.1087 0.0955 0.1063 4014.9355 0.6056 0.1565 0.0921 0.0946 0.0994 0.1008 0.0998 0.0998 0.0926 0.0936 0.0925 0.0927 0.0919 0.0983 0.1038 0.1092 0.1027 0.5490 0.0994

Coal_ZA 0.0925 0.0808 0.0786 0.0851 0.0955 0.0893 0.0878 0.0839 0.0855 0.0871 0.0855 0.0851 0.0846 0.0838 0.0810 0.0822 0.0813 0.0815 0.0808 0.0826 0.0885 0.0869 0.0821 0.5423 0.0872

Gas_US 0.1841 0.1872 1.6213 0.4869 0.1821 41,824.3614 71,166.5600 1.1844 0.1742 0.1743 0.1790 0.1785 0.1754 0.1752 0.1780 0.1838 0.1786 0.1798 0.1816 0.1785 0.2033 0.2131 0.1854 0.5950 0.1812

Gas_EU 0.0874 0.1635 0.0862 0.0894 0.5944 17.9480 36,101.1264 0.2850 0.0751 0.0771 0.0806 0.0799 0.0804 0.0802 0.0755 0.0760 0.0755 0.0765 0.0767 0.0788 0.0825 0.0963 0.0756 0.5984 0.0839

Gas_JP 0.0607 6756.0010 6756.0010 0.0595 0.1355 13,511.9823 28,114.6024 0.1018 0.0546 0.0552 0.0567 0.0562 0.0585 0.0591 0.0875 0.0590 0.0589 0.0569 0.0583 0.0822 0.1010 0.1058 0.0552 0.5776 0.0586

Cocoa 0.0617 0.0587 0.0586 0.0704 0.1078 0.0612 0.0611 0.3008 0.0585 0.0574 0.0584 0.0613 0.0581 0.0582 0.0585 0.0594 0.0591 0.0580 0.0579 0.0585 0.0772 0.0849 0.0572 0.3769 0.0578

Coffee_Arabica 0.0886 0.0750 0.0740 0.0925 0.3330 0.1368 0.0809 0.0768 0.0738 0.0754 0.0755 0.0808 0.0751 0.0778 0.0758 0.0759 0.0757 0.0742 0.0741 0.0799 0.0858 0.0992 0.0740 0.3818 0.0741

Coffee_Robusta 0.7544 35,128.2980 60,851.9278 0.4188 49,684.2213 167,366.9005 182,580.9262 0.0692 0.0556 0.0597 0.0562 0.0583 0.0566 0.0572 0.0599 0.0576 0.0590 0.0560 0.0568 0.0629 0.0663 0.0656 0.0550 0.3341 0.0559

Tea_Colombo 0.0559 0.0530 0.0526 0.0906 0.0666 0.0642 0.0666 0.0602 0.0588 0.0502 0.0524 0.0535 0.0511 0.0515 0.0507 0.0518 0.0507 0.0512 0.0514 0.0509 0.1027 0.1349 0.0508 0.3743 0.0508

Tea_Kolkata 0.1283 0.1271 0.1260 0.1461 0.1384 0.1207 0.1206 0.1270 0.1510 0.1201 0.1270 0.1288 0.1269 0.1280 0.1266 0.1273 0.1269 0.1264 0.1271 0.1287 0.1518 0.6858 0.1215 0.2654 0.1270

Tea_Mombasa 0.0869 0.0676 0.0999 0.0772 0.0763 81,392.4276 130.0489 0.2088 0.0687 0.0675 0.0688 0.0695 0.0679 0.0686 0.0681 0.0685 0.0684 0.0681 0.0681 0.0729 0.2347 0.2229 0.0685 0.2842 0.0680

Coconut_oil 0.1117 0.0902 0.0899 0.1168 0.1088 0.0947 0.0954 0.0975 0.0879 0.0870 0.0890 0.0900 0.0890 0.0888 0.0897 0.0901 0.0901 0.0901 0.0906 0.0903 0.1012 0.1043 0.0895 0.4950 0.0910

Groundnuts 0.0665 0.0637 0.0643 0.0987 0.0775 0.0821 0.0694 0.1828 0.0582 0.0612 0.0624 0.0628 0.0633 0.0656 0.0631 0.0632 0.0632 0.0630 0.0628 0.0638 0.0790 0.0752 0.0596 0.3458 0.0629

Fish_meal 53.4523 0.1942 25.4774 53.3846 0.1465 106.7756 141.3178 0.0563 0.0563 0.0557 0.0560 0.0583 0.0555 0.0563 0.0556 0.0553 0.0555 0.0550 0.0550 0.0593 0.0627 0.0705 0.0570 0.5068 0.0550

Palm_oil 0.1380 0.1923 84.1373 0.0753 382.0911 188.1413 0.2427 0.1500 0.0636 0.0660 0.0663 0.0660 0.0668 0.0674 0.0679 0.0686 0.0693 0.0675 0.0682 0.0728 0.0780 0.0806 0.0634 0.4160 0.0685

Soybeans 0.0894 1.5004 12.5538 346.5396 0.0902 1.7229 219.1701 0.0620 0.0584 0.0577 0.0595 0.0607 0.0588 0.0597 0.0586 0.0588 0.0585 0.0589 0.0597 0.0590 0.0669 0.0687 0.0593 0.3699 0.0598

Soybean_oil 0.0558 0.0561 0.0560 0.0622 0.0590 0.0566 0.0563 0.2619 0.0522 0.0541 0.0543 0.0553 0.0554 0.0558 0.0556 0.0550 0.0550 0.0550 0.0554 0.0553 0.0622 0.0718 0.0526 0.4172 0.0568

Soybean_meal 0.0695 0.0615 0.0613 0.0773 0.0965 0.0676 0.0688 0.0664 0.0622 0.0622 0.0624 0.0634 0.0623 0.0634 0.0624 0.0622 0.0622 0.0620 0.0622 0.0634 0.0738 0.0905 0.0583 0.3990 0.0622

Maize 0.0752 0.0713 0.0710 0.1380 0.1018 0.0796 0.0822 0.2767 0.0711 0.0714 0.0720 0.0729 0.0722 0.0726 0.0713 0.0712 0.0714 0.0718 0.0718 0.0722 0.0784 0.0860 0.0718 0.4252 0.0725

Rice_5 0.0866 0.0786 0.0782 1.0294 0.1064 0.0882 0.0871 10.5696 0.0844 0.0774 0.0776 0.0782 0.0768 0.0783 0.0780 0.0774 0.0777 0.0767 0.0757 0.0873 0.0870 0.0914 0.0749 0.3829 0.0755

Rice_100 0.0878 0.0793 0.0780 0.0882 0.1555 0.0844 0.0864 0.0784 0.0827 0.0780 0.0788 0.0797 0.0781 0.0798 0.0819 0.0794 0.0800 0.0792 0.0800 0.0866 0.0889 0.1108 0.0793 0.4523 0.0768

Wheat_SRW 0.0823 0.0805 0.0806 0.1056 0.1118 0.0832 0.0828 0.0830 0.0809 0.0797 0.0812 0.0829 0.0810 0.0814 0.0809 0.0811 0.0808 0.0809 0.0809 0.0819 0.0885 0.0925 0.0795 0.3694 0.0804

Wheat_HRW 0.0781 0.0751 0.0750 0.0784 0.0895 0.0844 0.0926 0.0863 0.0775 0.0742 0.0753 0.0757 0.0751 0.0756 0.0754 0.0752 0.0752 0.0749 0.0752 0.0782 0.0824 0.0867 0.0744 0.3714 0.0746

Banana 0.0961 0.0947 0.0944 0.1677 0.1030 0.0976 0.1085 0.4457 0.0912 0.0917 0.0930 0.0972 0.0923 0.0938 0.0924 0.0918 0.0922 0.0922 0.0917 0.0922 0.1210 0.1249 0.0919 0.3993 0.0915

Orange 0.5287 77,708.5698 109,896.5186 0.2958 0.1121 495,972.8294 544,551.3422 747.4920 0.1114 0.1119 0.1133 0.1155 0.1127 0.1127 0.1136 0.1124 0.1138 0.1124 0.1121 0.1144 0.1358 0.1511 0.1106 0.3571 0.1120

Beef 0.0497 0.0485 0.0488 0.0507 0.1451 0.0506 0.0496 0.0859 0.0476 0.0478 0.0484 0.0486 0.0483 0.0485 0.0483 0.0487 0.0487 0.0487 0.0489 0.0494 0.0526 0.0550 0.0456 0.3768 0.0487

Chicken 0.0484 0.0465 0.0460 0.0483 0.0474 0.0455 0.0456 0.0465 0.0457 0.0454 0.0461 0.0463 0.0458 0.0457 0.0460 0.0462 0.0461 0.0465 0.0469 0.0469 0.0482 0.0521 0.0435 0.2619 0.0460

Shrimps 0.0445 0.0434 0.0432 0.0522 0.0476 0.0467 0.0478 0.0719 0.0421 0.0426 0.0429 0.0439 0.0431 0.0434 0.0429 0.0430 0.0430 0.0428 0.0429 0.0469 0.0535 0.0531 0.0392 0.1930 0.0428

Sugar_EU 0.0346 0.0323 0.0323 0.0401 0.0385 0.0345 0.0333 0.0784 0.0326 0.0322 0.0342 0.0339 0.0339 0.0339 0.0322 0.0321 0.0322 0.0328 0.0328 0.0331 0.0392 0.0387 0.0340 0.2482 0.0325

Sugar_US 0.0417 0.0413 0.0416 0.0422 0.0417 0.0415 0.0413 0.0419 0.0430 0.0406 0.0417 0.0422 0.0410 0.0408 0.0421 0.0416 0.0421 0.0417 0.0415 0.0435 0.0440 0.0444 0.0400 0.2106 0.0413

Sugar_World 162.3136 0.1653 0.2684 0.1072 195,035.8825 283,162.9708 516,035.5325 0.6007 0.0825 0.0818 0.0828 0.0866 0.0824 0.0828 0.0821 0.0826 0.0824 0.0822 0.0822 0.0819 0.0933 0.0981 0.0780 0.4136 0.0821

Tobacco 0.0242 0.0171 0.0171 0.0202 0.0458 0.0296 0.0255 0.0201 0.0167 0.0178 0.0166 0.0171 0.0171 0.0174 0.0186 0.0178 0.0184 0.0168 0.0171 0.0182 0.0216 0.0226 0.0162 0.2379 0.0165

Logs_CM 0.0342 0.0316 0.0318 0.0361 0.0384 0.0371 0.0370 0.0594 0.0320 0.0304 0.0320 0.0324 0.0318 0.0322 0.0320 0.0326 0.0322 0.0317 0.0321 0.0344 0.0368 0.0434 0.0317 0.2294 0.0328

Logs_MY 0.0661 458.1314 323.9475 0.1741 0.0370 0.1722 0.0354 0.0461 0.0319 0.0337 0.0332 0.0338 0.0333 0.0336 0.0334 0.0332 0.0334 0.0331 0.0330 0.0444 0.0428 0.0461 0.0308 0.2390 0.0330

Sawnwood 0.0271 0.0269 0.0269 0.1205 0.0427 0.0348 0.0306 0.1523 0.0244 0.0248 0.0260 0.0277 0.0260 0.0264 0.0263 0.0260 0.0261 0.0262 0.0266 0.0268 0.0352 0.0352 0.0259 0.2006 0.0258

Plywood 0.0284 0.0759 0.1058 0.0384 0.0389 112.6283 424.0129 0.0379 0.0219 0.0224 0.0227 0.0239 0.0229 0.0236 0.0233 0.0224 0.0230 0.0223 0.0223 0.0280 0.0310 0.0348 0.0222 0.1541 0.0222

Cotton 0.0844 0.0934 5.7991 0.0806 0.0889 116,060.2346 267.7386 0.1411 0.0778 0.0790 0.0782 0.0787 0.0778 0.0779 0.0808 0.0791 0.0807 0.0784 0.0789 0.0793 0.0816 0.0845 0.0638 0.3293 0.0769

Rubber 0.1118 0.0995 0.1003 0.1199 0.2225 0.1372 0.1098 0.1014 0.1043 0.0983 0.1022 0.1055 0.1013 0.1011 0.1022 0.1007 0.1014 0.1016 0.1027 0.1027 0.1103 0.1102 0.0995 0.6144 0.1016
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Table 4. Cont.

