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Abstract: Lehman Brothers’ failure in 2008 demonstrated the importance of understanding inter-
connectedness in interbank networks. The interbank market plays a significant role in facilitating
market liquidity and providing short-term funding for each other to smooth liquidity shortages.
Knowing the trading relationship could also help understand risk contagion among banks. Therefore,
future lending relationship prediction is important to understand the dynamic evolution of interbank
networks. To achieve the goal, we apply a deep learning framework model of interbank lending
to an electronic trading interbank network for temporal trading relationship prediction. There are
two important components of the model, which are the Graph convolutional network (GCN) and
the Long short-term memory (LSTM) model. The GCN and LSTM components together capture the
spatial–temporal information of the dynamic network snapshots. Compared with the Discrete autore-
gressive model and Dynamic latent space model, our proposed model achieves better performance in
both the precrisis and the crisis period.

Keywords: interbank network; graph convolutional network; long short-term memory; link prediction

1. Introduction

Interbank lending networks are of great practical importance in that the ability and
willingness of banks to provide short-term funding for each other (with banks that tem-
porarily have less cash than needed to support their business operations borrowing from
banks that temporarily have more cash than needed) is crucial to the real economy. As
emphasized by Hatzopoulos et al. (2015), a robust interbank market could help the central
bank achieve its desired interest rate and allow institutions to efficiently trade liquidity. In
normal times, interbank markets are among the most liquid in the financial sector. When
bank networks freeze up, a sharp decline in transaction volume in this market was a major
contributing factor to the collapse of several financial institutions during the financial
crisis. The contagion of systemic risk is strongly related to interbank connectedness. Under-
standing the dynamic interbank connectedness or interbank topology could enhance the
understanding of risk contagion.

A large fraction of previous research on interbank connectedness studies static and
aggregated interbank networks, which reveals information about long-term connectedness
inside a network, while other studies explored the dynamics of the interbank networks.
Papers that focus on the static network such as (Gai et al. 2011) discussed how interbank
connectedness affects the spread of contagion and the implication for the stability of the
banking system. However, Denbee et al. (2021) argued that similar interbank connectedness
structures might generate different liquidity transmission outcomes as banks have different
strategies when they observe liquidity surplus among neighbors. Therefore, instead of
overall interbank connectedness, knowing pairwise future interbank connectedness better
smooths temporary liquidity shortages and reduces “funding liquidity risk”. Since bank
trading strategies are different in normal and crisis periods, instead of obtaining a long-term
static overall connectedness network pattern, a shorter-term pairwise connectedness is
more desirable to understand interbank connectedness that drives us to model the interbank
network in a dynamic way.
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Previous research studies (Bräuning and Fecht 2012; Bräuning and Koopman 2020;
Giraitis et al. 2012; Linardi et al. 2020; Mazzarisi et al. 2019) on pairwise dynamic interbank
connectedness mostly focus on the underlying mechanisms determining the likelihood of
trading with methods such as regression, dynamic latent space model and dynamic factor
model. These methods are all statistical-based models with underlying model assumptions.
In addition, most of them cooperate with central banks, and data are not accessible for
noncentral banks. In addition, complex estimation strategies are applied in these models
and special approaches are needed to achieve accurate estimation.

In this paper, we aim to contribute a better understanding of the dynamic of financial
interbank networks by applying a deep learning approach to weekly network snapshots in
an electronic interbank trading platform called the e-MID market. A detailed explanation
of the e-MID market is provided in Section 4. The primary goal of this study is to accurately
forecast interbank future lending relationships by proposing a deep learning forecasting
model. Two baseline predictive models are also built in this study for comparison with our
proposed model. The key contributions of this study are:

• Inspired by Chen et al. (2021), the model is proposed to combine the advantages of the
Graph convolutional network (GCN), which obtains valuable information and learns
the internal representations of the network snapshots, with the benefits of the Long
short-term memory model (LSTM), which is effective at identifying and modeling
short and long-term temporal relationships embedded in the sequence of data.

• To handle the network sparsity and the fact that we care more about the existing
links than nonexisting links; we design a loss function that adds a penalty to nonexist-
ing links.

• On test data, the proposed model is assessed and compared with two traditional
statistical baseline models using the metrics Area Under the ROC Curve (AUC) and
Precision–Recall Curve (PRAUC). They are the Discrete autoregressive model and
Dynamic latent space model. The findings indicate that our proposed model beats the
two models in predicting future links in both precrisis and crisis periods for the top
100 Italian trading dataset and European core countries dataset.

The remaining sections of this manuscript are as follows: Section 2 discusses the
key literature that is related to our study, Section 3 studies the methods and model struc-
ture, Section 4 shows the main results with different performance metrics and Section 5
summarizes the study and makes a conclusion.

2. Literature Review

This section aims to build the linkage between systemic risk and why we assume
that a dynamic link prediction problem is beneficial in better understanding the contagion
process. To achieve the goal, two streams of literature are related to the article. The first
stream is related to financial contagion and the second stream is related to the methods of
understanding dynamic interbank connectedness.

2.1. Financial Contagion

Financial contagion has been widely studied in the past years. Additionally, contagion
can take place through a multitude of channels, such as banks run, direct effect such as
interbank lending and indirect effect (Upper 2011). To narrow down the scope of the study,
we focus on one particular channel, namely direct effects due to losses on interbank loan
exposures. Seminal theoretical work by Allen and Gale (2000) provides a starting point
for studying a general equilibrium approach to financial market contagion and systemic
risk. Together with the work by Freixas et al. (2000), they provide a key insight that the
possibility for contagion depends on the structure of the interbank market. Additionally,
they both reach a similar conclusion that diversified and completely connected networks
are more stable. However, the assumption of a complete network with full risk sharing is
not valid in the real world, and the network structures are too simplistic to be sure that
the intuitions generated generalize to real-world financial systems. Therefore, researchers
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study contagion through the simulation process. Using tools of network analysis, the
authors found different patterns that make the network prone to contagion. Elliott et al.
(2014) found that integration and diversification have different, nonmonotonic effects on the
extent of cascades. By using simulated network models, Nier et al. (2007) demonstrates that
an increase in connectivity does not necessarily lead to a reduction in systemic risk. Capital
and contagion have a negative relationship, suggesting that regulators might prevent
contagion with greater capital requirements. Depending on the structure of the network,
the shock size has varying effects on a system. Simulations show financial networks have
a “robust-yet-fragile tendency”: though the chance of contagion is low, the effects of a
problem can be substantial (Gai and Kapadia 2010). Leventides et al. (2019) conclude that
heterogeneity in bank sizes and interbank exposures play a significant role in the stability
of the financial system since they enhance the system’s ability to absorb shocks. In addition,
the degree of interconnectedness of the system has a significant impact on its resilience,
particularly in case of smaller and highly interconnected interbank networks.

