
Citation: Ulasik, Malgorzata Anna,

and Aleksandra Miletić. 2024.

Automated Extraction and Analysis of

Sentences under Production: A

Theoretical Framework and Its

Evaluation. Languages 9: 71. https://

doi.org/10.3390/languages9030071

Academic Editors: Georgeta Cislaru

and Philippe Martin

Received: 3 October 2023

Revised: 31 January 2024

Accepted: 1 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

languages

Article

Automated Extraction and Analysis of Sentences under
Production: A Theoretical Framework and Its Evaluation
Malgorzata Anna Ulasik 1,2,* and Aleksandra Miletić 3

1 ZHAW School of Applied Linguistics, Institute of Language Competence, Theaterstrasse 17,
8400 Winterthur, Switzerland

2 Faculty of Arts, Department of Language and Information Sciences, University of Lausanne, Bâtiment
Anthropole, 1015 Lausanne, Switzerland

3 Department of Digital Humanities, University of Helsinki, P.O. Box 4, Yliopistonkatu 4,
00100 Helsinki, Finland; aleksandramiletic1207@gmail.com

* Correspondence: malgorzataanna.ulasik@zhaw.ch

Abstract: Sentences are generally understood to be essential communicative units in writing that
are built to express thoughts and meanings. Studying sentence production provides a valuable
opportunity to shed new light on the writing process itself and on the underlying cognitive processes.
Nevertheless, research on the production of sentences in writing remains scarce. We propose a
theoretical framework and an open-source implementation that aim to facilitate the study of sentence
production based on keystroke logs. We centre our approach around the notion of sentence history: all
the versions of a given sentence during the production of a text. The implementation takes keystroke
logs as input and extracts sentence versions, aggregates them into sentence histories and evaluates
the sentencehood of each sentence version. We provide detailed evaluation of the implementation
based on a manually annotated corpus of texts in French, German and English. The implementation
yields strong results on the three processing aspects.

Keywords: writing process; keystroke logging; sentence production; text history; sentence history;
linguistic modelling

1. Introduction

It is generally understood that a written text is composed of sentences. Sentences
are considered to be essential communicative units built to express thoughts and mean-
ings (Bühler 1918). A number of authors have analysed their nature and function (Gardiner
1922; Noreen 1903; Wundt 1922; Ries; Ries 1927, 1931; Allerton 1969; Alston 1964; Bloom-
field 1933; Cinato 2018; Matthews 1993; Panther and Köpcke 2008; Paul 2010; Sauerland
2016, inter alia). Nevertheless, research on the production of sentences in writing remains
scarce. Studying sentence production is particularly relevant from two points of view.
First, combining behavioural data typically used in writing process research with linguistic
information on the sentence level could shed new light on the writing process itself. It
opens an opportunity to investigate the writing strategies in more detail by analysing the
sentence production flow or examining revisions on word and sentence level. It could
also allow for an investigation of writing difficulties in relation to the linguistic structures
(e.g., their complexity). Second, examining text production on this level also provides an
opportunity to track the process of transforming thoughts into linguistic output1 and to
observe how these thoughts evolve during writing. By observing the writer’s decisions
on the word and sentence levels (such as replacing words, changing syntactic structures,
shortening sentences, or merging them), we can collect insights into how the initial idea
which triggered a sentence construction continues evolving during writing. This makes the
analysis of written sentences under production a highly interesting research area.

Languages 2024, 9, 71. https://doi.org/10.3390/languages9030071 https://www.mdpi.com/journal/languages

https://doi.org/10.3390/languages9030071
https://doi.org/10.3390/languages9030071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/languages
https://www.mdpi.com
https://doi.org/10.3390/languages9030071
https://www.mdpi.com/journal/languages
https://www.mdpi.com/article/10.3390/languages9030071?type=check_update&version=1

Languages 2024, 9, 71 2 of 33

One widely used method for recording the writing process is keystroke logging. It
stores each action performed through a keyboard as an isolated event. The action produced
by the writer (adding or deleting a character) is typically accompanied by the position of
the event in the text (its offset) and behavioural information on the writing process (start
and end times of the event). The output of keystroke logging is sequential since the events
are recorded in chronological order. However, it is not linear: writers tend to move back
and forth through the text during the writing process, and two chronologically sequential
events can take place at non-adjacent positions in the text.