BSR rec
BSR av

MSE rec
BSR av
EW rec GP rec BSR fix

BSR av
MSE fix

BSR av
EW fix GP fix DMA BMA

DMA
1V

DMS
1V

BMA
1V

BMS
1V LASSO RIDGE EN

B-
LASSO

B-
RIDGRE LARS TVP TVP f ARIMA HA NAIVE

Phosphate_rock 0.2018 0.1923 0.1918 0.1943 0.1935 0.1930 0.1924 0.1915 0.2253 0.1951 0.1925 0.1925 0.1925 0.1925 0.1989 0.1954 0.1954 0.1989 0.2047 0.2331 0.2076 0.2502 0.2393 0.8601 0.1934

Dap 0.1093 250.0493 0.5955 0.1107 1.8048 532.8508 569.0750 0.2111 0.0998 0.1010 0.1011 0.1020 0.1019 0.1014 0.1002 0.0977 0.0972 0.0999 0.1010 0.1027 0.1024 0.1020 0.0942 0.5790 0.1042

Tsp 0.1079 0.1075 0.1059 0.1157 0.1399 0.1186 0.1192 0.1140 0.1024 0.1137 0.1102 0.1099 0.1139 0.1127 0.1067 0.1044 0.1053 0.1062 0.1058 0.1100 0.1110 0.1109 0.0947 0.6395 0.1147

Urea 0.1559 0.1424 0.1469 0.2334 0.2902 0.1812 0.2412 0.1426 0.1487 0.1445 0.1529 0.1504 0.1520 0.1537 0.1522 0.1523 0.1520 0.1510 0.1526 0.1533 0.1722 0.1762 0.1483 0.5829 0.1524

Potash 0.1239 0.1151 0.1149 0.1277 0.1266 0.1166 0.1153 0.1148 0.1170 0.1142 0.1151 0.1151 0.1145 0.1145 0.1153 0.1157 0.1161 0.1151 0.1147 0.1218 0.1165 0.1196 0.1271 0.6299 0.1142

Aluminium 0.0570 0.0471 0.0472 0.0631 0.0663 0.0646 0.0540 0.0515 0.0439 0.0456 0.0466 0.0463 0.0469 0.0480 0.0459 0.0468 0.0460 0.0463 0.0468 0.0461 0.0557 0.0568 0.0499 0.2351 0.0508

Iron 0.1112 0.1111 0.1106 0.1127 0.1147 0.1140 0.1139 0.1206 0.1186 0.1218 0.1190 0.1189 0.1201 0.1201 0.1149 0.1097 0.1115 0.1113 0.1108 0.1144 0.1621 0.1215 0.1126 0.6999 0.1148

Copper 0.0709 0.0692 0.0696 0.0765 0.1273 0.0852 0.0820 0.2231 0.0666 0.0675 0.0687 0.0707 0.0683 0.0679 0.0686 0.0695 0.0686 0.0686 0.0695 0.0722 0.0768 0.0797 0.0702 0.5706 0.0718

Lead 0.0899 0.0831 0.0836 0.0978 0.1803 0.1050 0.1081 0.0861 0.0847 0.0821 0.0839 0.0852 0.0830 0.0825 0.0846 0.0849 0.0842 0.0839 0.0852 0.0835 0.0933 0.0989 0.0818 0.5983 0.0845

Tin 0.0711 0.0711 0.0709 0.0743 0.0762 0.0755 0.0763 0.1300 0.0683 0.0703 0.0710 0.0716 0.0709 0.0712 0.0720 0.0711 0.0710 0.0707 0.0714 0.0717 0.0742 0.0813 0.0717 0.6120 0.0735

Nickel 0.1114 0.1106 0.1106 0.1297 0.1128 0.1168 0.1172 0.2589 0.1048 0.1105 0.1108 0.1124 0.1107 0.1107 0.1100 0.1106 0.1101 0.1097 0.1098 0.1125 0.1187 0.1150 0.1040 0.5837 0.1110

Zinc 0.0737 0.0751 0.0754 0.0814 0.1548 0.0786 0.0792 0.2273 0.0743 0.0743 0.0742 0.0742 0.0738 0.0734 0.0768 0.0752 0.0769 0.0746 0.0750 0.0783 0.0877 0.0935 0.0738 0.4652 0.0761

Gold 0.0415 0.0418 0.0421 0.0422 0.0447 0.0443 0.0436 0.0584 0.0413 0.0406 0.0412 0.0427 0.0418 0.0424 0.0464 0.0467 0.0464 0.0413 0.0419 0.0448 0.0522 0.0490 0.0421 0.6476 0.0418

Platinum 0.0819 0.0633 0.0628 0.0644 0.0949 0.0676 0.0689 0.0664 0.0656 0.0620 0.0639 0.0636 0.0642 0.0643 0.0625 0.0626 0.0628 0.0628 0.0629 0.0655 0.0712 0.0714 0.0664 0.5191 0.0664

Silver 0.0926 1.0462 0.1473 0.0895 0.2114 21,752.5782 8168.0694 0.2819 0.0900 0.0890 0.0897 0.0890 0.0896 0.0895 0.0900 0.0901 0.0899 0.0897 0.0908 0.0907 0.1178 0.1043 0.0912 0.6978 0.0915
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5.2. Forecast Accuracy—Testing

Table A4 in Appendix A reports the outcomes from the Diebold–Mariano test and
which model, for each commodity, minimised the RMSE out of all considered models. As
mentioned before, finding the model which would generate more accurate forecasts than
the ARIMA or the no-change method is often a challenging task for commodity prices. The
null hypothesis of the test is that the forecast accuracy of both methods is the same. The
alternative is that the forecasts generated by the “best” model are more accurate than those
from the competing model (ARIMA or NAÏVE). Assuming a 5% significance level, it can be
concluded that only in 13% of cases some other method than the ARIMA method minimised
the RMSE, and this difference was statistically significant. Changing the significance level
to 10% increased this ratio to 18% of commodities. However, when the NAÏVE method
was taken as the benchmark, this was 34% and 48% of commodities, respectively. In 64% of
cases, the model minimising the RMSE was neither the ARIMA nor the NAÏVE method.
Assuming a 10% significance level, it can be also concluded that for 11% of commodities
the model minimising the RMSE was neither the ARIMA nor the NAÏVE method, and,
moreover, the model generated statistically significantly more accurate forecasts than both
the ARIMA and NAÏVE methods.

Table A5 in Appendix A reports the outcomes from the Diebold–Mariano test, in which
forecasts generated using the BSR rec method are tested against those generated using the
ARIMA and NAÏVE methods, and the method which minimised the RMSE (named, as
previously, “best”). Here, the alternative hypothesis was that forecasts generated using the
BSR rec model are less accurate than those of the competing model. The null hypothesis
was that forecasts generated using both methods would have the same accuracy. Assuming
a 5% significance level, in 46% cases it could not be concluded that the BSR rec model
generated statistically significantly less accurate forecasts than the “best” method. In 64%
of cases, the BSR rec forecasts could not be said to be significantly less accurate than those
of the ARIMA method, and in 71% of cases than those of the NAÏVE method.

Table A6 in Appendix A presents outcomes from the similar test in Table A5, which
was previously described, but the BSR rec is replaced by the GP rec. It can be seen that
GP rec performed much worse than BSR rec, when considering the forecast accuracy.
Only in 21% of cases can it not be said that GP rec generated statistically significantly less
accurate forecasts than the “best” method, if a 5% significance level is assumed. If the
competing model was ARIMA, then this was only in 32% of cases, and for NAÏVE this
was in 36% of cases. In this regard, GP rec performed much worse than BSR rec, and the
above conclusions can advocate the use of Bayesian methods in symbolic regression over
genetic programming.

Table A7 in Appendix A reports the outcomes from the Diebold–Mariano test, in
which forecasts generated using fixed versions of the selected models (‘fix”) are compared
with those generated using the recursive versions (“rec”). This was performed for BSR
models (the original one and the two considered averaging schemes) and the GP model.
The null hypothesis was that the “fix” and “rec” versions’ generated forecasts would have
the same accuracy. The alternative hypothesis was that the “rec” version would generate
a more accurate forecast than the “fix” version. Even assuming a 10% significance level,
only in 1 case did BSR rec generate statistically significantly more accurate forecasts than
BSR fix. However, if model averaging schemes are considered, then “rec” models seemed
to improve the forecast accuracy more than the “fix” models. Assuming a 5% significance
level, BSR av MSE rec generated statistically significantly more accurate forecasts than BSR
av MSE fix for 57% of commodities. In the case of the BSR av EW scheme, this was for 68%
of commodities. In the case of the GP method, this was for 45% of commodities.

Table A8 in Appendix A reports the outcomes from the Diebold–Mariano test, which
compares forecasts generated using the BSR models with those generated using the GP
models. The null hypothesis was that the BSR and GP models’ generated forecasts would
have the same accuracy. The alternative hypothesis was that the BSR forecasts would be
more accurate than the GP ones. Assuming a 5% significance level, BSR rec generated
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statistically significantly more accurate forecasts than the GP rec method for 38% of com-
modities, and BSR fix generated statistically significantly more accurate forecasts than the
GP fix method for 32% of commodities.

5.3. Selection of Parameters for BSR

Another considered problem was the selection of parameters for BSR. As mentioned
before, it was performed on the basis of in-sample data. Figure 1 presents histograms of
the selected K-s and F-s for BSR, if minimisation of RMSE is chosen as the criterion. For
most commodities K = 10, i.e., the highest considered value, was selected. The second
most often selected value was K = 7. Generally, higher values were preferred. Very small
values, such as K = 1 and K = 3, were rarely selected. For example, K = 2 was never
selected. The tendency to select high values of K-s may be due to an overfitting issue
(which, by the way, was the background for developing LASSO and other model reduction
methods). According to Jin et al. (2019), the improvement in forecast accuracy from an
increasing K may not be significant if K is already high enough. Indeed, the MCS procedure
reported further herein (and some pre-testing over the whole sample, not reported herein)
confirmed this statement. Moreover, Jin et al. (2019) argued that if K is too large, then
the regression coefficients in the linear combination are close to 0, making these extra
components redundant.
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In the case of the set of operators, F = 3 was most often selected. This was the set
consisting of simple operators (negation and addition) expanded with a 12-month moving
average and 1st lag operator. In other words, these were the operators representing variable
selection and transformations usually applied in economics and finance.

Nevertheless, just simple operators (F = 1) or simple operators expanded with an “ln”
operator (F = 6) were also selected. However, sets consisting of operators representing
non-linearities were not selected often. Similar conclusions were derived if MAE or MASE
was considered (not reported herein). Nevertheless, this most often selected combination
of parameters cannot be used as a general advice. The Diebold–Mariano test for forecasts
generated (over the in-sample period) using the model with K = 10 and F = 3, and the model
indicated as that minimising RMSE, rejected the null hypothesis that both forecasts had
the same accuracy, in favour of the alternative, that forecasts from the model minimising
RMSE would be more accurate, for 32% of commodities (assuming a 5% significance level).

On the other hand, the selection of F seems to be less important. In particular, the
Diebold–Mariano test was used to compare forecasts (over the in-sample period) obtained
using the model with F = 1 and the model with another F (with both models having the
same K parameter). This test was performed for all commodities. As a result, there were
5 * 10 * 56 = 2800 pairwise comparisons. Assuming a 5% significance level, only in 6% of
cases was the null hypothesis (that both forecasts have the same accuracy) rejected, and the
alternative (that forecasts from the model with F = 1 is less accurate) was assumed. This sug-
gests that if the parameter K is properly chosen, then the set of operators is less important
for the forecast accuracy, and the simple set of them can also lead to acceptable forecasts.

Additionally, for each commodity, forecasts generated using all BSR models with
all K-s and F-s over the in-sample period were tested using the MCS procedure (with
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1000 bootstrapped samples used to construct the statistic test, and with a “TR” statistic
and quadratic loss function corresponding to RMSE, and with 90% confidence intervals).
Indeed, there might be no statistically significant differences between the forecast accuracy
from various BSR models with different K-s and F-s. The particular model, which was
most often surviving the MCS procedure, was the one with K = 7 and F = 3, and the one
with K = 9 and F = 3. In the case of the set of operators, this was consistent with previous
outcomes, but for K a more moderate value is preferred.

5.4. Comparision of Models Performances

Another interesting piece of information derived from the conducted analysis was
to see how, over the out-of-sample period, the MCS procedure selected models for each
commodity. The same parameters for this procedure were set as previously. Table 5
presents how often (amongst all the analysed commodities) a given model survived the
MCS procedure (with the parameters set as previously). It can be seen that ARIMA, DMA,
and BMA were most often kept. These outcomes are consistent with those already reported
herein. However, some types of BSR models were also kept for approximately 15% of
commodities. Of course, the conventional benchmarks, such as ARIMA and NAÏVE, were
found useful. DMA and its variations were also found useful. However, BSR-type models
were found to be the next best ones, outperforming (in the sense of forecast accuracy), for
example, LASSO and RIDGE regressions, and LARS and GP symbolic regression.

Table 5. Outcomes of the MCS procedure over out-of-sample period.