With the factors that affect the contagion in interbank network stated above, Denbee
et al. (2021) argued that banks have different strategies when they observe liquidity surplus
among neighbors, despite similar interbank connectedness structures. In this regard,
rather than knowing overall interbank connectivity, knowing pairwise future interbank
connectivity reduces the risk of funding liquidity shortages by smoothing out temporary
liquidity shortages. A dynamic interbank network link prediction model could help
understand pairwise future interbank connectivity. In a contagion cascade model, instead
of capturing the impact of the hypothetical shock in a static network, we could use the
proposed dynamic network link prediction model to predict the network structure of the
interbank market to capture some dynamic effects resulting from changing initial conditions
which build the relationship between the dynamic link prediction model and financial
contagion process.

2.2. Interconnectedness Network Models

With the network models focusing on understanding interbank network formation
and interconnectedness, there are two streams of literature we would like to refer to. The
first stream is the static network model, and the second stream is the dynamic network
model. We start with some potential problems that arise from modeling the interbank
network from a static perspective. We then discuss different streams of network modeling
literature from static to dynamic extension. To determine the financial stability of the
financial network, a simplification of the financial network as static may be helpful in some
situations, but understanding the dynamic nature of the financial interbank network is
essential. From the perspective of financial contagion, if a bank defaults on its obligations,
it is removed from the network. To adapt to this situation, it is likely that debtors of
defaulting banks replace their relationships with defaulting banks with relationships with
nondefaulting banks. If these dynamics are not considered when estimating systemic risks,
the estimates are biased and misleading. The goal of a model should therefore be to be
able to forecast the dynamics of a financial network after an event, whether it is a default
of a bank or a liquidity shock. In addition, it is crucial that we understand the reasons
for the formation of financial links (Linardi et al. 2020). Based on these ideas, statistical
models with underlying model assumptions dominate the literature. When we consider
capturing the dynamics of the network, this stream of literature aims at describing how
network topology evolves through time and the prediction of links. This field of literature
is mainly concerned with the estimation of a temporally evolving adjacency matrix that
encodes the network structure. The first stream is related to the wide range of latent space
models. The latent space model was first introduced by Hoff et al. (2002), and underlying
assumptions of the model come from the social network where the log odds ratio of a link
between two nodes depends on the “distance” between their latent position. Sarkar and
Moore (2005) extend the model to a dynamic version that allows the latent positions to
change over time in Gaussian-distributed random steps. Sewell and Chen (2015) propose
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a Markov chain Monte Carlo (MCMC) algorithm to estimate the model parameters and
latent positions of the actors in the network. Another variation is proposed by Durante and
Dunson (2016); the authors propose a model in which the position of each actor evolves
via stochastic differential equations. This paper develops an efficient MCMC algorithm
for posterior inference as well as tractable procedures for updating and forecasting future
networks based on a state–space representation of these stochastic processes. Sarkar et al.
(2012) also propose a link prediction method based on the “distance” idea. For each pair
of a link between any two nodes, the probability of trading is related to pairwise feature
information and information in the local neighborhood. Kernel regression is adopted for the
nonparametric link prediction problem. Though there are different variations of the latent
space model, none of them have been applied to financial interbank networks. Linardi et al.
(2020) is the first one that adapts the dynamic latent space model to the interbank network,
where the likelihood of trading between any two banks is determined by observation
equation, including proximity in observable bank characteristics as regressors and latent
regressors that are governed by a state transition equation to track the banks’ states.

Another stream of literature is related to time-series prediction. The Discrete au-
toregressive model proposed in Jacobs and Lewis (1978) assumes that the value of a link
between bank i and bank j is determined by past value and the ability to create new links.
Zhou et al. (2010) develop a nonparametric method for estimating time-varying graphi-
cal structure for multivariate Gaussian distributions using an L1 regularization method.
Giraitis et al. (2012) propose a dynamic Tobit-type model that could be used to estimate the
gross daily loans between each bank pair, and then the results are aggregated across all
bank pairs. To accommodate the high dimensionality of the problem, the authors construct
a small number of lagged explanatory variables that can capture previous bilateral lending
relationships between a pair of banks as well as their overall activity on the money market.
The authors propose a novel kernel-based local likelihood estimation of Tobit models with
deterministic or stochastic time-varying coefficients. Betancourt et al. (2017) develop a
multinomial logistic regression model for link prediction in a time series of directed binary
networks that is the financial trading network in the NYMEX natural gas futures market.
To deal with the high-dimensionality problem, the authors introduce fused lasso regression
by imposing an L1 penalty on model parameters. The Bayesian inference method based on
multinomial likelihood is a data augmentation method based on the Pólya–Gamma latent
variables proposed by Polson et al. (2013).

3. Materials and Methods

In this section, we introduce the proposed model used to predict the evolution of the
dynamic interbank network. We start with the dynamic link prediction problem definition
and then introduce the two components of the model that help capture spatio-temporal
information and the overall structure of the model. We finally introduce the model training
step with optimizer and loss function.