An illustration of this fact can be observed in Table 1. In events 1–24, the writer
produces a continuous sequence of characters mieux connue sous le nom (‘better known
under the name’) at positions 445–469 in the document. The writer then goes back to
position 449 and performs a series of backward deletions removing characters at positions
449–445 and thus deleting the word mieux (‘better’) (events 25–30). They then insert the
word aussi (‘also’) at positions 445–446 (events 32–35) and finally resume writing at the
end of the text by inserting de (‘of’) at positions 470–472 (events 36–38). At the end of this
sequence of events, the produced text reads aussi connue sous le nom de (‘also known under
the name of’).

This brief extract from a keystroke log illustrates why the string of events cannot be
straightforwardly split into linguistic units. Rather, identifying linguistic units on any
level (words, word phrases, sentences, paragraphs) requires reconstructing the text under
production by calculating each event’s position in the text and the impact it has on the text
produced so far. For example, the deletion in event 26 removing the character at position
449 shifts all the characters in positions 450 and onwards one place to the left so that after
this event, the character initially produced at position 450 actually occupies position 449,
the one from position 449 moves to 448, and so on. The subsequent deletions produce
the same effect, and the insertions recorded in events 31–35 similarly shift the subsequent
characters one place to the right. In other words, the events which do not occur at the end
of the text under production (illustrated in our example by events 26–35) affect the position
of all the subsequent characters. Each of these changes needs to be taken into account in
order to reconstruct the text at a given point of the production process.

This example also illustrates an intuitive understanding about the writing process: a
text passes through a number of different versions during its genesis. In the case above, the
phrase mieux connue sous le nom (‘better known under the name’) was transformed into
connue sous le nom (‘known under the name’), and then into aussi connue sous le nom (‘also
known under the name’). The collection of these intermediate versions reflects the evolution
of a text. However, the intermediate versions often contain linguistically incomplete and/or
ill-formed linguistic content, which makes automated processing and analysis challenging.
Consequently, studies of linguistic structures produced during writing have often been
based on the manual inspection of smaller data sets (cf. Section 2).

With the goal of alleviating this issue, we propose a methodology for extracting
sentences from keystroke logs. Our approach is based on the notion of sentence histories:
the collection of all the versions of a given sentence throughout the production of a text. We
believe that sentence histories are the appropriate object of study for sentence production
because they capture the complete evolution of a sentence.

The contributions of this work are threefold: we present a theoretical framework
for extracting sentence histories from keystroke logs; we describe how this framework
was implemented in a tool for automatic sentence history extraction; and we perform an
evaluation of this tool on a sample of keystroke logs.

Our theoretical framework is derived from two novel approaches developed in parallel
by two research groups in 2021. Its implementation is an open-source software which allows
for the automated generation of sentence histories from keystroke logs and can be applied
to any language for which automated sentence segmentation tools are available. We
evaluate the framework’s applicability and investigate challenges and limitations related
to its implementation by generating sentence histories for a set of keystroke logging data

Languages 2024, 9, 71 3 of 33

in French, English, and German. The evaluation allows us to draw conclusions about the
current capacities of the tool and provides pointers for further development of the concept
of sentence histories and their automated generation and annotation.

Table 1. Adapted excerpt from a keystroke log from the evaluation corpus (Section 5.1). Start_time
and end_time: millisecond from the beginning of the writing session at which the beginning and the
end of the event occurred; position: position in text at which the event occurred; : space character;
←: deletion.

