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Abstract: A trenchant and passionate dispute over the use of parametric versus non-parametric
methods for the analysis of Likert scale ordinal data has raged for the past eight decades. The
answer is not a simple “yes” or “no” but is related to hypotheses, objectives, risks, and paradigms.
In this paper, we took a pragmatic approach. We applied both types of methods to the analysis
of actual Likert data on responses from different professional subgroups of European pharmacists
regarding competencies for practice. Results obtained show that with “large” (>15) numbers of
responses and similar (but clearly not normal) distributions from different subgroups, parametric and
non-parametric analyses give in almost all cases the same significant or non-significant results for
inter-subgroup comparisons. Parametric methods were more discriminant in the cases of non-similar
conclusions. Considering that the largest differences in opinions occurred in the upper part of the
4-point Likert scale (ranks 3 “very important” and 4 “essential”), a “score analysis” based on this part
of the data was undertaken. This transformation of the ordinal Likert data into binary scores produced
a graphical representation that was visually easier to understand as differences were accentuated.
In conclusion, in this case of Likert ordinal data with high response rates, restraining the analysis
to non-parametric methods leads to a loss of information. The addition of parametric methods,
graphical analysis, analysis of subsets, and transformation of data leads to more in-depth analyses.
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1. Introduction

Statistical methods have the following as prime functions: (1) the design of hypotheses and of
experimental procedures and the collection of data; (2) the synthetic presentation of data for easy, clear,
and meaningful understanding; and (3) the analysis of quantitative data to provide valid conclusions
on the phenomena observed. For these three main functions, two types of methods are usually applied:
parametric and non-parametric. Parametric methods are based on a normal or Gaussian distribution,
characterized by the mean and the standard deviation. The distribution of results is symmetric around
the mean, with 95% of the results within two standard deviations of the mean. Nonparametric statistics
are not based on such parameterized probability distributions or indeed on any assumptions about the
probability distribution of the data. Parametric statistics are used with continuous, interval data that
shows equality of intervals or differences. Non-parametric methods are applied to ordinal data, such
as Likert scale data [1] involving the determination of “larger” or “smaller,” i.e., the ranking of data [2].

Discussion on whether parametric statistics can be used in a valid, robust fashion for the
presentation and analysis of non-parametric data has been going on for decades [3–6]. Theoretical
simulations using computer-generated data have suggested that the effects of the non-normality of
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distributions, unequal variances, unequal sample size, etc. on the robustness of parametric methods
are not determinant [7], except in cases of very unusual distributions with a low number of data.

Regarding ordinal Likert data, the theoretical discussion of “parametric versus non-parametric”
analysis continues [8,9]. In this paper, we will investigate this from a practical angle using real
Likert data obtained in a recent study on pharmacy practitioners’ ranking of competencies required
for pharmacy practice [10]. The differences and similarities amongst the different subgroups of
pharmacists are discussed in detail in the latter paper. In this paper, we ask a specific question on
statistical methodology: does the significance of the differences within and amongst subgroups of
practitioners in the rankings of the importance of competencies for practice diverge with the type of
analysis (parametric or non-parametric) used? We will use the data for community pharmacists and
their comparison with those for industrial pharmacists as an example.

The history behind the choice of dataset for this article is as follows. The PHAR-QA project had
as primary endpoint the estimation of the core competencies for pharmacy graduate students that
are by and large accepted by all subgroups whatever the statistical method used; this is presented
in the results section. The secondary end-point consisted in the differences between professional
subgroups and we found clear differences between groups whatever the statistical method used. As is
suggested by the significance of the interaction term, these differences amongst subgroups are largely
centered on particular competencies (see results). This paper follows those already published on this
PHAR-QA survey, and its primary purpose is to compare the use and conclusions of parametric and
non-parametric analyses.

2. Experimental Section

The data analyzed were from an on-line survey involving 4 subgroups of respondents:

1. community pharmacists (CP, n = 183),
2. hospital pharmacists (HP, n = 188),
3. industrial pharmacists (IP, n = 93), and
4. pharmacists in other occupations (regulatory affairs, consultancy, wholesale, ..., OP, n = 72).

Respondents were asked to rank 50 competencies for practice on a 4-point Likert scale:

1 = Not important = Can be ignored.
2 = Quite important =Valuable but not obligatory.
3 = Very important = Obligatory (with exceptions depending upon field of pharmacy practice).
4 = Essential = Obligatory.

