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Abstract: Portfolio optimization is a mathematical formulation whose objective is to maximize
returns while minimizing risks. A great deal of improvement in portfolio optimization models has
been made, including the addition of practical constraints. As the number of shares traded grows,
the problem becomes dimensionally very large. In this paper, we propose the usage of modified
biogeography-based optimization to solve the large-scale constrained portfolio optimization. The
results indicate the effectiveness of the method used.
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1. Introduction

A portfolio can be defined as a collection of assets, which can include cash, real estate,
stocks, or crypto. Portfolio optimization concerns maximizing returns and minimizing
risks; returns are the expected profit from the investment, whereas risks are the possible
changes in values of the investment. In Markowitz (1952), the authors proposed the use of
the means and variances of the portfolio as the return and risk measures. Good practice in
portfolio optimization is very crucial in investment, because it greatly affects the outcome
of the investment. In this paper, we focus on portfolios consisting of correlated stocks.

The model proposed by Markowitz (1952) has been studied by many researchers over
the years. A possible approach for the problem is the capital asset pricing model (CAPM).
CAPM has been used extensively by many financial practitioners. In Parmikanti et al. (2020),
the authors studied portfolio optimization under CAPM with a heteroscedastic model for
the return series. Since its introduction, many improvements have been made to the model.
Some improvements add practical constraints, which can be discrete or continuous; hence,
the resulting model becomes mixed-integer nonlinear programming (MINLP). For instance,
Jobst et al. (2001) and Bartholomew-Biggs and Kane (2009) considered adding roundlot
constraints, which means that shares must be bought in a multiple of some integer. In
Jobst et al. (2001), the authors used the FortMP solver, whereas Bartholomew-Biggs and
Kane (2009) used DIRECT hybridized with quasi-Newton methodology. In Jobst et al.
(2001), the authors also noted that the resulting efficiency is not continuous, making CAPM
inapplicable in this case. With increasing complexity, various techniques also emerged.
AUGMECON2 is a state-of-the-art multi-objective MINLP solver. It was introduced by
Mavrotas and Florios (2013) and has been shown to very effective in solving multi-objective
MINLP. Recent use of AUGMECON2 in portfolio optimization can be found in Chen et al.
(2021). The downside of this method is its computational complexity. In Chen et al. (2021),
the authors noted that for some large-dimensional problems, AUGMECON2 did not give a
converged solution after 7 days.

To circumvent the complexity of exact methods, an efficient optimizer is needed.
One popular approach is to use metaheuristic algorithms. Metaheuristic algorithms are
usually inspired by natural processes in biology, chemistry, physics, or society. Most of
the time, it is expected that metaheuristic algorithms can produce near-optimal solutions.
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Furthermore, an exact method is expected to be implemented later to obtain more accuracy,
such in Bartholomew-Biggs and Kane (2009). In Chang et al. (2000), the authors proposed
a series of modified metaheuristic algorithms that exploit the structure of the MV model
with cardinality and quantity constraints. The metaheuristic algorithms used were genetic
algorithm (GA), tabu search (TS), and simulated annealing (SA). To handle the cardinality
and quantity constraints, they implemented an algorithm to adjust the solutions.

Another example of a metaheuristic algorithm is biogeography-based optimization
(BBO). It was developed by Simon (2008); its inspiration is the dynamics of the geography
of habitats. It basically consists of migration and mutation. Elitism is also added to ensure
faster convergence. BBO has been used to solve numerous optimization problems in the
real world. Some newer applications of BBO can be found in Reihanian et al. (2023) and
Ren et al. (2023). Those studies concluded that BBO is a very powerful optimizer. For
MINLP, Garg (2015) showed the efficiency of BBO in solving reliability problems and the
results demonstrated the superiority of BBO over other metaheuristics. In their approach,
the integral and discrete constraints were treated as if they were continuous, but in the
function evaluation, they were rounded accordingly. This is sensible, because BBO is
known for its effectiveness in continuous optimization. One of the reasons why we chose
BBO is that it requires minimal parameters and is easy to implement.

For applications in portfolio optimization, there are some entries in the literature that
have used BBO as the main optimizer. In Ye et al. (2017), the authors used BBO to solve
a portfolio optimization problem with second-order stochastic dominance constraints. In
Garg and Deep (2019), the authors used a variant of BBO called Laplacian biogeogeography-
based optimization (LX-BBO) to find portfolio allocation from 10 assets in an MV model. In
Panwar et al. (2018), the authors used BBO to solve a constrained MV model and applied
the results in forecasting via Monte Carlo. The number of assets used in that research
was 15.

Over the time, the number of companies listed in the stock markets are increasing.
There are many markets with a very large number of companies. Although this provides a
good opportunity for investors to choose assets, this also creates the problem in choosing
suitable assets. In Perold (2022), the author studied how to efficiently choose a subset of a
large set to optimize a portfolio. He considered a constrained portfolio optimization with
a cardinality constraint and a quantity constraint. His method was inspired by quadratic
programming techniques and was later improved to work very well for solving portfolio
optimization. In Qu et al. (2017), the authors considered a multiobjective constrained
mean-variance model and used four methods to solve the problem. The methods they
used were Normalized Multiobjective Evolutionary Algorithm based on Decomposition
(NMOEA/D), Multiobjective Differential Evolution based on Summation Sorting (MODE-
SS), and Multiobjective Differential Evolution based on Nondomination Sorting (MODE-
NDS), Multiobjective Comprehensive Learning Particle Swarm Optimizer (MO-CLPSO),
and Nondominated Sorting Genetic Algorithm II (NSGA-II). The constraint they added to
the model was a preselection constraint. They concluded that the methods were efficient
for large-scale portfolio optimization. They also suggested adding practical constraints
such as the cardinality constraint and the quantity constraint for further research.