ID Start_Time End_Time Event Position

1 870,085 870,176 m 445
2 870,245 870,329 i 446
3 870,466 870,546 e 447
4 870,608 870,684 u 448
5 870,724 870,819 x 449
6 870,822 870,888 450
7 871,221 871,317 c 451
8 871,363 871,453 o 452
9 871,508 871,595 n 453
10 871,649 871,744 n 454
11 871,776 871,869 u 455
12 871,896 871,984 e 456
13 872,009 872,100 457
14 872,574 872,644 s 458
15 872,662 872,791 o 459
16 872,740 872,844 u 460
17 872,851 872,938 s 461
18 872,946 873,051 462
19 873,087 873,171 l 463
20 873,185 873,272 e 464
21 873,338 873,427 465
22 873,708 873,798 n 466
23 873,842 873,964 o 467
24 873,952 874,038 m 468
25 874,531 874,614 469
26 879,551 879,628 ← 449
27 879,686 879,769 ← 448
28 879,834 879,913 ← 447
29 879,973 880,060 ← 446
30 880,150 880,220 ← 445
31 880,955 881,045 a 445
32 881,096 881,194 u 446
33 881,227 881,307 s 447
34 881,368 881,448 s 448
35 881,470 881,548 i 449
36 883,293 883,387 d 470
37 883,449 883,533 e 471
38 883,547 883,631 472

The remainder of this paper is structured as follows: In Section 2, we present related
work. Section 3 introduces fundamental concepts of our framework, and we provide details
on the implementation of the framework in Section 4. Finally, we present an evaluation of
the framework and its implementation (Section 5) and conclude the paper with a discussion
of encountered challenges, observed limitations and possible ways forward (Section 6).

2. Related Work

Keystroke logs have been extensively used in the psycholinguistics of writing. In this
domain, an important body of work focuses on the role of pauses in the writing process (e.g.,
Alves et al. 2007; Foulin 1995; Matsuhashi 1981), and there is evidence for pauses being

Languages 2024, 9, 71 4 of 33

cognitively motivated (Olive 2012). Keystroke logs, with the precisely recorded temporal
information about each writing event, are particularly well suited to this research angle, and
the existing works point towards a relationship between the pause distribution and duration
on the one hand, and the linguistic content that is being produced on the other (Immonen
and Mäkisalo 2017; Medimorec and Risko 2017). Pauses can also be seen as segmenting
the data flux into units, which are referred to as bursts (Chenoweth and Hayes 2001). But
operationalising bursts is directly dependent on the minimum pause length considered as
a burst boundary. This effectively means that choosing a different threshold can produce
widely different segmentations of the same text. And since this segmentation of the writing
events happens in chronological order, the linear structure of bursts—and therefore their
linguistic content—is not straightforward to apprehend (see Table 1 for an example).

Nevertheless, there have been attempts to establish a mapping between production
data in the form of bursts and linguistic structure. Cislaru and Olive (2018) manually
examine syntactic properties of bursts. This examination clearly shows that bursts do not
coincide with traditionally recognised syntactic structures. The bursts they observe are
highly heterogeneous and >50% are syntactically incomplete (e.g., they end in a preposition
or in a determiner). Some of these incomplete structures are identified as recurrent and
potentially having specific functions in the writing process. The authors also examine how
syntactically incomplete bursts achieve completeness. Based on their findings, the authors
argue for the status of bursts as units of linguistic production (as opposed to units of
linguistic reception). Gilquin (2020) examines bursts through the lens of Construction
Grammar and finds that some bursts correspond to units traditionally recognised as
constructions. Using robust statistical analysis, Feltgen et al. (2022) and Feltgen et al.
(2023) show that there is a relationship between the linguistic content being produced and
the segmentation of the writing flux into bursts.

Note, however, that Cislaru and Olive (2018) and Gilquin (2020) base their work on
a manual examination of a relatively small set of data. Feltgen et al. (2022) and Feltgen
et al. (2023) focus on phenomena that are easily represented by wordlists (the conjunction
et ‘and’ and the subject clitics in French, respectively) and therefore relatively simple to
track in a corpus. All these works also call upon some form of manual annotation in order
to complete their analysis. In order to facilitate large-scale data analysis, an automated
process capable of identifying elements of linguistic structure within the production data
flow is required.

