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Abstract: This study aims to overcome the problem of dimensionality, accurate estimation, and
forecasting Value-at-Risk (VaR) and Expected Shortfall (ES) uncertainty intervals in high frequency
data. A Bayesian bootstrapping and backtest density forecasts, which are based on a weighted
threshold and quantile of a continuously ranked probability score, are developed. Developed
backtesting procedures revealed that an estimated Seasonal autoregressive integrated moving average-
generalized autoregressive score-generalized extreme value distribution (SARIMA–GAS–GEVD) with
a skewed student-t distribution had the best prediction performance in forecasting and bootstrapping
VaR and ES. Extension of this non-stationary distribution in literature is quite complicated since
it requires specifications not only on how the usual Bayesian parameters change over time but
also those with bulk distribution components. This implies that the combination of a stochastic
econometric model with extreme value theory (EVT) procedures provides a robust basis necessary
for the statistical backtesting and bootstrapping density predictions for VaR and ES.

Keywords: expected shortfall; generalized autoregressive score; extreme value theory; generalized
extreme value distribution; stock returns; time-varying; value-at-risk

JEL Classification: C10; C40; C59; E44

1. Introduction

In financial markets, risk refers to the probability distribution of future returns. Un-
certainty is a broader concept that encompasses ambiguity about the parameters of this
probability distribution Babatunde et al. (2020). There are various types of measures seek-
ing to estimate risk and uncertainty: (1) realized and derivatives-implied distributions
of returns across assets, (2) news-based measures of policy and political uncertainty, (3)
survey-based indicators, (4) econometric measures, and (5) ambiguity indices. The benefits
for macro trading are threefold. First, uncertainty measures provide a basis for comparing
the market’s assessment of risk with private information and research. Second, changes in
uncertainty indicators often predict near-term flows in and out of risky asset classes. Third,
the level of public and market uncertainty is indicative of risk premia offered across asset
classes. However, daily return periods involves planning under uncertainty and one has
to cope with operational, tactical, and strategic planning. Planning under uncertainty in
stock markets involves determining the appropriate location of a stock market, the size
of the stock market, transmission, and distribution (returns flow analysis, analysis of the
frequency, and occurrence of extreme losses and scheduling of risk factors). Uncertainties
in forecasting extreme daily losses may arise due to increased technology making use of
financial fraud in online systems, resulting in stock market crash, population growth, and
general randomness in the individual participant in stock market, prevailing economic
instability and political conditions Sigauke et al. (2014).

To model and predict uncertainties, Mieth et al. (2020) and Zoglat et al. (2013) have
indicated that modeling and prediction procedures should be probabilistic because uncer-
tainties are robustly modeled or predicted as quantiles, prediction intervals, or density
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forecasts, and an asymptotic theory is always applied, while at the same time obscure quan-
tiles are being supplanted by estimated probabilistic quantiles. Probabilistic forecasting of
financial uncertainty and risk promotes the management of financial use and planning. The
use of VaR and or ES is a measure that aims at lowering risk effects such as that of credit
risk, exchange rate risk, and interest rate risk—to mention a few that harm the economic
and financial sector. This also gives a positive impact on market values that are associated
with the use of other portfolios such as an aggressive portfolio. Short-term forecasting has
a superior impact on the safety and financial implication of the financial network. Since
the financial sector has a stochastic and uncontrollable nature, the current study uses sea-
sonal autoregressive integrated moving average (SARIMA) combined with a time-varying
generalized autoregressive score—generalized extreme value distribution (GAS—GEVD).
Application of the SARIMA process requires the computation of independently and identi-
cally distributed (i.i.d) residuals and the key element that deeply influences the forecasting
results. Hence, it is critical to focus on coming up with a more accurate model. A study
by Chandiwana et al. (2021) used a Gaussian process regression coupled with core vector
regression for short-term hourly global horizontal irradiance forecasting with uncertainty.
On the other hand, Rigotti and Shannon (2005) considered a general equilibrium model
in which the distinction between uncertainty and risk is formalized by assuming that
agents have incomplete preferences over state-contingent consumption. However, the
current study considers a more robust methodology in modeling uncertainty and Beutner
et al. (2020) and Rocco (2014) defined this method as a bootstrap to probability forecasting.
These authors emphasized that there are different bootstrap procedures that have been
studied and are based only on generalized autoregressive conditional heteroscedasticity
(GARCH) estimates. Therefore, this study extends the GARCH bootstrap estimates to a
SARIMA–GAS–GEVD VaR and ES estimates, and currently, no other study has taken this
approach. Bootstrapping of VaR and ES with the combined SARIMA-GAS-GEVD estimates
give precise and accurate extreme return periods uncertainty.

Since the number of recent contributions related to forecasting and backtesting ES and
VaR is extremely large, the main contribution of this study is the estimation and forecasting
of VaR and ES intervals through the use of SARIMA–GAS–GEVD. Nonetheless, Le (2020)
used mixed data sampling (MIDAS) framework to forecast VaR and ES. The new methods
of this author exploit the serial dependence on short-horizon returns to directly forecast
the tail dynamics of the desired horizon. However, the approach of SARIMA–GAS–GEVD
in this study takes into consideration real-time system forecasting and this improves the
accuracy of the forecasts. This enables one to easily identify changes in the immediate,
especially when dealing with economic conditions that are constantly evolving. This is
an aspect that is ignored by most researchers when forecasting stock markets indices.
To the best of our knowledge, this is the first application of SARIMA–GAS–GEVD with
Bayesian methods. This study has adopted the Bayesian approach to estimation because it
captures uncertainty as compared to the maximum likelihood estimation (MLE) and also the
framework upon which the forecasting is done, is based on Bayesian assumptions, unlike
the study of Taylor (2019), which uses the MLE approach to forecasting VaR and ES through
a semi-parametric approach. Bayesian estimation makes use of either informative or non-
informative priors and it is more attractive than the frequentist MLE technique since it
combines prior information to data, allows analysis with small samples, and the forecasting
is robust. Moreover, the Bayesian analysis does not depend on asymptotic estimation and
it follows the likelihood principle that involves applying a subset of the selected data on
the two selected probability models basing on whether they have the same likelihood
outcome, producing the same assumptions. The other contribution is the development of
threshold and quantile weighted scoring rules to compare the density forecasts of extreme
time-varying VaR and ES. Gneiting and Ranjan (2012), typically compared the density
forecast through the GARCH model, which currently this improves the GARCH process to
the special case for extreme time-varying through the implementation of the GAS-GEVD
process. The comparison typically uses a proper scoring rule in order to avoid misguided
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inferences, and it comes with associated statistical tools that are used to diagnose strengths
and weaknesses of a forecasting method. In this case, a test of equal forecast performance
is retained and it is based on an appropriate weighted, but proper versions, of a continuous
ranked probability score (CRPS). The last contribution is that of a fixed-design residual
bootstrap algorithm, tail risk (TR), and dynamic quantile (DQ) backtesting. Siegl and
West (2001) used a Monte-Carlo (MC) method while calculating VaR. The approach of
these authors is set into resampling towards bootstrapping and this was to refine the
computational results in different ways. However, the approach of fixed design bootstraps
performs equally well in terms of average coverage, yet leads on average to shorter intervals
in smaller samples as compared to recursive bootstrap through the MC procedures.

The sections that follow are arranged as follows: in Section 1.1, a review of relevant
literature on this study is presented. In Section 2, methods and procedures followed in the
study. This includes the proposed hybrid time-varying model, cross validation, backtesting,
and density forecasting of VaR and ES. In Section 3, empirical results are presented while
Section 4 concludes the paper.