Model Frequency

ARIMA 65.45%
DMA 60.00%
BMA 56.36%

NAIVE 25.45%
BMS 1V 18.18%
BMA 1V 16.36%

BSR av MSE rec 14.55%
BSR av EW rec 14.55%

B-LASSO 14.55%
B-RIDGRE 14.55%

RIDGE 12.73%
EN 12.73%

BSR rec 10.91%
BSR av EW fix 10.91%

DMA 1V 10.91%
DMS 1V 10.91%
LASSO 9.09%
LARS 9.09%
GP fix 7.27%
GP rec 5.45%

BSR av MSE fix 5.45%
TVP 3.64%

TVP f 3.64%
BSR fix 0.00%

HA 0.00%

Furthermore, both the Diebold–Mariano test and the MCS procedure provide conclu-
sions based on the whole analysed period (the whole out-of-sample period). The previously
mentioned Giacomini–Rossi fluctuation test was performed over approximately 7.5-year
periods (µ = 0.3). In particular, forecasts generated using the BSR rec model were tested
against forecasts generated using the DMA, GP rec, ARIMA, and NAÏVE models. The
null hypothesis was that that the two models’ forecast performance would be the same,
and the alternative was that the BSR rec model forecasts would be worse than the compet-
ing model. A 5% significance level was assumed. Figure 2 presents the outcomes for all
analysed commodities.
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In particular, test statistics for all analysed commodities are plotted, and the dotted
line represents the critical value of the statistic. It can be seen that for the majority of
commodities the null hypothesis could not be rejected for all competing models. However,
in the cases of the DMA, ARIMA, and NAÏVE models, it could be rejected for some
commodities, and the evidence was especially seen for the period between 2008 and 2016.
In particular, when DMA is considered, the null hypothesis was rejected for Brent, Dubai,
Gas_EU, Gas_JP, Coffee_Arabica, Groundnuts, Soybean_meal, Banana, Logs_MY, Rubber,
Potash, Aluminium, Copper, Lead, and Nickel. For GP rec, the null hypothesis was
rejected for Coal_AU, Coal_ZA, Gas_JP, Phosphate_rock, and Silver. For ARIMA, the null
hypothesis was rejected for Brent, Coal_ZA, Gas_JP, Cocoa, Coffee_Arabica, Tea_Colombo,
Groundnuts, Soybean_oil, Soybean_meal, Chicken, Shrimps, Logs_CM, Logs_MY, Cotton,
Rubber, and Lead. For NAÏVE, the null hypothesis was rejected for Brent, Gas_JP, Cocoa,
Coffee_Arabica, Tea_Colombo, Soybean_meal, Rice_100, Wheat_SRW, Banana, Shrimps,
Logs_MY, Rubber, Phosphate_rock, and Potash.

5.5. Time-Varying Importance of Price Predictors

The regression coefficients obtained from various estimated models (i.e., DMA, BMA,
DMA 1V, DMS 1V, BMA 1V, BMS 1V, LASSO, RIDGE, EN, B-LASSO, B-RIDGE, LARS, TVP,
and TVP f) seemed to follow similar time paths (except for some small discrepancies in
relatively few cases). In other words, the exact numerical values were different, but they
seemed to rise or decline over time consistently with each other, as well as have similar
signs. (To prevent the paper being too long, they are not reported in detail herein.) However,
the behaviour over time of these coefficients seemed to differ for different commodities.

In order to keep the presentation clear and concise, only coefficients from the DMA
model (i.e., the one that most often minimised the nRMSE and kept by the MCS procedure)
are discussed in Appendix B.



Int. J. Financial Stud. 2024, 12, 34 25 of 56

In order to detect the important impact of a given variable on a given commodity, the
following procedure was performed (Burnham and Anderson 2002). First, it was assumed
that the potential importance of a variable exists if the RVI exceeded 0.3 (Galipaud et al.
2014). Secondly, it was assumed that the absolute value of a regression coefficient (at
a particular point of time) corresponding to this variable was greater than its standard
deviation (computed over all values estimated for the out-of-sample period). If these two
criteria were met in a given point of time, then it was assumed that the given variable has
an important impact on a given commodity at that particular point of time. If the regression
coefficient was positive in such a case, then it was assumed that this impact is positive;
otherwise, it was considered negative.

5.6. Overall Importance of Price Predictors

The analysed commodities were divided into four groups: energy, food, materials,
and metals (i.e., Brent–Gas_JP, Cocoa–Tobacco, Logs_CM–Potash, and Aluminium–Silver,
shown row-wise in Table A1 in Appendix A). Figures 3–6 show the frequency of how
often a given explanatory variable was important in predicting a commodity’s prices
amongst these groups for the BSR av EW rec and DMA models. It can be seen that DMA
was preferring more strongly certain variables, whereas BSR av EW rec was not strongly
preferring any variable to such an extent. However, some conclusions can still be derived.
In particular, for energy commodities, the GSCI seemed to be the most important price
predictor. Interestingly, stocks_CN was also quite often chosen, more often than other stock
market indices and some financial indicators such as str, dpr, ts, and dpr. In the case of
food commodities, those most often chosen were stocks_EM and oi_USD. Furthermore,
ts_BRICS was relatively more often chosen than, for example, some financial indicators and
GPR. In the case of materials commodities, these were li_EU, stocks_G7, and stocks_US; dpr,
gea, and str were rarely chosen. In the case of metals commodities, these were stocks_EM,
stocks_US, and stocks_World; gea, t_ind and dpr were rarely chosen.
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Figure 5. Frequency of being an important price predictor amongst materials commodities (BSR av
EW rec on the left and DMA on the right).

Next, the already considered variable importances were further analysed. In particular,
it was computed how often a given explanatory variable was important (according to the
previously introduced two criteria in Section 5.5) for a given commodity over the out-
of-sample period. Next, it was computed whether this frequency was over 50% (over
the out-of-sample period). Figure 7 reports the number of explanatory variables for each
commodity for which this condition was met. It can be seen that in the case of the BSR
av EW rec method, Dubai, Orange, Copper, Dap, Logs_CM, Silver, Rice_5, Sawnwood,
and Shrimps prices were impacted by a relatively high number of explanatory variables.
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However, Brent, Tea_Mombasa, Tsp, Phosphate_rock, Sugar_US, Iron, Gas_US, Fish_meal,
Wheat_SRW, Soybean_oil, and Logs_MY were impacted by relatively few explanatory
variables. The BSR av EW rec method selected many more variables than the DMA method
in general. In other words, the DMA method identified fewer variables as important price
predictors. In particular, according to the DMA method, Phosphate_rock, Potash, and
Iron were affected by the highest number of predictors, whereas Tea_Colombo, Plywood,
Orange, and Banana were impacted by the smallest number of predictors.
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6. Conclusions

In this study, a wide set of 56 commodities’ prices were analysed and 39 potentially
important explanatory variables were used to capture various market, financial, and
economic influences. In addition to Bayesian symbolic regression, other methods dealing
with variable uncertainty were considered, as well as some standard simple benchmark
models. The obtained forecasts were evaluated with various measures and tested with
various methods. In many cases, the developed econometric methods were able to generate
more accurate forecasts than simple benchmark models.

Although no strong evidence was found that Bayesian symbolic regression itself
outperforms many of the other methods, it was also not found to be significantly less
accurate. However, the way that Bayesian symbolic regression selects explanatory variables
was not able to clearly detect certain patterns in the time-varying importance of predictors,
contrary to other developed econometric methods such as Dynamic Model Averaging.

In the case of comparing “fixed” vs. recursive computations with symbolic regression
(Bayesian, the standard one based on genetic programming, and the ones including model
averaging schemes), surprisingly recursive computations only in certain cases resulted in
more accurate forecasts than “fixed” estimations. However, in a reasonable number of cases
the recursive version of Bayesian symbolic regression generated significantly more accurate
forecasts than the standard symbolic regression based on genetic programming. In the case
of Bayesian symbolic regression, the previous hypothesis, that a higher number of linear
components should be chosen if forecast accuracy is the aim, was confirmed. However, the
selection of an initial set of operators (functions) was found to be a less important issue.
For example, the set of operators capturing non-linear effects was not selected often. This
might be due to the symbolic regression algorithm itself evolving functions into sufficiently
complicated forms.

According to the model confidence set, Dynamic Model Averaging was the most often
selected amongst all of the models dealing with the variable uncertainty problem; however,
symbolic regression was still selected in a reasonable number of cases. In particular, the
Bayesian version was chosen rather than the standard one based on genetic programming.
The recursive version of Bayesian symbolic regression outperformed benchmark models
for certain commodities, especially around the 2008–2016 period.

More detailed analysis showed that the set of important commodity price predictors
differed amongst different groups of commodities (i.e., energy, food, materials, and metals).
In particular, this evidence could be derived from the Dynamic Model Averaging analysis.
Finally, there was a clear difference between the number of important explanatory variables
indicated for each commodity using Bayesian symbolic regression and Dynamic Model
Averaging. In particular, Dynamic Model Averaging was more restrictive in this manner.

This study confirmed that outperforming standard benchmark models, such as ARIMA,
is still a challenging task when forecasting commodities’ prices. It also confirmed the
outcomes of some previous studies that Dynamic Model Averaging is a promising and
high-performing method, outperforming, for example, LASSO, LARs, and RIDGE regres-
sions. Nevertheless, Bayesian symbolic regression happened to also be an interesting and
competing method with the standard symbolic regression based on genetic programming,
and seems to be worth further studies and applications in economics and finance.
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Appendix A

Table A1. The list of analysed commodities.

Abbreviation Description

Brent Brent oil
Dubai Dubai oil
WTI WTI oil

Coal_AU Coal (Australia)
Coal_ZA Coal (South Africa)
Gas_US Gas (U.S.)
Gas_EU Gas (Europe)
Gas_JP Gas (Japan)
Cocoa Cocoa

Coffee_Arabica Coffee Arabic
Coffee_Robusta Coffee Robusta
Tea_Colombo Tea (Colombo)
Tea_Kolkata Tea (Kolkata)

Tea_Mombasa Tea (Mombasa)
Coconut_oil Coconut oil
Groundnuts Groundnuts
Fish_meal Fish meal
Palm_oil Palm oil
Soybeans Soybeans

Soybean_oil Soybean oil
Soybean_meal Soybean meal

Maize Maize
Rice_5 Rice 5% broken

Rice_100 Rice 100% broken
Wheat_SRW U.S. soft red winter wheat
Wheat_HRW U.S. hard red winter wheat

Banana Banana
Orange Orange

Beef Beef
Chicken Chicken
Shrimps Shrimps

Sugar_EU Sugar (Europe)
Sugar_US Sugar (U.S.)

Sugar_World Sugar (world)
Tobacco Tobacco

Logs_CM Logs (Cameroon)
Logs_MY Logs (Malaysia)

Sawnwood Sawnwood
Plywood Plywood
Cotton Cotton
Rubber Rubber

Phosphate_rock Phosphate rock
Dap Diammonium phosphate
Tsp Triple superphosphate

Urea Urea
Potash Potash

Aluminium Aluminium
Iron Iron ore

Copper Copper
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Table A1. Cont.

Abbreviation Description

Lead Lead
Tin Tin

Nickel Nickel
Zinc Zinc
Gold Gold

Platinum Platinum
Silver Silver

Table A2. Descriptive statistics.

Variable Mean Standard
Deviation Median Min Max Skewness Kurtosis

Brent 47.49 32.21 37.72 9.80 133.90 0.82 −0.48

Dubai 45.24 31.63 34.26 10.05 131.20 0.81 −0.52

WTI 46.09 28.70 37.77 11.31 133.90 0.77 −0.48

Coal_AU 58.10 31.02 47.70 22.25 180.00 1.10 0.68

Coal_ZA 54.67 29.46 46.62 21.25 167.80 0.95 0.20

Gas_US 3.55 2.14 2.84 1.19 13.52 1.75 3.68

Gas_EU 5.55 3.39 4.04 1.58 15.93 0.91 −0.23

Gas_JP 7.26 4.26 5.45 2.72 18.11 0.92 −0.32

Cocoa 1.92 0.70 1.69 0.86 3.53 0.48 −0.90

Coffee_Arabica 2.88 1.10 2.84 1.17 6.62 0.70 0.53

Coffee_Robusta 1.65 0.61 1.68 0.50 4.03 0.35 0.36

Tea_Colombo 2.35 0.86 1.96 1.18 4.27 0.40 −1.29

Tea_Kolkata 2.16 0.56 2.07 1.03 4.07 0.48 −0.29

Tea_Mombasa 1.96 0.53 1.83 1.12 3.39 0.67 −0.68

Coconut_oil 819.90 397.80 703.00 284.00 2256.00 1.05 0.46

Groundnuts 1192.00 405.40 1055.00 618.20 2528.00 1.37 1.65

Fish_meal 921.00 474.00 680.20 339.00 1926.00 0.37 −1.46

Palm_oil 618.10 252.60 576.60 234.00 1377.00 0.80 0.08

Soybeans 343.30 119.70 307.00 183.00 684.00 0.79 −0.36

Soybean_oil 707.50 283.80 626.00 286.90 1575.00 0.94 0.24

Soybean_meal 307.20 117.70 270.00 144.20 651.40 0.74 −0.46

Maize 148.80 59.99 124.40 75.27 333.10 1.27 0.91

Rice_5 354.20 126.90 321.20 163.80 907.00 0.89 0.93

Rice_100 288.20 126.40 232.00 120.80 762.70 0.68 −0.43

Wheat_SRW 178.60 61.97 162.30 85.30 419.60 0.92 0.45

Wheat_HRW 192.50 67.55 172.70 102.20 439.70 1.03 0.35

Banana 0.71 0.28 0.65 0.25 1.30 0.32 −1.18

Orange 0.67 0.23 0.64 0.23 1.43 0.60 −0.26

Beef 3.05 1.08 2.69 1.63 6.18 0.65 −0.65

Chicken 1.60 0.40 1.53 0.88 2.72 0.35 −0.83

Shrimps 12.09 2.14 11.88 7.50 19.25 0.64 0.43

Sugar_EU 0.54 0.12 0.55 0.34 0.78 −0.11 −1.23

Sugar_US 0.53 0.10 0.49 0.38 0.89 1.82 3.09

Sugar_World 0.28 0.11 0.26 0.11 0.65 1.01 0.88

Tobacco 3611.00 812.30 3400.00 2340.00 5118.00 0.31 −1.35
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Table A2. Cont.