In this paper, we proposed the usage of the heuristic ideas of Chang et al. (2000) but
implemented in a BBO framework to solve a constrained MV model. The reason we used
the ideas of Chang et al. (2000) is that they worked very well on a large-scale portfolio
in their study. The dimensions studied by that work were 31, 85, 89, 98, and 225. Their
methods could solve a large-scale portfolio optimization problem with high accuracy and
in short time. It is clear that standard methods do not solve this problem effectively because
the computational complexity is very large.

We used data from ORLibrary, which is available online. The same data were used
in Chang et al. (2000) and Kabbani (2022). We also compare our results with theirs using
the same performance metric. The results show that BBO is competitive in comparison to
other methods.
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The organization of this paper is as follows. Section 2 introduces the problems that
we solve in this paper and how we solve them. The problem is multiobjective constrained
portfolio optimization. Then, introduce biogeography-based optimization (BBO) before
detailing the method we propose. Section 3 contains the results of our proposed approach
and a comparison with other studies. Conclusions and further improvements are also
included in that section.

2. Materials and Methods
2.1. Portfolio Optimization

The aim of this subsection is to introduce the problems discussed in the paper. First,
we describe the unconstrained MV model. Then, we discuss the constrained MV model.
We follow the formulation used in Kabbani (2022).

2.1.1. Unconstrained MV Model

Suppose there are n assets, A1, A2, . . . , An. Let x1, x2, . . . , xn denote the budget share
or allocation for the assets. The unconstrained MV model can be written as

min
n

∑
i=1

n

∑
j=1

σi,jxixj, (1)

s.t.
n

∑
i=1

µixi ≥ R, (2)

n

∑
i=1

xi = 1, (3)

0 ≤ xi ≤ 1, i = 1, 2, . . . , n, (4)

where R is the target return, µi is the expected return of the ith asset, and σi,j = ρi,jσiσj
is the covariance between the ith and jth asset. Expression (1) indicates the objective is
to minimize risk, where variance is taken as the risk measure. Constraint (2) tells that
minimum required return is R. Constraint (3) is called the budget constraint, meaning all
the budget must be spent in investment. Constraint (4) means the budget share is never
negative, so that short selling is not allowed. (1)–(4) altogher is called the unconstrained
MV model.

2.1.2. Constrained MV Model

Formally, the constrained MV model is

min γ
n

∑
i=1

n

∑
j=1

σi,jxixj − (1− γ)
n

∑
i=1

µixi (5)

s.t.
n

∑
i=1

xi = 1, (6)

n

∑
i=1

zi = K, (7)

εizi ≤ xi ≤ δizi, i = 1, 2, . . . , n, (8)

0 ≤ xi ≤ 1, i = 1, 2, . . . , n, (9)

where zi ∈ {0, 1}. zi = 1 iff the ith asset is in the portfolio. The variable γ in expression (5)
is the risk attitude parameters. The closer γ to 1, the more risk aversity occurs. On the other
hand, the closer γ to 0, the more risk seeking occurs. So, instead of finding the optimal
values to just one value of target return, we will find a set of pareto optimal solutions.
Constraint (6) is still the same budget constraint. Constraint (7) is called the cardinality
constraint, i.e., the number of assets in the portfolio must be K. Constraint (8) is called the
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quantity constraint. It is a conditional bound that limits the maximum and minimum of
allocation in the individual asset if the asset is in the portfolio.

2.2. Biogeography-Based Optimization

BBO was first introduced by Simon (2008). Biogeography studies the distribution of
species over habitats. Biogeography mathematically models the natural process of how
species migrate from a habitat to another habitat, how new species emerge, and how
species become extinct. Migration consists of two kinds: immigration is the event of new
species entering a new habitat and emigration is the event of species leaving a habitat (but
not necessarily fully disappear from the original habitat). Each habitat (mathematically
expressed as n-dimensional vectors) has its own characteristics. Each characteristic is called
suitability index variable (SIV). Basically, SIV are the decision variables in the optimization
problem. Habitat suitability index (HSI) is the fitness value of a habitat. HSI measures how
supportive a habitat accomodates its species. In optimization problems, HSI is the objective
function. Each habitat is ranked based on the HSI, the habitat with higher HSI is ranked
better than habitat with lower HSI.

