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Abstract: Evidence-based prescribing requires taking into consideration the many aspects of optimal
drug administration (e.g., dosage, comorbidities, co-administered drugs, etc.). A key issue is the
administration of drugs for acute disorders that may potentially interfere with previously prescribed
long-term medications. Initiating an antibiotic for an acute bacterial infection constitutes a common
example. Hence, appropriate knowledge and awareness of the potential DDIs of antibiotics would
lead to proper adjustments, thus preventing over- or under-treatment. For example, some statins,
which are the most prescribed lipid-modifying agent (LMA), can lead to clinically important drug–
drug interactions (DDIs) with the concurrent administration of antibiotics, e.g., macrolides. This
review discusses the clinically significant DDIs of antibiotics associated with co-administrated lipid-
lowering therapy and highlights common cases where regimen modifications may or may not
be necessary.

Keywords: antibiotics; lipid-modifying agents; drug–drug interactions; pharmaceutical care; antibiotic
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1. Introduction

The rational use of medicines necessitates prescription according to the five ‘Rights’:
the right medicine, the right patient, the right dose, the right duration, and at the right
cost [1]. The prescribing of safe and effective medications is a multifactorial problem for
physicians, especially in cases of patients with multimorbidity and chronic diseases that
require adjunct therapies for acute conditions. Patients with multimorbidity are usually
poly-medicated and are, thus, often at risk of polypharmacy (>5 simultaneously prescribed
drugs) and potential drug–drug interactions (DDIs). This risk is increased in the face of
acute conditions that require adjunct medications [2,3]. DDIs refer to the modulation of the
pharmacological action and by extension to the potential alteration of clinical outcome from
the co-administration of drugs that share common biological pathways. DDIs represent
a major issue in optimal healthcare provision since the altered pharmacological profile
of co-administered medications could raise the risk of adverse drug reactions (ADRs),
treatment failure, and toxicity [4].

In the field of infectious diseases, a successful diagnosis of a pathogen is followed
by proper treatment planning regarding the optimal therapy, which includes the choice
of the most efficient antimicrobial agent at the correct dose and for the proper duration of
administration [5]. Antimicrobial drugs are some of the most heavily prescribed medica-
tions in acute settings [6]. Antimicrobial agents, and especially antibiotics, display their
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pharmacological action by exclusively interfering in the cell cycle of bacteria, whereas they
show minimum impact on human cells [7]. The discovery and use of antibiotics have
certainly changed the way we deal with deadly infections caused by pathogens. On the
other hand, the rising tide of bacterial resistance has led—albeit belatedly—the scientific
community to take measures to better manage antibiotic use. Thus, in previous years, the
gradual development of antibiotic stewardship programs and adherence to evidence-based
practices and regulatory guidelines in prescribing led to better management or even a slight
drop in antibiotic prescriptions in some countries in the Western world [8–11].

An additional issue in evidence-based clinical prescription practices is antibiotics
being co-administered with other medications. Generally, most antibiotics have specific
adverse events and side effects, while they also display few pharmacodynamic synergies.
However, some groups of antibiotics have a greater interaction potential and increase the
risk of ADRs of co-administered medications. Considering also that they are prescribed
regularly, it is very important to understand and predict cases of potentially clinically
significant DDIs between antibiotics and other co-administered drugs, especially in patient
populations suffering from chronic diseases and under polypharmacy conditions. One
such category is patients with hyperlipidemia who are receiving lipid-lowering therapy
to control their cholesterol levels. A very frequent clinical concern regarding antibiotics
involves the identification of cases where the co-administration with lipid-modifying agents
(LMAs) is contraindicated or, more specifically, when LMAs should be withheld when
treatment with antimicrobial agents is being initiated. The origin of this perception can
be attributed to precautions that should be taken for statins which are usually the drug
of choice regarding LMAs and they are often involved in DDIs leading to adverse drug
events (ADEs) and side effects related to their use (i.e., rhabdomyolysis) [12].

The purpose of this review is to present the literature data available through MEDLINE
as well as regulatory reports and information included within Summaries of Product
Characteristics (SmPC) regarding the potential DDIs of antibiotics with LMAs and to
discuss their clinical significance. To the best of our knowledge, except for statins, there
is no summarized information available through the literature for other classes of LMAs
as to their potential DDIs with antibiotics as well as the clinical significance. This review
will focus on antibiotics for systematic use according to the anatomic therapeutic index
(ATC-J01) and their potential DDIs with statins as well as with other LMAs (ATC-C10)
and will not expand in detail on other antimicrobials such as antimycotics (ATC-J02),
antimycobacterials (ATC-J03), and antivirals (ATC-J04).

