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Abstract: The multifactor asset pricing model derived from the Fama–French approach is extensively
used in asset risk premium estimation procedures. Even including a considerable number of factors,
it is still possible that omitted factors affect the estimation of this model. In this work, we compare
estimators robust to the presence of omitted factors in estimating the risk premium in the Brazilian
market. Initially, we analyze the panel of asset returns using the mean group and common correlated
effect estimators to detect the presence of omitted factors. We then compare the results with those
obtained by a estimator robust to omitted variables, which uses a principal components approach
to correct the estimation in the case of the omission of latent factors. We conclude that there is
evidence of omitted factors, and the best predictor for the expect returns is the common correlated
effects estimator.

Keywords: robust estimation; risk premia; asset pricing; mis-specification

1. Introduction

Fama and French (1993) introduced the three-factor asset pricing model (Fama and
French (1992)), which expanded the traditional capital asset pricing model (CAPM) by identi-
fying three systematic risk factors in stock returns. They constructed these risk factors based
on the constructions of portfolios by sorting on stock characteristics. However, subsequent
studies, e.g., Titman et al. (2004) and Novy-Marx (2013), suggest that the three-factor model
might not be sufficiently comprehensive. In response, Fama and French (1995) extended the
model to incorporate profitability and investment factors, resulting in the five-factor model.
They found that the five-factor model explains 71%–94% of the cross-sectional variance in
expected returns concerning size, book-to-market, profitability, and investment.

Further examination of the Five-Factor Model by Fama and French (2015) across four
regions—North America, Europe, Japan, and Asia Pacific—reveals that, while the global
model may not provide entirely satisfactory results, regional models, constructed with local
data from each area, do a better job in terms of explaining return variance.

The expanding array of potential risk factors in asset pricing has led to the colloquial
term “Factor Zoo”. One of the earliest mentions of the Factor Zoo comes from Cochrane (2011),
while Harvey et al. (2015), McLean and Pontiff (2016), and more recently, Hou et al. (2017),
discuss how the proliferation of new risk factors can influence the risk pricing procedures.

But even with this growing number of new factors, the Fama–French model with 3, 4,
and 5 factors continues to be an essential benchmark in risk pricing applications. This is
due to the widespread availability of these factors and the interpretability of the associated
risk premiums for each factor in the model. However, the existence of many other risk
factors highlights the challenges faced when estimating models based on three, four, or five
factors derived from the Fama–French framework. These estimations may face difficulties
due to the omission of significant risk factors, rendering the risk premium estimates for
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the incorporated factors unreliable due to the bias generated by variable omission in the
econometric estimation.

Recognizing the significance of omitted factors in risk premium estimation, Giglio and
Xiu (2021) (referred to as GX) introduced a three-step method for estimating the risk premium
of an observable factor. This method remains valid even in the presence of omitted risk
factors in the model. It also accounts for possible measurement errors in the observable
factors and identifies factors that may be spurious or “useless” in influencing the estimation.

In our study, we analyzed the performance of the Fama–French five-factor pricing
model in pricing risk in the Brazilian financial market. The Brazilian financial market
exhibits distinctive characteristics when compared to other developing economies. One
notable aspect is its technological advancement, stemming from periods of hyperinflation
witnessed in the 1980s and 1990s. This tumultuous economic backdrop spurred the de-
velopment of a sophisticated banking and financial infrastructure. Innovative financial
products, including indexed accounts and pioneering instruments like future contracts
tied to one-day interbank interest rate fluctuations, emerged as a response to daily price
variations. Another significant feature is the market’s size and banking concentration.
As of 2021, the five largest banks command over 75% of the market share, exemplifying
considerable dominance within the sector.

A unique aspect is the consolidation of operations within the Brazilian financial market.
Since the early 2000s, various regional stock exchanges—such as São Paulo (BOVESPA), Rio
de Janeiro (BVRJ), Minas-Espírito Santo-Brasília (BOVMESB), among others—were integrated.
This led to the concentration of share trading in Brazil, culminating in the merger of BM&F
(Bolsa de Commodities and Futures) and Bovespa in 2008, creating BM&FBovespa. This
merger unified stock, derivatives, and futures operations under one exchange. Subsequently,
the 2017 merger between BM&FBovespa and CETIP, responsible for electronic custody
systems and financial settlement in public and private securities markets, further centralized
operations. As a result, trading shares, derivatives, futures, and custody and financial
settlement systems became centralized under a single market operator. B3 (Bolsa Brasil
Balcão), the current name of BM&Fbovespa, stands as Latin America’s largest stock exchange,
both in total market capitalization and the number of listed companies.

An integral aspect of the Brazilian financial market is its susceptibility to both political
dynamics and the broader global financial landscape. For instance, notable outliers emerged
in March 2016 following the exposure of recordings implicating President Luiz Inácio Lula
da Silva in the Lava-Jato operation. Similarly, the market experienced significant upheaval
in May 2017 when revelations from the JBS partners’ plea bargain involving President
Michel Temer rattled investor confidence. Moreover, periods of systemic crises, such as
the substantial fluctuations in returns witnessed between September and November 2008,
were directly linked to the global financial crisis. Similarly, the onset of the COVID-19
pandemic in March 2023 marked another phase of market turbulence, underlining the
interconnectedness between global events and the Brazilian financial landscape.

The Brazilian market also stands out for its sophisticated portfolio and risk manage-
ment practices, boasting a substantial number of portfolio managers. For instance, as of
November 2023, there are 36,255 active registered funds, encompassing 1418 fixed-income
funds and 3418 actively managed multi-market funds. Many of these multimarket funds
operate on quantitative strategies rooted in factor investing, using multifactor pricing
models to create trading strategies, with a central role of models based on risk factors built
from characteristics using the Fama–French framework.

There is extensive literature discussing the application of the Fama–French pricing
structure to the Brazilian market. The performance of models based on the Fama–French
risk pricing structure in the Brazilian market is analyzed in Araújo et al. (2021); Carvalhal
(2017); Malaga and Securato (2004); Rayes et al. (2012); Securato and Rogers (2009);
Varga and Brito (2016); and Alles Rodrigues and Casalin (2022); Caldeira et al. (2013);
Faria Maciel et al. (2021); Rostagno et al. (2006); Silva Moreira and Torres Penedo (2018)
directly discuss the use of these models in creating investment strategies.
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We study two ways of using the five-factor model to price stocks with Brazilian data.
The Fama–French factors are widely used in risk pricing in the Brazilian market, even in
the presence of models with alternative risk factors, as discussed in Varga and Brito (2016),
but as we discussed, the risk premium estimates derived from this specification may be
biased by the omission of relevant factors in the model.

First, we focused our study on testing possible factor omission, and thus the existence
of bias in the risk premium estimation. For this, we propose a test for factor omission
exploring the panel data structure of asset returns. We apply two estimators for panel
data to estimate the risk premium of the factors: the Mean Group (MG), proposed by
Pesaran and Smith (1995), and the common correlated effects estimator (CCE), introduced
by Pesaran (2006). The MG estimator is defined as an average of OLS estimators, while the
CCE estimator is an extension of the MG estimator that assumes an unobserved common
factor structure for the errors. Thus, we can interpret the MG estimator as an estimator that
is not robust to the presence of omitted risk factors using a panel data structure, while the
CCE estimator would be robust to this problem.

If there are factors omitted in the Fama–French five-factor model, the CCE estimator
for the parameters of observed factor must be robust for the omission of relevant factors,
and therefore, their coefficients would be different from the estimated coefficients for the
MG estimator, and we can use the parameter difference between the two estimations to
implement a test for factor omission exploring the panel data structure of asset returns.

The second way of studying the relevance of the five factors was to test whether they
are sufficient to correctly price the assets, that is, whether these factors can estimate an
approximately correct price for the set of assets in question. For this, we estimate the risk
premium using the Giglio and Xiu (2021) method, denoted by GX, which theoretically
also corrects the estimation for the possible omission of variables and the presence of
measurement error using an alternative methodology incorporating the specific aspects of
the risk pricing structure, and we use this estimate to predict returns. Finally, we compare
which model best fits the observed returns, the MG, CCE, or the GX estimators.

We noticed significant differences in the estimated coefficients for the model when
using the MG and CCE estimators, which indicated the potential omission of factors in the
model. We also assessed the number of factors that the estimator introduced by Giglio and
Xiu (2021) using four penalty functions. Although all penalty functions approached zero as
the sample size and time period increased, we were unable to identify a suitable penalty
function that ensured accurate factor estimation. Nevertheless, the Giglio and Xiu (2021)
estimator performed well with three of the penalty functions, particularly in simulations
involving one or three factors.

In comparing the residuals generated by the Fama–French model estimated by the
MG, CCE, and GX estimators, the CCE estimator, it was expected that the estimator that
the GX three-step estimator would yield superior results. However, it did not perform as
well as we had expected in terms of fitting the expected returns. We believe that this might
be due to the presence of weak latent factors in the cross-section of the returns, violating
one of the main assumptions of the Giglio and Xiu (2021) method.

This study contributes to the field of asset pricing by introducing a novel approach
for factor omission testing using panel data, comparing the mean group and common
correlated effect estimators to identify the potential missing risk factors in the model.
Additionally, the study assesses the sufficiency of the Five-Factor Model in accurately
pricing assets, providing insights into its ability to estimate expected returns using the
MG, CCE, and GX methods. These contributions are particularly relevant in the Brazilian
market, where accurate risk premium estimation is vital for investment decisions, and the
study’s methodologies offer valuable insights for researchers and practitioners in finance.