Recent developments of the Inputlog software are a step in this direction. Leijten et al.
(2015) and Leijten et al. (2019) aggregate the logged process data from the keystroke level
to the word level and present a module for analysing writing process data with Natural
Language Processing (NLP) tools. Note that the NLP analysis used by Leijten et al. (2019)
is currently available only for English and Dutch. Furthermore, they track revisions at the
word level only. While this type of information can shed important light on the writing
process (see, e.g., the work of Serbina et al. (2017) on word class changes during production),
we are interested in capturing a wider linguistic context based on which more complex
evolution patterns can be studied. Lardilleux et al. (2013) propose a tool that allows for
the alignment of segments of text throughout the writing process. However, their work is
aimed at data visualisation rather than annotation. The first contributions to the analysis of
the writing process from this perspective come from Mahlow et al. (2022) and Miletić et al.
(2022), who base their respective works on the notion of text history.

Miletić et al. (2022) propose a methodology for semi-automatic keystroke log anno-
tation which relies on reconstructing and annotating intermediate versions of each text.
While this approach does provide a wider linguistic context, basing the methodology on
the text as a unit of analysis makes it more difficult to identify evolution within individual
sentences across different text versions.

Mahlow et al. (2022) present a first attempt to model the writing process at the sentence
level. They introduce a novel concept of sentence history. First, they transform writing data
into a text history: a list of all intermediate text versions. The individual text versions

Languages 2024, 9, 71 5 of 33

are then segmented into sentences, and different versions of each sentence are grouped
together. A sentence history is a collection of all intermediate versions of a given sentence
produced during writing.

The framework presented here is based on the notions discussed above, and hence,
the two projects are presented in more detail in the following sections.

2.1. ProTEXT

The ProTEXT project2 aims to shed light on cognitive mechanisms that underlie
the writing process by combining information on linguistic structure of the text under
production and the behavioural data recorded by the keystroke logs. To this end, the
writing process data were on one hand linguistically annotated, and on the other hand, it was
segmented into writing bursts, which is the basic unit of analysis for the writing process data
that the project focused on. In the second step, in order to allow for a linguistic annotation
of the identified bursts, the sentences under production were reconstructed.

Data annotation was conducted manually based on automatic preannotation. A
pipeline was elaborated in order to integrate automatic preannotation and manual anno-
tation in an optimised manner. It also allowed preserving the link between the linguistic
annotation and the burst structure (Miletić et al. 2022).

The observations from the ProTEXT project hightlighted the need for three main
improvements in the work on keystroke logs: a reliable approach for keystroke log prepro-
cessing, an efficient pipeline for sentence reconstruction, and better automatic preannotation
in order to dispense with or at least accelerate manual annotation.

2.2. THEtool

Mahlow et al. (2022) propose a method for modelling the writing process from a
linguistic perspective using text and sentence histories. They developed a software appli-
cation, THEtool3, which transforms keystroke logs into text history and extracts sentence
histories based on it. THEtool allows to track the evolution of each sentence produced
during the writing process. It also provides information on what kind of edit operation has
been made between subsequent sentence versions and based on this information offers a
possibility to filter the revisions according to linguistic constraints.

The implementation of THEtool led to the discovery of certain challenges and limita-
tions related to automatic modelling of writing based on keystroke logs. On one hand, the
automatic parsing of the process data proved to be a challenging task due to differences
in character encoding, discrepancies in the log structure produced by different logging
tools, and high diversity of the writing behaviour among writers. On the other hand, the
ill-formedness and incompleteness of the intermediate text and sentence versions also
present a substantial difficulty and turn segmenting the character sequences retrieved from
keystroke logs into sentence lists into a challenging task. As a result, correctly aggregating
sentences into sentence histories is not always possible, as shown in Mahlow et al. (2022).

2.3. Present Work

The framework presented in this paper is an extension of the method and application
presented by Mahlow et al. (2022) and its evaluation is based on the ProTEXT corpus
presented in Miletić et al. (2022). The framework introduces a comprehensive theoretical
foundation for the automatic modelling of writing on the sentence level which did not
exist before and offers novel concepts for presenting and describing the sentence evolution.
At the same time, its implementation leads to substantial improvement of the sentence
segmentation quality, which in turn makes the generation of sentence histories much
more reliable.