3.1. Problem Definition

Suppose the dynamic network is defined as a series of graph snapshots called
G = {G1, G2, . . . , GT}. Additionally, a graph snapshot at the specific time t is Gt =
{V, Et, At}, where V is defined as the nodes set, Et is the edge set and At is the adjacency
matrix at time t. We define the adjacency matrix At as a binary matrix where Ai,j,t = 1
means that there exists a relationship from bank i to bank j, and Ai,j,t = 0 means that there
is no trading from bank i to bank j at time t.

To capture the information of a network, we should capture both the node and edge
features. The adjacency matrix is a good candidate for this purpose as it could express the
relationship between every pair of nodes. Therefore, given a series of adjacency matrices
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from previous l time steps {At−l , . . . , At−1} as inputs, the goal of the problem is to predict
the adjacency matrix at time t, therefore we could formulate the problem as:

Ât = f (At−l , . . . , At−1) (1)

where f is the model we describe in this section and Ât is the prediction result. Additionally,
l is the window size that we utilize the data.

3.2. GC–LSTM Framework

The purposed model has two important components, which are the Convolutional
graph network and the Long short-term memory model. These two components are
introduced to capture spatial–temporal information, where the Graph convolutional net-
work obtains valuable information and learns the internal representations of the network
snapshots and the Long short-term memory model identifies and models short and long-
term temporal relationships embedded in the sequence of data. Therefore, we call our
proposed model a GC–LSTM model. In the following subsections, we carefully describe
the two components and then propose the framework and workflow of the proposed
GC–LSTM model.

3.2.1. Graph Convolutional Network

The key idea of the Graph convolutional network (GCN) is introduced in Kipf and
Welling (2017). We adopt the Graph convolutional network to obtain a good network
representation that expresses the network topology from adjacency matrix At based on
previous research. An essential function of a graph convolution layer is to extract localized
features in a graph structure. The richness of information depends on how much we
could utilize the neighborhood-based features from the graph. An illustration of K-hop
neighborhood is shown in Figure 1. We define a graph convolutional operator that could
utilize K-hop neighborhood information as ˆGCNK. The K-hop neighborhood is the set of
nodes at a distance less than or equal to K from a certain node. As a special variant, if we
only utilize the one-hop information, the product of the adjacency matrix A, the input X and
a trainable weight matrix W may be considered as a graph convolution operation to extract
features from a one-hop neighborhood. The function for GCNK(At, X) could be defined
as ∑K

k=0 θkTk( ˆLt−1)X, where θk is the weight for graph convolution, Tk is the Chebyshev
polynomial, which is defined as Tk(x) = 2xTk−1(x)− Tk−2(x), T1(x) = x and T0(x) = 1.

ˆLt−1 = 2
λmax

Lt − IN and Lt = IN − D−
1
2

t AtD
− 1

2
t is the normalized graph Laplacian. λmax

denotes the largest eigenvalue of Lt. IN is the identity matrix and Dt is the degree matrix.
Figure 1 shows the areas that we could utilize information, the larger the K value, the more
information of the network connection could be utilized.
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Figure 1. K-hop neighborhood. The blue node is the source node, the area that covers the yellow
nodes is the 1-hop neighborhood, the area that covers the yellow and green nodes are the 2-hop
neighbors, and the area that covers the yellow, green and red nodes is the 3-hop neighborhood.

3.2.2. Long Short-Term Memory

Long short-term memory (LSTM) networks are a kind of recurrent neural network
(RNN) that is a good candidate for data represented as a sequence, such as time-series and
text information (shown in Gers et al. 2000; Hochreiter and Schmidhuber 1997). Learning
from large and complex datasets where we can detect the underlying patterns reveals the
full potential of LSTM models. Though like most deep learning approaches LSTM-based
RNNs have the disadvantage that they are difficult to interpret and to gain an intuition for
their behavior, contrary to the AutoRegressive Integrated Moving Average model (ARIMA),
LSTM does not rely on assumptions about the data, such as time-series stationarity. The core
concept of the LSTM model is the cell state st that carries relevant information throughout
the processing of the sequence, and three different gates that add or remove information
from the cell state. At each time step t, the output hidden state ht is updated by the previous
hidden state ht−1 and the input through the gate mechanism inside the LSTM layer. There
are three gates, each has its purpose:

1. Forget Gate: The forget gate decides what information should be kept or removed
from the cell state.

2. Input gate: The input gate decides what information should be added to the cell state.
3. Output gate: The output gate decides what the next hidden state should be.

With the help of the gate functions, we update the cell state and hidden state in each
time step. The workflow of LSTM is shown in Figure 2.

3.2.3. GC–LSTM Model

With the two main components (GCN and LSTM) stated above, in this subsection, we
describe the workflow of the GC–LSTM algorithm. Instead of simply stacking the GCN unit
and LSTM sequentially, the model embeds the GCN unit into the LSTM cell to better inte-
grate structural information. To make the description more clear, the main aforementioned
notations are summarized in Table 1 to formulate the dynamic link forecasting problem.
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Figure 2. Architecture of Long short-term memory model. The notations of the graph are shown
as follows. ft, it, ot are the forget gate, input gate and output gate. Ct is the cell state, C̃t is the
new candidate values, xt is the input at time t and ht is the hidden state. × is the pointwise
multiplication operation, + is the addition operation, σ is the sigmoid function and tanh is the
hyperbolic tangent function.

Table 1. Notations used in the GC–LSTM framework.