This work has the following structure: a brief literature review is presented in Section 2;
the methodology is reviewed in Section 3. In Section 4, we will present the data used.
Section 5 presents the main results obtained. Final conclusions are presented in Section 6.
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2. Literature Review

The field of asset pricing has witnessed significant advancements in recent years,
driven by the emergence of various factors and factor models aimed at understanding
how specific characteristics influence asset prices. The foundational work in this domain
can be traced back to the portfolio selection problem initially introduced by Markowitz
(1952). This work laid the groundwork for optimal portfolio selection, emphasizing the
mean variance principle and the creation of efficient mean-variance combinations. Building
upon this, Sharpe (1964) proposed a market equilibrium theory of asset prices under
risk, revealing a linear relationship between expected returns and the standard deviation
of returns for efficient asset combinations. Additionally, Sharpe (1964) highlighted the
consistent relationship between expected returns and systematic risk, measured by market
beta, which quantifies a stock’s volatility relative to the market.

Similar to Sharpe’s work, Lintner (1965) and Black (1972) also studied the relationship
between average returns and risk. Like the Sharpe model, the Lintner (1965) and Black
(1972) models concluded that expected returns are positive linear functions of market betas.
They also found that market betas absorb the effect of leverage on prices and are sufficient
to describe the cross-section of expected returns.

Similarly, Lintner (1965) and Black (1972) explored the connection between average
returns and risk, confirming that expected returns exhibit a positive linear relationship with
market beta. They also noted that market beta encapsulates the effects of leverage on asset
prices and effectively describes the cross-section of expected returns. Meanwhile, Fama
and Macbeth (1973) investigated the relationship between dividend yields and expected
stock returns, discovering that dividend yields explain a substantial portion of variance in
long-term returns but less in monthly or quarterly returns. Fama and French (1988) delved
into the relationships between expected returns, market beta, size, leverage, book-to-market
equity (BE/ME), and earnings/price (E/P), concluding that leverage is well captured by
book-to-market equity, and the combination of size and book-to-market equity accounts for
the relationship between E/P and expected returns.

Fama and French (1992) expanded on their previous research using the time series
regression approach to construct two risk factors related to size and BE/ME for stocks,
and two risk factors related to the term structure for bonds. The factors related to size and
BE/ME are known as SMB and HML, respectively. To build these factors, they sorted the
stocks by size (big and small) and BE/ME (low, medium, and high). This classification
by BE/ME is based on dividing the stock population into three groups, with the lower
30% classified as low, the middle 40% as medium, and the upper 30% as high. From
this classification, six portfolios are created based on the intersections between the size
and BE/ME classifications: Small/Low (S/L), small/medium (S/M), small/high (S/H),
big/low (B/L), big/medium (B/M), and big/high (B/H). These six portfolios provide
returns on the large- (B) and small- size (S) portfolios.

RB =
1
3
(RB/l + RB/m + RB/h)

RS =
1
3
(RS/l + RS/m + RS/h)

From these two portfolio returns shown above, with RB and RS representing the
returns of big stocks and the returns of small stocks, respectively, the returns RSMB of zero
SMB net investment factors (small minus big, i.e., long position in low capitalization stocks
and short position in high capitalization stocks), are constructed:

RSMB = RS − RB
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Similarly, the returns of the high (H) and low (L) portfolios are:

RH =
1
2
(RS/h + RB/h)

RL =
1
2
(RS/l + RB/l)

From these two portfolios, the zero HML net investment factor is created (high minus
low, that is, a long position in high BE/ME and short position in low BE/ME):

RHML = RH − RL.

They also created two portfolios to measure the common risk related to unexpected
changes in interest rates for bonds, called TERM and DEF. These five factors were found to
effectively explain the common variation in bond and stock returns.

In a subsequent study, Fama and French (1993) sought to identify the economic
foundations for their empirical findings and rationalize asset pricing. They hypothesized
that common risk factors associated with size and BE/ME influenced returns, which should
be explicable by the earning behavior. However, they did not find evidence supporting the
idea that returns respond to the BE/ME factor in earnings, leaving questions open regarding
the economic variables influencing earnings and returns related to size and BE/ME.

Despite the popularity of the three-factor model, studies such as those by Titman et al.
(2004) and Novy-Marx (2013) revealed its inadequacy in explaining the variations in average
returns related to factors like profitability and investment. To address these limitations,
Fama and French (1995) introduced the five-factor asset pricing model. This extended
model incorporates profitability and investment factors, represented by the Robust Minus
Weak (RMW) and conservative minus aggressive (CMA) portfolios, which capture the
differences in returns between companies with strong and weak profitability and between
conservative and aggressive firms, respectively. This model has demonstrated a superior
performance in explaining the average returns compared to the previous three-factor model.
However, the potential for omitted variable bias and measurement errors poses challenges,
leading to inconsistent estimates and less accurate asset pricing predictions.

To confront these issues, researchers have explored new factors for asset pricing, result-
ing in a proliferation of potential factors, often referred to as the “Factor Zoo”. Cochrane
(2011) was among the first to draw attention to this phenomenon, and subsequent studies,
including those by Harvey et al. (2015), McLean and Pontiff (2016), and Hou et al. (2017),
have further explored the impact of these factors on pricing models.

As examples of new risk factors, Roy and Shijin (2018) added a human capital factor
to the Fama–French estimation. Dirkx and Peter (2020) analyzed a specification based on
six risk factors for the German market, and Roy (2023) checked whether a six-factor model
works to price global returns. A new risk factor based on equity duration was introduced
by Mohrschladt and Nolte (2018), and risk factors linked to tail risk are discussed, for
example, in Kelly and Jiang (2014) and Fan et al. (2022). Cho and Jang (2023) tested an
alternative specification of risk factors based on durable consumption. A new area of
research in finance is linked to the construction of climate risks, e.g., Campiglio et al. (2023),
Venturini (2022) and Barasal Morales et al. (2023).

Other examples of six-factor models include those of Roy (2021) and Zhou et al. (2022),
and the applications of arbitrage-based pricing models with seven or more risk factors are
discussed in Bhatti and Mirza (2014); Maharani and Narsa (2023); Malhotra et al. (2023)
and Fang and Almeida (2019), for example. All of these references indicate the need to
use a greater number of factors than the usual five factors of the Fama–French structure,
indicating that models with a reduced number of factors may be incorrectly specified,
requiring the type of corrections for omitted factors discussed in our article.

These works underscore the challenge of omitting relevant factors in risk premium
estimation. In response, Giglio and Xiu (2021) proposed a three-step methodology that
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incorporates rotation invariance and principal component analysis (PCA) to provide con-
sistent risk premium estimates for observed factors, even in the presence of omitted factors
and model mis-specification. This approach addresses critical issues in risk premium
estimation and offers a path towards more robust asset pricing models.

A general discussion on risk pricing models, and particularly regarding econometric
methods for estimating these models, can be found, e.g., in Campbell et al. (1997), Cochrane
(2005) and Fan and Yao (2015). Our analysis focuses on frequentist estimation methods, but
Bayesian methods can also be used in this context, such as Harvey and Zhou (1990); Hwang
and Rubesam (2020); de Andrade Alves and Laurini (2023) and Bryzgalova et al. (2023).

3. Risk Premium Estimation Methodology

In this work, we will assume that the heterogeneity in the cross-section of assets can
be summarized through a panel structure, with the general specification:

Rit = β′idt + eit, i = 1, . . . , N (1)

and, specifically, we use the structure:

βi =



αi
βiM

βiSMB
βiHML
βiIML
βiWML

, dt =



1
RMt − R f t

SMBt
HMLt
IMLt

WMLt

 (2)

• RMt is the market return in period t;
• R f t is the risk free in period t;
• SMBt is the factor related to size in period t;
• HMLt is the factor related to BE/ME in period t;
• IMLt is the factor related to liquidity in period t;
• WMLt is the factor related to past returns (momentum) in period t.

This model is based on the Fama–French five-factor model (Fama and French (1995)).
What differs from the Fama–French model are the liquidity (IML) and past returns (WML)
factors that replace the profitability (RMW) and investment (CMA) factors. This substi-
tution of factors was necessary because our objective was to carry out the study with the
factors available through the NEFIN—Brazilian Center for Research in Financial Economics
of the University of São Paulo, and the main source of risk factors used in the Brazilian
financial market.

3.1. Testing the Sufficiency of Factors

Our objective is identify the presence of omitted factors in the model (1), using a simple
diagnosis comparing the estimation of a non-robust panel data model to the presence of
omitted factors (mean group estimator—MG) with a robust estimator for panel data in
the presence of latent factors, given by the common correlated effects (CCE) estimator.
Note that the use of a panel in risk premium estimation is a common procedure in factor
risk premium estimation, and can be thought of as an alternative estimation method in
relation to the Fama–Macbeth procedure (Cochrane (2011)), and the use of panel models
for estimating multifactor models is discussed in Petersen (2009).

The MG estimator is a simple average of the OLS estimators of each group, while
the CCE estimator is an extension of the MG estimator assuming unobserved common
correlated factors in the errors. So, the idea behind the CCE estimator is the same as the
one we want to test. For this reason, we chose to compare the Mean Group with the CCE.
In the next subsections, we will detail these estimators in more detail.
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3.1.1. Mean Group Estimator

To obtain the Mean Group estimator for the heterogeneous panel data model (1), we
consider the following matrices:

D =
[

d1 d2 . . . dT
]′ (3)

Ri. =
[

Ri1 Ri2 . . . RiT
]′ (4)

with Ri representing the returns of assets i and di and the risk factor i.
The first step was to calculate the OLS estimators of each βi, according to the

equation below:

β̂i = (D′D)−1D′Ri. (5)

Finally, we obtain the MG estimator according to the equation below:

β̂MG =
1
N

N

∑
i=1

β̂i (6)

3.1.2. Common Correlated Effects Estimator

Introduced by Pesaran (2006), the common correlated effects assume that the error in
the equation of interest in a panel data structure has a factor structure, and that explanatory
variables are linear functions of the latent factors appearing in the estimated equation. The
control for the latent factors by the CCE estimator is made by treating the cross-sectional
averages of the dependent and explanatory variables as fixed effects, and in this way,
asymptotically eliminating the unobserved heterogeneity caused by the omission of the
factors in the estimated equation. If we consider a linear risk pricing structure, and the
omitted risk factors can be written as portfolios of returns, as in the Fama–French frame-
work, we are meeting the assumptions of this estimator, which allows us to consider the use
of this estimator as a control for the omission of risk factors in the risk premium estimation.