There was a “cannot rank” check box as well as a possibility of choosing not to rank at all (blank).
The questionnaire response rate was calculated as the distribution between “cannot rank + choose not
to rank” versus “rank (1 + 2 + 3 + 4).”

Analysis was carried out on the numbers of values for each of the 4 ranks for each of the
50 competencies. Data were also transformed into binary scores = obligatory/total% = (numbers of
values for Ranks 3 and 4)/total number of values for ranks, as a percentage [11]. Such transformation
leads to a loss of information but a gain in granularity and in understanding.

Results are presented in three sections starting with reflections on the distribution of the data.
This is followed by a section of parametric and non-parametric presentation of the data and a final
section on parametric and non-parametric analyses of the data. Data were analyzed using GraphPad
software [12] and in-house Excel spreadsheets.

3. Results and Discussion

3.1. Distribution of the Data

The questionnaire response rate between “cannot rank + choose not to rank” versus “rank”
was globally 14.5:85.5 (n = 536 respondents); there were no significant differences in response rate
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amongst the four subgroups (chi-square, p > 0.05). This aspect was not pursued further given that
the vast majority of respondents (86%) were able to understand and reply to the 50 questions on
competencies. It can be inferred that differences in distributions of ranking values were not based on
misunderstanding of questions.

There were no differences amongst subgroups in the response rate for individual competencies (=
number of responses/50) (chi-square, p > 0.05). Missing values were not replaced.

The distributions of the ranking data are shown in Figure 1.
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Figure 1. Distributions of ranking data (number of values/rank) for each of the 50 ranked competencies
(lines). The four subgroups are as follows: community pharmacists (CP, n = 183 respondents, top left);
hospital pharmacists (HP, n = 188, top right); industrial pharmacists (IP, n = 93, bottom right);
pharmacists in other occupations such as regulatory affairs, consultancy, and wholesale (OP, n = 72,
bottom left).

Visual inspection of the four graphs reveals that there were no outliers. Distributions
visually suggested a non-Gaussian distribution, i.e., neither continuous nor bell-shaped. Given
the small numbers of bins involved (n = 4 ranks), tests of normality of distribution such as the
Kolmogorov–Smirnov test were not performed.
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Distributions were, however, very similar in all four subgroups. They were of two types: inverted
“j” or “linear/exponential”; both types of distribution were skewed to the left, i.e., to higher ranking
values (on the right of each graph). In order to estimate the numbers of each type of distribution in
individual subgroups of pharmacists, the “inverted j” was defined as having a negative value for
“number of values for Rank 4–number of values for Rank 3”, and the “linear/exponential” was defined
as having a positive value for Rank 4–Rank 3.

The “inverted j” distribution was defined as having a negative value for “number of values for
Rank 4–number of values for Rank 3”, and the “linear/exponential” distribution was defined as having
a positive value for “number of values for Rank 4–number of values for Rank 3.”

Table 1 shows the numbers of “inverted j” and “linear/exponential” distributions. Chi-square
analysis showed a difference between IP and the other three subgroups (p < 0.05). This is also seen in
the visual inspection of the graphical representation in Figure 1. Distributions of negative and positive
values were normal in all four subgroups; means of values “Rank 4–Rank 3” were not different from
zero (p > 0.05).

Figure 2 contains the values for the differences in “number of values for Rank 4–number of values
for Rank 3” for 50 competencies in the four subgroups. There were two clusters of negative values
for competencies 13–30 and 38–50, indicating distributions of the “inverted j” form and two clusters
of positive values for competencies 1–13 and 31–37, indicating “linear/exponential” distributions of
ranking data. Thus, although sample distributions of ranks within competencies are not normal, they
are similar in form from one competency to another, and one subgroup of pharmacists to another.
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Figure 2. Values for the difference Rank 4–Rank 3 for all four subgroups. The four subgroups are as
follows: community pharmacists (CP, n = 183 respondents, green circles); hospital pharmacists (HP,
n = 188, red squares); industrial pharmacists (IP, n = 93, blue triangles); pharmacists in other occupations
such as regulatory affairs, consultancy, and wholesale (OP, n = 72, orange inverted triangles).



Pharmacy 2017, 5, 26 5 of 12

Table 1. Numbers of negative and positive values for “number of values for Rank 4–number of values
for Rank 3”, range, means, standard deviations, and Kolmogorov–Smirnov test for normality, in the
four subgroups of pharmacists.