Notation Description

At
the adjacency matrix of the interbank network

snapshot at time t
l the window size for prediction
N the number of banks (nodes) in the network

d the number of hidden layers in the GC–LSTM
model

Tk Chebyshev polynomial function
Ât the output probability matrix at time t

b f , bc, bi, bo the bias terms in gate function
W f

z , Wc
z , Wi

z, Wo
z the weight terms in gate function

GCNK the graph convolutional operation
λi,j penalty parameter in Equation (9)

We describe the hidden state updating process carefully with equations step by step
below. Firstly, the model decides what information should be kept or removed from the
previous cell state performed by the forget gate ft ∈ [0, 1]. In Equation (2), the graph
convolution unit for the forget gate GCNK

f utilizing K-hop neighborhood information and

current input information At ∈ RN×N is passed through the sigmoid function, which scales
the value from zero to one. Zero means that the information is completely forgotten and
one means completely remembered.

ft = σ(AtW
f

z + GCNK
f (At−1, ht−1) + b f ) (2)

where At ∈ RN×N is the adjacency matrix input at time t and ht−1 ∈ RN×d. W f
z ∈ RN×d

and b f ∈ Rd are the weight and bias term for calculating the forget gate. The next step is to
decide what information should be added to the cell state ct ∈ [−1, 1]. Two operations are
included in the adding process. The first one is described in Equation (3), the past hidden
state ht−1 and current input information At are passed through the sigmoid function,
which scales the value from zero to one. One means the information is important and zero
means the information is not important. This is the function for the input gate it ∈ [0, 1].
Additionally, the second step is described in Equation (4), which is the candidate’s new
value for the cell state. Finally, we use the information of forget gate ft and input gate it as
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well as the candidate value ct to update the cell state st shown in Equation (5). The forget
gate information decides the amount of information to be removed from the previous cell
state st−1 and the pointwise multiplication of it and ct determines what information should
to added to the new cell state.

it = σ(AtWi
z + GCNK

i (At−1, ht−1) + bi) (3)

ct = tanh(AtWc
z + GCNK

c (At−1, ht−1) + bc) (4)

st = ft � GCNK
s (At−1, st−1) + it � ct (5)

where Wi
z, Wc

z ∈ RN×d and bi, bc ∈ Rd . The function � represents the Hadamard product.
it, ct and st are the input gate, new candidates for call state and cell state.

Finally, we calculate the output gate ot and the hidden state ht. Firstly, the graph
convolution on past hidden state ht−1 and current input information At are passed through
the sigmoid function. Then, we multiply the tanh output of the modified cell state with the
sigmoid output to decide what information the hidden state should carry.

ot = σ(AtWo
z + GCNK

o (At−1, ht−1) + bo) (6)

ht = ot � tanh(st) (7)

3.2.4. Decoder Model

In order to output the prediction matrix, we adopt a fully connected layer to transform
the output hidden state ht to obtain the one-step ahead prediction Ât.

Ât = σ(Whht−1 + b) (8)

where Wh ∈ Rd×N and b ∈ RN are the weight and bias term for the fully connected layer.
Ât ∈ [0, 1]N×N is the output prediction probability matrix. A higher probability value
means that it is more likely to have a relationship at time t.

3.3. Loss Function and Model Training

With the GC–LSTM framework stated above, we need to design a specific loss function
and optimizer to train the model. To improve the accuracy of the dynamic link prediction,
we would like to design the output probability matrix as close as to the adjacency matrix
at time t. A L2 norm distance could be used in the regression prediction problem by
measuring the distance between the prediction probability value and the truth. However,
simply using the L2 distance could not address two problems in the interbank network
data. Firstly, as the contagion of systemic risk spreads through existing links, existing links
are more important in interbank topology. Secondly, the network snapshots are sparse
with a density of less than 10% for daily or weekly activity, which means that there are
much more zero elements than nonzero elements. To address the two related problems,
the loss function should focus more on the existing links than on nonexisting links in back
propagation. Under this assumption, we design a loss function as follows:

Loss =
N

∑
i

N

∑
j
(ai,j,t − ˆai,j,t) ∗ λi,j (9)

where ai,j,t is the element in adjacency matrix At and ˆai,j,t is the element in the output
probability matrix Ât. For each training process, we give a lower λi,j value for the existing
links and a higher λi,j value for those nonexisting links. We call Λ = {λi,j}N×N , i, j =
1 · · ·N as the penalty matrix and exert more penalty on nonzero elements. To avoid
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overfitting, we also employ a regularization term Lreg that is calculated by the sum of
squares of the weights in GC–LSTM models. Therefore, the total loss function is defined as:

Losstotal = Loss + βLossreg (10)

where β is the trade-off parameter between the two loss functions. To minimize the total
loss Losstotal , we adopt the Adam optimizer in this model.

4. Experiments and Results

In this section, the proposed GC–LSTM model is evaluated on a well-known electronic
interbank trading platform called e-MID. We also introduce two baseline models that could
be compared with link predictions. Since deep learning types of models are sensitive to
parameter tuning, we test the parameter sensitivity and choose the best parameters to train
the e-MID dataset. The performance of the link prediction results is evaluated by two
metrics AUC and PRAUC.

4.1. e-MID Dataset

The real dataset we adopt is the e-MID interbank market dataset which is the only
electronic market for interbank deposits in the Euro area. It was founded in Italy in 1990
and dominated in Euros in 1999. e-MID is the reference marketplace for money market
liquidity: according to the “Euro Money Market Study 2006” published by the European
Central Bank in February 2007, e-MID accounts for 17% of total turnover in the unsecured
money market in the Euro Area (Cassola et al. 2010). Since most of the trading happens in
Italy, we chose the top 100 Italian banks from 2005 to 2007 in the e-MID interbank market
as our data input. In addition, we want our network density to be reasonably high (greater
than 0.05), and we aggregate the daily transaction data into a weekly adjacency matrix. If
Ai,j,t equals 1, it means that bank i lends to bank j at week t, otherwise there is no trading
between them at week t. With the weekly aggregated adjacency matrix as our input, we
apply the model to the representative e-MID interbank trading market and understand
whether the GC–LSTM model could successfully predict the future interbank trading links
compared with the baseline models.

Since most of the trading happens inside Italy, the descriptive statistics are calculated
with the top 100 banks trading in Italy. With a weekly aggregated period, we compute
various measures of interconnectedness by utilizing the e-MID trading data. Before we
introduce the results, we start with the definition of different interconnectedness metrics:

1. Degree: The degree of the network is defined as the number of connections as a
proportion of all possible links inside the network (Boss et al. 2004). A low value of
the degree might indicate a low level of liquidity in the e-MID interbank market.