Languages 2024, 9, 71 6 of 33

3. Theoretical Framework
3.1. Central Concepts and Terminology

We adopt and introduce a number of terms denoting objects of interest for the study
of the writing process. Following Mahlow (2015), we represent the evolution of a given
text as a series of text versions. A text version is a snapshot of the produced text at the
moment in which a change in production mode occurs. A change in production mode
is defined as the writer switching between (a) continuous writing at the edge of the text
produced so far, (b) continuous deletion of existing content regardless of its position in
the text, (c) continuous insertion of new content into the existing text (Mahlow 2015).
For the content present in a given text version, we use the term text produced so far
or TPSF. A collection of all the text versions for a given text constitutes a text history
(Mahlow et al. 2022).

In an analogous manner, a sentence version is a version of a given sentence in a given
text version. A collection of all sentence versions of a given sentence constitutes a sentence
history (Mahlow et al. 2022). For denoting the content present in a sentence version, we
introduce a new term inspired by the TPSF concept: sentence produced so far or SPSF.

In order to accurately track the content of each text version, we propose the concept
of a text unit or TU. We consider that the full content of a given text version can be
split into text units in such a way that each character produced, including whitespaces,
belongs to one text unit. We distinguish between two main types of text units: SPSFs,
which hold textual content, and interspace, which is used to separate SPSFs from each
other and to structure the text. We distinguish between sentence interspace (SIN), which
is typically built of space characters and intervenes between sentence-level text units,
and paragraph interspace (PIN), which is typically comprised of newline characters and
possibly indentation signalling the boundary between two paragraphs. An illustration is
given in Figure 1.

Un certain nombre d'étudiants se plaignent du coup de la vie étudiante. Le
prix des transports en fait partie. Bus, TGV, métro, tous ces moyens de
transports sont payants dans la majorité des villes. Mais pourrait-on
envisager de rendre ces transports gratuits pour les étudiants ?
 Premièrement, la qualité des transports peut sembler dépendre de leur
prix et du nombre de personnes qui l'utilisent. A titre

SPSF

Sentence Interspace (SIN)

Paragraph Interspace (PIN)

Figure 1. A visualisation of the text segmentation into text units: SPSF, SIN, and PIN.

3.2. Sentencehood Definitions in Literature

Attempts at defining a sentence and discussions around sentence definition have a
long tradition starting back in antiquity (Cinato 2018). Some definitions primarily focus on
formal (syntactic form), semantic (propositional content), or pragmatic (communicative
function) aspects, while others combine multiple perspectives.

In the definitions of Bloomfield (1933), Allerton (1969), and Sauerland (2016), the main
focus is on the syntactic form. For example, Bloomfield (1933) defines the sentence as a
maximal independent linguistic form.

Noreen (1903), Bühler (1918), Wundt (1922), and Paul (2010) concentrate mainly on the
semantic function. According to Bühler, sentences are “Sinneinheiten der Rede” (“meaning
units of speech”) (Bühler 1918, p. 18).

Languages 2024, 9, 71 7 of 33

The pragmatic viewpoint is represented by Alston’s definition, who sees the sentence
as “the smallest linguistic unit that can be used to perform a complete action” (Alston 1964,
p. 33).

Gardiner (1922) and Ries (1927) integrate multiple perspectives into one definition.
Ries (1927) sees the sentence as “a grammatically constructed minimal unit of speech that
expresses its content with regard to its relation to reality”4. The essence of the various
formal, semantic, and pragmatic aspects found in traditional sentence definitions is well
reflected in the summary of sentence attributes proposed by Panther and Köpcke (2008): “(1)
Sentences are the maximal units of grammar. (2) Sentences relate to ‘reality’. (3) Sentences
have communicative potential” (Panther and Köpcke 2008, p. 88).

We consider all of these points of view as relevant when it comes to defining what
a sentence is. However, these definitions consider the sentence in its final form. During
the writing process, syntactic, semantic, and pragmatic properties of a sentence under
production are in constant flux. Since our goal is to capture and describe this evolution,
we require a means of marking the status of a given sentence version according to each
of these dimensions. For this, we call on Matthews (1993), who discusses two defining
criteria of a sentence: its completeness and its correctness, and proposes methods for testing
these properties. Even though the author himself discusses the testability of sentencehood
in a critical manner, we find that the notions of completeness and correctness are highly
relevant for sentences under construction. As such, they constitute important concepts in
our analysis.