1.1. Literature Review

Time-varying parameters were firstly introduced in the GAS framework by
Creal et al. 2013. When modeling time-varying parameters of stock returns, Eckernkem-
per (2018) examined a time-varying tail dependence and forecast expected shortfall by
modeling a systemic risk. The results of this author indicates a leptokurtic behavior of
stock returns. Bernardi and Catania (2019) assesses the co-movement between assets of
European countries. These authors allow copular parameters to depend on the realization
of the first order Markov process in a Generalized Autoregressive score dynamic of Harvey
(2013) by developing regime shifts, and at the same time retaining an appropriate arbitrary
specification for the marginals of a conditional distribution dynamics. This empirical
investigation of Bernardi shows that their proposed switching GAS models are able to
explain and predict the systemic risk contribution of several European countries. These
authors also found that their models outperform others when using several VaR backtesting
procedures.

On the other hand, Babatunde et al. (2020) investigates the volatility of exchange
rates in Nigeria and the authors uses the United States (U.S) dollar, Pound Sterling, and
Euro against the Naira. Variants of the GAS model are applied by these authors and
studies exchange rate volatility by assuming three different probability distributions. Util-
ising Akaike information criterion (AIC) and Bayesian information criterion (BIC), the
GAS model with a t distribution (GAS–T), exponential GAS with t distribution (EGAS–T)
and exponential GAS with student-t distribution (EGAS–ST) are being selected for US
dollar/Naira, Pound sterling/Naira, and Euro/Naira exchange rates as the best fitted
models. Based on mean absolute error (MAE) and root mean square error (RMSE), the
GAS-T, EGAS-T, and EGAS-SKT respectively are selected for forecasting the volatility of
US dollar/Naira, Pound sterling/Naira, and Euro/Naira exchange rates. With the current
study, a skewed student distribution of SARIMA–GAS–GEVD is applied to FTSE/JSE-ALSI.
Moreover, Kamika (2019) uses different statistical techniques to estimate unconditional and
conditional risk measures. The former is computed using three traditional value-at-risk
procedures, namely the Historical Simulation (HS), Variance-Covariance (VC), and Monte
Carlo simulation (MCS). This author solved unrealistic assumption, which is regularly used
in empirical studies1 through the GAS framework. The assumption is relaxed, and a score
of an empirical distribution is set to evolve over time. Tafakori et al. (2018) proposes a class
observation-driven time series model referred to as an asymmetric exponential generalized
autoregressive score (AEGAS) model in order to evaluate the accuracy of VaR forecasts
for Australian electricity returns. The mechanism to update the parameters over time is
provided by a scaled score of a likelihood function of the proposed model. Based on this
new approach, the results provided a unified and consistent framework for introducing
time-varying parameters in a wide class of non-linear models.
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Le (2020) develops a mixing data sampling (MIDAS) framework for forecasting VaR
and ES. The methods of this author exploit the serial dependence on short-horizon returns,
to directly forecast the tail dynamics of the desired horizon. A comprehensive comparison
and backtest is performed. The MIDAS-based models significantly outperform the tradi-
tional GARCH-based forecasts and the alternative conditional quantile specifications of
multi-day forecast horizons. The analysis of Le (2020) advocates asymmetric conditional
quantiles and the use of asymmetric Laplace density to jointly estimate value-at-risk and
expected shortfall. Additionally, Lazar and Xue (2019) used a new framework for a joint
estimation and forecasting the dynamics of VaR and ES. The authors incorporated an
intra-day information into a GAS model in order to estimate the risk measures in a quantile
regression set-up. Four intra-day measures, which are realized volatility at 5-min and
10-min sampling frequencies, were considered. Furthermore, an overnight return was
also incorporated into these two realized volatilities. In a forecasting study, a set of newly
developed semi-parametric models are applied to four international stock market indices
(S&P 500, Dow Jones Industrial Average, Nikkei 225, and FTSE 100) which are further
compared with a range of parametric, non-parametric, and semi-parametric models. The
procedure included historical simulations, the GARCH, and the original GAS models. The
backtesting procedure for both VaR and ES was individually established and, the joint loss
function was used for comparisons. Their results showed that the enhanced GAS models
with realized volatility measures outperform the benchmark models consistently across all
indices and various probability levels.

In a study of dynamic semi-parametric models for expected shortfall and Value-at-
Risk, Patton et al. (2019) used recent results from statistical decision theory to overcome the
problem of “elicitability” for ES by jointly modeling ES and VaR; and further develops a
new dynamic model for these risk measures. The authors provided an estimation and infer-
ence methods for established models. Simulation studies were used to confirm that the new
dynamic model have good finite-sample properties. Applying these models to daily returns,
on four international equity indices, the results of Patton et al. (2019) indicated that the new
ES–VaR model outperform forecasts that are based on GARCH or rolling window models.
Christoffersen and Gonçalves (2005) looked at different quantile estimators and develops
some intervals for the conditional VaR by utilizing a recursive-design residual bootstrap ap-
proach. On that note, Hartz et al. (2006) presumed an advanced distribution to be a standard
normal with an end goal that a quantile parameter is known. These authors further propose
a resampling procedure that is dependent on a residual bootstrap and a bias-correction step
to represent deviations from the assumption of normality. Interestingly, Spierdijk (2016)
fosters the m-out-of-n without-replacement bootstrap to develop confidence intervals for
autoregressive-moving average-generalized autoregressive-conditional-heteroscedasticity
(ARMA-GARCH) VaR. However, this study develops a Bayesian approach to bootstrap-
ping the Seasonal Autoregressive Integrated Moving Average-Generalized autoregressive
score-Generalized extreme value distribution.

The literature on forecasting and backtesting of risk measures largely assumes that
the appropriate data are used. However, Frésard et al. (2011), using information from the
annual reports of the 200 largest US and international commercial banks, document that a
large fraction of them boost the performances of their models artificially by polluting their
returns with extraneous profits such as intra-day revenues, fees, commissions, net interest
income, and revenues from market making or underwriting activities. They find that
over the period of 2005–2008, fewer than 6% of the largest commercial banks in the world
evaluated their VaR models using the appropriate uncontaminated data. They also show
that all of the available backtesting procedures are highly sensitive to data contamination.
For example, using the “traffic light” approach developed by the Basel Committee, 23.5%
of the VaR models are rejected when tested with uncontaminated data, whereas only 10.8%
are rejected when tested with returns that include both fees and intra-day trading revenues.
Therefore, data contamination has dramatic implications for model validation and can
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lead to the acceptance of misspecified VaR models, and therefore significantly reduced the
regulatory capital.

2. Methodology

Let rt be stock returns at time t, Bee and Trapin (2018) showed that rt can be modeled by

rt = µt + εt (1)

where µt is the time-varying mean; εt is the error term that can be modeled by

εt = νtσt. (2)

In model (2), σt is the time-varying dynamic, while νt is the i.i.d residuals from
model (1). The proposed SARIMA model has the following multiplicative form

Φ(L)ΦS

(
LS
)
(−L)Drt = Θ(L)ΘS

(
LS
)

et (3)

where et ∼ i.i.d
(

µ = 0, σ2
t = 1

)
, S is the seasonal length while L is the lag operator. A

multiplicative representation of the SARIMA model allows no common factors between the
polynomials of seasonal autoregressive (SAR) and seasonal moving average (SMA) and the
SAR polynomials acquaints with the characteristic a SARMA model. Moreover, the SMA
term adhere to remove serial correlation in the returns. The next step is to fit a time-varying
GAS–GEVD to these i.i.d residuals obtained from model (3). The GAS–GEVD is presented
in a manner that the mapping function shows how extreme time-varying parameters can
be modeled in a restricted parameter space. Therefore, Creal et al. (2013) specified the GAS
model by first letting Yt ∈ <N to be the N-dimensional random vector at time t where the
conditional distribution of model (3) is given by

rt | r1,t−1 ∼ Pr(rt; θ) (4)

where r1,t−1 ≡
(

rT
1 , . . . , rT

t−1

)T
holds the past values of rt and a vector of time-varying

parameters is given by θt ∈ Θ ⊆ <J . The fruition in this vector is the main feature of a GAS
model and it is driven by the score of a conditional distribution defined in model (3). A
completed description of the GAS in model (3) is given by