2. Literature Research

We conducted a comprehensive literature review utilizing MEDLINE, regulatory re-
ports, and SmPCs. The search was performed using a combination of Medical Subject
Headings (MeSH) terms and keywords such as HMG-CoA reductase inhibitors (statins),
simvastatin, lovastatin, atorvastatin, rosuvastatin, pravastatin, fluvastatin, pitavastatin,
fibrates, bile acid sequestrants, ezetimibe, probucol, omega-3 fatty acids, new genera-
tion LMAs, mipomersen, bempedoic acid, proprotein convertase 9 inhibitors, antibiotics,
erythromycin, clarithromycin, azithromycin, macrolides, fluoroquinolones, ciprofloxacin,
pharmacokinetic interactions, pharmacodynamic interactions, adverse drug reactions, cy-
tochrome P450, p-glycoprotein, and organic anion transporting polypeptides. The selection
criteria included relevant English language, in vitro data, in vivo and clinical studies in-
volving healthy volunteers, case reports, and population studies. By adopting this thorough
approach, this review aimed to gather and synthesize relevant information on the topic
of interest.

3. Pharmacological Mechanisms of Drug Interactions

A potential DDI is described as an alteration in the exposure and/or response to a drug
(victim drug) that has arisen because of co-administration with another drug (perpetrator
drug). DDIs are clinically significant if the change in exposure or response can refer to
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either triggering an ADR or modulating the therapeutic effect of the victim drug outside its
therapeutic window, resulting either in toxicity or subtherapeutic action (Figure 1) [4,13].
The pharmacological mechanisms of DDIs are related to pharmacokinetic (PK-DDIs0)
processes and parameters of absorption, distribution, metabolism, and elimination (ADME)
or pharmacodynamic (PD-DDIs) modulation in the primary or secondary biological targets.
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PD-DDIs occur when two drugs affect the same physiological or biochemical pathway
and the effects of one drug are altered additively, synergistically, or antagonistically by
the presence of another drug at the site of action or in secondary tissues [14,15]. This
results in either the enhancement or reduction in drug effects and/or an increase in the
effect on secondary targets enhancing side effects. PD-DDIs are generally more complex
phenomena than PK-DDIs because biological systems are networks with high complexity,
rich in redundancies and feedback loops, whereas PK processes are more defined and are
more easily quantifiable in terms of drug levels and elimination rate [16].

PK-DDIs during absorption refer to cases in which co-administered perpetrator drug(s)
modulate the biopharmaceutical properties of a victim drug, changing either its dissolution
profile as it passes through the gastrointestinal (GI) tract or its active transmembrane
transport, which is regulated by efflux and influx transporters such as P-glycoprotein
(P-gp) and organic anion transporter polypeptides (OATP) [17]. PK-DDIs that involve
drug distribution are related mostly to plasma proteins (i.e., albumin or alpha-1-acid-
glycoprotein) and the tissue binding affinities of co-administered drugs. For example, a
perpetrator drug can lead a victim drug to be displaced from albumin’s binding sites—due
to higher affinity—which may lead to higher concentrations of the unbound victim drug in
plasma (i.e., warfarin) [18]. Similarly, some drugs can alter the distribution of other drugs
by dysregulating active or passive transport mechanisms for certain barriers such as the
blood–brain barrier, which may allow victim drugs to enter the brain easier and thus alter
the distribution in the CNS [19]. Furthermore, the potential PK-DDIs due to metabolic
procedures are probably the most common mechanism of a DDI and a point of focus even
during drug development processes. Drugs, like all xenobiotics, are metabolized in the
liver and in some other tissues by specific enzymes during two phases (phase I & phase II).
The hallmarks of these would be the enzymes of the cytochrome P450 (CYP) family. The
most often contributing CYPs in phase I drug metabolism are CYP2D6, CYP2C9, CYP2C19,
CYP2E1, CYP1A1&2, CYP3A5, and, notably, CYP3A4. In phase II (conjugation reactions),
the most notable participating agents are UDP-glucuronosyltransferases, sulfotransferases,
N-acetyltransferases, glutathione S-transferases, and methyltransferases [20,21]. Hence,
when two or more drugs are metabolized by the same enzyme, they can compete for the
same metabolic pathway, or if a perpetrator drug is an inhibitor or inducer of a CYP, it
can change the concentration profile of the other substrate (victim drug) and potentially
modulate its efficacy. Finally, DDIs at the elimination phase occur mainly when active
transport systems are involved. In these cases, drugs or their metabolites are excreted
in urine (or through enterohepatic circulation through the bile into the feces) by specific
transporters, such as P-gp or OATP systems. Thus, the modulation of the transport rate by
a perpetrator can change the elimination rate of a victim drug.