Let S1, S2, . . . , SN denote N habitats. Habitat Si has exactly i distinct species. The
dth SIV (dth-coordinate) of habitat Si will be denoted by Si(d). Each habitat has its own
immigration rate (λi) and emigration rate (µi). Frequently, linear immigration and em-
igration rates are used. Guo et al. (2014) listed some of popular migration rate models,
such as constant, linear, trapezoidal, quadratic, and sinusoidal models. Each migration
model has their own advantages and disadvantages. In addition, they also studied the
convergence properties of the BBO algorithm and some techniques on how to improve
the convergence of BBO algorithm based on the migration rates. Let E and I denote the
maximum emigration rate and immigration rate, respectively, In linear migration rate,
we have

λi = I
(

1− i
n

)
and µi = E

(
i
n

)
, i = 0, 1, . . . , N. (10)

This is depicted in Figure 1. High number of species will cause a habitat saturated, resulting
its species to search for better habitat and prevent more species to enter the overcrowded
habitat. Hence, habitat with big number of species will have big emigration rate and small
immigration rate. On the contrary, habitat will a small number of different species has big
immigration rate and big emigration rate.

Figure 1. Immigration rate and Emigration rate.

In BBO, habitat with better HSI will have more species, because it is more suitable
to live in. In conclusion, a better habitat will affect worse habitat to become better. The
migration process in BBO is given by Algorithm 1.
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Algorithm 1: Migration

1. Input
n, the dimension of the decision variables
Sk, current solution
µ, emigration rate
λ, immigration rate

2. Process
Step 1. let i = 1
Step 2. If rand(0, 1) > λk, go to step 5.
Step 3. Choose a random habitat Sl ∼ µl .
Step 4. Replace the ith coordinate of Sk with the ith coordinate of Sl , Sk(i) = Sl(i).
Step 5. Set i = i + 1.
Step 6. If i > n stop. Otherwise, go to step 3.

3. Output
Migrated solution Sk.

Another variation of migration process was introduced by Ma and Simon (2011).
It has a blending parameter α which makes migration process more random. α can be a
constant or randomly chosen at each iteration. In this paper, we use constant α. Algorithm 2
describes blended migration algorithm.

Algorithm 2: Blended Migration

1. Input
n, the dimension of the decision variables
Sk, current solution
µ, emigration rate
λ, immigration rate
α ∈ [0, 1], blending parameter.

2. Process
Step 1. Set i = 1
Step 2. If rand(0, 1) > λk, go to step 5.
Step 3. Choose a random habitat Sl ∼ µl .
Step 4. Perform a blending of immigrating and emigrating habitat using
Sk(i) = αSk(i) + (1− α)Sl(i).
Step 5. Set i = i + 1.
Step 6. If i > n stop. Otherwise, go to step 3.

3. Output
Migrated solution Sk.

Natural events like disaster or pandemic can also happen in a habitat. It can trigger
some unpredictable changes in the habitat. In BBO, this is called the mutation process.
Mutation is more likely to occur in a habitat with extremely high or low number of species.
On the other hand, mutation is improbable in a habitat with medium number of species.
The mutation probability of a habitat is

mi = mmax

(
1− Pi

Pmax

)
. (11)

Pi denote the probability that a habitat will have species count i and Pmax = max{Pi|i = 1,
2, . . . , N}. According to Wei et al. (2022), Pi is given by

Pi =


1

1+∑N
k=1

∏k
l=1 λl−1
∏k

l=1 µl

, i = 0

∏i
l=1 λl−1

∏i
l=1 µl

P0, i = 1, 2, . . . , N
(12)
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Mutation in BBO is performed based on Algorithm 3.

Algorithm 3: Mutation

1. Input
n, the dimension of the decision variables
Sk, current solution
m, mutation probability

2. Process
Step 1. Set i = 1
Step 2. If rand(0, 1) > mk, go to step 4.
Step 3. Replace the ith coordinate of Sk with a random number inside permissible
bounds, Sk(i) = rand(lowerbound, upperbound).
Step 4. Let i = i + 1.
Step 5. If i > n stop. Otherwise, go to step 3.

3. Output
Mutated solution Sk.

Another essential component in the BBO algorithm is the existence of elitism. In short,
elitism is the preservation of optimal habitats. During the elitism process, best habitas
(typically a very small subset of high ranked habitats) from previous generation will replace
the worst habitats in next generation. This procedure ensures next generation best habitats
are not worse than the previous generation best habitats. In their study, Ma et al. (2014)
proved an interesting result about the convergence of the BBO algorithm for binary prob-
lem. The existence of migration and mutation operators without elitism do not guarantee
convergence of the BBO algorithm. However, migration and mutation operators combined
with elitism will almost surely produce a convergent solution. Hence, elitism is an essential
part of the BBO algorithm. In general, the BBO algorithm follows Algorithm 4.

Algorithm 4: Biogeography-Based Optimization

1. Input
MaxGen, maximum number of generations
N, number of habitat
n, dimension of the decision variables
E, maximum emigration rate
I, maximum immigration rate
mmax, maximum mutation rate
keep, number of preserved habitats
α, blending parameter if Blended BBO is used

2. Process
Step 1. Initialise randomly N habitats in Rn.
Step 2. Evaluate the HSI of each habitat and sort the habitats according HSI.
Step 3. Calculate λ, µ, and m.
Step 4. Set iter = 1.
Step 5. For i = 1, 2, . . . , N, perform migration according to Algorithm 1 or 2.
Also, perform mutation according to Algorithm 3.
Step 6. Sort the new habitats based on HSI.
Step 7. Replace the last keep habitats with the first keep habitats from previous
generation and resort the new population.
Step 8. iter = iter + 1. If iter > maxgen, stop. Otherwise, go to step 5.