θt+1 ≡ α + φνt + ϕθt. (5)

Note that θ, φ and ϕ in model (5) are the coefficient matrices. A vector that is propor-
tional to a score of model (5) is as follows

δt ∈ ϑt(θt)5t (Yt, θt). (6)

Here, ϑt = J × J scaling matrix that is known at time t;5t(Yt, θt) ≡
∂ ln Pr(Yt, θt)

∂θt
is

the score of model (6) that is appraised at θt. In order to account for the variance of5t, a
scaling matrix is set to the power γ > 0 and according to Ardia et al. (2019), this simplifies
to ϑt(θt) ≡ ϕt(θt)

−γ where γ is fixed at γ ⊂ {0, 0.5, 1} and gives

ϑt(θt) ≡ ϕt Et−1b5t(Yt, θt)5t (Yt, θt)
Tc. (7)

Finally, the generalized extreme value distribution according to Masingi and Maposa
(2021) and Gagaza et al. (2019) is given by
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Gξ = exp

−
[

1 + ξ

(
x− µt

σt

)]−1
ξt

. (8)

This distribution is valid for
{

x : µ− σ
ξ < x < ∞

}
where µ, σ and ξ are the location,

scale, and shape parameters. The GEVD uses a block minima or block maxima approach to
model the extreme losses or gains. This procedure with respect to Nemukula (2018) usually
sets the block size to one year and from each block; the extreme losses or gains are selected.
Additionally, Maposa et al. (2016) showed that at period t, rt ∼ GEVD

(
µ(t), σ, ξ

)
while

Taylor (2019) emphasized that for the linear variation of a location parameter; model (8)
should have the intercept as µ0 and a slope as µ1 which can also be expressed as µ(t) + µt

1
and further indicates the rate of change in daily losses or gains.

2.1. Bayesian Inferences to Parameter Estimates

In the Bayesian methodology, all obscure quantiles are considered as irregular factors
and vulnerabilities over those quantiles that are addressed utilizing the likelihood contin-
gent of the accessible data. When estimating any parameter using classical/frequentist
methods, the sampling distribution of a parameter is most likely assumed to be normal
or Gaussian. This methodology is very unrefined in the sense that in real situations the
sampling distributions of parameters can deviate from normality. With Bayesian analysis,
reasonable approximations to the sampling distribution are thought of; and their inferences
are arrived at utilizing non-exclusive procedures and observed data. The fundamental stan-
dard behind Bayesian statistics is as follows. Some prior thoughts regarding any parameter
or data set can neither be acquired from prolonged, some detailed observations, nor by
comparing them with similar conditions Ghosh et al. (2007).

The Bayesian approach also allows for an additional source of variation, which implies
that the parameters now have probability distributions with hyper-parameters giving small
standard errors. This is achieved through the naive standard errors, which are computed
by dividing the actual standard deviation by the number of iterations just as Maposa
(2016) has suggested. Furthermore, Droumaguet (2012) also emphasized that Bayesian
methods provide densities of the model parameters, which solves the problem of confidence
interval, and finally Bayesian shrinkage techniques allow models to be estimated with
higher dimensions and these would have complex shapes of the likelihood function and
be more difficult to estimate with classical algorithms. Sigauke et al. (2012) declared that
ambiguity about the parameters is very minimal.

The Likelihood Function

For both frequentist (maximum likelihood) and Bayesian estimations, the likelihood
function that follows a skewed distribution of the vector ξ, is given by L

(
ξ | Y

)
. The

likelihood function of the n-th sample for rt is then given by

L
(
ξ | Y

)
= σ−n f (ξ) exp

(
−S(ξ)

2σ2

)
(9)

where Y is a vector of n observations, S(ξ) = ∑n
t=−∞

[
εt | Y, ξ

]2 and f (ξ) are the functions
of ξ that are computed based on the inverse of a covariance matrix of rt denoted by
n× n. To ease the complexity of computing f (ξ), the history of observed data and the
errors are incorporated. The observations for this study are (rt−1, rt−2, . . . rt−2644) and
(εt−1, · · · εt−2643) respectively. The n variate skewed distribution of the SARIMA–GAS
process is represented by

∏
(
rt−1, . . . rn | ξ

)
= ∏

(
rt−1 | r2, . . . rn, |

)
∏
(
rt−2 | r3, . . . rn, |

)
· · ·∏

(
rn | ξ

)
. (10)
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The moving average part in model (3) is as follows

et = εtΘtεt (11)

and the observations are assumed to follow skewed density as

Zξ ≡ f (x) =

 ξ−1
(

σξ Z + µξ

)
if Z ≥ −µξ/σξ

ξ
(

σξ Z + µξ

)
if Z < −µξ /σξ

(12)

which is simplified to

fξ ≡
2σξ

ξ + ξ − 1
f1

(
Zξ

)
. (13)

The mean vector µξ ≡ M1

(
ξ + ξ−1

)
, σξ ≡

(
1−M2

1

)
+ 2M2

1 − 1 and M1 ≡ 2
∫ ∞

0 udu.
The parameter that describes a degree of asymmetry ranges between 0 < ξ < ∞ and f1(•)
is a symmetric density with mean zero and unit variance. Hence, the likelihood function of
the SARIMA–GAS is finally given by

L
(

µ, ∑ | r1,2,...,n

)
= (2π)−n/2

∣∣∣∑∣∣∣−n/2
exp

{
−1

2

n

∑
t=1

(
rt − µt

)T∑−1(rt − µt
)}

. (14)

Applying SARIMA–GAS to model (14) and considering a simplified ∑n×n as
τ = σ2 + Θ1σ2, this leads to model (15) as

L
(
µ, τ | r1,2,...,n

)
= (2πτ)−n/2 exp

(
−1

2
τ−1

n

∑
t=1

(
rt − µt

)2
)

(15)

that is further simplified to expression (16) through partial differentiation

L
(

φ1, Θ1, σ2 | r1,2,...,n

)
∝ σ−n

(
1 + Θ2

1

)−n/2
exp

{
− 1

2 σ−2
(

1 + Θ2
1

)−1(
A + φ1B + φ2

1C
)}

. (16)

Here, A = ∑n
t=1(rt − rt−2644)

2, B = −2 ∑n
t=1(rt − rt−2644)(rt−1 − rt−2645) and

C = (rt−1 − rt−2645)
2. For the priors, there are some restrictions on the range of φ1, Θ1.

The invertibility region of the model, which is required by a condition that the roots of(
1− φ1B

)
= 0 should lie outside the unit circle. This is defined by − < φ1 < 1 and to

ensure stationarity, this condition |Θ1| < 1 is required. The considered priors for φ1,and Θ1
are of a uniform distribution at the range of −1−−1. Note that φ1 = 1/2 and Θ1 = 1/2.
The non-informative prior for σ2, is

∏
(

σ2 ∝
1
2

)
(17)

and the posterior is given by

∏
(

φ1, Θ1σ2 | r1,2,...,n

)
∝ ∏

(
φ1
)
∏(Θ1)∏

(
σ2
)

L
(

φ1, Θ1σ2 | r1,2,...,n

)
. (18)

When integrating the marginal (posterior) distribution that is denoted by[
∏
(
σ | Y

)
, ∏
(
Θ1 | Y

)
, ∏
(
φ | Y

)]
; all unknown parameters are found and in order to get

the marginal distribution for each unknown parameters, the other two unknowns are
integrated out. So, to find the marginal distribution of the three unknown parameters;
integration(s) (19)–(21) are performed as follows

∏
(
φ1 | Y

)
∝
∫ 1
−1

∫ ∞
0 σ−n−2

(
1 + Θ2

1

)−n/2
exp

{
−1/2σ−2(1 + Θ1)