Variable Mean Standard
Deviation Median Min Max Skewness Kurtosis

Logs_CM 355.50 75.08 344.80 220.50 562.80 0.46 −0.56

Logs_MY 248.30 64.21 251.80 133.30 520.80 0.90 1.53

Sawnwood 694.20 144.20 713.30 374.10 973.60 −0.20 −0.91

Plywood 497.90 93.48 499.90 310.60 751.80 0.09 −0.67

Cotton 1.64 0.49 1.61 0.82 5.06 2.82 14.46

Rubber 1.63 0.98 1.40 0.49 6.26 1.66 3.36

Phosphate_rock 75.95 67.49 44.00 31.00 450.00 3.08 12.69

Dap 284.20 163.50 214.80 112.80 1076.00 1.87 4.93

Tsp 258.60 165.80 198.50 105.10 1132.00 2.36 7.90

Urea 202.80 118.20 185.80 62.75 785.00 1.46 3.31

Potash 204.80 129.90 151.20 83.00 682.50 1.46 1.61

Aluminium 1796.00 442.90 1731.00 1040.00 3578.00 0.82 0.34

Iron 67.32 48.40 37.90 24.30 214.40 1.18 0.31

Copper 4365.00 2472.00 3221.00 1377.00 10,160.00 0.45 −1.25

Lead 1279.00 780.00 935.50 375.70 3720.00 0.47 −1.12

Tin 12,030.00 7412.00 8144.00 3694.00 35,020.00 0.71 −0.64

Nickel 12,830.00 7342.00 11,170.00 3872.00 52,180.00 1.86 5.14

Zinc 1702.00 762.70 1528.00 747.60 4405.00 0.86 0.10

Gold 772.80 506.80 433.90 256.10 1969.00 0.66 −1.06

Platinum 844.10 442.30 809.80 341.20 2052.00 0.69 −0.58

Silver 11.81 8.52 7.03 3.65 42.70 1.15 0.68

dpr −1.44 0.29 −1.50 −2.03 −0.76 0.34 −0.64

pe 25.58 6.77 25.41 13.32 44.20 0.68 0.22

str 2.85 2.46 2.38 −0.01 8.90 0.41 −1.00

ltr_US 4.58 2.21 4.46 0.62 9.36 0.29 −0.90

ltr_EU 4.83 3.03 4.25 −0.09 11.14 0.39 −0.78

ts 1.73 1.09 1.71 −0.49 3.78 0.03 −1.06

drs 3.08 1.32 3.16 0.24 6.10 −0.03 −1.14

cpi 192.80 42.58 191.60 116.20 273.10 −0.02 −1.24

ppi 157.20 35.17 150.20 104.80 233.40 0.18 −1.55

ip 87.46 14.13 92.35 60.59 104.20 −0.76 −0.90

ee 16.32 4.57 15.84 9.29 26.10 0.21 −1.12

M1 1091.00 1204.00 713.50 614.10 7230.00 4.32 17.86

M2 3680.00 1334.00 3335.00 2305.00 7636.00 1.01 0.25

gea 2.47 59.50 −4.90 −162.40 188.60 0.73 0.86

une 5.88 1.67 5.50 3.50 14.70 1.31 2.36

AUD 0.76 0.12 0.76 0.49 1.10 0.43 0.38

CAD 0.81 0.11 0.79 0.62 1.05 0.42 −0.69

INR 2.55 1.28 2.22 1.32 7.69 2.17 4.62

reer_AUD 95.05 12.43 96.64 71.32 123.90 0.22 −0.60

reer_CAD 106.10 12.08 102.90 85.69 128.40 0.20 −1.32

reer_INR 90.67 12.68 88.83 64.62 128.40 0.32 −0.08

reer_US 97.58 7.57 96.89 83.93 114.60 0.28 −0.99

tb_US −44,570.00 25,260.00 −48,220.00 −97,680.00 −3492.00 0.10 −1.35
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Table A2. Cont.

Variable Mean Standard
Deviation Median Min Max Skewness Kurtosis

GSCI 3525.00 1646.00 2990.00 1086.00 10,560.00 1.13 1.20

oi_USD 296,900,000,000.00 275,400,000,000.00 131,700,000,000.00 27,050,000,000.00 901,500,000,000.00 0.45 −1.43

t_ind 1.11 0.04 1.10 1.04 1.24 0.95 0.99

VXO 19.95 8.21 18.16 7.87 61.38 1.63 3.97

GPR 98.42 48.72 88.57 39.05 512.50 4.58 29.51

stocks_US 1330.00 859.80 1187.00 258.90 4523.00 1.17 1.28

stocks_World 1210.00 566.10 1149.00 423.10 3141.00 0.76 0.33

stocks_G7 1080.00 515.10 1022.00 384.30 2907.00 0.91 0.68

stocks_EU 307.50 116.20 336.30 96.69 582.30 −0.14 −0.91

stocks_EM 659.40 343.40 542.30 109.70 1376.00 0.19 −1.37

stocks_CN 44,140.00 27,480.00 40,970.00 2274.00 141,100.00 0.37 −0.26

ts_BRICS 0.00 0.01 0.00 −0.04 0.05 −0.68 3.74

li_US 99.77 1.33 99.91 92.31 102.20 −1.59 4.55

li_G7 99.86 1.22 100.10 92.26 102.10 −1.83 6.66

li_EU 100.00 1.68 100.10 90.44 103.20 −1.09 2.99

li_CN 99.97 1.41 100.10 85.68 103.10 −2.82 25.36

Table A3. Stationarity tests. (“>” indicates “greater than”, and “<” indicates “smaller than”.).

Variable ADF Stat. ADF p-Val. PP Stat. PP p-Val. KPSS Stat. KPSS p-Val.

Brent −7.9953 <0.01 −253.6471 <0.01 0.0446 >0.10
Dubai −8.2440 <0.01 −230.5171 <0.01 0.0436 >0.10
WTI −8.0483 <0.01 −248.0916 <0.01 0.0400 >0.10

Coal_AU −6.5208 <0.01 −280.4958 <0.01 0.0801 >0.10
Coal_ZA −6.1623 <0.01 −266.5725 <0.01 0.0538 >0.10
Gas_US −8.7802 <0.01 −361.7846 <0.01 0.0348 >0.10
Gas_EU −6.4891 <0.01 −277.7274 <0.01 0.0560 >0.10
Gas_JP −6.7223 <0.01 −229.5060 <0.01 0.0636 >0.10
Cocoa −7.3658 <0.01 −321.8202 <0.01 0.0906 >0.10

Coffee_Arabica −6.9581 <0.01 −314.2563 <0.01 0.0674 >0.10
Coffee_Robusta −6.2083 <0.01 −298.5168 <0.01 0.1047 >0.10
Tea_Colombo −8.1779 <0.01 −348.0611 <0.01 0.0361 >0.10
Tea_Kolkata −12.9817 <0.01 −282.5993 <0.01 0.0150 >0.10

Tea_Mombasa −7.1632 <0.01 −313.6262 <0.01 0.0259 >0.10
Coconut_oil −6.1340 <0.01 −323.9682 <0.01 0.0421 >0.10
Groundnuts −7.0198 <0.01 −284.0919 <0.01 0.0233 >0.10
Fish_meal −7.7946 <0.01 −275.7443 <0.01 0.0601 >0.10
Palm_oil −7.1712 <0.01 −269.1340 <0.01 0.0642 >0.10
Soybeans −7.6204 <0.01 −331.3422 <0.01 0.0596 >0.10

Soybean_oil −6.7782 <0.01 −263.4829 <0.01 0.0627 >0.10
Soybean_meal −8.0436 <0.01 −267.6929 <0.01 0.0425 >0.10

Maize −7.6244 <0.01 −299.4328 <0.01 0.0389 >0.10
Rice_5 −8.7629 <0.01 −233.7177 <0.01 0.0488 >0.10

Rice_100 −7.7580 <0.01 −231.1146 <0.01 0.0521 >0.10
Wheat_SRW −8.4273 <0.01 −309.6046 <0.01 0.0353 >0.10
Wheat_HRW −7.7958 <0.01 −304.6156 <0.01 0.0413 >0.10

Banana −11.8927 <0.01 −388.1070 <0.01 0.0161 >0.10
Orange −11.8850 <0.01 −268.7407 <0.01 0.0232 >0.10

Beef −7.7189 <0.01 −228.0717 <0.01 0.1321 >0.10
Chicken −10.5157 <0.01 −260.6561 <0.01 0.0269 >0.10
Shrimps −7.3627 <0.01 −196.4938 <0.01 0.0356 >0.10
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Table A3. Cont.

Variable ADF Stat. ADF p-Val. PP Stat. PP p-Val. KPSS Stat. KPSS p-Val.

Sugar_EU −7.4501 <0.01 −315.1929 <0.01 0.1137 >0.10
Sugar_US −6.3475 <0.01 −282.7717 <0.01 0.0680 >0.10

Sugar_World −7.3141 <0.01 −288.5904 <0.01 0.0413 >0.10
Tobacco −5.0524 <0.01 −287.2056 <0.01 0.1256 >0.10

Logs_CM −7.8160 <0.01 −292.3322 <0.01 0.0386 >0.10
Logs_MY −7.6421 <0.01 −255.3297 <0.01 0.0395 >0.10

Sawnwood −6.2682 <0.01 −333.6141 <0.01 0.0931 >0.10
Plywood −7.3099 <0.01 −281.7184 <0.01 0.0430 >0.10
Cotton −7.9502 <0.01 −194.0813 <0.01 0.0387 >0.10
Rubber −6.4845 <0.01 −295.2020 <0.01 0.0616 >0.10

Phosphate_rock −5.7667 <0.01 −381.9933 <0.01 0.0363 >0.10
Dap −6.9540 <0.01 −203.3954 <0.01 0.0559 >0.10
Tsp −7.3063 <0.01 −183.7721 <0.01 0.0515 >0.10

Urea −8.1881 <0.01 −302.8459 <0.01 0.0324 >0.10
Potash −6.2091 <0.01 −443.6662 <0.01 0.1158 >0.10

Aluminium −7.3307 <0.01 −337.5590 <0.01 0.0697 >0.10
Iron −6.3234 <0.01 −271.0289 <0.01 0.0596 >0.10

Copper −8.1452 <0.01 −233.0640 <0.01 0.0946 >0.10
Lead −6.5456 <0.01 −310.2747 <0.01 0.0784 >0.10
Tin −6.8723 <0.01 −298.2957 <0.01 0.1397 >0.10

Nickel −6.4269 <0.01 −249.7583 <0.01 0.0438 >0.10
Zinc −6.3570 <0.01 −293.2702 <0.01 0.0385 >0.10
Gold −6.6906 <0.01 −331.2990 <0.01 0.5126 0.0388

Platinum −8.3714 <0.01 −306.8139 <0.01 0.0952 >0.10
Silver −7.5172 <0.01 −299.9199 <0.01 0.1486 >0.10
dpr −2.1808 0.5009 −6.7632 0.7318 1.8097 <0.01
pe −1.8732 0.6309 −5.2990 0.8137 0.9871 <0.01
str −3.5042 0.0423 −9.1229 0.5999 4.6993 <0.01

ltr_US −4.0658 <0.01 −31.5982 <0.01 6.2708 <0.01
ltr_EU −3.1425 0.0979 −13.4612 0.3572 6.0577 <0.01

ts −3.2958 0.0718 −14.8652 0.2787 0.2490 >0.10
drs −3.1972 0.0886 −11.4279 0.4710 0.2997 >0.10
cpi −6.6089 <0.01 −204.7199 <0.01 0.8030 <0.01
ppi −6.3383 <0.01 −249.5577 <0.01 0.0516 >0.10
ip −6.5356 <0.01 −298.2689 <0.01 0.2861 >0.10
ee −4.9675 <0.01 −393.8539 <0.01 0.2569 >0.10
M1 −6.9325 <0.01 −365.9665 <0.01 0.5329 0.0343
M2 −6.0468 <0.01 −156.3054 <0.01 1.3597 <0.01
gea −2.4424 0.3905 −22.5739 0.0411 0.6736 0.0159
une −2.5496 0.3451 −21.1600 0.0539 0.3989 0.0776

AUD −7.0716 <0.01 −393.6667 <0.01 0.0588 >0.10
CAD −7.0035 <0.01 −413.4559 <0.01 0.0908 >0.10
INR −6.4130 <0.01 −364.1453 <0.01 0.4552 0.0534

reer_AUD −7.9739 <0.01 −275.5769 <0.01 0.0580 >0.10
reer_CAD −7.3475 <0.01 −307.1186 <0.01 0.0951 >0.10
reer_INR −7.3033 <0.01 −325.3636 <0.01 0.5238 0.0363
reer_US −7.6200 <0.01 −227.4906 <0.01 0.0742 >0.10
tb_US −5.7462 <0.01 −103.8847 <0.01 0.1607 >0.10
GSCI −7.0261 <0.01 −316.9545 <0.01 0.2585 >0.10

oi_USD −6.8621 <0.01 −330.9185 <0.01 0.0850 >0.10
t_ind −3.2137 0.0858 −36.2523 <0.01 3.5126 <0.01
VXO −3.5502 0.0379 −64.6624 <0.01 0.2472 >0.10
GPR −4.7256 <0.01 −103.1218 <0.01 0.1747 >0.10

stocks_US −6.1733 <0.01 −394.0153 <0.01 0.1278 >0.10
stocks_World −6.4726 <0.01 −374.9809 <0.01 0.0608 >0.10

stocks_G7 −6.4349 <0.01 −377.8616 <0.01 0.0720 >0.10
stocks_EU −6.7591 <0.01 −375.6705 <0.01 0.0936 >0.10
stocks_EM −7.2645 <0.01 −344.3724 <0.01 0.1365 >0.10
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Table A3. Cont.