To calculate the common correlated effects estimator, we consider the heterogeneous
panel data model (1) and assume that the error eit has the following common factor structure

eit =
m

∑
j=1

γij f jt + εit = γ′ift + εit (7)

where ft = ( f1t, . . . , fmt)
′ is a vector of unobserved common factors and γi = (γi1, . . . , γim)

′

is the factor loading vector. We assume that the number of factors, m, is fixed, and m << N,
where N is the number of assets.

So, substituting (7) into (1), our model has the following form:

Rit = β′idt + γ′ift + εit (8)

The common correlated effects (CCE) estimator consists of approximating the linear
combination of unobserved factors by means of the cross-section of the dependent and
explanatory variables, and then calculating the regression for the augmented standard
panel with the averages of the cross-section.

To calculate the averages, we consider a non-stochastic vector of weights
wt = (w1t, w2t, . . . , wNt)

′, for t ∈ T ⊂ Z, where T is our time horizon. The vector wt
was chosen to satisfy the two hypotheses below:

|wt| =
(
w′twt

) 1
2 = O

(
N−

1
2

)
, (9)

wjt

|wt|
= O

(
N−

1
2

)
uniformly in j ∈ N. (10)
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Thus, the averages were calculated as follows

Rwt = β
′
wdt + γw ft + εwt (11)

where

Rwt =
N

∑
i=1

wiRit, βw =
N

∑
i=1

wiβi, (12)

γw =
N

∑
i=1

wiγi, εwt =
N

∑
i=1

wiεit (13)

And, from the model’s regression (11), we calculated ft and β̂i
CCE

.
The robustness properties of CCE estimators and its extensions when T → ∞ are fur-

ther analyzed by Chen and Yan (2019); Chudik and Pesaran (2015); De Vos and Westerlund
(2019); Kapetanios et al. (2021); Karabiyik et al. (2019); Westerlund (2018); Westerlund and
Urbain (2013, 2015). In our work, we will compare the use of the CCE estimator relative to
the estimator based on the principal components proposed by Giglio and Xiu (2021). In
this aspect, a discussion of the properties of estimators based on cross-sectional averages
versus estimators based on principal components can be found in Westerlund and Urbain
(2015), which discusses the bias and efficiency properties of these two formulations in
diverse settings.

3.1.3. Wald Tests

The idea of comparing the MG and CCE estimators is to identify the possible presence
of omitted factors in the estimation, since the CCE estimator assumes a structure of unob-
served common factors for the errors. By estimating the MG and the CCE, we obtained their
coefficients and the asymptotic covariance matrices of the parameters for the model (1).
We chose to perform the Wald test, since it consists of evaluating the restrictions on the
statistical parameters based on the weighted distance between the unconstrained estimate
and its hypothetical value under the null hypothesis. The general form of the Wald test is

Wald = (βMG − βCCE)′
[
Var(βM)

]−1
(βMG − βCCE)

The test distribution under the null hypothesis is a chi-square with the number of
degrees of freedom given by the number of tested constraints. Note that we can perform
this test in three ways, depending on the parameter covariance matrix Var(βM) used in
the test. We can test whether the parameters of the estimations using the MG and CCE
estimators are equal under the null using the variance matrix of the MG model estimation
(Var(βM) = Var(βMG)) or the covariance matrix of the CCE estimator in the Wald test
(Var(βM) = Var(βCCE)). A third way, which is equivalent to a Hausman test (Hausman
1978), is to test the equality of parameters using the difference between the variance matrices
estimated for each model as the test variance matrix, considering the uncertainty associated
with estimating the parameters in the two models:

Hausman = (βMG − βCCE)′
[
Var(βMG)−Var(βCCE)

]−1
(βMG − βCCE)

Finally, a fourth way to test parameter equality is to perform a test of the equality of
variances between the two estimations, in an analysis of a variance procedure.

3.2. Giglio and Xiu (2021) Method

We describe the fundamental elements of the three-step estimator proposed by Giglio
and Xiu (2021) in this section. The general idea is to use a principal component estimation
to recover the effects of the systematic factors omitted from the model, and thus carry out a
consistent estimation of the risk premium associated with the factors included in the model.
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To perform the first step, a consistent estimator of the number of factors is needed, and the
number of latent factors must be selected using some statistical criteria.

The estimator used by Giglio and Xiu (2021) share the same components of the factor
estimators proposed by Bai and Ng (2002) and Bai (2003). Bai (2003) demonstrate that the
penalty for overfitting should be a function of both N, the cross-section dimension, and T,
the time dimension, to consistently estimate the number of factors. So, the usual AIC and
BIC do not work well when both dimensions are large. Considering the model

R
(T×N)

= v
(T×p)

β′

(p×N)

+ e
(T×N)

where R = (R1, . . . , RN), Ri = (Ri1, . . . , RiT) for i = 1, . . . , N, v = (v1, . . . , vT),
e = (e1, . . . , eN), ei = (ei1, . . . , eiT) for i = 1, . . . , N, β = (β1, . . . , βN) and four hypothe-
ses are assumed. The first hypothesis is related to the fourth moment of the factors, which
converge to a positive definite matrix. The second hypothesis is about the norm of the
vectors that constitute hypotheses on the factor loading matrix. The third hypothesis refers
to cross-sectional dependency, temporal dependency, and heteroscedasticity, and the fourth
and last hypothesis refers to the weak dependence between the factors and idiosyncratic
errors. See Bai and Ng (2002) for the details on these assumptions. Bai and Ng (2002)
also assumes that the p factors are estimated by principal components, and show that
the estimator

p̂ = arg min
0≤p≤pmax

(NT)−1
N

∑
i=1

T

∑
t=1

(
Rit − β̄p ′v̂pt + pφ(N, T)

)
β̄p is constructed as

√
N times the eigenvectors corresponding to the p largest eigenvalues

of the matrix N × N R′R, v̄p = R ¯βp/N and v̂p = v̄p(v̄p ′ ¯vp/T)1/2 has the following property:

lim
N,T→∞

Prob[ p̂ = p] = 1

if (i) φ(N, T)→ 0 and (ii)
(

min
{√

N,
√

T
})2
· φ(N, T)→ ∞ when N, T → ∞.

Based on studies by Bai and Ng (2002), Giglio and Xiu (2021) assumed the following
assumptions both for the construction of the three-step estimator and for obtaining a
consistent estimator for p:

1. ft is a vector of asset pricing factors, where Rt denotes a N × 1 vector of the excess
returns of test assets. The pricing model satisfies:

Rt = βγ + βvt + ut, (14)

ft = f + vt, (15)

E(vt) = E(ut) = 0, and (16)

Cov(ut, vt) = 0, (17)

where vt is a p× 1 vector of innovations of ft, ut is a N × 1 vector of idiosyncratic
components, β is a N × 1 matrix of factor loadings, and p× 1 vector γ denotes the
risk premium.

2. There is an observable d× 1 vector gt of factors, which satisfies:

gt = δ + ηvt + zt, (18)

E(zt) = 0, e (19)

Cov(zt, vt) = 0, (20)

where the g load in v, η is a matrix d × p, δ is a d × 1 constant, and zt is a d × 1
measurement error vector.

3. There is a positive constant K, such that for all N and T,
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(i) T−1
T

∑
t=1

T

∑
t′=1

∣∣∣∣∣E
(

N−1
N

∑
i=1

uituit′

)∣∣∣∣∣ ≤ K, max
1≤t≤T

E

(
N−1

N

∑
i=1

u2
it

)
≤ K.

(ii) T−2
T

∑
s=1

T

∑
t=1

E

(
N

∑
j=1

(
ujsujt − E(ujsujt)

))2

≤ KN.

4. The factor innovations V obeys:

‖V̄‖MAX = Op(T−1/2),

‖T−1VV′ − Σv‖MAX = Op(T−1/2),

where Σv is a positive definite matrix p× p and 0 < K1 < λmin(Σv) ≤ λmax(Σv) <
K2 < ∞.

5. The factor loading matrix β satisfies∥∥∥N−1β′β− Σβ
∥∥∥ = op(1), when N → ∞,

Σβ is a positive definite matrix p× p and 0 < K1 < λmin(Σβ) ≤ λmax(Σβ) < K2 < ∞.
6. The factor loading matrix β and the idiosyncratic errors ut satisfy the following

moment conditions, for all 1 ≤ j ≤ p and for all N and T:

(i) E
T

∑
t=1

(
N

∑
i=1

βijuit

)2

≤ KNT.

(ii) E

(
T

∑
t=1

N

∑
i=1

βijuit

)2

≤ KNT.

The estimator proposed by Giglio and Xiu (2021) is

p̂ = arg min
1≤j≤pmax

(
N−1T−1λj(R̄′R̄) + j× φ(N, T)

)
− 1 (21)

where pmax is some upper bound of p, φ(N, T) is a penalty function, and λj(R̄′R̄) is the jth
largest eigenvalue of matrix R̄′R̄. They show that, if φ(N, T)→ 0 when N, T → ∞, then we

have Prob( p̂ ≥ p)→ 1. And if, in addition, φ(N, T)/(N−1/2 + T−1/2)→ ∞, then p̂ P−→ p.
This estimator is used to construct the estimator of factors and factor loadings in

the first stage by conducting the PCA of the matrix N−1T−1R̄′R̄, defining the following
estimators for the factors and for the factor loadings:

V̂ = T1/2(ξ1 : ξ2 : · · · : ξ p̂)
′, and (22)

β̂ = T−1R̄V̂′ (23)

where ξ1, . . . , ξ p̂ are the eigenvectors corresponding to the p̂ largest eigenvalues of the PCA
of the matrix N−1T−1R̄′R̄, and (ξ1 : ξ2 : · · · : ξ p̂) is the horizontal concatenation of matrices,
column by column, where the columns are equivalent to vectors ξi, for i ∈ {1, . . . , p̂}.