Potential DDIs, either PK- or PD-related, can also be categorized based on their clinical
significance or the likelihood of ADRs or side effects and the severity of the interaction with
co-administered medications. In the case of antibiotics and co-administered medications
such as LMAs, there are two main pathways that an interaction mechanism can occur.
The first is related with the direct impact on any main or secondary PK or PD pathways
of the co-administered drug, and the second (indirect) is through the modulation of the
gut microflora by antibiotic therapy that can impact the absorption processes of several
medications that are administered per os [22–24]. The DDI’s outcome can vary depending
on the extent of pharmacological modulation, potentially resulting in adverse drug events,
unchanged pharmacological response, or subtherapeutic response. (Figure 1). Contemplat-
ing the accumulated evidence derived from experts’ opinions, in silico, in vitro and in vivo
data, clinical studies, systematic reviews and meta-analyses, and reports from regulatory
authorities that update the Summary of Product Characteristics, potential DDIs can be
categorized considering clinical significance as “Serious-Use alternative” (SUA), “Use with
caution-Monitor” (Monitor), and “Moderate-Minor” (MM) DDIs [4,25–27].
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4. Antibiotic and LMA Prescription Trends in EU Countries

According to the annual epidemiological report of 2021 published by the European
Center for Disease Prevention and Control, in community sectors of all EU countries,
the population-weighted mean consumption of antibacterial agents for systemic use
(tetracyclines, amphenicols, beta-lactams, sulfonamides, macrolides, aminoglycosides, and
quinolones) was calculated to be at around 15 defined daily doses (DDD) per
1000 inhabitants per day (range 7.2–24.3), whereas for the hospital sector, it was 1.4 DDD per
1000 inhabitants per day (range: 0.7–2.2) [10]. Overall, considering that this report includes
the COVID-19 era which raised concerns regarding a potential increase in antimicrobial
prescriptions, the consumption of antibiotics seems not to have increased significantly
during the pandemic and actually stabilized or even decreased in some countries, possibly
due to antibiotic stewardship programs involving stricter policies of administration, among
other reasons [28].

LMAs are widely recommended for the prevention of cardiovascular diseases (CVDs)
due to atherosclerotic events. Based on a recent cross-sectional ecological study from
83 countries, the annual use of LMAs expressed as the compound annual growth rate
(CAGR) increased at 4.13% from 2008 to 2018, reflecting mostly the increase in statin admin-
istration (CAGR 5.19%), ezetimibe, and PGSK9 inhibitors, whereas fibrate, niacin, omega-3
fatty acid, and bile acid sequestrant prescription rates declined [29]. The use of LMAs
varies widely according to region and country. Generally, regions of the developed world
(Europe, North America, and Oceania) showed higher levels of administration compared
to other regions (i.e., Asia, Latin America, and Africa). The USA, Greece, and France had
the highest consumption of LMAs measured in standard units per 1000 inhabitants. The
results from recent epidemiological data suggest the prevalence of hypercholesterolemia in
Greece to be over 50% in the adult population. Approximately 15% of these patients will be
treated with LMAs, rising with age. In view of the type of LMAs, statins are the drug class
of choice (>90% of monotherapy cases), followed by the addition of ezetimibe (9%) [30].

5. Antibiotic and LMA DDIs: Mechanisms and Clinical Significance

LMAs exert their pharmacological effects through various mechanisms, targeting key
pathways involved in lipid metabolism and mainly on cholesterol synthesis, absorption,
and metabolism [31]. Regarding their PK properties, they exhibit variable PK characteristics
related to their chemical structure and physicochemical properties. In addition, their PK
properties and by extension their pharmacological action are associated with specific
transport and metabolic systems as well as genetic variations that are often observed for
those pathways. For example, statins enter hepatocytes through active uptake transport
from OATPs (i.e., OATP1B1 and OATP1B3) [32–36]. Table 1 summarizes the association
of OATPs, P-gp, and CYP enzymes with several examples of drugs belonging to different
LMA classes.