Variable ADF Stat. ADF p-Val. PP Stat. PP p-Val. KPSS Stat. KPSS p-Val.

stocks_CN −6.5398 <0.01 −415.8805 <0.01 0.1967 >0.10
ts_BRICS −4.9694 <0.01 −130.1868 <0.01 0.3909 0.0811

li_US −4.9081 <0.01 −29.9440 <0.01 0.0800 >0.10
li_G7 −5.2672 <0.01 −30.2912 <0.01 0.0946 >0.10
li_EU −5.4067 <0.01 −25.4211 0.0221 0.1003 >0.10
li_CN −4.1257 <0.01 −82.3776 <0.01 0.1147 >0.10

Table A4. The Diebold–Mariano test—“best” model vs. ARIMA and vs. NAIVE.

Commodity Best Best vs. ARIMA Best vs. NAIVE

Brent DMA 0.0004 0.0002
Dubai DMA 0.0001 0.0000
WTI BMA 0.0004 0.0004

Coal_AU B-RIDGRE 0.0729 0.0246
Coal_ZA BSR av EW rec 0.1906 0.0006
Gas_US DMA 0.0539 0.2162
Gas_EU DMA 0.4469 0.0114
Gas_JP DMA 0.4178 0.0538
Cocoa ARIMA 0.1483

Coffee_Arabica DMA 0.4657 0.4603
Coffee_Robusta ARIMA 0.1928
Tea_Colombo BMA 0.3237 0.3149
Tea_Kolkata BMA 0.3972 0.1314

Tea_Mombasa BMA 0.2629 0.3450
Coconut_oil BMA 0.1535 0.0087
Groundnuts DMA 0.2585 0.0245
Fish_meal B-RIDGRE 0.2576 0.4941
Palm_oil ARIMA 0.0091
Soybeans BMA 0.1258 0.0784

Soybean_oil DMA 0.4197 0.0387
Soybean_meal ARIMA 0.0007

Maize BSR av EW rec 0.2956 0.0795
Rice_5 ARIMA 0.4718

Rice_100 NAIVE 0.4002
Wheat_SRW ARIMA 0.3001
Wheat_HRW BMA 0.4565 0.2907

Banana DMA 0.4266 0.4133
Orange ARIMA 0.3381

Beef ARIMA 0.1138
Chicken ARIMA 0.2135
Shrimps ARIMA 0.0618

Sugar_EU RIDGE 0.0884 0.3505
Sugar_US ARIMA 0.1307

Sugar_World ARIMA 0.0090
Tobacco ARIMA 0.2881

Logs_CM BMA 0.1138 0.0181
Logs_MY ARIMA 0.0251

Sawnwood DMA 0.0150 0.0824
Plywood DMA 0.3120 0.2524
Cotton ARIMA 0.0036
Rubber BMA 0.4072 0.2832

Phosphate_rock GP fix 0.0472 0.1994
Dap ARIMA 0.1316
Tsp ARIMA 0.0446

Urea BSR av MSE rec 0.1435 0.0868
Potash BMA 0.1253 0.4778

Aluminium DMA 0.0020 0.0010
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Table A4. Cont.

Commodity Best Best vs. ARIMA Best vs. NAIVE

Iron RIDGE 0.1258 0.0386
Copper DMA 0.1459 0.0725

Lead ARIMA 0.2022
Tin DMA 0.1651 0.1013

Nickel ARIMA 0.0693
Zinc BMS 1V 0.4368 0.0314
Gold BMA 0.1037 0.1845

Platinum BMA 0.0013 0.0034
Silver DMS 1V 0.2438 0.1263

Table A5. The Diebold–Mariano test—BSR rec model vs. “best”, vs. ARIMA, and vs. NAIVE.

Commodity BSR Rec vs. Best BSR Rec vs. ARIMA BSR Rec vs. NAIVE

Brent 0.0000 0.0024 0.0352
Dubai 0.0000 0.5241 0.9577
WTI 0.0085 0.0561 0.0825

Coal_AU 0.0167 0.4624 0.1947
Coal_ZA 0.0111 0.0017 0.1732
Gas_US 0.1149 0.5788 0.1229
Gas_EU 0.0151 0.0210 0.2298
Gas_JP 0.0350 0.0696 0.2353
Cocoa 0.0010 0.0010 0.0022

Coffee_Arabica 0.0003 0.0002 0.0000
Coffee_Robusta 0.1578 0.1578 0.1578
Tea_Colombo 0.0118 0.0106 0.0085
Tea_Kolkata 0.1053 0.0368 0.2181

Tea_Mombasa 0.1184 0.1287 0.1229
Coconut_oil 0.0557 0.0747 0.0877
Groundnuts 0.0041 0.0001 0.0091
Fish_meal 0.1584 0.1584 0.1584
Palm_oil 0.0968 0.0968 0.1069
Soybeans 0.0442 0.0516 0.0543

Soybean_oil 0.0605 0.0225 0.8987
Soybean_meal 0.0000 0.0000 0.0000

Maize 0.0567 0.1268 0.1653
Rice_5 0.1174 0.1174 0.0821

Rice_100 0.0008 0.1678 0.0008
Wheat_SRW 0.1148 0.1148 0.0806
Wheat_HRW 0.0360 0.0586 0.0628

Banana 0.0016 0.1621 0.0015
Orange 0.1421 0.1421 0.1424

Beef 0.0594 0.0594 0.1950
Chicken 0.0310 0.0310 0.0527
Shrimps 0.0117 0.0117 0.0087

Sugar_EU 0.0590 0.3408 0.0340
Sugar_US 0.1120 0.1120 0.3439

Sugar_World 0.1591 0.1591 0.1591
Tobacco 0.1131 0.1131 0.1203

Logs_CM 0.0006 0.0232 0.0948
Logs_MY 0.0000 0.0000 0.0001

Sawnwood 0.0002 0.0432 0.0610
Plywood 0.0056 0.0069 0.0070
Cotton 0.0005 0.0005 0.0164
Rubber 0.0003 0.0182 0.0360

Phosphate_rock 0.0155 0.9250 0.0061
Dap 0.1408 0.1408 0.3374
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Table A5. Cont.

Commodity BSR Rec vs. Best BSR Rec vs. ARIMA BSR Rec vs. NAIVE

Tsp 0.1142 0.1142 0.8300
Urea 0.0474 0.0868 0.2359

Potash 0.0875 0.5945 0.1037
Aluminium 0.0000 0.0030 0.0073

Iron 0.2240 0.7191 0.9356
Copper 0.0158 0.4215 0.6329

Lead 0.0206 0.0206 0.1275
Tin 0.1509 0.6005 0.8598

Nickel 0.1016 0.1016 0.4385
Zinc 0.4096 0.5121 0.8845
Gold 0.1634 0.6838 0.6001

Platinum 0.0319 0.0679 0.0675
Silver 0.0982 0.3400 0.3480

Table A6. The Diebold–Mariano test—GP rec model vs. “best”, vs. ARIMA, and vs. NAIVE.

Commodity GP Rec vs. Best GP Rec vs. ARIMA GP Rec vs. NAIVE

Brent 0.0000 0.0001 0.0038
Dubai 0.0000 0.0001 0.0005
WTI 0.0000 0.0092 0.0405

Coal_AU 0.1305 0.7823 0.9500
Coal_ZA 0.0107 0.2715 0.7661
Gas_US 0.1499 0.1547 0.1528
Gas_EU 0.0007 0.0018 0.0083
Gas_JP 0.0363 0.0599 0.2664
Cocoa 0.0000 0.0000 0.0000

Coffee_Arabica 0.0004 0.0004 0.0005
Coffee_Robusta 0.0301 0.0301 0.0301
Tea_Colombo 0.0000 0.0000 0.0000
Tea_Kolkata 0.0001 0.0000 0.0000

Tea_Mombasa 0.0000 0.0000 0.0000
Coconut_oil 0.0000 0.0000 0.0001
Groundnuts 0.0000 0.0000 0.0000
Fish_meal 0.1590 0.1590 0.1590
Palm_oil 0.0009 0.0009 0.0209
Soybeans 0.0125 0.0125 0.0125

Soybean_oil 0.0011 0.0012 0.0514
Soybean_meal 0.0000 0.0000 0.0002

Maize 0.0004 0.0005 0.0005
Rice_5 0.1026 0.1026 0.1026

Rice_100 0.0011 0.2012 0.0011
Wheat_SRW 0.0000 0.0000 0.0000
Wheat_HRW 0.0300 0.0448 0.0586

Banana 0.0000 0.0000 0.0000
Orange 0.1269 0.1269 0.1279

Beef 0.0327 0.0327 0.0381
Chicken 0.0762 0.0762 0.0588
Shrimps 0.0000 0.0000 0.0000

Sugar_EU 0.0012 0.0014 0.0001
Sugar_US 0.0746 0.0746 0.1168

Sugar_World 0.0000 0.0000 0.0000
Tobacco 0.0000 0.0000 0.0000

Logs_CM 0.0000 0.0003 0.0019
Logs_MY 0.0000 0.0000 0.0000

Sawnwood 0.0028 0.0029 0.0029
Plywood 0.0000 0.0000 0.0000
Cotton 0.0003 0.0003 0.0007
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Table A6. Cont.

Commodity GP Rec vs. Best GP Rec vs. ARIMA GP Rec vs. NAIVE

Rubber 0.0062 0.0493 0.0585
Phosphate_rock 0.2654 0.9534 0.4070

Dap 0.0434 0.0434 0.0293
Tsp 0.0209 0.0209 0.4023

Urea 0.0000 0.0002 0.0005
Potash 0.0187 0.4791 0.0157

Aluminium 0.0000 0.0000 0.0001
Iron 0.1423 0.4858 0.7309

Copper 0.0004 0.0596 0.0722
Lead 0.0081 0.0081 0.0111
Tin 0.0566 0.1823 0.3743

Nickel 0.0022 0.0022 0.0062
Zinc 0.0001 0.0097 0.0310
Gold 0.1449 0.4744 0.3852

Platinum 0.0161 0.8765 0.8434
Silver 0.4522 0.6101 0.6420

Table A7. The Diebold–Mariano test—“rec” vs. “fix”.

Commodity BSR BSR av MSE BSR av EW GP

Brent 0.9997 0.0000 0.7999 0.9982
Dubai 1.0000 0.0000 0.0044 0.9995
WTI 0.1591 0.8409 0.0008 0.0005

Coal_AU 0.3120 0.8751 0.0000 0.0000
Coal_ZA 0.9830 0.0417 0.0003 0.6665
Gas_US 0.1963 0.1555 0.0013 0.1225
Gas_EU 0.1298 0.8661 0.1405 0.0000
Gas_JP 0.1591 0.8409 0.0416 0.0314
Cocoa 0.9930 0.0000 0.0124 0.0000

Coffee_Arabica 0.9999 0.0004 0.0010 0.9980
Coffee_Robusta 0.1591 0.8409 0.0000 0.9686
Tea_Colombo 0.7948 0.0000 0.0000 1.0000
Tea_Kolkata 0.7471 0.0000 0.8468 1.0000

Tea_Mombasa 0.8812 0.0000 0.0012 0.0000
Coconut_oil 0.9214 0.0000 0.0003 0.9972
Groundnuts 0.9960 0.0000 0.0029 0.0000
Fish_meal 0.8416 0.1590 0.0301 0.8410
Palm_oil 0.1325 0.8768 0.0227 0.0000
Soybeans 0.1585 0.0125 0.8363 0.9875

Soybean_oil 0.3132 0.0314 0.0712 0.0000
Soybean_meal 1.0000 0.0001 0.0011 0.9940

Maize 0.9349 0.0004 0.0005 0.0000
Rice_5 0.8793 0.1027 0.0449 0.1594

Rice_100 0.9973 0.0269 0.0904 0.9792
Wheat_SRW 0.9144 0.0000 0.0135 0.9999
Wheat_HRW 0.9400 0.0628 0.0000 0.0411

Banana 0.8607 0.0000 0.2094 0.0001
Orange 0.1591 0.8409 0.0000 0.1117

Beef 0.8903 0.0337 0.0658 0.0000
Chicken 0.9754 0.1210 0.6837 0.8680
Shrimps 0.9739 0.0000 0.0016 0.0001

Sugar_EU 0.9703 0.0002 0.1612 0.0083
Sugar_US 0.6617 0.1312 0.5337 0.6361

Sugar_World 0.8409 0.8727 0.0491 0.0379
Tobacco 0.8706 0.0002 0.0403 0.9175

Logs_CM 0.9990 0.0002 0.0040 0.0001
Logs_MY 0.0227 0.9773 0.9212 1.0000
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Table A7. Cont.