3. Output
Return Sbest (habitat with best HSI) as the best solution.
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2.3. Modified BBO

One technique to solve a constrained optimization problem is using penalty function.
But, excessive number of penalty functions will have negative effects in the computational
complexity. It also reduces the ability to explore and exploit feasible solutions. Most the
time, large amount of candidate solutions are not feasible. A large number of iterations are
needed to achieve a convergent solution. For portfolio optimization, Chang et al. (2000)
developed an efficient scaling algorithm to handle cardinality constraint and quantity
constraint at once. Then, the algorithm is embedded inside three optimization algorithms:
GA, TS, and SA. Two interesting results from their research are that the solutions produced
are both accurate and the algorithms do not require much time.

We propose using the scaling algorithm inside BBO. Furthermore, we implement
some heuristic ideas from Chang et al. (2000). One of the methods they used is genetic
algorithm (GA) heuristics. Since GA is similar to BBO in some ways, we modify the BBO
algorithm following the idea from GA heuristics. In each iteration, rather than checking
all habitats one by one, we only do migration from the good habitats. The best habitat is
always chosen. Another habitat is chosen randomly only from small subset of best habitats.
Furthermore, migration and mutation occurs iff the ith asset exists in both solutions. This
greatly simplifies calculation in the BBO algorithm to focus on a subset of assets exist in
good portfolio. The scaling algorithm and modified BBO is given below. This strategy is
better than handling the integral constraints using penalty in the objective function, because
it will require a lot of resources to find a near optimal solution. For example, Febrianti et al.
(2022) used a population of 50,000 elements in solving a constrained portfolio optimization
consisting of only 5 assets.

Algorithm 5 aims to modify the candidate solution to satisfy the quantity constraint.
The idea is to distribute proportionally the weights of assets after ensuring the lower bound
is satisfied. Then, for asset weights that are bigger than the upper bound, they are set to be
the upper bound. The excesses are distributed uniformly between weights not exceeding
upper bounds. Finally, the objective function is evaluated on this valid portfolio allocation.
Note that Step 6 modifies the inputted habitat. This step guarantees that the same function
value is produced if the processed habitat is inputted again. Algorithm 5 is crucial for the
efficiency of the next algorithm.

Algorithm 5: Scaling

1. Input
S, current solution which contains Q, the set of K different assets, and si, the value for
the ith asset.
ε, the conditional lower bounds.
δ, the conditional upper bounds.

2. Process
Step 1. Set L = ∑i∈Q si and F = 1−∑i∈Q εi.
Step 2. For i ∈ Q, wi = εi + si

F
L . wi = 0i f i /∈ Q.

Step 3. R = {j|wj > δj}.
Step 4. If R is not empty: set L = ∑i∈Q−R si and F = 1− (∑i∈Q−R εi + ∑i∈R δi). For
i ∈ Q− R, wi = εi + si

F
L . wi = δi if i ∈ R.

Step 5. Evaluate the objective function at w.
Step 6. Set si = wi − εi. for i ∈ Q.

3. Output
Returns S, objective function value, and w.

In step 1, we generate feasible solutions by first generating random subset consisting
of K elements from {1, 2, . . . , n}. Afterwards, random weights are generated uniformly
from [0, 1]. Afterwards, weights are normalized in order that the sum of weights equals
to 1 (budget constraint). The process in Algorithm 6 basically follows the same process as
Algorithm 4. The main difference is the Step 5. We choose BestHabitats only from small
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range of indices, for example BestHabitats can be the set of index [2, 3, . . . , 10]. Thus, only
the good habitats are migrated with the best habitat (habitat with the lowest function value
for minimization). This idea greatly simplifies the complexity in each iteration compared
than Algorithm 4, where in Algorithm 4, all habitats are considered for migration. The
selection is done via roulette wheel selection. Each habitat Si(l ∈ BestHabitats) are assigned
probability proportional to their λi. Subsequently, a random number is generated to
determine which habitat is picked for migration. The elitism in Algoritm 6 is also more
efficient than Algorithm 4, since only one habitat is replaced in each iteration.

Algorithm 6: Modified BBO for Large Scale Portfolio Optimization

1. Input
MaxGen, maximum number of generations
N, number of habitats
n, dimension of the decision variables
E, maximum emigration rate
I, maximum immigration rate
mmax, maximum mutation rate
BestHabitat, limit of the best habitats
α, blending parameter
K, number of assets in the portfolio

2. Process
Step 1. Initialise randomly N feasible habitats in [0, 1]n.
Step 2. Evaluate and update each habitat using Algorithm 4. Sort the habitats
according HSI.
Step 3. Calculate λ, µ, and m.
Step 4. Set iter = 1.
Step 5. Choose a random habitat Sj ∼ λj from BestHabitats.
Step 6. Create a new habitat S∗ according to blended migration of Sbest and Sj.
Step 7. Perform mutation on S∗ according to Algorithm 2.
Step 8. If any coordinate of S∗ is negative, replace it with 0.
Step 9. Set the assets of S∗ to be the location of positive coordinates. If the number of
assets in S∗ is less than K, then randomly add assets from S1 or Sj. If the number of
assets in S∗ is bigger than K, randomly choose some assets, remove it.
Step 10. Evaluate and update S∗ based on Algorithm 4.
Step 11. Replace Sworst (habitat with worst HSI) with S∗ and sort the habitats based
on HSI.
Step 12. Set iter = iter + 1. If iter > MaxGen, stop. Otherwise, go to step 5.