−1
(

A + φ1B + φ2
1C
)}

dσdΘ1 (19)
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∏
(
Θ1 | Y

)
∝
∫ ∞

0

∫ 1
−1 σ−n−2

(
1 + Θ2

1

)−n/2
exp

{
−1/2σ−2(1 + Θ1)

−1
(

A + φ1B + φ2
1C
)}

dφ1dσ2 (20)

∏
(

σ2 | Y
)

∝
∫ 1
−1

∫ 1
−1 σ−n−2

(
1 + Θ2

1

)−n/2
exp

{
−1/2σ−2(1 + Θ1)

−1
(

A + φ1B + φ2
1C
)}

dφ1dΘ1. (21)

From the posterior distribution, a predictive distribution is obtained through

∏
(
rn+1 | r1, . . . , rn

)
=
∫

L
(
ξ | r1,2,...,n

)
∏
(
ξ | r1,2,...,n

)
dξ, (22)

and for the generalised extreme value distribution, a parameter vector θ =
(
µ, σ, ξ

)
and its

Bayes estimates are given by

f
(
θi | x

)
=

f (θi) f
(
x | θi

)
f (x)

=
f (θi) f

(
x | θi

)
∑j f

(
θj

)
f
(

x | θj

) (23)

and

f
(
θ | x

)
=

f (θ) f
(
x | θ

)
f (x)

=
(θ) f

(
x | θ

)∫
f (θ) f

(
x | θ

)
dθ

(24)

where f (θ), f
(
θ | x

)
, f
(

x | θ
)

and f (x) are the prior, posterior, likelihood, and normalization
constant respectively. In addition to that, Vidal (2014) have indicated that a posterior
information is a combined sum of prior and sample information. With these computations,
model (24) is further modified to

p
(
θ | x

)
=

p(θ)× p
(
x | θ

)
p(x)

=
p(θ)× p

(
x | θ

)∫
Φ p(θ)× p

(
x | θ

)
dθ

∝ p(θ)× p
(
x | θ

)
, (25)

where θ is the vector parameters of the generalized extreme value distribution, p
(
θ | x

)
is

the posterior distribution, x is a vector of observations ; Φ is the space parameter, p(θ) is
the prior distribution, and p

(
x | θ

)
is the likelihood function of the GEVD.

The 100(1− α)% Bayesian credible set C (or in particular credible interval) is a subset
of the space parameter Φ such that

∫
Φ p
(
θ | x

)
dθ = 1− α. The quantile-based credible

interval is such that if θ∗L is α
2 ; a posterior quantile for θ and θ∗U is 1− α

2 while
(
θ∗L, θ∗U

)
is the

100(1− α)% credible interval for θ.

2.2. Value-at-Risk and Expected Shortfall

Having obtained estimators for ξ, σ and µ the conditional VaR and ES for a one-period
ahead are estimated at α level. Employing the proposed SARIMA(p,d,q)(P,D,Q)–GAS(p)–
GEVD, the conditional VaR according to Anjum and Malik (2020) and Bernard et al. (2017)
is estimated as

V̂aRα,n =

 µ̂− σ̂
ξ̂

{
1− [−n ln(1− α)]−ξ̂

}
if ξ̂ 6= 0;

µ̂− σ ln(1− α) if ξ̂ = 0.
(26)

n is the length of the sub-period, µ̂, σ̂ and ξ̂ are Bayesian parameter estimates.
Expected shortfall considers a loss beyond Value-at-Risk level and is shown to be

sub-additive, while VaR disregards a loss beyond the percentile and is not sub-additive.
The measure ESα is related to VaRα in such a way that

ESα = VaRα +E
[
rt −VaRα | rt > VaRα

]
. (27)

The second term in model (27) is the mean excess distribution FVaRα over threshold
of VaRα.



Int. J. Financial Stud. 2022, 10, 10 9 of 23

2.3. Cross-Validation on Prediction and Uncertainty Problems

There is a peculiarity between test error rate and the training error rate. The former
is defined by Gareth et al. (2013) as the average error that results for the use of statistical
learning procedure that predicts the response on a new observation. For a performance of
the proposed hybrid model, some frequent metrics like accuracy and error rate, are not used
but; the following five classification metrics are used. These are Precision, recall, F1-score,
Matthews correlation coefficient (MCC), and balanced classification rate (BCR). The extreme
financial loss is considered as a positive class and legal as negative class; hence, TP (true
positive) and TN (true negative) are the number of losses that are correctly classified, and
FP (false positive) and FN (false negative) are the numbers of losses incorrectly classified.

Precission =
TP

TP + FP
(28)

Recall =
TP

TP + FN
(29)

F1− score =
2
(

precission× recall
)

precission + Recall
(30)

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)× (TN + FN)× (FP + TN)× (TP + FN)
. (31)

Lastly, the Balanced classification rate combines the specificity and sensitivity metrics
as follows

BCR =
1
2

(
TP

TP + FN
+

TN
FP + TN

)
(32)

2.4. Fixed-Design Residual Bootstrap

A fixed-design residual bootstrap procedure, described in Algorithm 1, is used to
approximate the distribution of a conditional value-at-risk and expected shortfall.

Remark 1. The term ’fixed-design’ refers to the fact that bootstrap observations are generated
with σ̃t

(
θ̂n

)
= σ

(
εt−1, . . . , ε1, ε̃0, ε̃−1, . . . , θ̂n

)
. In contrast, the recursive design duplicates the

dynamic structure of the model; i.e ε∗t = σ∗t η∗t with σ∗t = σ
(

ε∗t−1, . . . , ε∗1, ε̃0, ε̃−1, . . . , θ̂n

)
and

η∗t ∼ i.i.dF̂n which is computationally more demanding. For a complete description on recursive-
design residual bootstrap, the reader is refereed to Appendix B of Beutner et al. (2020).

2.5. Backtesting Value-at-Risk and Expected Shortfall Forecasts

Once a series of VaR predictions is available, forecasts adequacy is assessed through
backtesting procedures. VaR backtesting procedures usually check the correct coverage
of the unconditional and conditional left-tail of the log-returns distribution. Correct un-
conditional coverage (UC) was first considered by Kupiec (1995), while correct conditional
coverage (CC) by Christoffersen (1998). The main difference between UC and CC concerns
the distribution that one focuses onto. For instance, UC considers correct coverage of the
left-tail of the unconditional log-return distribution f (rt) while CC deals with the condi-
tional density f (rt | Tt−1). From an inferential perspective, UC looks at the ratio between
the number of realized VaR violations observed from the data and the expected number
of VaR violations implied by the chosen risk level, α, during the forecast period, that is,
αH. In order to investigate CC, Christoffersen (1998) proposed a test on the series of VaR
exceedance {dt, t = s, . . . , s + H} where dt =≡ {rt < VaRtα} or dt =≡ {rt < EStα}, usu-
ally referred to as the hitting series. Specifically, if correct conditional coverage is achieved
by the model, VaR exceedances should be independently distributed over time. For more
readings on backtesting VaR and ES, the reader is referred to Bayer and Dimitriadis (2020).
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Furthermore, Escanciano and Olmo (2010) show that the use of standard unconditional
and independence backtesting procedures can be misleading, because they do not take into
account the uncertainty associated with parameter estimation. They quantify this risk in
a very general class of dynamic parametric VaR models and propose a correction of the
standard backtests that takes it into account. They show that one of the main determinants
of the corrected asymptotic variance is the forecasting scheme used to generate the VaR fore-
casts, i.e., whether one uses recursive, rolling, or fixed parameter estimates. The backtesting
methodologies described above focus only on the number of VaR and ES exceptions, and
totally disregard their magnitudes. Nieto and Ruiz (2016) criticizes the statistics proposed
by Christoffersen (1998) because they are two-tailed, and, as a consequence, can reject a
risk model for being over conservative. However, note that, as was mentioned above, risk
models can also be rejected for being over conservative because this is not desirable for
financial institutions. Alternatively, the tail risk statistic is proposed and is defined as

TR = − 1
T

T

∑
i=1

(Rt − α)I(Rt − α). (33)

Algorithm 1: Fixed-design Residual Bootstrap

for t = 1, . . . , n do
generate η∗t ∼ i.i.dF̂n and the bootstrap observation

ε∗t = σ̃t

(
θ̂n

)
η∗t .

end
Compute the bootstrap estimator as

θ̂∗n = arg max
θ∈Θ

L∗n(θ)

where a function for the bootstrap criterion is given by L∗n(θ) =
1
n ∑n

t=1 `
∗
t (θ) and

`∗t (θ) = − 1
2

(
ε∗t

σ̃t(θ)

)2
− log σ̃t(θ).

for t = 1, . . . , n do
compute the following bootstrap residual
η̂∗t =

ε∗t
σ̃t(θ̂∗n)

end
return

ξ̂∗n,α = arg min
Z∈<

1
n

n

∑
t=1

ρα
(
η∗t − Z

)
.