Subgroup CP HP IP OP

Numbers of inverted j distributions 24 25 39 28
Numbers of linear/exponential distributions 26 25 11 22

Mean of values Rank 4–Rank 3 0.2 1.6 −7.7 −1.1
Standard deviation 27 37 15 12

Kolmogorov–Smirnov (KS) normality test
KS distance 0.085 0.11 0.12 0.12

Passed normality test (alpha = 0.05)? Yes Yes Yes Yes

The situation here is one of similar distributions with different numbers of values (ranging from
72 for OP to 188 for HP). Boneau [7], using simulated data, found that, if numbers were large enough
(>15), such a situation should not be problematic in terms of parametric analysis. Below, we shall
determine whether this statement applies to the actual data.

3.2. Presentation and Analysis of Within-Subgroup Data

The question asked here is as follows: Within a given subgroup (CP will be used as an example),
are there significant differences amongst the 50 competencies?

Graphic presentations of the medians, means, and scores of data for the ranking of the
50 competencies by CP, HP, IP, and OP are given in Figure 3.

For CP, whichever form of graphical presentation is used, the major features were the same,
namely, that competencies 2, 8, 9, 12, 27, 32, 34, 42, 44, and 45 were ranked higher, and competencies
20 and 39 lower, than the others. The graphs for means and scores visually suggest that there may
be significant differences amongst the other 38 competencies as more discriminant information is
gathered by the use of parametric statistics (means) and data transformation (scores).

Although somewhat skewed to the right, the distributions of the means and scores were not
significantly different from normal (Shapiro–Wilk and Kolmogorov–Smirnov test, p < 0.05). The
number of bins was too small to test the distribution of medians (Figure 4).

To test for significant differences amongst rankings for comparisons between competencies across
subgroups, we used (1) parametric 1-way ANOVA followed by the Bonferroni multiple comparisons
test and (2) non-parametric Kruskal–Wallis analysis followed by the Dunn multiple comparisons test.
Both analyses showed that there was a significant effect of “competency” (Table 2); both analyses gave
the same very low p-values.

There were 8095 data points analyzed with 1055 missing values (11.5% of total (= 50 × 183 =
9150)). Missing values were not replaced.

Table 2. Parametric (top) and non-parametric (bottom) analyses of the significance of the effect of
competency using the ranking data for CP (n = 183).

Parametric

1-Way ANOVA Sum of Squares Degrees of Freedom Mean Square F (49, 8045) p-Value

Treatment (competencies) 611.2 49 12.47 22.99 p < 0.0001
Residual 4365 8045 0.5426

Total 4976 8094

Non-Parametric

Kruskal–Wallis Test

p-value (for competencies) <0.0001
Kruskal–Wallis statistic 720.8
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Figure 3. Graphic presentation of the data for the ranking of the 50 competencies. The four subgroups
are as follows: community pharmacists (CP, n = 183 respondents, green circles), hospital pharmacists
(HP, n = 188, red squares), industrial pharmacists (IP, n = 93, blue triangles), and pharmacists in
other occupations such as regulatory affairs, consultancy, and wholesale (OP, n = 72, orange inverted
triangles).
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Figure 4. Distributions of medians, means, and scores of ranks for competencies given by CP (same
data as in Figure 3). (a): medians; (b): means; (c): scores.

The total number of possible multiple comparisons amongst the 50 competencies was 1225. There
was agreement between the parametric and non-parametric tests in the case of a conclusion of “not
significant” (756 cases) (Table 3). The Bonferroni test revealed a significant difference in 469/1225 =
38% of the comparisons. There was disagreement between the parametric Bonferroni test and the
non-parametric Dunn test in 76 (6%) of these cases, the Bonferroni producing a significant result but
not the Dunn test (Table 3).
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Table 3. Comparison of the significance of the differences amongst rankings for competencies within
subgroups obtained by the parametric Bonferroni and the non-parametric Dunn tests (data for CP).

Dunn Dunn

Significant Not significant Total
Bonferroni Significant 393 76 469
Bonferroni Not significant 0 756 756

Total 393 832 1225

The similarity of difference of competency-ranking (Table 3) by parametric and non-parametric
methods can be formally assessed by the kappa test [13].

In this case, Po = (proportion of observed agreement) = 0.94 and Pr = (proportion of random
agreement) = 0.54.

κ =
po − pr

1 − pr
= 0.86

As we obtained a value 0.86, this can be considered as very good agreement.
In summary, both tests revealed significant and non-significant differences. In the majority of

cases, the tests indicated the same result. The parametric Bonferroni test detected more significant
differences than the non-parametric Dunn test, showing that the parametric test was more discriminate.