3. Output
Return Sbest (habitat with lowest function value for minimization problem) as the best
solution.

3. Results and Conclusions

In this section, we first apply the above ideas to measure its effectiveness. We consider
using percentage deviation error as the measure of the model effectiveness as used in
Chang et al. (2000) and Kabbani (2022). Let (vi, ri) denote the pair of variance and return
at a point in constrained efficient frontier (CEF) found using proposed method. Let also
(v∗j , r∗j ) denote the point in unconstrained efficient frontier calculated by Chang et al.
(2000). For each i, we can find v∗l = max{v∗j |v∗j ≤ vi} and v∗u = min{v∗j |v∗j ≥ vi}. Then,

r = r∗l +
vi−v∗l
v∗u−v∗l

(r∗u − r∗l ) is the approximated return from UEF at ri. The vertical deviation

error is calculated using
∣∣∣∣ ri−r

r × 100
∣∣∣∣. The horizontal deviation error is calculated in a
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similar fashion. The percentage deviation error is taken as the minimum of the horizontal
and vertical deviation error.

3.1. Results

In this section we solve problem (5)–(9) for 50 values of γ. We assume K = 10 (10 assets
are chosen for each case), εi = 0.01 (the minimum budget allocation for each chosen asset
is 0.01), and δi = 1 (maximum budget allocation is 1 for each asset). We use the same
dataset as Chang et al. (2000) and Kabbani (2022). In total, there are 5 test instances studied.
The data used are the Hang Seng (Hong Kong), DAX 100 (Germany), FTSE 100 (UK), S&P
100 (USA) and Nikkei 225 (Japan) index weekly returns from March 1992 to September
1997. In total, there are 5 test instances studied. For each instance, we generated 50 points,
one point for each value of γ. γ will vary from 0 to 1 uniformly with a step length of 50

49 .
The parameters used are summarized in Table 1. The comparisons between the proposed
method with previous studies are given in Table 2.

Table 1. Parameters in Modified BBO.

Parameter Value

n 31, 85, 89 98, and 225
MaxGen 1500n

N 100
E 1
I 1

mmax 0.05
BestHabitats {2, 3, . . . , 10}

Table 2. Comparison of performance.

Index Number of
Assets

Error and
Time GA TS SA TS&TR BBO

Hang Seng 31
Median 1.2181 1.2181 1.2181 1.8120 1.2503
Mean 1.0974 1.1217 1.0957 2.2656 1.1689

Time (s) 172 74 79 1154 282

DAX 85
Median 2.5466 2.6380 2.5661 4.2100 2.8845
Mean 2.5424 3.3049 2.9297 4.0350 2.7018

Time (s) 544 199 210 2873 1830

FTSE 89
Median 1.0841 1.0841 1.0841 1.2406 1.1232
Mean 1.1076 1.6080 1.4623 1.2959 1.1056

Time (s) 573 246 215 2919 1941

S&P 98
Median 1.2244 1.2882 1.1823 2.3630 1.3671
Mean 1.9328 3.3092 3.0696 2.5068 1.8782

Time (s) 638 225 242 3107 2310

Nikkei 225
Median 0.6133 0.6093 0.6066 1.3464 2.1840
Mean 0.7961 0.8975 0.6732 1.2122 2.6556

Time (s) 1964 545 553 5866 6382

All numerical experiments are done in MATLAB Online. Best numerical experiments are shown in bold.

3.2. Conclusions

This paper discusses the extensions of the classical MV portfolio model to fit proper
real-world situations. The extensions include adding cardinality and quantity constraints
which are practical for most investors. The lack of decent approaches to solve the problem,
especially the large scale ones, stimulates many alternative approaches. We propose the
usage of modified BBO to solve the problem. It uses some ideas from Chang et al. (2000)
that handle both constraints effectively. The algorithm makes the candidate solutions
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always satisfy both constraint. This causes the algorithm to yield a convergent result more
quickly than letting them evolve wildly.

Tables 3–7 list the points generated by our proposed approach and their average
percentage deviation. Figures 2–6 shows the unconstrained efficient frontier (UEF) and
constrained efficient frontier (CEF) obtained by proposed method. We see that CEF only
deviates by a small amount from UEF. From Table 2, we see that modified BBO works
pretty well in large scale portfolio optimization. Although GA works best in most instances,
modified BBO can still give good near-optimal solutions. Especially, in the third and fourth
instances, modified BBO produce lower mean in percentage deviation error than the other
methods. The performance of our proposed apporach for the last instance is the worst
compared to other methods. To overcome this, more iterations can be performed to the
method at the cost of computation time.

Table 3. First and last three optimal portfolios of Hang Seng.