Procedure Obtain the Bayesian bootstrap estimators of the conditional VaR and ES as

VaR∗α =
1
nI

s

∑
i=1

nI
ni

∑
j=1

VaRα

(
l | Ωt

)

ES∗α =
1
nI

s

∑
i=1

nI
ni

∑
j=1

E
[
rt(`) | rt(`) < VaRα

(
l | Ωt

)]
.

The TR statistic in model (33) tells risk managers the size of the aggregate tail losses
that a portfolio may incur over the period considered. The asymptotic distribution of the
TR statistic is derived under the assumption of normal returns.

The DQ test by Engle and Manganelli (2004) assesses the joint hypothesis that
E[dt] = α and the hit variables are independently distributed. The implementation of
the test involves the de-meaned process Hitα

t ≡ dt − α. Under correct model specification,
unconditionally and conditionally, Hitα

t has zero mean and is serially uncorrelated. The DQ
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test is then the traditional Wald test of the joint nullity of all coefficients in the following
linear regressions

Hitα
t =

{
δ0 + ∑L

t=1 δ1Hitα
t−1 + δL+1VaRt−1(α) + εt

δ0 + ∑L
t=1 δ1Hitα

t−1 + δL+1ESt−1(α) + εt.
(34)

Under the null hypothesis of correct unconditional and conditional coverage, we
have that the Wald test statistic is asymptotically chi-square distributed with L + 2 de-
grees of freedom. Engle and Manganelli (2004) set L = 4 lags, which has become the
standard choice.

2.6. Density Forecasts Using Threshold and Quantile-Weighted Scoring Rules for VaR and ES

For the density forecasts of the conditional VaR and ES, the study considers density
forecasts in a time series context, in which a rolling window consisting of the past b
observations is used to fit a density forecast for a future observation that lies at k time
steps ahead. Distinctively, let W1, . . . , WT be a stochastic process that can be divided
into Wt = (Xt, rt) where Xt is the vector of predictors and rt is the variable of interest
and in the case of this study is the return series on FTSE/JSE-ALSI. Let T = m + n; at
time t = m, . . . , m + n− k the density forecast f̂t+k and ĝt+k are generated and they all
rely of Wt−m+1, . . . , Wt. In this context, the only requirement for creating a forecast is
that the forecast is a measurable function of the data in the rolling estimation window.
Coroneo and Iacone (2020) insisted that the ideal predictor should be preferred by rational
users, regardless of the cost-loss structure. Therefore, it is vital to set the evaluation rule
within the following sense

E f S
(

f , Y
)
=
∫

f
(
y
)
S
(

f , d
)
dy (35)

for all density function f and g. The scoring rule is strictly proper if model (35) holds; if and
only if f = g. Additionally, the density forecast procedures are then ranked by comparing
their average scores hence,

S− f
n =

1
n− k + 1

m+k−
∑

t=m
S
(

f̂t+k, yt+k

)
(36)

and

S−g
n =

1
n− k + 1

m+k−
∑

t=m
S
(

ĝt+k, yt+k
)
, (37)

where f is preferred if S− f
n < S−g

n and prefer g otherwise. Amisano and Giacomini (2007)
considered tests of equal forecast performance based on the test statistic

tn =
√

n
S− f

n − S−g
n

σ̂n
, (38)

where

σ̂2
n =

1
n− k + 1

k−1

∑
j=−(k−1)

m+n−k|j|

∑
t=m

4t,k4t+|j|,k (39)

and4t,k = S
(

f̂t+k, yt+k

)
− S

(
ĝt+k, yt+k

)
as proposed by Coroneo and Iacone (2020). What

scoring rule should be considered? Amisano and Giacomini (2007) employed model (40) as
the weighted logarithmic scoring rule

S
(

f , y
)
= w

(
y− µ

σ

)
S0
(

f , y
)

(40)
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where w is a fixed non-negative weight µ function, and σ estimates the unconditional
mean and standard deviation of the predictand. These non-negative functions are based
on the past m observations, and S0 is the logarithmic scoring rule, S0( f , y) = − log f (y).
The weight function emphasizes regions of interest, such as tails or the center of a vari-
able’s range. Denoting a standard normal probability density and cumulative distribution
functions with φ and Φ, respectively, the weight functions w1(x) = φ(x), w2(x) = 1−
φ(x)/φ(0), W3 = Φ(x), W4 = 1−Φ(x) emphasize the center, the tails, the right tail, and
the left tail.

The weighting approach seems appealing; however, it corresponds to the use of an im-
proper scoring rule and incurs misguided inferences. Instead of employing the GARCH(1,1),
process as in the work of Gneiting and Ranjan (2012), the SARIMA–GAS–GEVD is used
in this study. The goal of this article proposes a test that adopts the weighting approach
of Amisano and Giacomini (2007), this is to avoid misguided inferences, and comes with
associated graphical tools that can be used to diagnose strengths and weaknesses of a fore-
casting method. The test statistic in model (38) is retained but it is based on appropriately
weighted versions of a continuous ranked probability score (CRPS). Any density forecast f
induces a probability forecast for the binary event {Y ≤ Z} passing through the value of
the corresponding cumulative distribution function (CDF),

F(z) =
∫ z

−∞
f (y)dy, (41)

at the threshold Z ∈ <. Similarly, this induces the quantile forecast as F−1(α) at the level
α ∈ (0, 1). The continuous ranked probability score is then defined by

CRPS
(

f , y
)
=
∫ ∞

−∞
PS
(

F(z)I
{

y ≤ z
})

dz (42)

that can simplified to

CRPS
(

f , y
)
=
∫ 1

0
QSα

(
F−1(α), y

)
dα, (43)

where PS
(

F(z), I
{

y ≤ z
})

=
(

F(z)− I
{

y ≤ z
})2

is the Brier likelihood score for the prob-

ability forecast F(z) of a binary event {Y ≤ z} at the threshold z ∈ < and QSα

(
F−1(α), y

)
=

2
(
I
{

y ≤ F−1(α)
}
− α

)(
F−1(α)− y

)
is the quantile score for the quantile forecast F−1(α)

at the level α ∈ (0, 1). Here, the symbol I stands for an indicator function. Following
Gneiting and Ranjan (2012), a threshold weighted version of the continuous ranked proba-
bility score is obtained as

S
(

f , y
)
=
∫ ∞

−∞
PS
(

F(z), I
{

y ≤ z
})

u(z)dz, (44)

where u is a non-negative weight function on the real line. In the same way, a quantile
weighted version is obtained by

S
(

f , y
)
=
∫ 1

0
QS
(

F−1(α), y
)

v(α)dα (45)

where v is a non-negative weight function on the unit interval. Table 1 displays the
proposed weight functions for threshold and quantile weighted versions of the continuous
ranked probability score. The threshold weight functions are specified in terms of the
probability density function φa,b and the cumulative distribution function Φa,b , of the
normal distribution with mean a and standard deviation b.
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Table 1. Shows Proposed Threshold and Quantile Weights. These weights are used to compare the
density forecasts of both time-varying VaR and ES.