The second step is to perform a cross-sectional ordinary least squares (OLS) regression
of the mean returns against the estimated factor loadings β̂ to obtain the risk premium for
the estimated latent factors

γ̂ =
(

β̂′ β̂
)−1

β̂′R̄. (24)
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The last step consists of performing a regression of gt on the factors extracted by the
PCA, V̂, to obtain the η̂ estimator and the corrected value of the observed factor:

η̂ = ḠV̂′
(
V̂V̂′

)−1, (25)

Ĝ = η̂V̂ (26)

where Ḡ is the mean of the matrix G = (g1, g2, . . . , gT).
Finally, the gt risk premium estimator is obtained by

γ̂g = η̂γ̂ (27)

= ḠV̂′
(
V̂V̂′

)−1(
β̂′ β̂
)−1

β̂′R̄ (28)

Our model (1) only has observed factors. We applied the GX method to calculate the
risk premium for these five factors, controlling for the presence of possible omitted factors
and measurement errors.

To apply this method, we define Rt = (R1t, . . . , RNt)
′, and we assume

Equations (14)–(16). We define the vector gt = (RMt − R f t, SMBt, HMLt, IMLt, WMLt)′

(5× 1). Note that dt = (1, g′t)
′. Our objective is to estimate the risk premium of gt corrected

for the latent omitted factors and use this risk premium to obtain the model parameters (1).
For that, we also assume Equation (17). R, V, G, U, and Z denote the following matrices

R
(N×T)

=
[

R1 R2 . . . RT
]
, (29)

V
(p×T)

=
[

v1 v2 . . . vT
]
, (30)

G
(5×T)

=


RM1 − R f 1 RM2 − R f 2 . . . RMT − R f T

SMB1 SMB2 . . . SMMBT
HML1 HML2 . . . HMLT
IML1 IML2 . . . IMLT

WML1 WML2 . . . WMLT

, (31)

U
(N×T)

=
[

e1 e2 . . . eT
]
, (32)

Z
(5×T)

=
[

z1 z2 . . . zT
]
. (33)

And, with these matrices, we rewrite the model used by GX as follows

R = βγ + βV + U (34)

G = ξ + ηV + Z (35)

We the matrices of the means of the respective variables denote by (R, V, G, U, Z).
And, therefore, we have that the above equations become

R = βV + U, (36)

G = ηV + Z. (37)

According to Bai and Ng (2002), the number of factors estimated by the asymptotic
principal component method is min{N, T}. As we use principal components in future
steps, we adopt pmax = min{N, T}. We analyze two estimators p̂j, j = 1, 2:
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p̂1 = arg min
1≤j≤pmax

(
N−1T−1λj(R̄′R̄) + j× φ(N, T)

)
− 1 (38)

p̂2 = arg min
1≤j≤pmax

(
N−1T−1λj(R̄′R̄) + j× φ(N, T)

)
(39)

The p̂1 estimator is the same estimator proposed by GX, and they show that the penalty
function can be sufficiently small when it is dominated by the large eigenvalues, so they
add −1 to cover this case. The p̂2 is based on the estimator proposed by Bai (2003). For
each p̂i, i = 1, 2, we test four different functions φk(N, T), k = 1, 2, 3, 4:

φ1 =

(
log
((

N−1/4 + T−1/4
)−1

))
×
(

N−1/4 + T−1/4
)

(40)

φ2 =

(
log
(

N × T
N + T

))
×
(

N + T
N × T

)
(41)

φ3 =
(

log
(

min{N, T}2
))
×
(

N + T
N × T

)
(42)

φ4 =
log
(

min{N, T}2
)

min{N, T}2 (43)

and we choose the estimator that obtained the best result. In all, we tested eight estimators
defined by the following equation:

p̂k
j =

{
arg min1≤l≤pmax

(
(NT)−1λl(R̄′R̄) + l × φk(N, T)

)
− 1 , if j = 1

arg min1≤l≤pmax

(
(NT)−1λj(R̄′R̄) + l × φk(N, T)

)
, if j = 2

(44)

We have φk(N, T) → 0 when N, T → ∞, for k ∈ {1, 2, 3, 4}. However, only the
function φ1 has the following property: φ1(N, T)/(N−1/2 + T−1/2)→ ∞, when N, T → ∞.

Upon obtaining the estimate p̂ of the number of factors, we perform the first step of
the GX method, calculating the factor estimator V̂ and the factor loading estimator β̂ was
calculated as Equations (22) and (23). In the second stage of the method, we calculate,
through an OLS on the average of the returns R̄, the estimator of the risk premium of the
latent factors γ̂ according to (24).

Finally, with the last step, we obtained the η̂ and Ĝ estimators of the factor loadings
of g in v and the corrected value of the factors observed after removing the errors of
measurement, respectively. The η̂ estimator and the Ĝ estimator were obtained as (25)
and (26). Then, using the previous estimators to estimate the risk premium of gt, which are
the five observed factors, as (28).

3.3. Predictions

The last part of our work was the comparison of the prediction for the expected
returns obtained using the GX method with the predictions obtained by the MG and
CCE estimators.

We use the risk premium vector γ̂g to recover the factor loadings of gt, thus obtaining
an estimator β̂G. Then, we apply this estimator to the model (1) to make predictions of the
returns of N assets compared to the predictions constructed using the panel structure of
returns using the MG and CCE estimators.

4. Database

We use risk factors and portfolio return data constructed by NEFIN Núcleo de Estudos
em Finanças, Finance Studies Center (acessed on 20 December 2020) from University of São
Paulo (USP) for the period from January 2001 to December 2020 using a daily frequency.
The sample contains 4950 observations. It would be possible to work with monthly or
quarterly returns, and in some aspects, the use of monthly or quarterly data facilitates the
estimation of factor models. For example, the impact of measurement errors on factors

http://nefin.com.br/
http://nefin.com.br/
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would be reduced by greater aggregation. If we consider the variance of the measurement
error constant, the signal-to-noise ratio would increase with temporal aggregation, reducing
the impact of the measurement errors. However, this could impact the estimators used in
the article, since both the panel-based MG and CCE estimators and the estimator proposed
in Giglio and Xiu (2021) depend on asymptotic properties in relation to the sample size,
and thus the greater temporal aggregation should affect these estimators, indicating the
use of the daily frequency returns.

Below, we present a description of the construction carried out by NEFIN of the factors
and the 12 asset portfolios (acessed on 20 December 2020) that we selected.

The one-year risk-free factor (r f ) was calculated from the 360-day DI-Swap instrument,
deflated by expected inflation measured by the IPCA index (data available on the website
of the Central Bank of Brazil). The DI-Swap are futures contracts in the interbank deposit
rates, being the main reference for risk-free interest rates in Brazil. The market factor
(RM − r f ) is the difference between the daily value-weighted return of the market portfolio
and the daily risk-free rate, which is calculated from the 30-day DI-Swap. Figure 1 shows
the market factor returns.

Figure 1. Market factor returns.

The size factor SMB (small (− big) is the return of a portfolio long on stocks with
low market capitalization (smal) and short stocks with high market capitalization (big’).
Every January of the year t, the shares are classified as eligible according to the market
capitalization of December of the year t − 1, and are sorted and separated into three
quantiles (portfolios). Then, the returns of the first portfolio (small’) and the third portfolio
(big’) are calculated with equal weight. The SMB factor is the return of the small portfolio
minus the return of the big’ portfolio. Figure 2 shows the size factor returns.

The factor related to BE/ME is the HML factor (high minus low). This return is the
return of a portfolio long on stocks with a high book-to-market ratio (high) and short on a
low book-to-market ratio (low’). Every January of the year t, the shares are classified as
eligible and sorted into three quantiles (portfolios) according to the firm’s book-to-market
ratio in June of the year t− 1. Again, equal weighted returns of the high portfolio minus
the returns of the low portfolio are constructed. Figure 3 presents the book-to-market
factor returns.

http://nefin.com.br/risk_factors.html
http://nefin.com.br/portfolios.html
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Figure 2. Size factor returns.

Figure 3. Book−to−Market factor returns.

The WML factor (winners minus losers) is the return of a portfolio long on stocks with
high past returns (winners) and short on low past returns (losers). Every month, t shares
are classified as eligible and divided into three quantiles (portfolios) according to their
cumulative returns between the months t− 12 and t− 2, with equal weighted returns of
the first portfolio (losers) and the third portfolio (winners’). The WML factor is the return
of the winners’ portfolio minus the return of the losers’ portfolio. The returns of WML
factor are shown in Figure 4.
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Figure 4. Momentum factor returns.

The IML factor (illiquid minus liquid) is the return of a portfolio long on highly
illiquid stocks (Illiquid’) and short on low illiquid (Liquid’). Every t month, we sort eligible
stocks (in ascending order) into three quantiles (portfolios) according to the moving average
of illiquidity over the previous twelve months (stock illiquidity is calculated according to
Acharya and Pedersen (2002) method). As with the previous factors, we calculated with
equal weight the returns of the first portfolio (liquid) and the third portfolio (illiquid). The
factor IML is the return on the illiquid’ portfolio minus the return on the liquid’ portfolio.
Figure 5 presents the book-to-market factor returns.

Figure 5. Illiquidity factor returns.
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The dependent variables in our analysis are asset portfolios constructed using sorting
by asset characteristics. The use of portfolios as dependent variables is a way of summa-
rizing the heterogeneity observed in market assets, eliminating the idiosyncratic effects
observed in individual assets by the diversification mechanism. The 12 portfolios returns
analyzed are divided into four groups:

1. Three portfolios sorted by size;
2. Three portfolios classified by book-to-market;
3. Three portfolios sorted by momentum;
4. Three portfolios classified by illiquidity.

Portfolios sorted by size are obtained as follows: every January of year t, eligible
stocks are sorted in ascending order into terciles according to their market capitalization
in December of year t− 1. Then, the portfolios are held for the year t. Portfolios sorted
by book-to-market are similar: every January of the year t, eligible stocks are sorted in
ascending order in terciles, according to the ratio between the book value and market value
in June of the year t− 1. Then, the portfolios are held for the year t.