2. Clustering coefficient: The clustering coefficient is a measure of how closely nodes
in a network cluster together (Soramäki et al. 2007).

3. Centrality: In this part, we introduce three kinds of centrality, which are degree,
betweenness, and Eigen centrality. For the degree centrality, it is defined as the
number of links incident upon a node (Temizsoy et al. 2017). Since only the node’s
immediate ties are considered when calculating degree centrality, it is a local centrality
measure. For between centrality, which is introduced by Freeman (1978), it is defined
as the number of times a node functions as a bridge along the shortest path between
two other nodes, since it focuses on a node’s distance from all other nodes in the
network and is a measure of global centrality in this sense. The last centrality measure
we introduce is Eigen centrality (Negre et al. 2018). Eigen centrality calculates a node’s
centrality based on its neighbors’ centrality, which is a measure of the influence of a
node in a network. The score of the Eigen centrality of a bank is between 0 to 1, where
higher values indicate more essential banks for interconnection.

4. Largest strongest connected component: A strongly connected component is the
portion of a directed graph where each vertex has a route to another vertex. The
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fraction of banks connected to other banks via directed edges on the network scaled by
the total number of banks in the network is defined as the largest strongest connected
component of the graph. If the value of the largest strongest connected component is
close to 1, it means that the network is highly connected, and if the value is close to
zero, the network is much more fragmented.

In Table 2, we show a summary of interconnected statistics for both precrisis and the
beginning of the crisis period. With the definition stated above and the null hypothesis
that the mean of the underlying statistics between precrisis and crisis is the same, we find
that all the statistics in the crisis period are statistically lower than the precrisis period.
This means that the crisis diminished the interconnectedness between banks in the e-MID
trading networks. Therefore ,when we implement the link prediction task, we test both the
precrisis period and crisis period and check the performance of both statistical models and
the deep learning model in these two periods.

Table 2. Summary statistics of weekly aggregated e-MID interbank network in top 100 Italian banks.
The average degree in each network is referred to as Degree. The clustering coefficient is denoted as
the Clustering coefficient. The three different centrality measures are degree centrality, betweenness
centrality and Eigen centrality. Additionally, the fraction of nodes in the largest strongly connected
component is the largest strongest connected component. The significance levels of 10% (*), 5% (**)
and 1% (***) are used to assess the mean difference between the crisis and the precrisis period with
the t-test.

Time Period Interconnectedness Statistics Mean Standard Deviation

All data results

Degree 0.0670 0.0090

Clustering coefficient 0.1157 0.0296

Betweenness centrality 0.0045 0.0024

Eigen centrality 0.0506 0.0039

Degree centrality 0.1340 0.0180

Largest strongest connected component 0.1892 0.1241

Precrisis

Degree 0.0682 0.0081

Clustering coefficient 0.1207 0.0269

Betweenness centrality 0.0048 0.0023

Eigen centrality 0.0508 0.039

Degree centrality 0.1365 0.0162

Largest strongest connected component 0.2006 0.1229

Crisis

Degree 0.0621 *** 0.0058

Clustering coefficient 0.0888 *** 0.0248

Betweenness centrality 0.0025 *** 0.0015

Eigen centrality 0.0491 * 0.0036

Degree centrality 0.1242 *** 0.0115

Largest strongest connected component 0.1267 ** 0.1085

4.2. Baseline Methods

To validate the effectiveness of the proposed GC–LSTM model, we compare it with
two baseline models. Other than static network modeling that can be applied to describe
relevant characteristics of a network in a variety of ways, there are two streams of dynamic
network modeling approaches. Both of them are related to traditional statistical models.
The first stream is related to the wide range of latent space models and the second stream
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is related to the time-series model. For each stream, we choose a typical method as our
baseline model. A more detailed introduction of the interbank dynamic link prediction
models is described in the Literature Review section. In particular, the two baseline models
are introduced as follows:

• Dynamic latent space model: Dynamic latent space model is a model based on the
distance idea in social networks (Hoff et al. 2002). The model assumes that the
link probability between any two nodes depends on the distance between the latent
position of the two nodes. A dynamic latent space model is proposed by Sewell and
Chen (2015) and is used on the interbank network model by Linardi et al. (2020).

• Discrete autoregressive model: To avoid systemic risk, the information of the coun-
terparty plays an important role to decide who to trade with. The past trading
relationship, which is also seen as link persistence, is documented in the paper
Papadopoulos and Kleineberg (2019). The relationship is defined as preferential
trading and allows banks to ensure liquidity risk in the presence of market frictions
such as information and transaction cost (Cocco et al. 2009; Giraitis et al. 2012). Based
on the preferential trading theory, the link formation strategy of the Discrete autore-
gressive model (Jacobs and Lewis 1978) is that the value of a link between bank i and
bank j at time t is determined by past value at time t− 1 and the ability to create new
links. Therefore, the model could be described as follow:

Ai,j,t = θi.j,t ∗ Ai,j,t−1 + (1− θi,j,t)Xi,j,t

where θi,j,t ∼ B(αi,j) and Xi,j,t ∼ B(χi,j). B(.) indicates Bernoulli distribution. The
link formation strategy of the Discrete autoregressive model is that the value of a link
between bank i and bank j at time t is determined by past value at time t− 1 and the
ability to create new links.

4.3. Evaluation Metrics

In this study, the performance of the proposed model and compared models are
evaluated by commonly used metrics in dynamic link prediction. The Area Under the
ROC Curve (AUC) is a commonly used metric to measure the performance of a dynamic
link prediction. If the AUC value of the predictor is close to 1, then it is considered more
informative. To handle the sparsity problem, the Area Under the Precision-Recall Curve
(PRAUC) developed from AUC is designed to deal with the sparsity of networks.