Threshold Weights Emphasis Quantile Weights

W(Z) = φ{a,b}(Z) Center W(α) = α(1− α)

W(Z) = 1− φ{a,b}(Z) Tails W(α) = (2α− 1)2

W(Z) = Φ{a,b}(Z) Left Tail W(α) = α2

W(Z) = 1−Φ{a,b}(Z) Right Tail W(α) = (1− α)2

2.7. Data and Software

The data used in this study are five business day FTSE/JSE-ALSI for the period 4
January 2010 to 30 June 2021. The index used has been kept in its original currency to avoid
exchange rates fluctuations. The data has been collected from the South African Stock
Exchange and it was accessed on 15 July 2021. Data for the period 4 January 2010 to 3 April
2020 are used for training the models, while the remaining data (6 April 2020 to 30 June
2021) are used for testing the models. R version 4.0.2 is the statistical packages that is used
in this study. Several package used to execute the analysis in this study, which includes,
among others, the GAS package for the GAS model, timeseries and ismive for SARIMA
and GEVD, respectively.

3. Empirical Results

Results of bootstrapping and backtesting time-varying VaR and ES uncertainty inter-
vals for extreme daily periods are done on datasets. The results are presented in tables
and figures.

3.1. Exploratory Data Analysis

Figure 1 displays intra-day returns on FTSE/JSE-ALSI. The visual inspection of this
reveals that the distribution of FTSE/JSE-ALSI is not normally distributed. The quantile-
quantile (Q-Q) plot in the last panel reveals a strong departure of linearity in the tails of
returns on FTSE/JSE-ALSI. This departure is also evident from Table 2, which gives a
descriptive statistics for intra-day returns on FTSE/JSE-ALSI. The reported kurtosis in
Table 2 is greater than three and the skewness is less than zero, making the returns to be
asymmetric with one heavy, and one semi-heavy tails. Two significant issues are uncovered
by these charts; these are the weight easing cause and steady unpredictability. The latter
infers that individual shocks often have a long effect on subsequent volatility. The former
state that shocks are followed by periods of low volatility rather than high volatility. Similar
results were obtained by Musunuru et al. (2013).

Figure 1. Presents plots of original FTSE/JSE-ALSI, the logarithm returns on FTSE/JSE–ALSI, and
normal Q-Q plot for intra-day returns on FTSE/JSE–ALSI.
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Table 2. Descriptive statistics for intra-day returns with reported skewness and kurtosis of logarithmic
returns on FTSE/JSE–ALSI.

Skewness Kurtosis

Returns on FTSE/JSE-ALSI −18.83 688.84

3.2. SARIMA–GAS–GEVD Framework

To begin the main analysis, a SARIMA in model (3) is fitted to the training data. This
model is used to filter the returns on FTSE/JSE-ALSI in order to obtain independent and
identically distributed residuals. Moreover, in order to accommodate the Box-Jenkins
methodology, the Augmented Dickey Fuller (ADF) test is applied and the ADF model
with intercept and trend is selected because its Pr(t) = 0.0001. To test for a long-term
trend, a Mann-Kendall test statistics is used and the results of this test statistic revealed
a significant monotonic increasing long-term trend in FTSE/JSE-ALSI returns. Finally,
ARIMA (1, 0, 0)× (1, 0, 0)240 is selected as the final model and it is formulated as

rt =
[(

1− 0.684Φ ∗ ∗ ∗ (1)
)
×
(
1− 0.4532Φ ∗ ∗(240)

)]
εt.

The model diagnosis indicated that the estimated SARIMA model is a white noise
process. Using obtained i.i.d residuals and the block size of 2400, the GAS-GEVD is fitted
with a total minimas of 482. Estimates of targeted parameters in a skewed student-t
distribution are reported in Table 3, which reports parameter estimates of the proposed
generalized autoregressive-generalized extreme value distribution. Figure 2 shows the
traces of µ, σ and ξ, which are produced by running a Markov-chain-Monte-Carlo (MCMC)
on the Bayesian estimates of SARIMA (1, 0, 0) × (1, 0, 0). Results in this figure shows
those properties that are found in financial econometric literature. These are, but not
limited to, strong persistence in volatility and positive reaction of conditional variance
to negatively skewed innovations. The choice of a skewed student-t is justified by its
significant parameter estimate denoted by v̂. The same results found in this study were
also found by Bernardi and Catania (2019) in their study of Switching-GAS copula model for
systemic risk assessment. The parameter of excess kurtosis denoted by φ̂3 is also significant
and it is greater than three. This signifies heavy tails (i.e., leptokurtic) features that have
been reported in Table 2. See for instance Gródek-Szostak et al. (2019) and Guégan and
Hassani (2019) who also found similar results. In their study on application of the GAS
model to stock returns, Makatjane et al. (2017) use the maximum likelihood method to
estimate the parameters of the model and these authors also found a leptokurtic behavior
in stock returns.

It is worth noting that the fitted skewed student-t distribution follows an extreme
distribution that is well known as the Weibull class. This is because the estimated shape pa-
rameter denoted as ξ̂ is negative. Gagaza et al. (2019) and Sigauke et al. (2014) also reported
a negative shape parameter estimates. The contrast is in an empirical analysis of Chan
(2017). These author reported a positive shape parameter in their study, which indicates a
Fréchet distribution. Additionally, a 95% confidence interval for the shape parameter is
estimated by ξ̂ ± zα/2 × (se)2 = −1.7119± (1.96× 0.1209) ≈ (−1.948864,−1.474936). It
can be seen that the interval limits encloses the estimated parameter and therefore conclude
that a Weibull is an appropriate distribution for FTSE/JSE-ALSI returns. Finally, the right
endpoint is computed as µ̂− σ̂

ξ̂
= 4.905570629 and it implies that for any degree losses

above 5%, the likelihood of any further degrease in FTSE/JSE-ALSI is minimal.
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Figure 2. Traces of three GEVD for parameters ξ, µ, and σ showing the maximum iterations used to
estimate these parameters.

Table 3. Bayesian parameter estimates of the proposed GAS–GEVD. The estimates are from the i.i.d
residuals of the SARIMA model. The GAS–GEVD is fitted using a block minima (BM) with the block
size of 2400.

Parameter Estimate Std Error t-Value Pr
(
>| t |

)
φ̂1 65.5515 0.8782 7.4040 0.0000
φ̂2 0.0702 0.0895 8.7172 0.0000
φ̂3 3.7575 3.7575 1.4740 0.0702
σ̂ 9.9995 0.0005 2.0578 0.0000
ξ̂ −1.7119 0.1209 −1.4114 0.0000
v̂ −0.9666 0.0005 −2.0670 0.0000
µ̂ −0.9356 0.0065 −1.5098 0.0000

Unconditional Parameters

µ̂ σ̂ ξ̂ v̂
−0.0046 0.00245 −7.999 1.091

3.3. Comparative Analysis

The purpose of this section is to determine the model that best mimics the data and
produces less error forecasts. The Akaike information criterion (AIC), Bayesian information
criterion (BIC), mean absolute error (MAE), log-likelihood (LL), mean absolute percentage
error (MAPE) which are defined in literature as statistical loss function, are used. Table 4
shows the statistical loss functions used to compare the estimated models. This helps in
selecting the best model that mimic the FTSE/JSE-ALSI returns. Looking at the results of
these statistics in Table 4, the log-likelihood and AIC selects a SARIMA–GAS–GEVD as the
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best performing model. However, the mean absolute error selects the GEVD. Using the
rank of 1 to 5, where rank 1 denotes the best model and rank 5 denotes the poorest model,
Table 4 gives much evidence that the SARIMA model has the poorest performance because
the frequency of rank 4 is higher than the other three models. The final conclusion made
here is that SARIMA–GAS–GEVD model outperformed all the models.