3.3. Presentation and Analysis of Amongst-Subgroup Data

The question asked was as follows: Are there significant differences between subgroups for one
or several of the 50 competencies?

Figure 3 (above) shows the ranking data for the four subgroups in the form of medians (upper),
means (middle), and scores (lower). Differences amongst subgroups are difficult to see in the case of
medians. Means reveal granularity in results for the different subgroups. This shows, for example,
that results for competencies 21–23 and 28–30 as ranked by IP (triangles) appear different from those
of the other subgroups such as CP (circles). Such differences are accentuated in the graph of scores.

Individual ranking data for each competency in each subgroup were analyzed using a parametric
two-way ANOVA with Sidak’s multiple comparisons test, and the non-parametric Friedman
test with Dunn’s multiple comparisons test analyses (Table 4), in order to determine differences
amongst subgroups.

The parametric two-way ANOVA revealed a significant effect of competency, subgroup, and the
interaction “subgroup–competency” (Table 4). The percentage variation for competency was much
greater than that for subgroup, suggesting that global differences amongst competencies were much
greater than those amongst subgroups. Sidak’s multiple comparisons test (Table 4) showed a significant
difference between CP and IP or OP. Although the interaction “subgroup–competency” is highly
significant, this type of analysis does not permit any conclusion as to which specific competencies are
significantly different between two given subgroups (this will be dealt with later using the parametric
multiple t-test and the non-parametric chi-square test). It could be argued that the interaction effect
(F-value = 3.6) could be a spurious consequence of the relatively large primary competency effect
(F-value = 38). We consider that the interaction effect is not spurious. The interaction effect is real
since there are special clusters of competencies that are ranked differently in different professional
subgroups (see Figure 3, e.g., CP versus IP for competencies 21–23).
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Table 4. Parametric (upper) and non-parametric (lower) analyses of ranking data for four subgroups of
pharmacists. (a) Parametric two-way ANOVA and Sidak’s multiple comparisons test for differences
amongst subgroups (number of missing values: 14,328). (b) Non-parametric Friedman analysis with
Dunn’s multiple comparisons test for differences amongst subgroups.

(a)

ANOVA Table Sum of
Squares

% of Total
Variation

Degrees of
Freedom

Mean
Square F p

Interaction:
competency–subgroup 289 2.1 147 2.0 F (147, 22,872) = 3.6 p < 0.0001

Competency 1032 7.3 49 21 F (49, 22,872) = 38 p < 0.0001
Subgroup 17 0.12 3 5.7 F (3, 22,872) = 10 p < 0.0001
Residual 12,517 22,872 0.55

Sidak’s Multiple Comparisons Test,
Comparisons with CP Only Are Given

Difference
of Means

95% Confidence Limits of
Difference p-Value Summary

CP versus HP 0.0087 −0.019 to 0.036 Not significant
CP versus IP 0.0630 0.029 to 0.098 p < 0.0001
CP versus OP 0.0520 0.014 to 0.090 p < 0.01

(b)

Friedman Statistic 10.05

p-value 0.0182
Number of subgroups 4

Dunn’s Multiple Comparisons Test,
Comparisons with CP Only Are Given Rank Sum 1 Rank Sum 2 Sum

Difference N1 N2 p

CP versus HP 139.0 139.0 0.0 50 50 p > 0.05
CP versus IP 139.0 106.0 33.00 50 50 p > 0.05
CP versus OP 139.0 116.0 23.00 50 50 p > 0.05

The large number of missing values in this two-way ANOVA (38% of total) emphasizes the
unbalanced nature of the analysis with numbers per subgroup ranging from 188 (HP) to 72 (OP). This
can often occur in real-life surveys.

Non-parametric Friedman analysis (Table 4) also revealed a significant overall effect of subgroup,
but Dunn’s multiple comparisons test failed to reveal any significant effect of any specific combination
of subgroup. It was thus less discriminant than Sidak’s parametric multiple comparisons test.
Furthermore, the Friedman test does not allow for the evaluation of the significance of interactions
and so again provides less information than the two-way ANOVA.

Differences in specific competencies between two given subgroups were analyzed using the
parametric multiple t-test and the non-parametric chi-square test. Amongst the multitude of potential
combinations, data are shown (Table 5) for the comparisons between CP and IP for the six competencies
revealed in Figure 3 above.

Table 5. Comparison of the chi-square test with the parametric t-test for the differences in competencies
between CP and IP. For both tests, all values are p < 0.05.