Momentum sorted portfolios are constructed in a similar way: every month t, eligible
stocks are sorted in ascending terciles according to their cumulative returns for month
t − 12 and month t − 2, and are held for the month t. Finally, the portfolios sorted by
illiquidity are sorted in ascending terciles according to the moving average of the illiquidity
of the twelve previous months, according to Acharya and Pedersen (2002), and again are
held for the year t.

In order to be considered eligible, the stock shares traded on BOVESPA had to meet
three criteria: The share is the company’s most traded share (that is, the one with the
highest volume traded during the last year); the shares were traded in more than 80% of
the days of the year t− 1, with a volume greater than BRL 500,000.00 per day, and if the
share was listed in the year t− 1, the period considered runs from the day of listing to the
last day of the year; the shares were initially listed before December of the year t− 1.

Figures 6–9 show the returns of analyzed portfolios, and Table 1 presents the descrip-
tive statistics for the risk factors and portfolios analyzed.

(a) SMB1 (b) SMB2 (c) SMB3

Figure 6. Daily returns of portfolios classified by size.

(a) BM1 (b) BM2 (c) BM3

Figure 7. Daily returns of portfolios classified by book-to-market.
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(a) MOM1 (b) MOM2 (c) MOM3

Figure 8. Daily returns of portfolio classified by momentum.

(a) ILLIQ1 (b) ILLIQ2 (c) ILLIQ3

Figure 9. Daily returns of portfolio classified by illiquidity.

Table 1. Descriptive statistics.

Mean SD Skewness Kurtosis Min Max

Rm-rf 0.0002 0.0160 −0.2439 11.6293 −0.1473 0.1411
SMB −0.0000 0.0097 −0.4258 8.5887 −0.1061 0.0484

HML 0.0002 0.0090 0.0165 6.2645 −0.0609 0.0655
WML 0.0006 0.0107 −0.2708 6.7720 −0.0851 0.0660

IML 0.0001 0.0099 −0.5250 11.8186 −0.1333 0.0643
Port_Size1 0.0007 0.0166 −0.8413 13.2969 −0.1813 0.1297
Port_Size2 0.0007 0.0162 −0.7469 14.7212 −0.1518 0.1284
Port_Size3 0.0007 0.0158 −0.1905 12.4805 −0.1518 0.1403
Port_BM1 0.0006 0.0151 −0.7756 15.9295 −0.1630 0.1220
Port_BM2 0.0007 0.0159 −0.6090 13.6556 −0.1631 0.1365
Port_BM3 0.0008 0.0171 −0.5011 9.8070 −0.1575 0.1208

Port_MOM1 0.0004 0.0175 −0.4444 9.0643 −0.1467 0.1151
Port_MOM2 0.0008 0.0157 −0.4945 12.0702 −0.1576 0.1254
Port_MOM3 0.0009 0.0158 −0.8577 19.4689 −0.1832 0.1337
Port_ILLIQ1 0.0006 0.0173 −0.1605 12.1724 −0.1628 0.1518
Port_ILLIQ2 0.0009 0.0163 −0.4942 12.2508 −0.1639 0.1420
Port_ILLIQ3 0.0006 0.0158 −0.7831 13.0073 −0.1635 0.1130

5. Results
5.1. Wald Tests for MG and CCE Estimators

The first step to perform the Wald tests was to calculate the coefficients of each of
the estimators for the model (1). In Table 2, we present the results obtained for the mean
group estimator. We observe that, for this estimator, the t-statistics indicate the statistical
significance of the market and size factors for the panel structure of returns. In addition,
the estimated R2 for the model was approximately 0.91133, pointing to a relevant fit to the
systematic variation on the observed returns.
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Table 2. MG estimator results.

Rm − r f SMB HML IML W ML

Parameter 0.9548 0.2987 0.0121 0.0653 −0.0511
Std. Dev. 0.0041 0.0644 0.0623 0.0641 0.0617

t-stat 236.5998 4.6361 0.1934 1.0192 −0.8270
R2 0.91133

Note: Results were obtained by calculating the MG estimator for a panel with nxT, where n = 12 and T = 4950,
which results in a total of 59,400 observations.

In Table 3, we present the results of the CCE estimator for the model (1), and in Table 4,
we present the results of the Wald test with the null hypothesis that the coefficients are
equal to the coefficients obtained by the mean group estimator. We can observe a significant
variation of the parameters of the CCE estimation compared to the MG estimation, indicating
the presence of omitted relevant factors in the estimation.

Table 3. CCE estimator results.

Rm − r f SMB HML IML W ML

Parameter 0.0918969 1.2449408 0.1621465 0.0074829 −0.1936320
Std. Dev. 0.1189371 0.8526953 0.1179169 0.3221000 0.1493925

t-stat 0.7727 1.4600 1.3751 0.0232 −1.2961
R2 0.97151

Note: The above results were obtained by calculating the CCE-MG estimator for a panel with nxT, where n = 12
and T = 4950, which results in a total of 59,400 observations.

Table 4. Wald tests for factor sufficiency.

Chisq Pr (>Chisq)

Test 434.53 0.00
Test 2 49,066.00 0.00
Test 3 601.36 0.00
Test 4 566.76 0.00

Note: This test consists of Wald tests for the equality of parameters for the MG and CCE panel estimators. Test 1
constructs the Wald test statistic using the estimated parameters and covariance parameter matrix from the MG
estimation, and assuming the null hypothesis in which the MG parameter is equal to the point parameter values
estimated by the CCE method. Test 2 inverts the construction of the Wald statistic, using the estimated parameters
and covariance parameter matrix from the CCE estimation, and assuming the null hypothesis that the CCE
parameter is equal to the point parameter values estimated by the MG method. Test 3 uses a Hausman form,
using the difference between the covariance matrices as a covariance matrix to form the MG and CCE estimators.
Test 4 tests the equality of variances between the MG and CCE estimations.

As explained in Section 3.1.3, we performed four Wald tests. In Test 1, we performed
a Wald test using the estimated parameters from the MG estimator and assuming a null
hypothesis, in which the parameters are equal to the estimated parameters obtained with
the CCE estimator and used in the Wald test, the estimated covariance parameter matrix is
estimated using the MG method. We can see that Test 1 rejects the null hypothesis. In Test 2,
we invert the models—we assume that, in the null hypothesis, the parameters estimated
using the CCE method are equal to the parameter estimated from the MG estimator, using
the estimated covariance matrix structure of the CCE estimator. We note in Table 4 that
Test 2 also rejects the null hypothesis. Test 3 uses the difference between the covariance
matrices from the MG and CCE estimators as the covariance matrix in the test, considering
the uncertainty associated with parameter estimation in both models and being equivalent
to a Hausman (1978) test, and again rejects the null hypothesis. Test 4 presents the test
comparing the equality of variances of the two estimations. It also again rejects the null
hypothesis. With this, we conclude that there are strong indications that the model has
omitted factors.
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5.2. Applying the GX Method for Brazilian Market Portfolios

The estimator proposed by Giglio and Xiu (2021) fundamentally depends on deter-
mining the number of principal components used in implementing the correction for the
risk factors omitted in the model, and therefore, we need an estimator for p̂2

1. To determine
this number of components, some metric of the optimal choice of the number of factors
must be used. To verify the impact of this choice, in the appendix of the work, we present a
simulation analysis comparing several choice functions for the number of latent factors, for
various combinations of factors, assets, and sample sizes.

The results of the simulation analysis presented in the Appendix helped us choose
the p̂2

1 estimator. After this choice, the first step was to calculate the PCA of the matrix
(NT)−1R̄′R̄. With the eigenvalues obtained by PCA, we calculate the p̂2

1 estimator. For our
portfolios p̂2

1 = 2, defined using the criteria discussed in the Appendix, that is, assuming
that two omitted latent factors influence our estimation. Figure 10 shows the 12 first
eigenvalues obtained by PCA

Figure 10. 12 first eigenvalues obtained by PCA.

With this choice of p̂2
1, we estimate β̂ and V̂. Both are used to obtain the γ̂ risk premium.

Table 5 reports the risk premium estimates uncorrected for the presence of omitted factors
using the Fama–MacBeth (Fama and Macbeth (1973)) approach and the risk premium
estimated using the GX correction for each systematic risk factor, and also the R2 between
the original and corrected factors. We can observe the relevant changes in the estimation
of the risk premium after the GX correction, including the changes in the sign of the risk
premium for HML and IML, and a lesser explained variance for the HML and WML factors
using the GX approach.

Table 5. Fama–MacBeth and Giglio–Xiu estimated risk premium.

FM γ̂ FM γ̂ SD GX γ̂ GX γ̂ SD R2GX

Intercept 0.00442 0.00121 0.00135 0.00092
Rm-rf −0.00387 0.00128 −0.00060 0.00092 0.930

SMB −0.00005 0.00014 −0.00014 0.00018 0.810
HML 0.00026 0.00013 −0.00013 0.00014 0.183
WML 0.00056 0.00015 0.00014 0.00015 0.283

IML 0.00006 0.00014 −0.00002 0.00021 0.769

Figure 11 shows the original and cleaned risk factors using the GX approach, and
Figure 12 shows the accumulated values of these factors. We can observe that the cleaned
factors present a much lower variation than the original factors, which explains the esti-
mated differences for the estimated risk premiums.
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(a) Rm-rf (b) SMB

(c) HML (d) WML

(e) IML

Figure 11. Original and cleaned risk factors.
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(a) Rm-rf (b) SMB

(c) HML (d) WML

(e) IML
Figure 12. Cummulated original and cleaned risk factors.