Table 4. Shows a comparative analysis of the SARIMA, GAS, GEVD, and the combined SARIMA-
GAS-GEVD models to select the best model that mimic the returns on FTSE/JSE-ALSI.

Test SARIMA GAS GEVD SARIMA-GAS-GEVD

LL 108 110 102 99
Rank 3 4 2 1
AIC −1710 −1712 −1719 −1725
Rank 4 3 2 1
BIC −1794 −1799 −1802 −1800

Rank 4 3 1 2
MAE 0.9023 0.988 0.8774 0.9930
Rank 2 3 1 4

MPAE 1.247 1.004 1.002 0.798
Rank 4 3 2 1

3.4. Evaluation of the Prediction Experiment

To reduce variability, a 10-fold cross-validation method is used. This approach par-
titions the training set into 10 subsets and averages validation results over 10 rounds.
Table 5 gives the results of cross-validations metrics, which are discussed in Section 2.3. The
cross-validations are done on both training and validation data. The SARIMA–GAS–GEVD
is evaluated in both training set and validation set, respectively. The classification perfor-
mance of the model indicates a reasonable goodness-of-fit in the training and validation
sets. The average classification on the training set is estimated at 0.9226 while on the
validation set it is estimated at 0.92798.

Table 5. Shows the cross-validation performance of the estimated SARIMA–GAS–GEVD on both the
training and validation dataset.

Metric Mean Std Error Training Set Validation Set

Precision 0.9514 0.0108 0.9510 0.9701
Recall 0.9664 0.0107 0.9645 0.9489

F1Score 0.9580 0.0063 0.9577 0.9594
MCC 0.8468 0.0015 0.8489 0.8513
BCR 0.8953 0.0076 0.8909 0.9102

Table 6 shows the pairwise comparison using Wilcoxon signed-rank test and power test
using model power prediction. A pair-wise comparison is done to establish the statistical
significance of the selected SARIMA–GAS–GEVD model. Chen et al. (2017) and Bui et al.
(2016) employed the former, while Karsten et al. (2020) utilized the latter in their empirical
analysis in 2020. At 95% confidence level, the null hypothesis is that the model is not
statistically different from zero. The relevance of the model is further evaluated by the use
of z statistic and p-values. In relation to the actual prediction capacity, the mean difference
of the model in both training and validation sets is established and used to complete
this assignment. Reject the null hypothesis when z values exceeds the critical value of
(±1.96) and when p-values are less than the significant level of (0.05). The results of a
Wilcoxon signed-rank and power tests are shown in Table 6. Since the (p-value = 0.001,
z value = 8.67), the model is significantly different from zero, implying a good fit of the
SARIMA–GAS–GEVD model. Therefore, this model passes the power test with a score of
82.41% , suggesting that it fits the data well.
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Table 6. Shows a pair-wise comparison and power test to assess the prediction power of SARIMA–
GAS–GEVD Model.

Wilcoxon Signed-Rank Test Model Power Test

Parameters SARIMA–GAS–GEVD Data Mean Difference Actual Power

z-value 8.67 Training −0.0194 0.8241

p-value 0.001 Validation 0.0298 0.8556

3.5. Forecasting and Backtesting Procedure

The forecasting exercise is performed in pseudo real-time and the information that
is not accessed is never utilized at the time the forecast is made. Table 7 shows the
comparisons of the threshold and quantile weights forecasting of time-varying VaR and ES.
The comparison is based on predicting time-varying VaR and ES at k = 1 days head, for a
test period ranging from the 1 July 2021 to 31 December 2021 for a total n = 128 density
forecast cases. The ES forecast has a clear edge at almost all thresholds and quantiles, with
a mean continuous ranked probability score of 0.112%, as opposed to 0.1106% for the VaR
forecast. The superiority of ES forecast is corroborated by Table 7 , which reports the results
of weighted CRPS tests, using the weight functions of Table 1.

Table 7. Weighted CRPS tests for density forecasts for the extreme time-varying process. The density
forecast ^ f̂t + 1 = N(0, σ̂2

t + 1) is estimated under the correct model assumption. Its competitor
ĝt + 1 = N(0, 1σ̂2

t + 1) uses a deliberately misspecified predictive variance. The width of the sliding
training window is m = 76, and n = 128 one-step-ahead density forecasts is considered.

Threshold Weights Emphasis p-Value Quantile Weights p-Value

W(Z) = ϕ{2.5,1}(Z) Center 0.1675 W(α) = α(1− α) 0 .1892
W(Z) = 1− ϕ{2.5,1}(Z) Tails 0.0587 W(α) = (2α− 1)2 0.0774

W(Z) = θ{2.5,1}(Z) Left Tail 0.1157 W(α) = α2 0.1422
W(Z) = 1− θ{2.5,1}(Z) Right Tail 0.1005 W(α) = (1− α)2 0.9911

Table 8 shows results on backtesting one-step ahead density forecasts for VaR and ES.
The established tail risk statistic suggest that the null hypothesis is not rejected and conclude
that the forecasts of VaR and ES produced reliable, efficient, and unbiased estimates at 1%
confidence levels. Under the null hypothesis, there is a correct model specification for the
chosen risk level. DQ test statistic p-values for the FTSE/JSE-ALSI returns constituents
one-step ahead VaR and ES forecasts at the two downside risk levels α = 1%. For long-time
periods, the model would produce suitable risk estimates and, according to Bee and Trapin
(2018), these long periods are indicated by high probability values of losses at all selected
confidence levels for all the tests used. As it is seen in Table 8, none of the tests reject the null
hypothesis of vanishing expected score differentials. However, the methods that consider
the extreme time-varying volatility show lower violation rates. This is also confirmed by
the absolute error loss function.

Table 8. Backtesting one-step ahead value-at-risk and wxpected shortfall at α = 1% risk level using
tail risk and dynamic quantile tests. The TR tells how much loss a portfolio can incur while the DQ of
the joint hypothesis is at α level of significance.

Risk Measure TR Test DQ Test ADmax ADMean AE

VaR 0.4816 7.3246 13.4596 0.5664197 1.1342
ES 0.5364 0.3958 0.48743 0.4873 1.0982
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3.6. Return Level Periods and Bootstrapping Uncertainty Intervals

Table 9 shows returns level periods and extreme uncertainty interval bootstraps. The
bootstrap procedure is developed on the fixed-design residual bootstrap algorithm, which
is discussed in Section 2.4. A performance of two distributions as a function of the return
period T is explored. It is not phenomenal to calculate return periods as high as 10,000 years
relating to a small risk. Ten years, three years and five years, as in Nemukula (2018), are
used in the current paper and the results are reported in Table 9. The return levels are
obtained by applying a fixed-design residual bootstrap with B = 1500 replications. As
reported in Table 9, a three year return period is 4.376, emphasizing that a daily loss as
high as 4.4% would be observed once in three years. The same interpretation can be used
for 5-year and 10-year return periods. The estimated bootstrap intervals are not wide,
indicating that the MCMC estimates of SARIMA (1, 0, 0)× (1, 0, 0)240–GAS(1)–GEVD are
accurate with a forecasting power of 89.6%.

Table 9. Shows return level periods and posterior distribution with 99% uncertainty interval boot-
straps forecasts for VaR and ES.

Period Returns Bootstrap Replicates 99% CI

3 Years 4.3760 15,000 (4.2996; 4.3977)
5 Years 5.2416 15,000 (5.166; 5.374)
10 Yeas 6.3842 15,000 (6.287; 6.439)

3.7. Discussion of Results

Financial risk is any of the various types of risk associated with financing, including
financial transactions of a company loans. Risk analysts can use the proposed loss distribu-
tions in this study to predict their financial loss and further estimate the risk associated with
their losses. Associated risk factors should be taken into consideration while predicting
the loss risk with these loss distributions. Duration of returns on losses could also be
increased, as the study used only 3, 5, and 10 year return periods. Insurance companies
may also use the estimated time-varying value-at-risk and expected shortfall to draw their
risk management policy towards their loss on investment and return levels on their losses.