Competency t-Test Chi-Square

21 3.49 17.2
22 4.99 22.9
23 5.18 27.9
28 2.93 10.4
29 3.63 13.7
30 3.47 12.1

In this example, it can be seen that the use of a parametric or a non-parametric test leads to
the same conclusion regarding statistical significance (Table 5). As can be observed in Figure 5, the
correlation between the t-test and chi-square test is good and approximately linear.
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Figure 5. Correlation between the chi-square test and t-test for the competencies given in Table 5 in the
comparison CP versus IP. (t-test = ((0.13 × chi-square) + 1.73), r2 = 0.91).

4. Conclusions

Likert data from an actual survey are neither continuous nor Gaussian in distribution, and
numbers per subgroup vary widely. In spite of this, parametric analyses are “robust” [14] as judged
from the observation that parametric and non-parametric analyses lead to similar conclusions regarding
statistical significance. The explanation for this may lie in the fact that numbers are large and
distributions are similar.

Graphical representation in the form of scores provided an easier visual appreciation of differences.
The calculation of scores, however, leads to a loss of information as a 4-point Likert scale is transformed
into a binary scale. We suggest that this could be “compensated” by determining the difference
between scores on the basis of a non-parametric chi-square test on the original ranking data.

Applying parametric analysis of real survey data leads practically in all cases to the same
conclusions as those drawn from applying non-parametric analyses. Thus, the advantages of
parametric analysis [15], which as seen above is more discriminant, can be exploited in a robust fashion.
Several authors have criticized this position and argued on theoretical grounds that parametric analysis
of ordinal data such as Likert rankings is inappropriate [4]. Others, after extensive analysis, have
reached different conclusions. Thus, Glass et al. [16] concluded that “the flight to non-parametrics
was unnecessary principally because researchers asked ‘are normal theory ANOVA assumptions met?’
instead of ‘how important are the inevitable violations of normal theory ANOVA assumptions?’” In
this paper, we have attempted to follow the same pragmatic approach. Likewise, Norman [9], after
dissecting the argument that parametric analysis cannot be used for ordinal Likert scales, reached
the conclusion that “parametric statistics are robust with respect to violations of these assumptions
parametric methods can be utilized without concern for ‘getting the wrong answer.’” Finally, Carifio
and Perla [17], after considering the arguments, counter-arguments and empirical evidence found
“many persistent claims and myths about ‘Likert scales’ to be factually incorrect and untrue.”

In the light of the above, we suggest that, in the case presented here, the use of scores for graphical
representation plus chi-square for analysis of Likert data, which (1) facilitates the visual appreciation
of the data and (2) avoids the futile “parametric” versus “non-parametric” debate, assured the best
mosaic of statistical tests combined with phenomenological analysis.

In our example, sample sizes are large (=/>72) and the question can be asked as to how sample
size could affect our conclusions. It is certain that, according to the laws of large numbers, experimental
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frequencies tend in probability to theoretical probability, but the rapidity of such convergence was not
our aim. The problem of sample size was discussed by Boneau [7], who suggested that “samples of
sizes of 15 are generally sufficient to undo most of the damage inflicted by violation of assumptions.
Only in extreme cases involving distributions differing in skew [authors’ note: as was the case in
our example] would it seem that slightly larger sizes are prescribed say, 30, for extreme violations.”
It should be noted, however, as discussed by Norman [9], that, “Nowhere is there any evidence
that non-parametric tests are more appropriate than parametric tests when sample sizes get smaller.”
Curtis et al. argued—on theoretical grounds—that (more or less equal) numbers per group is also an
important factor for ensuring robustness of statistical analysis [18]. Again, in our pragmatic approach,
sample sizes varying from 72 to 188 did not appear to affect the issue.

Another possible issue concerns homogeneity of variance given that the IP data show some
differences in distribution to those of the other three subgroups. This does not seem to be a problem
given the similarities between the parametric and non-parametric analyses of CP versus IP. This is in
agreement with the work of Boneau [7], on simulated data, who concluded “that for a large number of
different situations confronting the researcher, the use of the ordinary t test and its associated table
will result in probability statements which are accurate to a high degree, even though the assumptions
of homogeneity of variance and normality of the underlying distributions are untenable. This large
number of situations has the following general characteristics: (a) the two sample sizes are equal or
nearly so (authors’ note: this was not the case in our example); (b) the assumed underlying population
distributions are of the same shape or nearly so.”
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