Commodity BSR BSR av MSE BSR av EW GP

Sawnwood 0.6473 0.0030 0.0906 0.0408
Plywood 0.1648 0.8005 0.1591 0.7624
Cotton 0.2596 0.7893 0.0004 0.0002
Rubber 0.9974 0.0262 0.0000 0.9615

Phosphate_rock 0.9965 0.3159 0.1899 0.7346
Dap 0.0788 0.9212 0.0012 0.0044
Tsp 0.5278 0.0060 0.0758 0.6297

Urea 0.9526 0.0000 0.0085 1.0000
Potash 0.8955 0.0181 0.1150 0.9811

Aluminium 0.9999 0.0000 0.0000 0.9998
Iron 0.5166 0.3003 0.0374 0.0418

Copper 0.8625 0.0029 0.0000 0.1166
Lead 0.9535 0.0013 0.0008 0.9830
Tin 0.4807 0.1016 0.0806 0.0004

Nickel 0.6666 0.0004 0.0024 0.0010
Zinc 0.2026 0.0004 0.0055 0.1246
Gold 0.3883 0.3878 0.0105 0.0000

Platinum 0.9602 0.2326 0.0006 0.1839
Silver 0.1561 0.8442 0.0000 0.0000

Table A8. The Diebold–Mariano test—BSR vs. GP.

Commodity BSR Rec vs. GP Rec BSR Fix vs. GP Fix

Brent 0.0655 0.8724
Dubai 0.0002 1.0000
WTI 0.7229 0.0188

Coal_AU 0.9406 0.0000
Coal_ZA 0.8899 0.9977
Gas_US 0.1541 0.0816
Gas_EU 0.3310 1.0000
Gas_JP 0.6818 0.9523
Cocoa 0.0009 0.0000

Coffee_Arabica 0.2536 1.0000
Coffee_Robusta 0.7545 0.9212
Tea_Colombo 0.0000 0.9933
Tea_Kolkata 0.0000 0.9952

Tea_Mombasa 0.7340 0.0000
Coconut_oil 0.3622 0.9736
Groundnuts 0.0001 0.0000
Fish_meal 0.5007 0.9910
Palm_oil 0.8764 1.0000
Soybeans 0.0125 0.9222

Soybean_oil 0.0269 0.0000
Soybean_meal 0.0347 1.0000

Maize 0.0007 0.0000
Rice_5 0.1030 0.1589

Rice_100 0.4754 0.9999
Wheat_SRW 0.0000 0.8917
Wheat_HRW 0.4674 0.7429

Banana 0.0000 0.0000
Orange 0.7725 0.1117

Beef 0.2953 0.7829
Chicken 0.5324 0.8318
Shrimps 0.0000 0.0000

Sugar_EU 0.0031 0.0063
Sugar_US 0.3293 0.3542

Sugar_World 0.8409 0.8409
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Table A8. Cont.

Commodity BSR Rec vs. GP Rec BSR Fix vs. GP Fix

Tobacco 0.7458 1.0000
Logs_CM 0.0801 0.0005
Logs_MY 0.0001 0.0266

Sawnwood 0.0030 0.0000
Plywood 0.0001 0.6267
Cotton 0.8532 0.0008
Rubber 0.1652 1.0000

Phosphate_rock 0.9117 0.7826
Dap 0.4567 0.8416
Tsp 0.0556 0.9980

Urea 0.0006 1.0000
Potash 0.3157 0.9868

Aluminium 0.0436 1.0000
Iron 0.3080 0.1071

Copper 0.0158 0.1789
Lead 0.0969 1.0000
Tin 0.0972 0.0006

Nickel 0.0027 0.0004
Zinc 0.0008 0.2556
Gold 0.3184 0.0001

Platinum 0.9505 1.0000
Silver 0.7129 0.0091

Appendix B

Below is a description of the time-varying importance of price predictors, based on
the DMA model according to the procedure described in Section 5.5.

In particular, the dividend to price ratio had a mostly positive impact, especially for
Coal_ZA, Phosphate_rock, and Dap up to 2000; Palm_oil, Cotton, Rubber, Phosphate_rock,
Potash, and Tin around 2011–2015. This impact was negative for Coal_AU and Coal_ZA
between 2010 and 2012; Phosphate_rock between 2003 and 2006; and Gold since 2018.

The price earnings ratio also had a mostly negative impact, especially on the following:
Coal_ZA between 2001 and 2011; Coffee_Robusta between 2006 and 2020; Coconut_oil,
Fish_meal, Palm_oil, Soybean_oil, Soybean_meal, and Maize around 2015–2018; Rice_5
and Rice_100 since 2020; Tobacco between 2099 and 2015; Potash and Iron between 2005
and 2009 and since 2017; Tin and Zinc between 2016 and 2018; and Gold since 2019. It was
positive for Gas_EU between 2000 and 2003; Gas_JP since 2018; Phosphate_rock between
1999 and 2001 and since 2010; Potash between 2009 and 2014; and Tin between 2011
and 2015.

The short-term interest rate had a mostly negative impact, especially on Coal_Za
before 2011 and Coal_AU between 2006 and 2011, and both of these commodities since
2019; Gas_JP and Groundnuts since 2019; Fish_meal before 2002; Rice_5 and Rice_100
between 2008 and 2010; Wheat_HRW between 1997 and 2001; Beef and Chicken between
2007 and 2009; Sugar_EU between 2009 and 2011; Rubber before 2011; Phosphate_rock
between 2010 and 2015 and between 2018 and 2020; and Dap and Tsp between 2004 and
2011. It was also negative for various metals (i.e., Lead, Tin, Nickel, Zinc, Gold, Platinum
and Silver) between 2000 and 2009 (but in different sub-periods for different metals). For
Gold, this negative impact was also present between 2012 and 2015. There was a positive
impact on Soybean_meal between 2014 and 2016; Tobacco before 2002; Rubber between
2012 and 2014; Phosphate_rock between 2004 and 2007 and between 2016 and 2018; and
Iron between 1997 and 2001, between 2005 and 2009, and between 2014 and 2020.

The long-term interest rate for the U.S. had a mostly negative impact. For many
commodities, this was especially seen around 2007–2011 (i.e., Dubai, WTI, Coconut_oil,
Palm_oil, Soybean_oil, Maize, Whear_HRW, Beef, Sugar_US, Sugar_World, Tobacco, Rub-
ber, Phosphate_rock, Dap, Tsp, Potash, Copper, Tin, Gold, Platinum, and Silver). Some



Int. J. Financial Stud. 2024, 12, 34 40 of 56

negative impact was also present before 1999 for Fish_meal, Wheat_SRW, Wheat_HRW,
Dap, Lead, and Silver. For Phosphate_rock, the negative impact was present between 2007
and 2020. A positive impact was present for Coal_AU between 1998 and 2000, Rubber
between 2002 and 2003, Gas_JP between 2009 and 2010, Groundnuts since 2019, and Iron
between 2006 and 2018.

On the other hand, the long-term interest rate for the Euro area had mixed impacts. It
was negative for Brent and Dubai around 2011 and 2012, Coal_AU between 2003 and 2006
and between 2011 and 2019, Coffee_Robusta between 2001 and 2004 and between 2006
and 2009, Palm_oil between 2011 and 2013, Shrimps between 2016 and 2020, Sugar_World
between 2016 and 2017, Tobacco before 2002 and between 2012 and 2015, Cotton between
2013 and 2014, Rubber between 2011 and 2014, Tsp since 2011, Iron since 2005, Copper
between 2011 and 2013, Tin between 2009 and 2016, and Platinum between 2011 and
2016. A positive impact was present for Coal_ZA before 2001, Gas_EU between 1999 and
2004, Gas_JP between 2015 and 2016, Soybean_meal between 2015 and 2017, Logs_MY
and Plywood before 1997, Phosphate_rock in several periods between 2008 and 2020, Tsp
between 2007 and 2011, and Potash between 2009 and 2012 and between 2016 and 2020.

The term spread had a mixed impact. The impact was negative on all energy commodi-
ties in some periods around 2016 and 2020; Soybeans, Maize, Wheat_SRW and Wheat_HRW
in some periods before 2002; Tea_Mombasa, Fish_meal, and Soybean_meal between 2009
and 2016; Tobacco between 2008 and 2012; Phosphate_rock since 2005; Potash between
2006 and 2009 and between 2015 and 2020. It was also negative for some metals (i.e., Iron,
Copper, Lead, Tin, and Zinc) around 2015–2019. On the other hand, it was positive on Cof-
fee_Arabica between 2014 and 2019, Coffee_Robusta between 1999 and 2005, Groundnuts
since 2014, Fish_meal and Palm_oil between 1999 and 2003, Logs_CM between 2004 and
2007, Logs_MY between 2011 and 2016, Cotton and Rubber between 2002 and 2004, Iron
between 2006 and 2014, and Gold after 2014.

The default return spread had a slightly more positive (than negative) impact on
commodity prices. The positive impact was on WTI, Coal_AU, and Coal_ZA around 2019
and 2020; Coal_AU around 2008; Coal_ZA before 2002; Gas_EU since 2019; Gas_JP between
2011 and 2018; Coffee_Arabica and Coffee_Robusta between 1999 and 2002; Palm_oil
between 2002 and 2004; Soybeans between 1997 and 2000; Soybean_oil between 2001 and
2006; wheat prices around 1999 and 2001; Sugar_World between 2002 and 2006; Logs_MY
and Plywood between 1999 and 2001; Rubber between 2000 and 2002 and between 2012
and 2014; Phosphate_rock between 2006 and 2020; and Silver before 1997. The negative
impact was on Tea_Mombasa between 2015 and 2018, Groundnuts since 2014, Fish_meal
for several periods between 1999 and 2013, wheat prices since 2019, Tobacco before 2009,
Logs_MY between 2012 and 2016, Dap and Tsp around 2007 and 2012, Iron between 2005
and 2017, Copper and Lead between 2015 and 2018, Zinc for several periods between 2006
and 2018, and Gold since 2013.

The U.S. Consumer Price Index for all urban consumers had a mostly negative impact.
In particular, this was on most crude oil prices in various periods between 2000 and 2009
and since 2016; Coal_AU before 2002 and since 2016; Cocoa between 2002 and 2005 and
between 2010 and 2020; Tea_Kolkata between 2008 and 2020; Coconut_oil since 2012;
Fish_meal between 2000 and 2009; Soybean_meal between 2013 and 2016; Maize between
2009 and 2016; Shrimps between 2011 and 2016; Phosphate_rock before 1999; Tsp between
2012 and 2020; Potash between 2005 and 2020; Aluminium, Iron, Tin and Zinc around
2006–2009; Platinum between 1997 and 1999 and between 2011 and 2016. It had a positive
impact on Gas_JP between 1999 and 2004, Palm_oil and Soybean_oil around 2001–2003,
rice prices around 2010–2012, Wheat_HRW between 1997 and 2003, Tobacco between 2015
and 2020, Phosphate_rock between 2010 and 2018, Dap between 2009 and 2012, and Urea
since 2014.

The U.S. Producer Price Index had a mostly negative impact. In particular, this was
on oil prices, coal prices and Gas_US around 2004–2010; Cocoa between 2002 and 2007;
Tea_Mombasa between 1997 and 2000; Coconut_oil between 2004 and 2006 and between
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2010 and 2012; Palm_oil, Soybeans, Soybean_oil, Soybean_meal, and Maize in several
periods between 2001 and 2019; wheat prices before 2016; Phosphate_rock between 2009
and 2018; Potash since 2005; Iron between 2005 and 2011; Zinc between 2011 and 2016;
Gold between 2003 and 2014; and Platinum and Silver around 2008–2012. It had a positive
impact on coffee prices since 2015, Tea_Kolkata since 2008, rice prices since 2020, Beef since
2015, Chicken before 2000, Shrimps between 2011 and 2015, Sugar_EU and Sugar_World
since 2020, Tobacco between 2012 and 2017, Plywood between 2015 and 2020, Cotton since
2018, Dap since 2016, Tsp since 2007, and Urea between 2008 and 2014.