γ = 0 γ = 0.0204 γ = 0.0408

Chosen Asset Weights Chosen Asset Weights Chosen Asset Weights

2 0.0100 2 0.0100 4 0.0100
4 0.0100 5 0.9094 5 0.9090
5 0.9097 8 0.0101 9 0.0108
9 0.0101 9 0.0101 12 0.0100

12 0.0100 12 0.0100 15 0.0100
13 0.0100 15 0.0100 19 0.0100
20 0.0100 19 0.0100 20 0.0100
24 0.0100 20 0.0100 23 0.0101
27 0.0100 26 0.0100 26 0.0100
29 0.0102 29 0.0104 29 0.0100

Return 0.0103 Return 0.0103 Return 0.0103
Risk 0.0042 Risk 0.0041 Risk 0.0041

γ = 0.9592 γ = 0.9796 γ = 1

Chosen Asset Weights Chosen Asset Weights Chosen Asset Weights

5 0.0408 5 0.0210 2 0.0146
9 0.0288 13 0.0434 13 0.0461

13 0.0323 15 0.1035 15 0.0761
15 0.1176 16 0.0697 16 0.1068
16 0.0257 17 0.0183 17 0.0476
26 0.1693 26 0.1583 26 0.1437
28 0.2825 28 0.2965 28 0.3044
29 0.1688 29 0.1195 29 0.0636
30 0.0870 30 0.1169 30 0.1335
31 0.0472 31 0.0530 31 0.0635

Return 0.0103 Return 0.0034 Return 0.0028
Risk 0.0042 Risk 6.4848× 10−4 Risk 6.4228× 10−4

Table 4. First and last three optimal portfolios of DAX.

γ = 0 γ = 0.0204 γ = 0.0408

Chosen Asset Weights Chosen Asset Weights Chosen Asset Weights

2 0.0102 2 0.0108 2 0.0100
11 0.0101 11 0.0100 13 0.0151
13 0.0110 13 0.0120 29 0.0118
15 0.0100 29 0.0127 37 0.0100
29 0.0141 38 0.9043 38 0.9031
30 0.0100 41 0.0100 41 0.0100
37 0.0112 47 0.0100 43 0.0100
38 0.9032 57 0.0100 46 0.0100
49 0.0101 74 0.0101 47 0.0100
74 0.0102 77 0.0100 69 0.0100

Return 0.0093 Return 0.0093 Return 0.0093
Risk 0.0024 Risk 0.0024 Risk 0.0024
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Table 4. Cont.

γ = 0.9592 γ = 0.9796 γ = 1

Chosen Asset Weights Chosen Asset Weights Chosen Asset Weights

2 0.0952 2 0.0915 2 0.0711
4 0.1123 4 0.1880 4 0.2193
13 0.1490 13 0.0966 12 0.0450
15 0.0730 19 0.0538 13 0.0541
29 0.1015 29 0.0565 19 0.0993
38 0.0573 49 0.1292 49 0.1103
49 0.1221 51 0.0594 51 0.0818
57 0.0731 59 0.0666 59 0.0664
68 0.1462 68 0.1759 68 0.1773
71 0.0703 71 0.0825 71 0.0747

Return 0.0047 Return 0.0033 Return 0.0025
Risk 1.9717× 10−4 Risk 1.5951× 10−4 Risk 1.4872× 10−4

Table 5. First and last three optimal portfolios of FTSE.

γ = 0 γ = 0.0204 γ = 0.0408

Chosen Asset Weights Chosen Asset Weights Chosen Asset Weights

1 0.0101 10 0.0126 5 0.0100
2 0.0102 18 0.9056 9 0.0103
6 0.0100 19 0.0100 10 0.0113
9 0.0100 29 0.0114 18 0.9042
10 0.0100 44 0.0101 19 0.0100
18 0.9038 55 0.0100 26 0.0100
29 0.0133 66 0.0100 29 0.0141
37 0.0124 71 0.0104 44 0.0100
55 0.0100 72 0.0100 55 0.0100
82 0.0100 76 0.0100 68 0.0100

Return 0.0079 Return 0.0079 Return 0.0079
Risk 0.0013 Risk 0.0013 Risk 0.0013

γ = 0.9592 γ = 0.9796 γ = 1

Chosen Asset Weights Chosen Asset Weights Chosen Asset Weights

2 0.1848 2 0.1534 2 0.1264
25 0.0688 25 0.0987 20 0.0812
30 0.1028 30 0.0828 25 0.0949
41 0.0555 41 0.0922 30 0.0707
46 0.0911 46 0.1484 41 0.1182
53 0.0943 53 0.0728 45 0.0524
62 0.2044 62 0.1709 46 0.1556
66 0.0634 71 0.0286 62 0.1387
72 0.0524 75 0.0795 75 0.0810
82 0.0826 83 0.0727 83 0.0808

Return 0.0038 Return 0.0033 Return 0.0025
Risk 2.3204× 10−4 Risk 2.1689× 10−4 Risk 2.0841× 10−4

Possible improvements can be made to the proposed method, such as using ideas
of set-based metaheuristic algorithms to take care of cardinality and quantity constraints
separately. Such approach has been studied by some researches, for instance see Erwin and
Engelbrecht (2020). The idea is to choose a certain subset of assets first, then optimize the
portfolio allocation for each subsets. Looking at various migration and mutation models
are also interesting direction to do.