5.1. HMG CoA Reductase Inhibitors and Antibiotics

HMG-CoA reductase inhibitors are undoubtedly the main issue when it comes to
co-administration with antibiotics. Statins are effective modulators of lipid metabolism
due to the reversible and competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme
A (HMG-CoA) reductase. The drop in LDL cholesterol levels associated with their use
has led to a decrease in both cardiovascular morbidity and mortality [37]. Although they
act on the same target, pharmacological differences between them should be taken into
consideration when a statin is selected. As stated earlier, drug transporters, such as OATPs
and P-gp, along with CYP-metabolizing enzymes, and their genetic variations significantly
influence the pharmacokinetics of statins (Table 1). Especially for OATPs, their contribution
to the statins’ pharmacological profile has been shown to be crucial, and pharmacogenomic
data have been proposed to be important regarding the expected clinical outcome. For
example, the single nucleotide polymorphism (c.521T > C, p.Val174Ala) in the SLCO1B1
gene reduces the transport capacity of OATP1B1, leading to elevated plasma levels of



Pharmacy 2023, 11, 130 6 of 16

simvastatin acid and elevating the risk of simvastatin-induced myopathy [17,35]. Hence,
the incorporation of pharmacogenomic testing for statin-related variants has the potential
to enhance the safety and effectiveness of statin therapy (mostly for simvastatin) while
mitigating ADR risks and aligning with evidence-based prescribing practices that are
tailored to individual patients [33,36]. Most statins, except for pravastatin, rosuvastatin,
and fluvastatin, are subject to first-pass metabolism by CYP3A4, and their bioavailability
varies from ~5% for simvastatin to 60% for cerivastatin. The impact of the first-pass effect
and low bioavailability is important since small changes can result in larger variations in
drug exposure compared to drugs with medium or high bioavailability [38,39]. All statins
have a protein binding ≥90% (except pravastatin which has ~50%) and are all affected by
alterations in renal function (except for atorvastatin and fluvastatin). Moreover, their CYP
metabolites (except for fluvastatin) contribute to the lipid-lowering effects [40]. Due to their
utter prevalence as effective LMAs and their PK characteristics, statins are often involved in
potential DDIs as victim drugs. Their side effects involve mostly muscles (e.g., myopathies,
rhabdomyolysis) and the liver (e.g., elevated liver enzymes) [12,37,41]. Hence, it is often
recommended to adjust the dose when a CYP3A4 inhibitor (or CYP2C9 for rosuvastatin) is
about to be co-administered.

Table 1. Transporters and metabolic enzymes that contribute to pharmacokinetics of LMAs.

LMA 1 OATP1B1 2 OATP1B3 2 P-gp 3 CYP3A4 4 CYP2C9 4

Atorvastatin Substrate Substrate Substrate Substrate -

Fluvastatin Substrate Substrate - - Substrate

Lovastatin Substrate Substrate Substrate Substrate Substrate

Pitavastatin Substrate Substrate Substrate Substrate -

Pravastatin Substrate Substrate - Substrate Substrate

Rosuvastatin Substrate Substrate Substrate Substrate Substrate

Fenofibrate Inhibitor - Inhibitor Substrate Substrate

Gemfibrozil Inhibitor - Inhibitor Substrate Inhibitor

Bezafibrate Inhibitor - - Substrate Substrate

Ciprofibrate - - - Substrate Substrate

Ezetimibe Substrate Substrate Substrate - -
1 LMA: lipid-modifying agent, 2 OATP: organic anion transporter, 3 P-gp: P-glycoprotetin, 4 CYP: cytochrome P450).

Regarding antibiotics, there are some noteworthy potential DDIs that should be con-
sidered when the patient is under statin treatment (Figure 2) [42]. The issue is raised mostly
for macrolides, which are known CYP3A4 inhibitors, and especially for erythromycin and
clarithromycin, for which the co-administration should be avoided [43–45]. Similarly to
macrolides, fluoroquinolones such as ciprofloxacin and levofloxacin can inhibit the CYP3A4
enzyme and P-gp, leading to increased bioavailability for some statins, such as atorvastatin,
simvastatin, and lovastatin. This can increase the risk of statin-induced myopathy or
rhabdomyolysis; thus, caution and monitoring are required [46]. Similarly to macrolides
and fluoroquinolones, lefamulin, a new antibiotic for the treatment of community-acquired
bacterial pneumonia, and streptogramins (i.e., quinupristin/dalfopristin) have shown
inhibitory potential against CYP3A4, and, therefore, PK-DDIs with statin substrates of
CYP3A4 can potentially occur [47,48]. For other statins, such as rosuvastatin and fluvas-
tatin, the potential for DDIs through CYP inhibition is minimal—if not absent. Table 2
describes the dose adjustment recommendations for patients under statin therapy based on
data available thus far [42]. Nevertheless, in the context of optimum pharmaceutical care
practices, the patient should always be warned to report any symptoms of myopathy or
other statin-related ADRs to their healthcare provider.
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Table 2. Dose adjustment recommendations for statins when antibiotic therapies are to be initiated.