5.3. Comparison of the MG, CCE, and GX Estimators

To compare the performance of the three methods (MG, CCE, and GX) in explaining
the systematic variation observed in returns, we will compare the fit of these models to the
observed returns, using the residuals estimated for each portfolio, defined by:

êit = Rit − R̂it (45)

where Rit is the return on portfolio i for period t and R̂it is the estimated return on portfolio
i for period t by each method (MG, CCE, and GX).
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The residual series were used to calculate the following metrics:

• Mean:

ēi =
1
N

T

∑
t=1

êit (46)

• Standard deviation:

σi =

(
T

∑
t=1

(ê− ēit)
2

N

)1/2

(47)

• Mean squared error (MSE):

MSEi =
1
N

T

∑
t=1

ê2
it (48)

where, N = 12, that is, the number of portfolios and T = 4950, which is the number
of periods.

In Table 6, we present the results obtained for the portfolios. We note that, in general,
the MG and CCE residual estimators have a mean closer to zero compared to the GX
estimator. The best results in the mean squared error criterion are obtained by the CCE
method for all portfolios, and the residuals constructed by MG estimators also dominate
the GX approach in the MSE criterion, except for SIZE3, BM2, and ILLIQ2 portfolios.

These results indicate that, among the three methods used to explain the systematic
variation observed in the market returns, the CCE method presents the overall best perfor-
mance in the MSE metric, whilst simultaneously, there are weights bias and variance in
estimates, and the GX estimator appears to introduces additional noise in the estimation of
expected returns when correcting for the presence of factors omitted in the estimation. The
CCE estimator also performs better in relation to extreme values/outliers observed in the
data, since the residuals estimated by this method present the least extreme residuals in
terms of the maximum and minimum values.

Figures 13–16 show the time series of residuals constructed by each method for size,
book-to-market, moment and illiquidity portfolios.

Table 6. Residuals for NEFIN portfolios.

Portfolio Model Min Max Mean Std. Dev. MSE

SIZE1 GX −0.0416 0.0325 0.0000 0.0047 0.000023
SIZE1 MG −0.0327 0.0342 0.0000 0.0038 0.000015
SIZE1 CCE −0.0122 0.0135 0.0000 0.0019 0.000004

SIZE2 GX −0.0726 0.0429 0.0002 0.0065 0.000042
SIZE2 MG −0.0501 0.0388 0.0000 0.0062 0.000039
SIZE2 CCE −0.0212 0.0247 0.0000 0.0037 0.000014

SIZE3 GX −0.0225 0.0387 −0.0001 0.0036 0.000013
SIZE3 MG −0.0327 0.0342 0.0000 0.0038 0.000015
SIZE3 CCE −0.0122 0.0135 0.0000 0.0019 0.000004

BM1 GX −0.0778 0.0472 0.0002 0.0068 0.000047
BM1 MG −0.0346 0.0448 0.0000 0.0044 0.000019
BM1 CCE −0.0145 0.0116 0.0000 0.0019 0.000004

BM2 GX −0.0392 0.0381 0.0001 0.0051 0.000026
BM2 MG −0.0385 0.0294 0.0000 0.0053 0.000028
BM2 CCE −0.0232 0.0286 0.0000 0.0037 0.000014
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Table 6. Cont.

Portfolio Model Min Max Mean Std. Dev. MSE

BM3 GX −0.0410 0.0396 0.0002 0.0055 0.000030
BM3 MG −0.0346 0.0448 0.0000 0.0044 0.000019
BM3 CCE −0.0145 0.0116 0.0000 0.0019 0.000004

MOM1 GX −0.0597 0.0491 −0.0002 0.0073 0.000053
MOM1 MG −0.0332 0.0412 0.0000 0.0045 0.000021
MOM1 CCE −0.0123 0.0117 0.0000 0.0020 0.000004

MOM2 GX −0.0330 0.0427 0.0000 0.0053 0.000028
MOM2 MG −0.0400 0.0308 0.0001 0.0040 0.000016
MOM2 CCE −0.0186 0.0355 0.0000 0.0037 0.000014

MOM3 GX −0.0471 0.0287 0.0001 0.0053 0.000028
MOM3 MG −0.0332 0.0412 0.0000 0.0045 0.000021
MOM3 CCE −0.0123 0.0117 0.0000 0.0020 0.000004

ILLIQ1 GX −0.0305 0.0496 −0.0003 0.0051 0.000026
ILLIQ1 MG −0.0322 0.0261 0.0000 0.0042 0.000018
ILLIQ1 CCE −0.0168 0.0122 0.0000 0.0022 0.000005

ILLIQ2 GX −0.0457 0.0533 −0.0001 0.0064 0.000041
ILLIQ2 MG −0.0420 0.0609 0.0000 0.0064 0.000042
ILLIQ2 CCE −0.0248 0.0346 0.0000 0.0041 0.000017

ILLIQ3 GX −0.1681 0.1139 0.0007 0.0156 0.000244
ILLIQ3 MG −0.0322 0.0261 0.0000 0.0042 0.000018
ILLIQ3 CCE −0.0168 0.0122 0.0000 0.0022 0.000005

(a) SIZE1 (b) SIZE2 (c) SIZE3

Figure 13. Portfolio residuals for size portfolios.

(a) BM1 (b) BM2 (c) BM3

Figure 14. Portfolio residuals for book-to-market portfolios.
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(a) MOM1 (b) MOM2 (c) MOM3

Figure 15. Portfolio residuals for momentum portfolios.

(a) ILLIQ1 (b) ILLIQ2 (c) ILLIQ3

Figure 16. Portfolio residuals for illiquidity portfolios.

6. Conclusions

In this study, we investigate the applicability of the Fama–French five-factor model
in explaining expected returns within the Brazilian asset market. Our analysis takes into
account the potential consequences of omitting relevant factors in the model specification.
To address this concern, we employ two distinct analytical approaches. Firstly, we construct
a Wald test to assess the presence of omitted factors, examining both the temporal and
cross-sectional dimensions of the data. To achieve this, we utilize two panel data estimators.
Specifically, we compare the parameter estimates from the mean group (MG) estimator
(Pesaran and Smith 1995), which does not correct for omitted factors, with those from the
common correlated effects (CCE) estimator (Pesaran 2006), which accounts for omitted
factors/variables in panel data estimations. Our findings reject the null hypothesis of
parameter equality between the two estimations, strongly suggesting the existence of
omitted factors in our estimation of the Fama–French five-factor model within the Brazilian
stock market data.

With the identification of these omitted factors, we adopt the estimator introduced by
Giglio and Xiu (2021). This approach enables us to estimate the risk premium associated
with the observed factors while considering the potential presence of omitted factors and
measurement errors. Subsequently, we compare the risk premiums for the included factors
estimated using this correction with those derived from the uncorrected Fama–MacBeth
estimation. This comparison reveals substantial differences between the parameters es-
timated under these two specifications, further emphasizing the significance of omitted
factors in risk premium estimation.

Furthermore, we conduct a comparative analysis of three models: MG, CCE, and GX.
We assess their predictions for the expected returns of the portfolios under scrutiny by
calculating predicted returns and evaluating the residuals generated by each model. Our
results indicate that the CCE estimator offers the most accurate predictions for expected
returns, as it exhibits the lowest mean squared error. Additionally, this suggests that the
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correction proposed by Giglio and Xiu (2021) is less precise in estimating the expected
returns compared to the panel estimation based on common correlated effects.

The core premise of the Giglio and Xiu (2021) approach hinges on the belief that the
underlying data-generating process (DGP) for returns is influenced by latent but strong
factors, and the PCA can uncover all the pivotal pricing factors. They posit that these latent
factors can be discovered through principal component analysis (PCA). This issue carries
significant weight, especially in light of the extensive assortment of factors and test assets
found in financial literature, as it is quite plausible that within any cross-section of the test
assets, some factors may prove to be weak rather than strong. The prevalence of this weak
factor problem is evident in empirical data. Lettau and Pelger (2020) shows that employing
weak factors in addition to those identified by PCA yields significantly better out-of-sample
performance compared to models that solely rely on PCA-identified factors, and show that
PCA-based factors often overlook low volatility components with high Sharpe ratios, a
crucial aspect in asset pricing.

Onatski (2012) explores the utilization of principal component estimation in the context
of large-factor models featuring weak factors. He emphasizes a crucial point: when a factor
does not explain a substantial portion of the variance in the data, PCA cannot detect
it. Additionally, Pesaran and Smith (2019) delve into the ramifications of factor strength
and pricing errors when estimating risk premiums. They observe that the conventional
two-pass risk premium estimation method exhibits a slower convergence as factors lose
their strength. Even if all factors are robust, the presence of highly correlated factors can
introduce the challenge of the weak factor problem.

The superior performance of the CCE estimator compared to the GX estimator can
be attributed to the findings of Chudik et al. (2011), who demonstrated that, when weak
or semi-strong factors are present, the principal component estimates of factors may lack
consistency. In contrast, the CCE estimator exhibits good performance and minimal size
distortions. Notably, this issue does not impact the CCE estimator, as its objective does
not revolve around achieving consistent factor estimation. Instead, it addresses error
cross-section dependence more broadly by employing cross-section averages to mitigate
such effects. A similar interpretation of the relative performance of estimators based on
cross-sectional averages compared to principal component-based estimators can be found
in Westerlund and Urbain (2015) and Kapetanios et al. (2021), which is in violation of the
assumptions necessary for estimating principal components, whilst CCE estimators tend to
have better performance and the robustness properties of CCE analyzed by Chudik and
Pesaran (2015) are valid.

We also evaluated in the Appendix of the work in which the estimator of the number
of factors proposed by Giglio and Xiu (2021) uses four penalty functions. Although all
penalty functions approach zero as N and T increase, we were unable to identify a penalty
function that satisfies the second condition and accurately estimates the factors in our
simulations. Despite this limitation, we found that the Giglio and Xiu (2021) estimator
performed well with three of the penalty functions, particularly in simulations with one or
three factors.

It is important to emphasize that our analysis and the estimation methods used depend
on some important assumptions that may be violated. An essential assumption for the
application of the panel estimators (MG and CCE) used as well as the GX estimator is a
linear structure of dependence between the assets. We are assuming a linear pricing model
based on the arbitrage price structure theory and a stochastic discount factor with a linear
structure. Although it is a common assumption in this literature and especially in practical
applications, it is important to note that there may be evidence contrary to this assumption.