4.4. Parameter Sensitivity

To train the GC–LSTM model, for each epoch, we feed l historical interbank network
snapshots (At−l , . . . , At−1) to predict At. In the setting, the number of banks (nodes) is
N = 100, and the number of the hidden layer of the GC–LSTM model is d = 12. The weight
decay parameter of the Adam optimizer is 1× 10−5 and the learning rate is 0.01. Other
than parameter settings, the performance of the GC–LSTM model depends on the number
of K-hop neighborhoods we used in the GCN unit, the window size l and the penalty λi,j
we use in the loss function:

1. The penalty λ index: As exiting links are much more important than the nonexisting
links, we add a penalty to the nonexisting links with a different λi,j from 1 to 4.
Additionally, we set the λi,j value for the existing links to be 1. If the penalty value
is the same for both the existing links and nonexisting links, then we treat the two
kinds of links with no difference. The results shown in Figure 3 indicate that a larger
penalty could lead to slightly larger AUC and PRAUC. This suggests we choose a
higher penalty score for nonexisting links in the following model parameter settings.

2. The window size l: In most cases, a larger historical interbank network snapshots
input might improve the performance in link prediction. In our case, we use a range
of window sizes from 5 to 20 with a regular interval of 5, and the results for both AUC
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and PRAUC follow a similar pattern. By choosing the window size to be 10, we could
achieve both the highest AUC and PRAUC. The results are shown in Figure 4.

3. The K-hop neighborhood: The K-hop neighborhood idea comes from social network
analysis. The larger the size of K, the more information a node utilizes from its
neighborhood. In our interbank network, a larger K does not help in link prediction. It
means that if a bank i trades with another bank j, even if bank j has a close relationship
to bank z, bank i will not preferentially trade with bank z. The results are shown in
Figure 5.

(a) AUC score (b) PRAUC score

Figure 3. The evaluation metrics with different penalty scores. In (a,b), we use the window size
l = 10 and 1-hop neighborhood GCN units. We set the penalty from 1 to 4, and the performance of
AUC and PRAUC scores are shown in (a,b).

(a) AUC score (b) PRAUC score

Figure 4. The evaluation metrics with different historical time periods. In (a,b), we use the penalty
value equal to 4 and 1-hop neighborhood GCN units. We set the window size from 5 to 20, and the
performance of AUC and PRAUC scores are shown in (a,b).

(a) AUC score (b) PRAUC score

Figure 5. The evaluation metrics with different K values. In (a,b), we use the window size l = 10 and
the penalty value for nonexisting links are 4. We set the K-hop neighborhood for the GCN units from
1 to 4, and the performance of AUC and PRAUC scores are shown in (a,b).
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4.5. Link Prediction

With the parameter tuning in the previous section, the model setting is as follows. To
train the GC–LSTM model, we feed l historical interbank network snapshots (At−l , . . . , At−1)
to predict At and use the estimated parameters we obtain from the training process to
feed into the network snapshots (At, . . . , At+l−1) to obtain the one-step prediction for At+l .
With aggregated weekly data from 2005 to 2007, we have 156 weekly adjacency matrices.
Since 2005, we trained and tested the performance on a rolling window basis. In addition,
we set l = 10, and the number of the hidden layers of the GC–LSTM model is d = 12. The
weight decay parameter of the Adam optimizer is 1× 10−5 and the learning rate is 0.01.
We utilize 1-hop neighborhood information, and the penalty value λ is 4. With the model
setting stated above, we apply the GC–LSTM model to the top 100 Italian banks and the 36
core European country banks to check the robustness of the model prediction performance.
We use the evaluation metrics to check how statistical and deep learning models perform
for precrisis and crisis periods. According to Brunetti et al. (2019), the definition of the
crisis time starting point is in August 2007. We separate the dataset into two parts and the
results are shown in Tables 3 and 4 for the top 100 Italian banks and Tables 5 and 6 for core
country banks. For both the AUC and PRAUC values, we find that the GC–LSTM model
significantly achieves a higher value by using a t-test that measures the difference between
the arithmetic means of two samples. The results also indicate that the dynamic latent
space model tends to obtain more False positives, and the Discrete autoregressive model
tends to obtain more False negatives. The GC–LSTM model is much more balanced than
the two baseline models. It achieves a similar False negative but achieves a much lower
False positive compared with the Dynamic latent space model. Compared with the Discrete
autoregressive model, though it achieves a slightly larger number of False positives, it
achieves a smaller number of False negatives and achieves a better AUC and PRAUC.
Moreover, we find that, unlike the traditional models that perform worse in the crisis
period, the GC–LSTM model performs better in the crisis period, which means that the
deep learning model without underlying model assumptions better captures the structure
change and achieves better results.

Table 3. AUC score for three models in the top 100 Italian banks. The significance level of 1% (***) is
used to assess the mean difference between the benchmark models (DAR or Latent space model) and
the GC–LSTM model with the t-test.

Time Period Methods Mean AUC Standard Deviation

All data results
DAR 0.695 *** 0.036

Latent Space Model 0.777 *** 0.023

GC–LSTM 0.895 0.016

Precrisis
DAR 0.703 *** 0.034

Latent Space Model 0.784 *** 0.018

GC–LSTM 0.893 0.016

Crisis
DAR 0.660 *** 0.018

Latent Space Model 0.746 *** 0.019

GC–LSTM 0.905 0.013
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Table 4. PRAUC score for three models in the top 100 Italian banks. The significance level of 1% (***)
is used to assess the mean difference between the benchmark models (DAR or Latent space model)
and the GC–LSTM model with the t-test.

Time Period Methods Mean PRAUC Standard Deviation

All data results
DAR 0.390 *** 0.054

Latent Space Model 0.152 *** 0.021

GC–LSTM 0.431 0.038

Precrisis
DAR 0.401 *** 0.049

Latent Space Model 0.158 *** 0.017

GC–LSTM 0.432 0.038

Crisis
DAR 0.349 *** 0.032

Latent Space Model 0.125 *** 0.017

GC–LSTM 0.426 0.035

Table 5. AUC score for three models in the core country banks. The significance level of 1% (***) is
used to assess the mean difference between the benchmark models (DAR or Latent space model) and
the GC–LSTM model with the t-test.