Atorvastatin
(10–80 mg/day)

Fluvastatin
(40–80 mg/day)

Lovastatin
(20–80 mg/day)

Pitavastatin
(1–4 mg/day)

Pravastatin
(20–80 mg/day)

Rosuvastatin
(5–40 mg/day)

Simvastatin
(10–80 mg/day)

Azithromycin Sustain and
monitor - Sustain and

monitor - - - Sustain and
monitor

Clarithromycin
Cease Sustain and

monitor Cease
Adjust to
1 mg/day

Limit to
40 mg/day

Sustain and
monitor Cease

Erythromycin

Ciprofloxacin Sustain and
monitor - Sustain and

monitor - - - Sustain and
monitor

Daptomycin Cease

Linezolid
Nitrofurantoin
Metronidazole

Chloramphenicol

Sustain and monitor

Except for the most common cases of potential PK-DDIs, PD-DDIs exist for statins
and certain antibiotics. For example, there is a potential risk for myopathy in patients
receiving treatment with a statin in combination with daptomycin, but the pharmacological
mechanisms are not clarified with regards to whether it is the result of a DDI synergy
or involves different pathways that lead to the same ADR. However, considering the
known risks and unless there is an insistent need to continue therapy, statins are to be
discontinued if daptomycin therapy is to be initiated [49,50]. Moreover, if linezolid, nitro-
furantoin, metronidazole, or chloramphenicol are to be administered in a patient under
statin treatment, caution is advised due to the shared side effect of peripheral neuropathy
with symptoms such as burning, tingling, pain, or numbness in the hands and feet. The
same precaution should be considered when isoniazid is about to be administered. These
potential PD-DDIs can be a result of the impending synergistic effects of both drugs in their
secondary targets [51–53]. Apart from the cases which were mentioned before and are well
documented in the literature, the co-administration of statins with other antibiotic classes
(tetracyclines, beta-lactams, sulfonamides, trimethoprim, etc.) does not generally require
further adjustments (Figure 2).

5.2. Fibrates and Antibiotics

The pharmacological mechanism of fibrates, although not completely explained, is
thought to involve the activation of peroxisome-proliferator-activated receptors
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(PPAR-alpha), leading to the regulation of gene expression and modulation of lipid
metabolism and resulting in a reduction in triglyceride levels and improvement of lipid
profiles in patients with dyslipidemia. They are usually prescribed as LMAs in atherogenic
dyslipidemia characterized by high triglyceride and low HDL-C levels and, in this case,
they son, are thought to be a good alternative to statins, especially when the dyslipidemia is
associated with other metabolic syndromes (i.e., diabetes type II) [54]. Fibrates are generally
well tolerated and, although they may increase creatinine and homocysteine levels, they
are not associated with a risk for renal failure. Most fibrates (i.e., clofibrate, gemfibrozil,
fenofibrate) are bound to albumin and metabolized by the hepatic CYPs, primarily by
CYP2C19 and to a much lesser extent by CYP3A4, whereas gemfibrozil inhibits CYP2C9.
All fibrates are primarily excreted via the kidneys and display some increase in plasma
half-life in individuals with severe renal impairment [55].

As to the potential DDIs of fibrates, the evidence suggests that there are not any
clinically significant DDIs, and no adjustments are needed in cases where an antibiotic
therapy needs to be initiated. This applies for any antibiotic class. The only prescribing
considerations should be focused on co-administration with highly protein-bound drugs, co-
administration with gemfibrozil, which inhibits the metabolism of CYP2C9 substrates, and
co-administration with statins, which raise the risk for muscle-related adverse events [56].

5.3. Bile Acid Sequestrants and Antibiotics

Bile acid sequestrants, including cholestyramine, colestipol, and colesevelam, exert
their therapeutic effects through binding to bile acids in the GI tract and forming insoluble
complexes that are not absorbed but lead to fecal elimination. This stimulates the liver
to upregulate bile acid synthesis from cholesterol, resulting in a reduction in circulating
cholesterol, specifically LDL cholesterol.

There are some concerns that bile acid sequestrants can interact with some antibiotics,
such as tetracyclines and fluoroquinolones, in the GI tract and alter their absorption [57,58].
This potential PK-DDI has been demonstrated through some in vivo experiments in mice
and can be of moderate–minor significance and easily resolved by creating a 4–6-h gap
between the two administrations. Moreover, it has been proposed that co-administration
may be beneficial in some cases to avoid the emergence of resistant bacteria colonizing the
GI tract, for example, during daptomycin therapy [59].