For example, a non-linear dependence structure may occur in periods of market stress,
where the occurrence of an extreme event in a series is non-linearly related to extremes
in other processes, which would be a violation of the linear dependence between assets.
Although the use of portfolios both in defining dependent variables and in constructing
portfolio risk factors minimizes this problem through diversification, it is important to note
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that we may still be subject to problems such as nonlinear tail dependencies and other
similar dependency structures. As we can observe the occurrence of extreme events and
outliers both in the original series and in the estimation residuals, we cannot guarantee
the existence of a multivariate normality structure, which would guarantee a linear de-
pendence structure between assets. In this aspect, the estimators used implicitly depend
on the assumption of linearity and/or joint multivariate normality. Similarly, other vio-
lations, for example, the non-sphericity in the covariance matrix (see, e.g., Baltagi et al.
2015), can also affect the finite sample properties of our estimators, since the existence
of conditional volatility in financial time series generates heavy-tailed distributions, and
harms the efficiency properties of estimators in finite samples.

Although there is a literature on estimating nonlinear panel models using the general
structure of common correlated effects and mean group estimators (e.g., Hacıoğlu Hoke and
Kapetanios 2021; Chen and Zhang 2023) and similar corrections to principal component-
based estimators (Chen et al. 2014), these estimators require the nonlinear functional
form linear is known, which is not the case in our problem. An alternative approach
would be, for example, to use a copula structure, where we could define the nonlinear
dependence function through some copula function with nonlinear tail dependence, which
would be a very interesting extension of our analysis. We recognize that our analysis
depends on a linear pricing structure, and that specification issues such as the rejection
of normality, nonlinear dependence, and problems with extreme values can affect our
results and conclusions. An analysis of the robustness properties of the Wald tests for factor
sufficiency and MG, CCE, and GX estimators analyzed in the present paper in relation to
these mis-specification problems in the estimation of risk premia is an interesting extension
of the analyses carried out in our work.

As a general conclusion, our analyses show that the use of econometric corrections
for omitted factors is important for estimating the risk premium in the Brazilian financial
market, and that the correction method used is also relevant.

All factor sufficiency tests performed conclusively indicate the presence of omitted
factors when using the five factors constructed by NEFIN to estimate risk premiums for
portfolios constructed using sortings. As these portfolios serve as proxies for general stock
portfolios in Brazil, we have relevant evidence about the need for additional risk factors
and the use of robust econometric methods in estimating risk premiums in the Brazilian
stock market.

Investment strategies and portfolio selection using factors depend directly on the ac-
curate estimation of the risk premium associated with each factor, as discussed in Alles
Rodrigues and Casalin (2022); Brière and Szafarz (2020); Caldeira et al. (2013), and thus the
econometric properties of risk premium estimators are relevant in practical market applica-
tions. Our results indicate that the CCE estimator, which corrects the presence of omitted
factors by exploring the averages through a panel structure, appears to estimate the risk
premium structure for the analyzed portfolios in a less biased and accurate way, obtaining
residuals with less variability and bias, and thus better performance in predicting the expected
returns, an essential property in portfolio selection and risk measurement procedures.
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Appendix A

Appendix A.1. Simulation Results for p̂

The GX estimator is performed in three steps. To complete the first step, an estimator
of the number of factors is required. However, it is necessary to choose a penalty function
φ(n, t) that has the necessary properties for convergence and gives good estimation results
in finite samples. To assess the impact of the choice of the penalty function on the GX
estimator, we perform a Monte Carlo analysis, and we compare four penalty functions
based on Bai and Ng (2002) to carry out the simulations. Our idea was to carry out an
analysis similar to the simulations of the homoscedastic model that they adopted.

For each estimator p̂k
j , where k ∈ {1, . . . , 4} and j ∈ {1, 2}, defined by

p̂k
j =

{
arg min1≤l≤pmax

(
(NT)−1λl(R̄′R̄) + l × φk(N, T)

)
− 1 , if j = 1

arg min1≤l≤pmax

(
(NT)−1λj(R̄′R̄) + l × φk(N, T)

)
, if j = 2

(A1)

We chose 19 pairs (N, T). For each pair (N, T), we will generate data X that depend on
a f number of factors, f ∈ {1, 3, 4}. That is, X will be generated from one factor, or from
three factors, or from five factors. Below, there is the equation representing the process:

X
(N×T)

= C
(N× f )

F
( f×T)

+ E
(T×N)

′ (A2)

All of our matrices were generated from a normal multivariate process: C is the
loading matrix (N × f ) generated by a random variable that follows a N (µ f , Σ f ) of size N,
F is the matrix of factors ( f × T) generated by a random variable that follows a N (µT , ΣT)
of size f and E is the error matrix (N × T) generated by a random variable that follows the
N (µN , ΣN) of size T, where

µr
(r×1)

=

 0
...
0

, for r ∈ { f , ti, ni} (A3)

Σr
(r×r)

=


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

, for r ∈ { f , ti, ni} (A4)

A total of 1000 simulations were performed, and in each simulation, the number of
factors of X was estimated using each of the estimators p̂k

j . Finally, an estimator p̄k
j,(ci , f ) was

obtained, which is the average of the estimators obtained in the 1000 simulations.
In Tables A1–A3, we show the results obtained by the estimators pk

j for each pair (N, T).
We also report the mean squared error of each estimator across the 1000 simulations.

Table A1. Average value and MSE of the estimators for the number of factors f = 1.

N T p̄1
1 p̄2

1 p̄3
1 p̄4

1 p̄1
2 p̄2

2 p̄3
2 p̄4

2

40 100 1.000 1.000 1.000 1.911 2.000 2.000 2.000 2.919
60 100 1.000 1.000 1.000 3.358 2.000 2.000 2.000 4.307
60 200 1.000 1.000 1.000 1.568 2.000 2.000 2.000 2.590
60 500 1.000 1.000 1.000 1.057 2.000 2.000 2.000 2.041
60 2000 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000

100 40 1.000 1.000 1.000 1.917 2.000 2.000 2.000 2.890
100 60 1.000 1.000 1.000 3.335 2.000 2.000 2.000 4.297
100 100 1.000 1.000 1.000 8.841 2.000 2.000 2.000 9.902
200 60 1.000 1.000 1.000 1.554 2.000 2.000 2.000 2.554
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Table A1. Cont.

N T p̄1
1 p̄2

1 p̄3
1 p̄4

1 p̄1
2 p̄2

2 p̄3
2 p̄4

2

200 100 1.000 1.000 1.000 2.956 2.000 2.000 2.000 4.049
500 60 1.000 1.000 1.000 1.059 2.000 2.000 2.000 2.059
500 100 1.000 1.000 1.000 1.253 2.000 2.000 2.000 2.268

1000 60 1.000 1.000 1.000 1.001 2.000 2.000 2.000 2.000
1000 100 1.000 1.000 1.000 1.037 2.000 2.000 2.000 2.036
2000 60 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000
2000 100 1.000 1.000 1.000 1.001 2.000 2.000 2.000 2.000
4000 60 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000
4000 100 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000

12 4950 0.991 0.998 0.946 1.000 1.989 1.996 1.959 2.000

MSE 0.0000043 0.0000002 0.0002 4.1345 0.9988 0.9996 0.9958 7.0754

Table A2. Average value and MSE of the estimators for the number of factors f = 3.

N T p̄1
1 p̄2

1 p̄3
1 p̄4

1 p̄1
2 p̄2

2 p̄3
2 p̄4

2

40 100 2.970 2.999 2.950 14.914 3.971 4.000 3.956 15.886
60 100 2.971 3.000 2.997 24.844 3.981 4.000 4.000 26.062
60 200 2.941 3.000 3.000 13.514 3.943 4.000 4.000 14.497
60 500 2.907 3.000 3.000 5.266 3.891 4.000 4.000 6.286
60 2000 2.742 3.000 3.000 3.162 3.747 4.000 4.000 4.168

100 40 2.959 3.000 2.945 14.801 3.983 4.000 3.965 16.094
100 60 2.956 3.000 2.997 24.933 3.985 4.000 3.998 25.895
100 100 2.971 3.000 3.000 46.294 3.963 4.000 4.000 47.287
200 60 2.944 3.000 3.000 13.548 3.952 4.000 4.000 14.544
200 100 2.879 3.000 3.000 29.873 3.923 4.000 4.000 30.779
500 60 2.880 3.000 3.000 5.240 3.895 4.000 4.000 6.319
500 100 2.782 3.000 3.000 10.012 3.790 4.000 4.000 11.066

1000 60 2.835 3.000 3.000 3.607 3.826 4.000 4.000 4.630
1000 100 2.658 3.000 3.000 4.898 3.644 4.000 4.000 5.955
2000 60 2.776 3.000 3.000 3.156 3.788 4.000 4.000 4.141
2000 100 2.502 3.000 3.000 3.510 3.564 4.000 4.000 4.526
4000 60 2.675 3.000 3.000 3.017 3.720 4.000 4.000 4.018
4000 100 2.436 3.000 3.000 3.113 3.54 4.000 4.000 4.146

12 4950 2.662 2.887 1.836 2.999 3.651 3.877 2.815 4.000

MSE 0.0603 0.0007 0.0716 216.9143 0.7073 0.9878 0.9408 236.7685

Table A3. Average value and MSE of the estimators for the number of factors f = 5.