U.S. industrial production had a mostly positive impact, especially since 2008 on
Coffee_Robusta, Soybeans, Sugar_EU, Potash, Aluminium, Iron, Tin, Nickel, and Zinc.
Furthermore, it had a positive impact in shorter periods on Brent between 2003 and 2005,
WTI between 2001 and 2006, all oil prices around 2008–2009, Gas_EU and Gas_JP between
2015 and 2020, Fish_meal between 2013 and 2020, Beef between 2015 and 2019, Sugar_US
between 2011 and 2017, Tobacco between 2006 and 2009, Plywood between 2011 and
2016, Rubber between 2008 and 2017, Phosphate_rock before 2005, Platinum between
2016 and 2020, and Silver since 2020. It had a negative impact on Gas_EU and Soybeans
around 2008, Orange and Sugar_US between 2000 and 2008, Logs_MY between 2012 and
2016, Phosphate_rock between 2012 and 2019, Gold between 2000 and 2008, and Platinum
between 2000 and 2002.

U.S. average hourly earnings of production and nonsupervisory employees had a
mixed impact on less commodities than the previously reported variables. In particular,
it had a negative impact on oil prices before 2015, Tea_Mombasa between 2015 and 2019,
Fish_meal between 2011 and 2014, Soybean_meal between 2004 and 2013, Tsp between
2002 and 2007, and Potash and Iron between 2005 and 2020. It had a positive impact on
Gas_JP between 2004 and 2014; coffee prices between 2014 and 2020; Sugar_EU between
2009 and 2013; Cotton between 2010 and 2017; Phosphate_rock before 2003 and since 2009;
and Aluminium, Copper, Zinc, Gold and Platinum around 2006–2009.

The M1 money stock for the U.S. and M2 money stock for the U.S. had sometimes
contradictory impacts, whereas M2 seemed to have more impact overall than M1. In
particular, M1 had a negative impact on Cocoa between 2004 and 2007 and between 2018
and 2020, Palm_oil between 2001 and 2004, Orange between 2001 and 2008, Sugar_EU
between 2008 and 2012, Sugar_World between 2001 and 2005, logs prices before 1998,
Sawnwood and Plywood around 2009–2011, Phosphate_rock between 2008 and 2020, Dap
between 2009 and 2012, Potash between 2005 and 2017, and Iron between 2015 and 2018.
M1 had a positive impact on coal prices around 2001–2008, Gas_EU and Gas_JP around
2018–2020, Maize before 2002, Tsp and Urea around 2012–2015, Iron between 2009 and
2013, and Silver between 2001 and 2008. M2 had a negative impact on coal prices and
gas prices around 2015–2019; Tea_Kolkata between 2015 and 2020; Coconut_oil between
2011 and 2017; Palm_oil, Soybeans, and Soybean_oil around 2003–2012; Sugar_EU before
2002; Sugar_US between 2008 and 2020; logs prices around 2000; Cotton before 2008 and
between 2014 and 2020; Rubber and Phosphate_rock before 1999; Dap and Tsp between
2007 and 2017; and Lead between 2008 and 2018. M2 had a positive impact on Groundnuts
and Fish_meal since 2013, rice prices between 2010 and 2013, wheat prices between 2001
and 2004, Chicken and Tobacco between 2014 and 2019, Phosphate_rock since 2008, Potash
between 2009 and 2017, Gold and Platinum between 2014 and 2020, and Silver between
2018 and 2020.

Killian’s Index of Global Real Economic Activity had a mostly positive impact. In
particular, this was on coal prices for almost all of the analysed period; Gas_EU and Gas_JP
around 2008–2011 and since 2015; Tea_Mombasa and Coconut_oil since 2020; Soybeans,
Soybean_meal, Maize, rice prices, and wheat prices before 2003; Soybeans, Soybean_oil, and
Soybean_meal around 2008; Sugar_US between 2011 and 2018; Sugar_World between 2000
and 2003; Tobacco between 2014 and 2018; Sawnwood since 2019; Phosphate_rock since
2009; Dap since 2011; Potash since 2016; Iron since 2004; Lead and Zinc around 2004; and
Silver between 1998 and 1999. However, it was negative on Dubai and WTI between 2001
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and 2004, Palm_oil and rice prices around 2008–2011, Beef before 1998, Chicken between
2015 and 2020, Potash between 2009 and 2013, and Platinum between 2008 and 2011.

The U.S. unemployment rate had a rather negative impact, in particular on oil prices
and Gas_EU around 2000, Coal_ZA before 2010, Groundnuts since 2020, Fish_meal between
1997 and 1998, rice prices around 2008 and since 2020, Sugar_US between 2009 and 2015,
Phosphate_rock between 2000 and 2003 and between 2006 and 2017, Dap before 2000, Tsp
and Urea before 1997, Potash since 2006, and Iron between 2004 and 2009. However, it had
a positive impact on Gas_EU and Gas_JP around 2010; Coffee_Robusta between 2005 and
2006; Wheat_HRW between 1997 and 2003; Sugar_World between 2002 and 2005; Tobacco
before 2002; and Iron, Copper, Lead, Tin, Nickle, and Platinum around 2009.

U.S. dollar exchange rates had a mostly positive impact. Mostly, this was indicated by
the Australian dollar to U.S. dollar exchange rate, and, secondly, by the Indian rupee to
U.S. dollar exchange rate. The impact from the Canadian dollar to U.S. dollar exchange
rate was least often observed.

In particular, the Australian dollar to U.S. dollar exchange rate had a positive impact on
Coal_AU between 1997 and 2002, between 2008 and 2011, and since 2017; Coal_ZA between
2001 and 2005 and between 2008 and 2015; Gas_EU in similar periods as for Coal_ZA,
Cocoa, and coffee prices around 2009; Tea_Mombasa between 2006 and 2013; Groundnuts
between 2011 and 2019; Palm_oil between 2007 and 2013; Soybeans and Soybean_meal
between 2004 and 2016; Soybean_oil between 2009 and 2012 and between 2015 and 2017;
Rice_100 and wheat prices between 2012 and 2016; wheat prices since 2019; Beef since 2016;
Logs_CM since 2003; Sawnwood between 1998 and 2004; Plywood between 2005 and 2008;
Cotton between 2007 and 2011; Rubber between 1998 and 2012; Tsp since 2008; and various
metal prices around 2005, 2009, and 2020. In the case of metals, those mostly impacted
were Aluminium, Copper, Lead, Nickel, Platinum, and Silver. However, the impact was
negative on oil prices since 2016, Phosphate_rock between 2008 and 2016 and since 2020,
and Potash between 2009 and 2016.

The Canadian dollar to U.S. dollar exchange rate had a positive impact on Gas_EU
between 2008 and 2016; Gas_JP between 1998 and 2009; Cocoa between 2012 and 2016;
Tea_Kolkata between 2001 and 2008; Coconut_oil, Soybeans, Wheat_HRW, Phosphate_rock,
Tsp, and Gold around 2009; Tobacco between 2012 and 2013; Iron, Gold, Platinum, and
Silver since 2016; and Gold in several periods since 2000. It had a negative impact on oil
prices around 2004–2007 and 2015; Coal_AU between 2008 and 2010 and around 2015;
Gas_US between 1998 and 2001 and around 2003, 2009, and 2017; Coffee_Arabica between
2006 and 2009; Sawnwood between 1998 and 2008; and Phosphate_rock in several periods
before 2006.

The Indian rupee to U.S. dollar exchange rate had a positive impact on Coal_ZA since
2011, Coffee_Robusta between 2009 and 2020, Maize in several periods since 2006, Rubber
between 2008 and 2019, Urea before 2004, Potash between 2008 and 2015, Iron between
2005 and 2019, Platinum in several periods between 1997 and 2019, and Silver around 2009
and between 2011 and 2014. It also had a positive impact on several other commodities
(i.e., Dubai, Coffee_Arabica, Tea_Kolkata, Tea_Mombasa, Coconut_oil, Fish_meal, Palm_oil,
Soybean_oil, Soybean_meal, and wheat prices) around 2009. It had a negative impact on
Coal_AU and Gas_US before 1998, Gas_US between 2004 and 2007, Groundnuts since 2014,
Phosphate_rock since 2008, and Potash since 2016.

In the case of real effective exchange rates, the one based on the manufacturing Con-
sumer Price Index for Australia and the one based on the manufacturing Consumer Price
Index for India had mostly positive impacts, whereas the one based on the manufacturing
Consumer Price Index for Canada and the one based on the manufacturing Consumer Price
Index for the U.S. had mostly negative impacts.

In particular, the real effective exchange rate based on the manufacturing Consumer
Price Index for Australia had a positive impact on Brent, Dubai, coal prices, Palm_oil,
Soybean_oil, Sugar_EU, Phosphate_rock, and Urea in various periods since 2011; Cof-
fee_Robusta between 2005 and 2011; Beef between 2009 and 2015; Cotton between 2002
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and 2013; Urea before 2005; Potash between 2007 and 2017; and Iron between 1999 and
2003. It had a negative impact on Gas_EU since 2008, Sugar_US between 2001 and 2014,
and Phosphate_rock since 2010.

Real effective exchange rates based on the manufacturing Consumer Price Index
for Canada had a negative impact on Coal_AU, Gas_US, Coffee_Arabica, Coconut_oil,
Palm_oil, rice prices, Beef, and Tin in several periods after 2009; Coffee_Robusta between
1997 and 2016; Tea_Colombo before 2003; Soybeans, Soybean_meal, sugar prices, logs prices,
Phosphate_rock, Tsp, and Copper around 2009–2013; Sawnwood before 1999; Platinum
between 2008 and 2014; and Coffee_Arabica around 1997–2002. It had a positive impact on
Gas_EU and Tea_Kolkata since 2017, Phosphate_rock between 2000 and 2004, and Potash
since 2005.

Real effective exchange rates based on the manufacturing Consumer Price Index for
India had a positive impact on Coal_AU in several sub-periods over the whole analysed
time period, Tean_Mombasa between 2001 and 2020, Fish_meal between 2009 and 2020, rice
prices around 2020, Wheat_HRW between 2003 and 2008, Chicken since 2013, Sawnwood
between 1998 and 2005, Plywood since 2017, Tsp between 2012 and 2016, Iron between
2009 and 2013, and Tin around 2009. They had a negative impact on oil prices around 1999,
coffee prices since 2018, Tea_Colombo since 2013, Tea_Kolkata between 2009 and 2013,
Plywood between 2003 and 2008, Potash since 2005, Copper around 2007 and since 2016,
Nickel since 2012, Zinc since 2019, and Silver between 2008 and 2009.

Real effective exchange rates based on the manufacturing Consumer Price Index for
the U.S. had a positive impact on Gas_US and Gas_JP since 2020; Tea_Kolkata since 2013;
Tea_Mombasa between 1998 and 2002; Orange in several sub-periods since 2008; Beef
before 1998 and between 2005 and 2009; Shrimps and Sugar_EU around 2014–2018; Cotton
before 2002; Copper, Tin, and Silver around 2007; and Copper Nickel and Silver since
2020. It had a negative impact on Coal_AU and Cola_ZA around 2015–2017, Cocoa since
2017, Tea_Mombasa between 2010 and 2015, Fish_meal, Palm_oil and Soybeans since 2019,
Soybean_meal and rice prices since 2009, Shrimps before 2002, Sugar_EU between 2003
and 2012, Logs_CM over the whole analysed period, Sawnwood between 1999 and 2006
and since 2017, Rubber between 2013 and 2016, Phosphate_rock between 2003 and 2006,
Urea between 2015 and 2018, Iron since 2005, and Lead and Zinc around 2005.

The U.S. trade balance had a mixed impact. It was positive mostly after 2006, in
particular, on Coal_AU since 2005; Coal_ZA since 2018; Tea_Colombo since 2017; Iron
between 2013 and 2019; and Coconut_oil, Soybeans, Soybean_oil, Soybean_meal, Maize,
Rice_100, Sugar_EU, Sugar_US, Sugar_World, Phosphate_rock, Dap, and Tsp around 2008.
It was negative on oil prices between 2000 and 2007, Gas_EU and Gas_JP between 2003 and
2011, Groundnuts between 2002 and 2007, Shrimps in several periods since 2003, Logs_CM
between 2002 and 2006, Logs_MY and Plywood since 2015, Aluminium between 2000 and
2009, Iron between 2003 and 2009, and Copper around 2000.

The S&P GSCI Commodity Total Return Index had a positive impact on the majority
of commodities and over multiple periods. In particular, this was on oil prices during the
whole analysed period; Coal_AU since 2002; Coal_ZA since 2009; Gas_US, Tea_Mombasa,
and Tin over almost whole analysed period; Gas_US since 2009; Gas_EU since 2017; Gas_JP
before 2015; Tea_Kolkata before 2004; Soybean_meal between 1997 and 2005; Wheat_HRW
between 1998 and 2003; Beef between 2008 and 2015; Rubber between 2008 and 2019;
Dap between 2009 and 2014; Urea before 1999; Potash since 2005; Aluminium since 2009;
Copper since 2007; Zinc between 2017 and 2019; Gold between 2001 and 2015; Platinum
between 2013 and 2015; and Silver between 2011 and 2015. However, it had a negative
impact on Groundnuts since 2014, Soybean_oil between 2003 and 2007, and Phosphate_rock
since 2016.