Time Period Methods Mean AUC Standard Deviation

All data results
DAR 0.666 *** 0.051

Latent Space Model 0.717 *** 0.095

GC–LSTM 0.782 0.054

Precrisis
DAR 0.670 *** 0.048

Latent Space Model 0.709 *** 0.039

GC–LSTM 0.779 0.056

Crisis
DAR 0.650 *** 0.057

Latent Space Model 0.753 *** 0.025

GC–LSTM 0.795 0.042

Table 6. PRAUC score for three models in the core country banks. The significance level of 1% (***) is
used to assess the mean difference between the crisis and the precrisis period with the t-test.

Time Period Methods Mean PRAUC Standard Deviation

All data results
DAR 0.175 *** 0.040

Latent Space Model 0.094 *** 0.023

GC–LSTM 0.275 0.074

Precrisis
DAR 0.177 *** 0.042

Latent Space Model 0.092 *** 0.024

GC–LSTM 0.432 0.075

Crisis
DAR 0.170 *** 0.030

Latent Space Model 0.105 *** 0.013

GC–LSTM 0.426 0.065
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5. Conclusions

In this study, we propose a new deep learning dynamic network link prediction model
called GC–LSTM. The entire GC–LSTM model consists of LSTM and GCN, where LSTM is
used to learn the temporal characteristics from continuous snapshots, while GCN is used
to learn the structural characteristics of the snapshot at each moment. A fully connected
layer network is used as a decoder to convert the extracted spatio-temporal features back
to the original space that represents the final prediction probability matrix.

To solve the network sparsity problem, we introduce a special loss function with a dif-
ferent penalty for existing and nonexisting links. Finally, we conducted many experiments
to compare our GC–LSTM model with the traditional dynamic interbank network model
on the e-MID interbank network dataset. The results validate that our model outperforms
the others in terms of AUC and PRAUC. Meanwhile, we also compare the results for crisis
and precrisis periods for both top 100 Italy banks and core Europe countries’ banks; we
find that the deep learning model is better than the traditional model in both crisis time
and precrisis periods. In addition, the GC–LSTM model is better at predicting future links
in the crisis period than the traditional statistical models, which indicates that the model
without statistical underlying assumptions is better at capturing structure change.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
Allen, Franklin, and Douglas Gale. 2000. Financial contagion. Journal of Political Economy 108: 1–33. [CrossRef]
Betancourt, Brenda, Abel Rodríguez, and Naomi Boyd. 2017. Bayesian fused lasso regression for dynamic binary networks. Journal of

Computational and Graphical Statistics 26: 840–50. [CrossRef]
Boss, Michael, Helmut Elsinger, Martin Summer, and Stefan Thurner 4. 2004. Network topology of the interbank market. Quantitative

Finance 4: 677–84. [CrossRef]
Bräuning, Falk, and Falko Fecht. 2012. Relationship Lending and Peer Monitoring: Evidence from Interbank Payment Data. Working

Paper. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2020171 (accessed on 13 March 2012).
Bräuning, Falk, and Siem Jan Koopman. 2020. The dynamic factor network model with an application to international trade. Journal of

Econometrics 216: 494–515. [CrossRef]
Brunetti, Celso, Jeffrey H. Harris, Shawn Mankad, and George Michailidis. 2019. Interconnectedness in the interbank market. Journal

of Financial Economics 133: 520–38. [CrossRef]
Cassola, Nuno, Cornelia Holthausen, and Marco Lo Duca. 2010. The 2007/2009 turmoil: A challenge for the integration of the euro

area money market. Paper presented at ECB Workshop on Challenges to Monetary Policy Implementation beyond the Financial
Market Turbulence, Frankfurt am Main, Germany, November 30–December 1.

Chen, Jinyin, Xueke Wang, and Xuanheng Xu. 2021. Gc-lstm: Graph convolution embedded lstm for dynamic network link prediction.
Applied Intelligence 52: 7513–28. [CrossRef]

Cocco, Joao F., Francisco J. Gomes, and Nuno C. Martins. 2009. Lending relationships in the interbank market. Journal of Financial
Intermediation 18: 24–48. [CrossRef]

Denbee, Edward, Christian Julliard, Ye Li, and Kathy Yuan. 2021. Network risk and key players: A structural analysis of interbank
liquidity. Journal of Financial Economics 141: 831–59. [CrossRef]

Durante, Daniele, and David B. Dunson. 2016. Locally adaptive dynamic networks. The Annals of Applied Statistics 10: 2203–32.
[CrossRef]

Elliott, Matthew, Benjamin Golub, and Matthew O. Jackson. 2014. Financial networks and contagion. American Economic Review 104:
3115–53. [CrossRef]

Freeman, Linton C. 1978. Centrality in social networks conceptual clarification. Social Networks 1: 215–39. [CrossRef]
Freixas, Xavier, Bruno M. Parigi, and Jean-Charles Rochet. 2000. Systemic risk, interbank relations, and liquidity provision by the

central bank. Journal of Money, Credit and Banking 32: 611–38. [CrossRef]
Gai, Prasanna, Andrew Haldane, and Sujit Kapadia. 2011. Complexity, concentration and contagion. Journal of Monetary Economics 58:

453–70. [CrossRef]

http://doi.org/10.1086/262109
http://dx.doi.org/10.1080/10618600.2017.1341323
http://dx.doi.org/10.1080/14697680400020325
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2020171
http://dx.doi.org/10.1016/j.jeconom.2019.10.007
http://dx.doi.org/10.1016/j.jfineco.2019.02.006
http://dx.doi.org/10.1007/s10489-021-02518-9
http://dx.doi.org/10.1016/j.jfi.2008.06.003
http://dx.doi.org/10.1016/j.jfineco.2021.05.010
http://dx.doi.org/10.1214/16-AOAS971
http://dx.doi.org/10.1257/aer.104.10.3115
http://dx.doi.org/10.1016/0378-8733(78)90021-7
http://dx.doi.org/10.2307/2601198
http://dx.doi.org/10.1016/j.jmoneco.2011.05.005