Int. J. Financial Stud. 2023, 11, 125 12 of 16

Table 6. First and last three optimal portfolios of S&P.

γ = 0 γ = 0.0204 γ = 0.0408

Chosen Asset Weights Chosen Asset Weights Chosen Asset Weights

20 0.0100 12 0.0100 2 0.0100
31 0.0100 14 0.0103 14 0.0104
34 0.0119 20 0.0101 23 0.0100
36 0.0100 34 0.0256 34 0.0266
42 0.0104 42 0.0108 42 0.0103
43 0.0100 55 0.0100 55 0.0100
82 0.9075 56 0.0100 67 0.0100
85 0.0100 82 0.8897 82 0.8878
89 0.0101 86 0.0100 89 0.0149
96 0.0100 89 0.0135 93 0.0100

Return 0.0089 Return 0.0089 Return 0.0089
Risk 0.0025 Risk 0.0025 Risk 0.0025

γ = 0.9592 γ = 0.9796 γ = 1

Chosen Asset Weights Chosen Asset Weights Chosen Asset Weights

11 0.0844 11 0.0894 10 0.0604
19 0.0789 34 0.0392 19 0.0895
34 0.0520 36 0.0635 28 0.0648
36 0.0923 37 0.1459 33 0.0568
45 0.1751 62 0.2074 37 0.1504
52 0.0578 64 0.0703 51 0.0797
62 0.1713 65 0.1131 62 0.2530
64 0.0767 73 0.0603 64 0.0763
86 0.1047 86 0.1003 65 0.1001
96 0.1067 96 0.1106 73 0.0691

Return 0.0035 Return 0.0028 Return 0.0018
Risk 2.3204× 10−4 Risk 1.4646× 10−4 Risk 1.3461× 10−4

Table 7. First and last three optimal portfolios of Nikkei.

γ = 0 γ = 0.0204 γ = 0.0408

Chosen Asset Weights Chosen Asset Weights Chosen Asset Weights

2 0.0100 9 0.0247 2 0.0104
40 0.0103 40 0.0103 9 0.0119
62 0.0145 62 0.0100 115 0.0134
68 0.0100 79 0.0100 137 0.0100
97 0.0100 104 0.0100 165 0.0105

115 0.0101 114 0.0100 186 0.0100
154 0.0100 115 0.0138 212 0.0100
186 0.0100 165 0.0379 214 0.8937
201 0.0100 201 0.0101 215 0.0201
214 0.9051 214 0.8631 224 0.0100

Return 0.0038 Return 0.0038 Return 0.0038
Risk 0.0015 Risk 0.0014 Risk 0.0015

γ = 0.9592 γ = 0.9796 γ = 1

Chosen Asset Weights Chosen Asset Weights Chosen Asset Weights

8 0.0110 60 0.1766 11 0.0802
40 0.0100 97 0.0100 60 0.2004
60 0.2729 98 0.1337 62 0.1656
62 0.2386 114 0.0500 97 0.0141
97 0.1364 129 0.2653 98 0.1519

104 0.0102 162 0.0435 105 0.0617
129 0.0743 165 0.1810 129 0.1305
158 0.0100 196 0.1143 144 0.0100
171 0.1309 215 0.0103 199 0.0100
225 0.1058 225 0.0152 225 0.1756

Return 8.4069× 10−4 Return 4.6038× 10−4 Return 2.5560× 10−5

Risk 3.4432× 10−4 Risk 3.4888× 10−4 Risk 3.1395× 10−4
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Another possible future research is to consider some more practical constraints such as
roundlot constraint, transaction cost, preselection constraint, and tracking error constraint.
The idea of putting in more constraints is so that investor can fully realizes their investment
plans. Overall, the performance of the proposed method is satisfying in solving large scale
constrained portfolio optimization.

Figure 2. Constrained Efficient Frontier for Hang Seng.

Figure 3. Constrained Efficient Frontier for DAX.
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Figure 4. Constrained Efficient Frontier for FTSE.

Figure 5. Constrained Efficient Frontier for S&P.
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Figure 6. Constrained Efficient Frontier for Nikkei.

Author Contributions: Supervision, K.A.S.; Writing—original draft, W.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This reseach is not externally funded.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this paper are available at http://people.brunel.ac.
uk/~mastjjb/jeb/orlib/files/, accessed on 24 April 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References
Bartholomew-Biggs, Mike C., and Stephen J. Kane. 2009. A global optimization problem in portfolio selection. Computational

Management Science 6: 329–45. [CrossRef]
Chang, T.-J., Nigel Meade, John E. Beasley, and Yazid M. Sharaiha. 2000. Heuristics for cardinality constrained portfolio optimisation.