5.4. Other LMAs and Antibiotics

The most often co-administered LMA with a statin is ezetimibe, and there are numer-
ous medicinal products which contain ezetimibe combined with simvastatin or atorvastatin.
Ezetimibe, which is also a standalone treatment approach for elevated cholesterol levels,
is an inhibitor of intestinal cholesterol absorption by selectively blocking the NPC1L1
protein (Niemann-Pick C1-like 1 protein), which is located in the gut lumen, thus further
contributing to the antilipidemic effect of statins [60]. Ezetimibe is poorly absorbed and is
not metabolized by CYP450 but undergoes extensive glucuronidation metabolism in the
intestine. Thus, due to its pharmacological properties, no DDIs have been described; hence,
co-administration with antibiotics is not expected to produce any risk for ADRs [61]. The
only concerns would be for medicinal products containing ezetimibe with simvastatin or
atorvastatin, but these cases are related with potential DDIs with these specific statins and
not ezetimibe.

As to other LMAs, probucol, which seems to act through the increased secretion of
bile acids and blockade of LDL synthesis, received attention for its effectiveness for familial
hypercholesterolemia. Its use has been limited due to its negative effect on HDL levels and
the potential for causing arrhythmias. Hence, another consideration for probucol is that its
co-administration with drugs that predispose to QT prolongation, such as macrolides and
quinolones, should be avoided or occur with caution [62,63].

Omega-3 fatty acids, which are dispensed from pharmacies as fish oil supplements,
are known for their potential health benefits for the prevention of atherosclerosis through
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the reduction in blood triglyceride levels and a positive impact on HDL [64]. Consider-
ing co-administration with antibiotics, there are no significant known DDIs (recorded or
theoretically) between omega-3 fatty acids and antibiotics [65].

5.5. New Generation LMAs and Potential Interactions with Antibiotics

In the previous 10–20 years, there was substantial progress toward the discovery of
novel lipid-lowering agents. The further understanding of biological processes that con-
tribute to high cholesterol levels along with the promotion of novel biomedical molecules
such as monoclonal antibodies, interfering RNA, peptide mimics, etc., have shown promis-
ing results as the next generation of medicinal molecules for the prevention and treatment of
atherosclerosis and the related CVDs [66,67]. These novel biomedical products, among oth-
ers, have the advantage of limited potential DDIs, including potential DDIs with antibiotics,
at least till evidence from clinical trials and post-marketing studies suggests otherwise.

Mipomersen (Kynamro®) is an antisense oligonucleotide (ASO) inhibitor administered
through subcutaneous injection to treat homozygous familial hypercholesterolemia, and it
is approved in the US but not in the EU. Considering any clinically significant DDIs, caution
or avoidance should be exercised when mipomersen is used with other medications known
to have the potential for hepatotoxicity, such as tetracyclines (i.e., doxycycline, minocycline,
tetracycline, etc.) or macrolides (i.e., clarithromycin or erythromycin) [68].

Bempedoic acid (Nexletol®) is an ATP citrate lyase inhibitor administered to patients
with primary hypercholesterolemia and to patients with mixed dyslipidemia that are also
on a low-fat diet and usually under statin co-administered therapy [66]. In vitro metabolic
interaction studies suggest that bempedoic acid, as well as its active metabolite and glu-
curonide forms, are not metabolized by and do not inhibit or induce cytochrome P450
enzymes. They are not substrates for transporter proteins, although they both weakly
inhibit OATP1B1 and OATP1B3, which may result in elevated concentrations of rela-
tive substrates (including some statins) [69]. Regarding antibiotics, there is a potentially
clinically significant PD-DDI due to the potential synergy when combined with other
drugs that increase the risk for tendinitis or tendon rupture, such as quinolone antibiotics
(i.e., ciprofloxacin).

Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors alirocumab (Praluent®)
and evolocumab (Repatha®) are a new class of LMA drugs for the treatment of familial
hypercholesterolemia for patients who did not reach their target LDL on previous com-
bination therapy of statin + ezetimibe and for those intolerant of statins [66]. They are
monoclonal antibodies that act by blocking the activity of PCSK9, which plays a role in
cholesterol homeostasis. The PCSK9 pathway has attracted a lot of attention in general,
with several state-of-the-art approaches under development, including antisense oligonu-
cleotide (siRNA), peptide mimics, and monoclonal antibodies. Inclisiran (Leqvio®) is a
PCSK9-targeting short interfering RNA (siRNA) administered as a subcutaneous injection
typically every 3 months and often combined with other LMAs (e.g., statins + ezetimibe)
when LDL levels are not adequately controlled. No clinically significant DDIs should be
expected when antibiotic therapy is about to be initiated [67].