Int. J. Financial Stud. 2022, 10, 54 16 of 16

Gai, Prasanna, and Sujit Kapadia. 2010. Contagion in financial networks. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 466: 2401–23. [CrossRef]

Gers, Felix A., Jürgen Schmidhuber, and Fred Cummins. 2000. Learning to forget: Continual prediction with lstm. Neural
Computation 12: 2451–71. [CrossRef]

Giraitis, Liudas, George Kapetanios, Anne Wetherilt, and Filip Žikeš. 2012. Estimating the dynamics and persistence of financial
networks, with an application to the sterling money market. Journal of Applied Econometrics 31: 58–84. [CrossRef]

Hatzopoulos, Vasilis, Giulia Iori, Rosario N. Mantegna, Salvatore Micciche, and Michele Tumminello. 2015. Quantifying preferential
trading in the e-mid interbank market. Quantitative Finance 15: 693–710. [CrossRef]

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9: 1735–80. [CrossRef]
Hoff, Peter D., Adrian E. Raftery, and Mark S. Handcock. 2002. Latent space approaches to social network analysis. Journal of the

American Statistical Association 97: 1090–98. [CrossRef]
Jacobs, Patricia A., and Peter A. W. Lewis. 1978. Discrete time series generated by mixtures. I: Correlational and runs properties.

Journal of the Royal Statistical Society: Series B (Methodological) 40: 94–105. [CrossRef]
Kipf, Thomas N., and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. arXiv, arXiv:1609.02907.
Leventides, John, Kalliopi Loukaki, and Vassilios G. Papavassiliou. 2019. Simulating financial contagion dynamics in random interbank

networks. Journal of Economic Behavior & Organization 158: 500–25.
Linardi, Fernando, Cees Diks, Marco van der Leij, and Iuri Lazier. 2020. Dynamic interbank network analysis using latent space

models. Journal of Economic Dynamics and Control 112: 103792. [CrossRef]
Mazzarisi, Piero, Paolo Barucca, Fabrizio Lillo, and Daniele Tantari. 2019. A dynamic network model with persistent links and

node-specific latent variables, with an application to the interbank market. European Journal of Operational Research 281: 50–65.
[CrossRef]

Negre, Christian F. A., Uriel N. Morzan, Heidi P. Hendrickson, Rhitankar Pal, George P. Lisi, J. Patrick Loria, Ivan Rivalta, Junming Ho,
and Victor S. Batista. 2018. Eigenvector centrality for characterization of protein allosteric pathways. Proceedings of the National
Academy of Sciences USA 115: E12201–E12208. [CrossRef]

Nier, Erlend, Jing Yang, Tanju Yorulmazer, and Amadeo Alentorn. 2007. Network models and financial stability. Journal of Economic
Dynamics and Control 31: 2033–60. [CrossRef]

Papadopoulos, Fragkiskos, and Kaj-Kolja Kleineberg. 2019. Link persistence and conditional distances in multiplex networks. Physical
Review 99: 012322. [CrossRef]

Polson, Nicholas G., James G. Scott, and Jesse Windle. 2013. Bayesian inference for logistic models using pólya–gamma latent variables.
Journal of the American statistical Association 108: 1339–49. [CrossRef]

Sarkar, Purnamrita, and Andrew Moore. 2005. Dynamic social network analysis using latent space models. Advances in Neural
Information Processing Systems 18: 1145. [CrossRef]

Sarkar, Purnamrita, Deepayan Chakrabarti, and Michael Jordan. 2012. Nonparametric link prediction in dynamic networks. arXiv,
arXiv:1206.6394.

Sewell, Daniel K., and Yuguo Chen. 2015. Latent space models for dynamic networks. Journal of the American Statistical Association 110:
1646–57. [CrossRef]

Soramäki, Kimmo, Morten L. Bech, Jeffrey Arnold, Robert J. Glass, and Walter E. Beyeler. 2007. The topology of interbank payment
flows. Physica A: Statistical Mechanics and Its Applications 379: 317–33. [CrossRef]

Temizsoy, Asena, Giulia Iori, and Gabriel Montes-Rojas. 2017. Network centrality and funding rates in the e-mid interbank market.
Journal of Financial Stability 33: 346–65. [CrossRef]

Upper, Christian. 2011. Simulation methods to assess the danger of contagion in interbank markets. Journal of Financial Stability 7:
111–25. [CrossRef]

Zhou, Shuheng, John Lafferty, and Larry Wasserman. 2010. Time varying undirected graphs. Machine Learning 80: 295–319. [CrossRef]

http://dx.doi.org/10.1098/rspa.2009.0410
http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1002/jae.2457
http://dx.doi.org/10.1080/14697688.2014.969889
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1198/016214502388618906
http://dx.doi.org/10.1111/j.2517-6161.1978.tb01653.x
http://dx.doi.org/10.1016/j.jedc.2019.103792
http://dx.doi.org/10.1016/j.ejor.2019.07.024
http://dx.doi.org/10.1073/pnas.1810452115
http://dx.doi.org/10.1016/j.jedc.2007.01.014
http://dx.doi.org/10.1103/PhysRevE.99.012322
http://dx.doi.org/10.1080/01621459.2013.829001
http://dx.doi.org/10.1145/1117454.1117459
http://dx.doi.org/10.1080/01621459.2014.988214
http://dx.doi.org/10.1016/j.physa.2006.11.093
http://dx.doi.org/10.1016/j.jfs.2016.11.003
http://dx.doi.org/10.1016/j.jfs.2010.12.001
http://dx.doi.org/10.1007/s10994-010-5180-0

	Introduction
	Literature Review
	Financial Contagion
	Interconnectedness Network Models

	Materials and Methods 
	Problem Definition
	GC–LSTM Framework
	Graph Convolutional Network
	Long Short-Term Memory
	GC–LSTM Model
	Decoder Model

	Loss Function and Model Training

	Experiments and Results 
	e-MID Dataset
	Baseline Methods
	Evaluation Metrics
	Parameter Sensitivity
	Link Prediction

	Conclusions 
	References