Computers & Operations Research 27: 1271–302.
Chen, Yi, Aimin Zhou, and Swagatam Das. 2021. Utilizing dependence among variables in evolutionary algorithms for mixed-integer

programming: A case study on multi-objective constrained portfolio optimization. Swarm and Evolutionary Computation 66: 100928.
[CrossRef]

Erwin, Kyle, and Andries Engelbrecht. 2023. Multi-Guide Set-Based Particle Swarm Optimization for Multi-Objective Portfolio
Optimization. Algorithms 16: 62. [CrossRef]

Febrianti, Werry, Kuntjoro Adji Sidarto, and Novriana Sumarti. 2022. Solving Constrained Mean-Variance Portfolio Optimization
Problems Using Spiral Optimization Algorithm. International Journal of Financial Studies 11: 1. [CrossRef]

Garg, Harish. 2015. An efficient biogeography based optimization algorithm for solving reliability optimization problems. Swarm and
Evolutionary Computation 24: 1–10. [CrossRef]

Garg, Vanita, and Kusum Deep. 2019. Portfolio optimization using Laplacian biogeography based optimization. Opsearch 56: 1117–41.
[CrossRef]

Guo, Weian, Lei Wang, and Qidi Wu. 2014. An analysis of the migration rates for biogeography-based optimization. Information
Sciences 254: 111–40. [CrossRef]

Jobst, Norbert J., Michael D. Horniman, Cormac A. Lucas, and Gautam Mitra. 2001. Computational aspects of alternative portfolio
selection models in the presence of discrete asset choice constraints. Quantitative Finance 1: 489–501. [CrossRef]

Kabbani, Taylan. 2022. Metaheuristic Approach to Solve Portfolio Selection Problem. arXiv arXiv:2211.17193.
Ma, Haiping, and Dan Simon. 2011. Blended biogeography-based optimization for constrained optimization. Engineering Applications

of Artificial Intelligence 24: 517–25. [CrossRef]

 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
http://doi.org/10.1007/s10287-006-0038-4
http://dx.doi.org/10.1016/j.swevo.2021.100928
http://dx.doi.org/10.3390/a16020062
http://dx.doi.org/10.3390/ijfs11010001
http://dx.doi.org/10.1016/j.swevo.2015.05.001
http://dx.doi.org/10.1007/s12597-019-00400-4
http://dx.doi.org/10.1016/j.ins.2013.07.018
http://dx.doi.org/10.1088/1469-7688/1/5/301
http://dx.doi.org/10.1016/j.engappai.2010.08.005


Int. J. Financial Stud. 2023, 11, 125 16 of 16

Ma, Haiping, Dan Simon, and Minrui Fei. 2014. On the convergence of biogeography-based optimization for binary problems.
Mathematical Problems in Engineering 2014: 147457. [CrossRef]

Markowitz, Harry. 1952. Portfolio Selection. The Journal of Finance 7: 77–91.
Mavrotas, George, and Kostas Florios. 2013. An improved version of the augmented ε-constraint method (AUGMECON2) for

finding the exact pareto set in multi-objective integer programming problems. Applied Mathematics and Computation 219: 9652–69.
[CrossRef]

Panwar, Darsha, Manoj Jha, and Namita Srivastava. 2018. Portfolio selection using Biogeography-based optimization & Forecasting.
Journal of Advanced Research in Dynamical and Control Systems 10: 852–63.

Parmikanti, Kankan, Sonny Hersona Gw, and Jumadil Saputra. 2020. Mean-Var investment portfolio optimization under capital asset
pricing model (CAPM) with Nerlove transformation: An empirical study using time series approach. Industrial Engineering &
Management Systems 19: 498–509.

Perold, Andre F. 1984. Large-scale portfolio optimization. Management Science 30: 1143–60. [CrossRef]
Qu, Bo Yang, Qiankun Zhou, J. M. Xiao, J. J. Liang, and Ponnuthurai Nagaratnam Suganthan. 2017. Large-scale portfolio optimization

using multiobjective evolutionary algorithms and preselection methods. Mathematical Problems in Engineering 2017: 4197914.
[CrossRef]

Reihanian, Ali, Mohammad-Reza Feizi-Derakhshi, and Hadi S. Aghdasi. 2023. An enhanced multi-objective biogeography-based
optimization for overlapping community detection in social networks with node attributes. Information Sciences 622: 903–29.
[CrossRef]

Ren, Haoyu, Chenxia Guo, Ruifeng Yang, and Shichao Wang. 2023. Fault diagnosis of electric rudder based on self-organizing
differential hybrid biogeography algorithm optimized neural network. Measurement 208: 112355. [CrossRef]

Simon, Dan. 2008. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation 12: 702–13. [CrossRef]
Wei, Lisheng, Qian Zhang, and Benben Yang. 2022. Improved Biogeography-Based Optimization Algorithm Based on Hybrid

Migration and Dual-Mode Mutation Strategy. Fractal and Fractional 6: 597. [CrossRef]
Ye, Tao, Ziqiang Yang, and Siling Feng. 2017. Biogeography-based optimization of the portfolio optimization problem with second

order stochastic dominance constraints. Algorithms 10: 100. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2014/147457
http://dx.doi.org/10.1016/j.amc.2013.03.002
http://dx.doi.org/10.1287/mnsc.30.10.1143
http://dx.doi.org/10.1155/2017/4197914
http://dx.doi.org/10.1016/j.ins.2022.11.125
http://dx.doi.org/10.1016/j.measurement.2022.112355
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.3390/fractalfract6100597
http://dx.doi.org/10.3390/a10030100

	Introduction
	Materials and Methods
	Portfolio Optimization
	Unconstrained MV Model
	Constrained MV Model

	Biogeography-Based Optimization
	Modified BBO

	Results and Conclusions
	Results
	Conclusions

	References