6. Discussion

The rational use of medicines requires physicians to be aware and vigilant regarding
the proper medication regimen and make necessary adjustments [70]. Reliable evaluation
methods are essential for evidence-based clinical decision support in DDIs that ensures
valid assessment and helps healthcare professionals make informed decisions, optimizing
medication therapy and enhancing patient safety [4,71,72]. A further understanding of the
implicated PK or PD mechanisms that can potentially lead to DDIs and ADRs has alerted
physicians to improve the way they prescribe certain medications, especially for chronic
diseases. A representative example is the prescription of statins, where accumulating
evidence in recent years has facilitated the characterization of ADRs resulting from DDIs,



Pharmacy 2023, 11, 130 10 of 16

such as skeletal muscle toxicity. This knowledge has enabled the development of specific
approaches to minimize ADRs without compromising therapeutic benefits [73,74].

A critical issue from the point of best prescription practices is that of acute condi-
tions, such as in the cases of acute infections and the need for antimicrobial therapy in
patients with chronic diseases for which multiple medicines may be administered [75].
The scientific community and the regulatory committees have very quickly and pointily
provided certain guidance for specific antimicrobials that are known to interact with vari-
ous medications, including statins [42,76]. For example, antifungal agents (ketoconazole,
fluconazole, itraconazole) are known inhibitors of CYP3A4; thus, per os co-administration
with drugs that are substrates of CYP3A4 (i.e., simvastatin, lovastatin, atorvastatin) may
lead to clinically significant DDIs and ADRs due to increased drug exposure that requires
either treatment cessation or dose adjustment [42,77,78]. Another antimicrobial with a
well-documented mechanism is rifampin, an antituberculosis agent. Rifampin causes the in-
duction of CYP3A4 and an increase in P-gp levels, accelerating the metabolism of all drugs
that are substrates of these two biochemical pathways, including certain statins [79,80]. Ri-
fampin is usually administered for periods of months; thus, specific instructions exist when
rifampicin therapy is to be initiated, including dose adjustment for certain patients [81]. It is
possible that these cases of potentially clinically significant DDIs and the relative guideline
gave rise to an often unreasonable generalization and the cultivation of a tendency to
withhold the administration of any antilipidemic agent when an antimicrobial drug is
administered regardless of which class it is, antibiotic, antimicrobial, or antifungal.

The co-administration of commonly prescribed antibiotics is generally safe in terms
of potential clinically significant DDIs with LMAs. Figures 3 and 4 provide a general
approach for clinical considerations for the most common antibiotic classes. Figure 3
illustrates potential DDIs for each LMA category, the pharmacological mechanism in-
volved, and the possible ADRs that may be observed clinically. Figure 4 describes clinical
considerations when an antibiotic therapy is about to be initiated in a patient under treat-
ment with LMAs. In general, beta-lactams do not require any treatment modifications for
any LMA. The same can be said for sulfonamides, trimethoprim, and aminoglycosides,
as currently available evidence suggests that any potential mechanisms cannot lead to
clinically significant DDIs with LMAs [82–84]. Regarding tetracyclines, no specific pre-
cautions are needed except in cases where bile acid sequestrants are used, which can
impact tetracyclines’ absorption or lead to enhanced activity in the gastrointestinal tract,
which may impact gut microflora [57]. If macrolides are prescribed, lipid-lowering ther-
apy should be carefully examined. Co-administration with statins should be examined
by first establishing which statin is prescribed. If the patient is under treatment with
lovastatin, atorvastatin, or simvastatin, co-administration should be avoided, or statin
therapy should be discontinued for a short period. If pitavastatin or pravastatin is admin-
istered, a dose adjustment can be considered, whereas fluvastatin or rosuvastatin can be
continued [44]. Azithromycin is a less potent CYP3A4 inhibitor than other macrolides,
and therefore a statin dose adjustment may be required only if the patient is prescribed
lovastatin, atorvastatin, or simvastatin, while no action is needed for other statins [85]. The
available evidence suggests that the rest of the macrolides pose a minimum risk for DDIs,
and no adjustments are needed. Similar to macrolides, lincosamides and streptogramins
(e.g., clindamycin and quinupristin/dalfopristin, respectively) can lead to DDIs due to
moderate inhibition of CYP3A4; thus, caution is needed with statin co-administration.
Generally, for these groups of antibiotics, and mostly for these specific ones, most PK-DDIs
are related to simvastatin, lovastatin, and atorvastatin (Figure 2). These cases may require
monitoring and dose adjustments or, in extreme cases, discontinuing LMA administra-
tion for the active treatment period with the antibiotic therapy. In this respect, another
important antibiotic class that should be examined for co-administration with LMAs is
quinolones. The available evidence suggests that the co-administration has no clinical
significance, except in cases where ciprofloxacin or levofloxacin are administered with
simvastatin, lovastatin, or atorvastatin, which raise the risk for rhabdomyolysis [86,87].
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As to other LMAs and clinically significant DDIs with quinolones, probucol should
be avoided due to the risk of arrhythmias from QT-prolongation, whereas, similarly to
tetracyclines, bile acid sequestrants may lead to reduced quinolone absorption and en-
hanced action in the GI tract, which may impact the gut microflora. For new generation
LMAs, precaution is needed when mipomersen is used due to the increased risk for hep-
atotoxicty when administered with tetracyclines or macrolides. Finally, if antimicrobial
treatment requires the administration of linezolid, nitrofurantoin, or metronidazole, caution
is advised to avoid any potential synergy that may lead to peripheral neuropathy with
statins, whereas the co-administration with daptomycin is suggested to be avoided due to
an elevated risk of myopathy [50–52].