N T p̄1
1 p̄2

1 p̄3
1 p̄4

1 p̄1
2 p̄2

2 p̄3
2 p̄4

2

40 100 3.456 4.993 2.824 40.000 4.461 5.99 3.945 41.000
60 100 2.680 5.000 4.467 41.944 3.587 6.000 5.429 42.8100
60 200 1.513 5.000 4.987 60.000 2.494 6.000 6.000 61.000
60 500 0.709 5.000 5.000 60.000 1.678 6.000 6.000 61.000
60 2000 0.370 5.000 5.000 5.840 1.416 6.000 6.000 6.823

100 40 3.485 4.995 2.883 30.275 4.545 5.991 4.052 31.391
100 60 2.578 5.000 4.448 41.699 3.649 6.000 5.505 42.716
100 100 1.446 5.000 4.981 64.981 2.387 6.000 5.979 66.002
200 60 1.426 5.000 4.996 33.890 2.457 6.000 6.000 34.917
200 100 0.547 5.000 5.000 59.760 1.508 6.000 6.000 60.943
500 60 0.693 5.000 5.000 14.502 1.736 6.000 6.000 15.647
500 100 0.246 5.000 5.000 30.310 1.222 6.000 6.000 31.619

1000 60 0.501 5.000 5.000 7.901 1.461 6.000 6.000 8.913
1000 100 0.146 5.000 5.000 13.515 1.157 6.000 6.000 14.562
2000 60 0.395 5.000 5.000 5.848 1.388 6.000 6.000 6.842
2000 100 0.131 5.000 5.000 7.480 1.114 6.000 6.000 8.474
4000 60 0.365 5.000 5.000 5.236 1.347 6.000 6.000 6.251
4000 100 0.101 5.000 5.000 5.719 1.087 6.000 6.000 6.693

12 4950 3.084 3.952 1.744 12.000 4.016 4.925 2.723 13.000

MSE 15.3767 0.0578 1.1267 996.0771 8.7872 0.8930 1.1365 1046.2293
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With the results presented in Tables A1–A3, we observe that the estimator

p̂2
1 = arg min

1≤l≤pmax

[
(NT)−1λj(R̄′R̄) + l ×

(
log
(

N × T
N + T

))
×
(

N + T
N × T

)]
− 1 (A5)

presents the smallest mean squared error for all factors and, therefore, we conclude that it is
the best estimator among the chosen estimators. For this reason, it will be used to estimate
the number of factors in the GX procedure. We believe that the fact that the function φ4
converges more slowly than the previous ones may have caused this erratic behavior of the
p̂4, mainly for low N and T and larger numbers of factors.

References
Acharya, Viral V., and Lasse Heje Pedersen. 2002. Asset pricing with liquidity risk. Journal of Financial Markets 77: 31–56.
Alles Rodrigues, Alexandre, and Fabrizio Casalin. 2022. Factor investing in Brazil: Diversifying across factor tilts and allocation

strategies. Emerging Markets Review 52: 100906. [CrossRef]
Araújo, Eurilton, Ricardo D. Brito, and Antonio Z. Sanvicente. 2021. Long-term stock returns in Brazil: Volatile equity returns for

U.S.-like investors. International Journal of Finance & Economics 26: 6249–63. [CrossRef]
Bai, Jushan. 2003. Inferential theory for factors models of large dimensions. Econometrica 71: 135–71. [CrossRef]
Bai, Jushan, and Serena Ng. 2002. Determining the number of factors in approximate factors models. Econometrica 70: 191–221.

[CrossRef]
Baltagi, Badi H., Chihwa Kao, and Bin Peng. 2015. On testing for sphericity with non-normality in a fixed effects panel data model.

Statistics & Probability Letters 98: 123–30. [CrossRef]
Barasal Morales, Adriano, Márcio Laurini, and Anton Vrieling. 2023. Climate Risk Premium: Assessing the Influence of Global Warming

Effects on Stock Market Dynamics. Technical report. Rochester: SSRN. [CrossRef]
Bhatti, Madiha, and Abu Mirza. 2014. A comparative study of capm and seven factors risk adjusted return model. Paradigms 8: 13–25.

[CrossRef]
Black, Fischer. 1972. Capital market equilibrium with restricted borrowing. Journal of Business 45: 444–55. [CrossRef]
Brière, Marie, and Ariane Szafarz. 2020. Good diversification is never wasted: How to tilt factor portfolios with sectors. Finance

Research Letters 33: 101197. [CrossRef]
Bryzgalova, Svetlana, Jiantao Huang, and Christian Julliard. 2023. Bayesian solutions for the factor zoo: We just ran two quadrillion

models. The Journal of Finance 78: 487–557. [CrossRef]
Caldeira, João F, Guilherme Valle Moura, and André Alves Portela Santos. 2013. Seleção de carteiras utilizando o modelo Fama-French-

Carhart. Revista Brasileira de Economia 67: 45–65. [CrossRef]
Campbell, John Y., Andrew W. Lo, and A. Craig MacKinlay. 1997. The Econometrics of Financial Markets. Princeton: Princeton

University Press.
Campiglio, Emanuele, Louis Daumas, Pierre Monnin, and Adrian von Jagow. 2023. Climate-related risks in financial assets. Journal of

Economic Surveys 37: 950–92. [CrossRef]
Carvalhal, Marcelo Gonçalves Andre. 2017. Predicting Fama-French factors based on industry returns in Brazil. Corporate Ownership

and Control 15: 44–51.
Chen, Liang, and Minyuan Zhang. 2023. Common correlated effects estimation of nonlinear panel data models. arXiv arXiv:2304.13199.
Chen, Mingli, Iván Fernández-Val, and Martin Weidner. 2014. Nonlinear panel models with interactive effects. arXiv arXiv:1412.5647.
Chen, Mingjing, and Jingzhou Yan. 2019. Unbiased cce estimator for interactive fixed effects panels. Economics Letters 75: 1–4.

[CrossRef]
Cho, Cheol-Keun, and Bosung Jang. 2023. Durable consumption-based asset pricing model with foreign factors for the Korean stock

market. International Journal of Financial Studies 11: 62. [CrossRef]
Chudik, Alexander, and M. Hashem Pesaran. 2015. Common correlated effects estimation of heterogeneous dynamic panel data

models with weakly exogenous regressors. Journal of Econometrics 188: 393–420. [CrossRef]
Chudik, Alexander, M. Hashem Pesaran, and Elisa Tosetti. 2011. Weak and strong cross-section dependence and estimation of large

panels. The Econometrics Journal 14: C45–C90. [CrossRef]
Cochrane, John H. 2005. Asset Pricing. Princeton: Princeton University Press.
Cochrane, John H. 2011. Presidential address: Discount rates. Journal of Finance 66: 1047–110. [CrossRef]
de Andrade Alves, Cássio Roberto, and Márcio Laurini. 2023. Estimating the Capital Asset Pricing Model with many instruments: A

Bayesian shrinkage approach. Mathematics 11: 3776. [CrossRef]
De Vos, Ignace, and Joakim Westerlund. 2019. On cce estimation of factor-augmented models when regressors are not linear in the

factors. Economics Letters 178: 5–7. [CrossRef]
Dirkx, Philipp, and Franziska J. Peter. 2020. The Fama-French five-factor model plus momentum: Evidence for the German market.

Schmalenbach Business Review 72: 661–84. [CrossRef]

http://doi.org/10.1016/j.ememar.2022.100906
http://dx.doi.org/10.1002/ijfe.2118
http://dx.doi.org/10.1111/1468-0262.00392
http://dx.doi.org/10.1111/1468-0262.00273
http://dx.doi.org/10.1016/j.spl.2014.12.017
http://dx.doi.org/10.2139/ssrn.4614201
http://dx.doi.org/10.24312/paradigms080102
http://dx.doi.org/10.1086/295472
http://dx.doi.org/10.1016/j.frl.2019.05.015
http://dx.doi.org/10.1111/jofi.13197
http://dx.doi.org/10.1590/S0034-71402013000100003
http://dx.doi.org/10.1111/joes.12525
http://dx.doi.org/10.1016/j.econlet.2018.11.029
http://dx.doi.org/10.3390/ijfs11020062
http://dx.doi.org/10.1016/j.jeconom.2015.03.007
http://dx.doi.org/10.1111/j.1368-423X.2010.00330.x
http://dx.doi.org/10.1111/j.1540-6261.2011.01671.x
http://dx.doi.org/10.3390/math11173776
http://dx.doi.org/10.1016/j.econlet.2019.02.001
http://dx.doi.org/10.1007/s41464-020-00105-y


Int. J. Financial Stud. 2023, 11, 144 30 of 31

Fama, Eugene F., and Kenneth R. French. 1988. Dividend yields and expected stocks returns. Journal of Financial Economics 22: 3–25.
[CrossRef]

Fama, Eugene F., and Kenneth R. French. 1992. The cross-section of expected stock returns. The Journal of Finance 47: 427–65.
Fama, Eugene F., and Kenneth R. French. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial

Economics 33: 3–56. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 1995. Size and book-to-market factors in earnings and returns. The Journal of Finance

50: 131–55.
Fama, Eugene F., and Kenneth R. French. 2015. A five-factors asset pricing model. The Journal of Financial Economics 116: 1–22.

[CrossRef]
Fama, Eugene F., and James D. MacBeth. 1973. Risk, return, and equilibrium: Empirical tests. Journal of Political Economy 81: 607–36.

[CrossRef]
Fang, Elaine, and Caio Almeida. 2019. Are higher-order factors useful in pricing the cross-section of hedge fund returns? Revista

Brasileira de Finanças 17: 1–37. [CrossRef]
Fan, Jianqing, and Qiwei Yao. 2015. The Elements of Financial Econometrics, 1st ed. Cambridge, MA: Cambridge University Press.
Fan, Zhenzhen, Juan M. Londono, and Xiao Xiao. 2022. Equity tail risk and currency risk premiums. Journal of Financial Economics 143:

484–503. [CrossRef]
Faria Maciel, Claudia, Hudson Fernandes Amaral, Laíse Ferraz Correia, and Joyce Mariella Medeiros Cavalcanti. 2021. Performance of

the Fama-French five-factor model in the pricing of anomalies in the Brazilian market. Revista Contemporânea de Contabilidade 18:
145–60.

Giglio, Stefano, and Dacheng Xiu. 2021. Asset pricing with omitted factors. Journal of Political Economy 129: 1947–90. [CrossRef]
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