This paper makes use of a stochastic time-varying econometric model and extreme
value theory procedures to bootstrap and backtest time varying value-at-risk and expected
shortfall uncertainty intervals for extreme intra-day return periods. Few studies aim to
backtest a one-step-ahead density prediction using time-varying parameters and extreme
value distribution. To our knowledge, this is the first use of such a model to produce a map
characterizing time-varying and extreme density predictions of VaR ES. To achieve this
objective, a three stage procedure is set up. In the first, a SARIMA-GAS-GEVD is estimated
and the second stage uncertainty intervals for both ES and the conditional VaR are being
bootstrapped by the established fixed-design residual bootstrap procedure. Finally, a 10-
fold cross validation and backtesting of the density forecasts that are based on a weighted
continuous ranked probability score with the established threshold and quantile weights
are used. Robust parameter estimates are achieved by the use of MCMC procedures and
setting the number of burns (nburn) and of MCMC replicate to nburn = 1,000,000 L and
nmcmc = 810,000 L. This estimation approach produced an overall acceptance sampling
rate of 85%, the acceptance rate of the location and a shape parameters at 76.3% and 91.61%,
respectively. Estimation of this hybrid has delivered an enhanced understanding for the
use of the Bayesian approach to model estimation, bootstrapping, and backtesting time-
varying VaR and ES uncertainty intervals for extreme daily return periods. In particular,
the study is unique in terms of uniting univariate methods in bootstrapping uncertainty
intervals for extreme daily returns. Due to studying a specific sector in the economy, the
approach taken in this study best treats the SARMA(1, 0, 0)(1, 0, 0)240–GAS(1)–GEVD shape
parameter in a simple manner. This has established a significant Weibull distribution in the
FTSE/JSE-ALSI returns.
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Taking a local density score step as a driving mechanism, time-varying parameters in-
creased and produced a clear indication of a leptokurtic performance in which the empirical
properties revealed the same behavior with the volatility of 55.995%. Nevertheless, Anjum
and Malik (2020) used a GARCH model with volatility shifts to forecast the conditional
VaR. Their approach produced the most accurate VaR forecast relative to several benchmark
methods they have used. In this study, the special case of the GARCH model is used, which
is the GAS model in collaboration with SARIMA and GEVD. According to Makatjane et al.
(2017), the GAS model serves as an extension of the GARCH family models, which assume
that the conditional distribution does not vary over time. A vibrant advantage of the GAS
model is that it exploits the full likelihood of information. Taking a local density score
step as a driving mechanism, the time-varying parameters increase and produced a clear
indication of a leptokurtic behavior, in which the empirical properties revealed the same
behavior with a skewness of 1.091 in the unconditional parameters. The same behavior
of the leptokurtic was also realized in the study of Kamika (2019). When backtesting
one-step-ahead density predictions of value-at-risk and expected shortfall, no violations
were met. All the backtesting tests accepted the null hypothesis, implying that computed
risk measures and their uncertainty intervals are reliable and correct future uncertainty
signals are given out by these risk measures to the risk managers.

4. Conclusions and Recommendations

The current study aims to empirically investigate the behavior of time-varying un-
certainty intervals of ES and VaR by estimating the SARIMA–GAS–GEVD model to the
FTSE/JSE-ALSI. The literature on bootstrapping and backtesting uncertainty intervals for
extreme return periods while utilizing the SARIMA model combined with GAS–GEVD.
No study on the subject are published, and as a result, very few sources are available. The
SARIMA(1, 0, 0)(1, 0, 0)–GAS(1)–GEVD is estimated using the Bayesian algorithms in which
a non-linear modeling approach with higher dimensions such as GAS-GEVD becomes more
complicated, because it has positive semi-definiteness constraints for covariance matrices.

The findings of this study diverge from other previous studies when predicting fi-
nancial risk. Studies such as Chinhamu et al. (2015) for instance, used only VaR and ES,
which is the case in this study. In order to avoid biases that may be caused by using
only two risk measures, researchers and scholars should engage more risk measures and
avoid using ES and VaR, but use risk measures such as Tail conditional median, expected
proportional shortfall, and Wang’s risk measure among others, as these measures and
many others are available in the work of Chan and Nadarajah (2019). Additionally, future
studies should add one more backtesting procedure known as quantile dynamic test, which
was not considered in this study. Moreover, multivariate loss distributions should also
be adopted together with multivariate copular methods to test the interdependence and
extreme relationships. It would be interesting to see what sort of results would be available
when using a machine learning approach to filter the series and quantify one-step-ahead
densities for extreme losses and do a comparative analysis with time-varying parameters,
extreme value distribution, and bootstrap the credible confidence interval for risk measures.
Another area that requires future research is a probabilistic description and modeling of
extreme risk loads using the Poison point process. This approach helps in estimating the
frequency of the occurrence of peak risks. A sensitivity analysis for daily risk performed
and the development of a two-stage stochastic integer recourse models to optimize returns’
distribution is an interesting future research direction.

Banks and stock market participants can use these results to optimist their daily
operational one head prediction losses and further predict the probability of future default
in their daily operations. Regarding credit risk, the findings can also be useful for banks.
Financial risk is any of the various types of risk associated with financing, including
financial transactions that include company loans in risk of default. Therefore, risk analysts
can use the proposed loss distributions in this study to predict their financial loss and
further estimate the risk associated with the losses. Associated risk factors should be



Int. J. Financial Stud. 2022, 10, 10 20 of 23

taken into consideration while predicting the loss risk with this loss distribution. Duration
of returns on losses could also be increased, as the study used only 3-year, 5-year, and
10-year return periods. Insurance companies may also use this model to draw their risk
management policy towards their loss on investment and return levels on their losses.
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Abbreviations
The following abbreviations are used in this manuscript:

AE Absolute Error
ADF Augmented Dickey Fuller
AIC Akaike Information Criterion

ARMA-GARCH
Autoregressive-Moving Average-Generalized
Autoregressive-Conditional–Heteroscedasticity

BCR Balanced Classification Rate
BM Block Minima
CC Conditional Coverage
CDF Cumulative Distribution Function
CRPS Continuous Ranked Probability Score
DQ Dynamic Quantile
ES Expected Shortfall
EVT Extreme Value Theory
FN False Negative
FP False Positive

FTSE/JSE-ALSI
Financial Time Series exchange/Johannesburg Stock Exchange–All
Share Index

GARCH Generalized Autoregressive Conditional Heteroscedasticity
GAS Generalised Autoregressive Score

GAS-GEVD
Generalised Autoregressive Score–Generalised Extreme Value
Distribution

GEVD Generalised Extreme Value Distribution
i.i.d Independent and Identically Distributed
JSE-ALSI Johannesburg Stock Exchange–All Share Index
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MCMC Markov-chain-Monte-Carlo
MCC Matthews Correlation Coefficient
MLE Maximum Likelihood Estimation
MIDAS Mixing Data Sampling
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MC Monte Carlo
Q-Q Quantile-Quantile
SARIMA Seasonal Autoregressive Integrated Moving Average

SARIMA-GAS-GEVD
Seasonal Autoregressive Integrated Moving Average–Generalised
Autoregressive Score–Generalised Extreme Value Distribution

TN True Negative
TR Tail Risk
TP True Positive
UC Unconditional Coverage
VaR Value-at-Risk
wCRPS Weighted Continuous Ranked Probability Score

Notes
1 This assumption states that a score of the empirical distribution when computing the conditional Value at Risk measures is

constant over time.
2 se herein referenced standard error of ξ.
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