The dollar open interest had a mostly positive impact, in particular, on Cocoa, coffee
prices, Palm_oil, Soybean_meal, and Cotton in various periods after 2010; Coconut_oil in
various sub-periods of the whole analysed period; Fish_meal between 1999 and 2006; Maize
between 2005 and 2017; rice prices and Sugar_US between 2009 and 2018; Sugar_World
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between 2010 and 2020; Phosphate_rock between 1999 and 2001 and between 2009 and
2013; Dap between 2014 and 2017; and Platinum between 2006 and 2020. It had a negative
impact on oil prices between 1997 and 2003 and around 2020; Gas_EU before 2004; Gas_JP
since 2003; Tea_Kolkata between 2014 and 2019; Tea_Mombasa between 2006 and 2018;
rice prices, Orange, and Chicken around 2001; and Potash between 2005 and 2010 and
since 2014.

Working’s dollar T-index had a mostly negative impact, in particular, on oil prices
around 2016; Coal_AU since 2005; Coal_ZA between 2001 and 2015; Gas_JP between
2002 and 2008 and since 2017; Coconut_oil, Groundnuts, Palm_oil, Soybean_oil, Maize,
Wheat_HRW, and Sugar_EU around 2008–2014; Chicken and Shrimps since 2004; Rubber
between 2012 and 2014; Phosphate_rock since 2013; Dap between 2009 and 2015; Tsp since
2010; Urea between 2012 and 2014; Tin between 2007 and 2015; and Platinum between 2008
and 2015. It had a positive impact on Coal_ZA and Dap before 1999, Gas_EU between
2010 and 2012, Coffee_Robusta between 2005 and 2007, Fish_meal before 2002, and Potash
since 2005.

The VXO index of implied volatility had a mixed impact. It was negative on: oil prices
around 2008 and 2020–2021, Coal_ZA and Gas_US before 1998, Coal_AU and Gas_US
between 2018 and 2020, Chicken between 2001 and 2005, Rubber between 2008 and 2014,
Dap since 2010, Urea between 2011 and 2015, Potash between 2005 and 2020, Lead between
1997 and 2001 and between 2008 and 2013, and Gold in various periods before 2014. It
was positive on Coal_AU between 2005 and 2009; Gas_EU between 2010 and 2014; Co-
conut_oil between 2012 and 2019; Groundnuts since 2017; Palm_oil, Soybeans, Soybean_oil,
Soybean_meal, Maize, and rice prices around 2020; wheat prices between 2015 and 2019;
Cotton between 2012 and 2019; Phosphate_rock since 2009; and Tin around 2006–2007.

The Global Geopolitical Risk Index had a limited impact. It was negative on Dubai
between 2004 and 2014; Coal_AU between 2004 and 2009; Coal_ZA before 2013; Soybeans,
Soybean_oil, Soybean_meal, Maize, and Rice_5 since 2020; Tobacco since 2015; Rubber,
Gold, and Silver since 2018; Phosphate_rock between 2009 and 2017; and Potash since 2006.
It was positive on Rice_100 before 2002, Sawnwood between 1998 and 2001, Dap and Tsp
since 2009, Aluminium and Lead since 2017, Iron between 2008 and 2017, and Tin between
2001 and 2017.

Stock prices had a mixed impact. The S&P 500 Index and the MSCI G7 index had
mostly negative impacts, whereas the MSCI WORLD for developed markets index, the
MSCI EU index, and the MSCI EM for emerging markets index had mostly positive impacts.

In particular, the S&P 500 Index had a negative impact on oil prices before 2001 and
since 2015, coal prices between 2002 and 2005 and since 2017, Cocoa in various periods
since 2003, Tea_Colombo between 2008 and 2016, Tea_Mombasa between 2015 and 2020,
wheat prices around 2010–2015 and since 2019, Orange between 2009 and 2014, Sugar_EU
over the whole analysed period, Sugar_World between 2013 and 2017, logs prices around
2006–2008, Logs_CM between 2010 and 2014, Logs_MY since 2014, Sawnwood since 2000,
Urea between 2001 and 2008, Iron since 2008, Copper since 2016, Lead before 1999, Tin since
2014, Nickel between 2011 and 2016, Zinc since 2019, Gold and Platinum over the whole
analysed period, and Silver since 2006. It was positive on rice prices around 2000–2001
and between 2008 and 2015, Phosphate_rock since 2009, Dap between 2009 and 2013, and
Potash between 2009 and 2013.

In the case of the MSCI G7 index since 2015, the impact was positive (opposite than
that of the S&P 500 Index) on oil prices. It was also positive on Groundnuts since 2013,
Shrimps since 2011, Cotton between 2011 and 2019, Phosphate_rock between 2010 and
2016, Gold in various periods between 1997 and 2016, Platinum in various periods before
2008, and Silver between 1998 and 2002. It was negative on Coal_ZA between 2001 and
2010 and since 2017; Cocoa between 2001 and 2010; Tea_Colombo and Tea_Kolkata around
2010–2013; Fish_meal, Palm_oil and Soybeans around 1998–2001; rice prices in various
sub-period of the whole analysed period; wheat prices since 2009; Logs_CM since 2002;



Int. J. Financial Stud. 2024, 12, 34 45 of 56

Dap since 2009; Tsp before 2006; Potash since 2013; and Copper, Lead, Tin, Nickel, and Zinc
between 2007 and 2016.

The MSCI WORLD for developed markets index had a positive impact on Brent since
2015; Coal_ZA and Gas_US around 2007–2010 and 2018; Cocoa between 2003 and 2014;
Tea_Colombo and Tea_Mombasa around 2011–2015; Rice_5 before 2006 and both rice prices
around 2012; wheat prices between 2013–2018; and Iron, Copper, Lead, Tin, Nickel, and
Zinc around 2010. In the case of individual metals, the positive impact was observed in
some other periods before or after 2010. In the cases of Gold and Platinum, it was positive
over almost the whole analysed period. The MSCI WORLD for developed markets index
had a negative impact on Tea_Mombasa and Groundnuts since 2014, Shrimps since 2010,
Logs_CM in various period since 2003, Rubber between 2003 and 2006, Phosphate_rock
since 2009, Dap between 2008 and 2016, Tsp in various periods since 2014, Potash between
2006 and 2014, and Silver between 1998 and 2002.

The MSCI EU index had a positive impact on oil prices around 2009; Tea_Mombasa
and Coconut_oil between 2017 and 2020; Palm_oil before 2001; Rice_5 between 2004 and
2012; wheat prices since 2018; Sugar_EU in various sub-periods of the whole analysed
period; Logs_CM since 2002; Logs_MY, Sawnwood, and Plywood between 2015 and 2018;
and Tin between 2010 and 2017. It had a negative impact on Coal_ZA before 1997 and
between 2001 and 2010, Gas_US since 2017, Rice_5 and Beef between 2014 and 2017, and
Phosphate_rock and Dap around 2012–2014.

The MSCI EM for the emerging markets index had a positive impact on the majority
of commodities, and it was mostly after 2015. In particular, this was on oil prices, coal
prices, Coconut_oil, Groundnuts, Palm_oil, Soybeans, Soybean_oil, Shrimps, Sugar_US,
Potash, and metals. In the case of Gold, Platinum, and Silver, the impact was present even
since 2010. Maize, rice prices, wheat prices, Banana, and Orange were impacted positively
around 2005–2015. The impact was negative on Gas_US between 2000 and 2010; Cocoa
before 2001; Logs_CM and Phosphate_rock over almost the whole analysed period; Dap,
Tsp, and Urea before 1998; Plywood before 1999; and Tsp since 2011.

The index representing the Chinese stock market had a slightly more negative than
positive impact. It became an important price predictor in around 2008. In particular, it had
a negative impact on oil prices around 2009 and since 2015; coal prices since 2017; Gas_EU
and Gas_JP since 2010; Rice_5 between 2008 and 2014; both rice prices around 2009 and
around 2011; Beef since 2015; Sawnwood since 2006; Gold since 2016; and Copper, Lead,
and Tin around 2016. It had a positive impact on Tea_Mombasa since 2016, Fish_meal since
2013, Maize between 2005 and 2008, Chicken since 2016, Cotton and Rubber around 2020,
Phosphate_rock between 2009 and 2015, Iron since 2009, Tin in various periods before 2008,
and Nickel between 2009 and 2015.

The share of BRIC countries’ trade in the total global trade had a mixed impact. In
particular, it was positive on Gas_EU between 2014 and 2017, coffee prices before 1999 and
between 2010 and 2014, Fish_meal between 2008 and 2020, Rice_100 around 1997, between
2004 and 2007 and between 2014 and 2017, wheat prices between 2017 and 2020, Shrimps
before 2007 and between 2010 and 2013, Logs_MY and Plywood between 2009 and 2011,
Cotton between 2010 and 2015, Dap and Tsp before 1998, Potash between 2009 and 2018,
and Copper before 1998 and between 2006 and 2009. It was negative on oil prices around
2018; coal prices since 2018; Coffee_Robusta, Tea_Colombo and Tea_Kolkata around 2019;
Coconut_oil and Groundnuts since 2018; sugar prices around 2016–2017; Sugar_World
before 2004; Tobacco between 2001 and 2016; Sawnwood before 2006; Phosphate_rock since
2009; Dap, Tsp, and Urea around 2010–2014; Iron between 2009 and 2013; Aluminium,
Lead, Nickel, and Silver around 2019; Zinc between 2016 and 2019; Gold between 1996 and
2004, between 2011 and 2014, and since 2019; and Platinum between 1999 and 2001 and
between 2009 and 2019.

In the case of leading indicators, those for the U.S. had a rather negative impact,
whereas those for G7 countries, the Euro area, and China had a mostly positive impact.
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Similarly, as before, the variables linked with the Chinese market and the Euro area became
important mostly after 2008.

In particular, the leading indicator for the U.S. had a negative impact on oil and coal
prices since 2020, Gas_EU between 2010 and 2013, Gas_JP around 2010 and since 2016,
Groundnuts between 2013 and 2017, Fish_meal before 2013, Palm_oil and Soybean_oil
around 2006, Soybean_meal between 1997 and 200, Sugar_US between 2009 and 2020,
Tobacco between 1998 and 2009, Phosphate_rock between 2001 and 2007, Potash between
2009 and 2013, Iron since 2001, Zinc and Platinum around 2008, and Gold between 2015
and 2019. It had a positive impact on coffee prices before 1997, logs prices before 1998,
Plywood and Cotton around 1998; Phosphate_rock since 2009; Aluminium and Copper
around 1997; Tin, Platinum and Silver around 2008; and, moreover, Platinum between 2000
and 2002.

The leading indicator for the G7 countries had a positive impact on oil prices around
2009, Coal_AU and Gas_JP in various sub-periods of the whole analysed period; Gas_EU
between 2002 and 2004 and between 2010 and 2013; Coconut_oil between 2015 and 2019;
Fish_meal between 1998 and 2009; wheat prices around 2016–2017; Tobacco between 1998
and 2009; Logs_CM between 2008 and 2018; Cotton between 2013 and 2018; Dap and Tsp
around 2020; Ureal between 2016 and 2020; Iron between 2009 and 2017; Copper before
2009; Tin, Nickel and Zinc around 2008; and Platinum around 2000, between 2002 and 2004,
and between 2008 and 2011. It had a negative impact on oil prices since 2020, Coconut_oil
between 2001 and 2003, Groundnuts between 2013 and 2018, wheat prices around 1997,
Logs_MY, Sawnwood and Plywood before 2000, Phosphate_rock since 2009, Potash since
2014, Gold since 2013, and Silver since 2020.

The leading indicator for the Euro area had a positive impact on oil prices around 2009
and since 2020, coal prices since 2008, Groundnuts since 2013, Palm_oil, Soybean_oil and
Maize between 2008 and 2019, rice prices around 2008–2009, wheat prices before 1998 and
between 2007 and 2014, logs prices between 2016 and 2020, Rubber between 1997 and 2005,
Phosphate_rock, Dap, Tsp and Potash since 2008, and Gold since 2013. It had a negative
impact on Gas_EU between 2010 and 2014, Gas_JP between 2001 and 2007, Coffee_Arabica
between 1997 and 2000 and between 2002 and 2005, Tobacco between 1998 and 2009 and
between 2016 and 2017, Iron between 2005 and 2008, Copper around 2008 and since 2020,
and Zinc between 2006 and 2013.

The leading indicator for China had a positive impact on oil prices since 2020; coal
prices between 2009 and 2011; rice prices between 2009 and 2017; wheat prices before 1999;
Chicken between 2008 and 2016; Phosphate_rock between 2004 and 2008; Dap between 2008
and 2011 and between 2014 and 2020; Tsp between 2008 and 2020, Potash between 2011 and
2015; and Tea_Colombo, Palm_oil, Soybean_oil, Sugar_World, Sawnwood, Cotton, Copper,
Tin, Zinc, Platinum, and Silver since 2020. It had a negative impact on oil prices around
2006, Gas_JP between 2001 and 2008, between 2011 and 2015 and since 2017, Logs_CM
before 2002, Cotton and Rubber between 2013 and 2019, Phosphate_rock between 2009 and
2016, Iron between 2005 and 2013 and between 2017 and 2020, Copper around 2014–2018,
Nickel and Zinc between 2008 and 2019, and Gold between 2006 and 2007.
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