This work focuses mostly on cases in which special precautions should be considered
within the context of evidence-based medicine to avoid any clinically significant DDIs be-
tween antibiotics and LMAs. It is noteworthy to point out that while the co-administration
of antibiotics with statins raises concerns about potential DDIs, recent evidence suggests
that certain statins may also possess antimicrobial properties. [88]. Statins’ antimicro-
bial action involves enhancing the host’s defense mechanisms through the stimulation of
antimicrobial peptides and phagocytosis by immune cells while inhibiting pathological
inflammation pathways and the production of essential components of bacterial cell mem-
branes [89]. Further research is still underway to fully explore the potential antimicrobial
and anti-inflammatory properties of statins and their pharmacodynamic potential [90].
Currently, simvastatin and atorvastatin are considered the most promising candidates for
repurposing as novel adjuvant antimicrobials, particularly for addressing antimicrobial
resistance in the future [91]. Hence, even in the context of DDIs and the current guidance
for vigilance for simvastatin and atorvastatin, it may prove in the future that alternative
combinations of repurposed statins with antibiotics may be helpful instead of unwanted,
e.g., atorvastatin with metronidazole for anti-blastocystis therapy [90,92].

The above clinical considerations can provide valuable guidance for physicians when
prescribing antibiotic therapies in patients under LMA treatment (Figure 4). However,
it is important to note that other factors, such as dosage, comorbidities, and other co-
administered medications, can also influence the risk of DDIs. For example, drug-induced
kidney injury is a frequent adverse event that has been associated with antibiotics and may
impact the PK profile of several drugs or their metabolites that are eliminated through
the kidneys [93]. Therefore, prescribing physicians should carefully weigh the benefits
and risks of using these medications concurrently, especially in patients with underlying
medical conditions or those taking multiple medications. Patients with liver or kidney
disease may be particularly vulnerable to DDIs and adverse effects. Moreover, physicians
should be vigilant about potential DDIs with other groups of medicines, not just LMAs,
when initiating antibiotic treatment for these patient cohorts. For example, macrolides’ and
quinolones’ capability for QT-prolongation increases the risk of arrhythmias when they are
co-administered with drugs other than LMAs that can promote the same side effect [94]. A
personalized approach, based on careful evidence-based medicine, is necessary for each
patient to optimize the outcomes and minimize the risk of DDIs. By taking these factors
into consideration, physicians can improve prescription practices and ultimately enhance
patient safety and therapy outcomes.

7. Conclusions

Towards optimum healthcare provision, DDIs are an important issue in clinical prac-
tice, especially when prescribing multiple medications to a patient with comorbidities.
Considering antibiotics and LMAs, while there are a few possible clinically significant
DDIs, most often prescribed cases of co-administrations are safe and do not require any
adjustments or precautions other than those typically applied in terms of optimum phar-
maceutical care. Overall, it is important for healthcare professionals to consider the indi-
vidual patient’s medication regimen, medical history, and potential risk factors for adverse
events when determining the appropriate treatment plan. Hence, a comprehensive and
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personalized approach is essential for successful healthcare provision in acute disorders,
such as an infection, without disrupting the treatment of chronic conditions, such as
cardiovascular diseases.
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