3.2.1. Sentence Completeness

Looking back at the ancient perception of the sentence, we find Priscian’s5 syntactic
theory with the idea of sentence completeness playing a central role. He focuses on the
syntactic dimension of completeness and claims that a complete sentence results from an
adequate arrangement of words (Fortes 2022; Matthews 1993). Noreen (1903), on the other
hand, looks at the completeness from a semantic perspective and characterises a sentence as
“capable of expressing a complete thought or meaning”. Gardiner (1922) extends the notion
of completeness further and argues that the sentence “always seems in a certain measure
’satisfactory’—satisfactory, that is to say, inasmuch as it is self-sufficient and complete
psychologically and socially”.

Based on different conceptions of completeness in literature, we distinguish in our
framework between conceptual and syntactic completeness of a sentence and, additionally,
introduce a criterion of mechanical completeness.

The mechanical completeness refers to the existence of a sentence frame: the capital
letter at the beginning and the final punctuation mark at the end of a sentence6. The
classification of a sentence as mechanically complete is based on its surface representation,
which is the visible product of writing.

The definition of conceptual completeness is inspired by Gardiner’s (1922) concept
of satisfaction or psychological completeness with regard to sentences. We define the
conceptual completeness of a sentence under production as a state when the writer seems
to be satisfied with the sentence content. When working with keystroke logging data,
we clearly do not know the writer’s intention. Hence, when deciding on a sentence’s
conceptual completeness, we can only speculate. We base the speculations on writers’
behavioural data: when the writer puts a final punctuation mark at the end of a word
sequence and moves on with the writing process by producing or editing a different
sentence (as opposed to revising the current sentence), we interpret their behaviour as a
signal that they consider the sentence as complete.

The syntactic completeness is taken into consideration by Matthews (1993), inter alia,
according to whom a “traditional test of completeness is that a sentence should contain a
predication”. Predication is understood here as the relation between the subject and the
predicate. Although there are various possible syntactic representations of predication
(Bowers 2001), we restrict our definition of syntactic completeness to the existence of a

Languages 2024, 9, 71 8 of 33

main clause with a lexical or pronominal subject and a predicate in the form of a finite verb
form that agrees with the subject in person and number, which is inspired by the approach
presented in Panther and Köpcke (2008).7

3.2.2. Sentence Correctness

Judging if a sentence is correct or incorrect, especially in terms of grammar, is not a
trivial task. As Matthews argues: “grammarians tend to differ more about correctness than,
in practice at least, about completeness” (Matthews 1993). We consider two dimensions of
correctness: mechanical correctness and grammatical correctness.

In the case of written language, sentence production is typically regulated by pre-
scriptive grammatical, orthographic, and typographic rules. Writers commonly intend to
conform to them and readers tend to judge the text based on them. Hence, using a set of
prescriptive rules to assess sentence correctness seems suitable in this context.

We classify a sentence as mechanically correct if it does not contain any punctuation,
spelling, or capitalisation errors (Connors 1985).

With regard to grammatical correctness, we follow the principles of the correctness
test discussed by Matthews (Matthews 1993): a grammatically correct sentence is a form
which “should not be corrigible”.

As we are working with sentences under production which often contain incomplete
grammatical structures, typos, and/or incomplete words, we limit the grammatical correct-
ness check to the sequence of mechanically correct words and exclude the remaining words.
We also do not take into consideration the completeness of the grammatical structure,
meaning a sentence can be classified as grammatically correct even if missing obligatory
constituents (see Table 2 for examples).

Table 2. SPSFs with incomplete grammatical structures but building grammatically correct sentence
versions according to our grammatical correctness definition. GCOR = grammatically correct.

SPSF Gloss GCOR

Alle diese Erfahrungen haben mich
schlussendlich

All these experiences have finally Yes

Immerhin verbringt man doch die meiste
Zeit seines Lebens mit

After all, one spends most of one’s life
with

Yes

Und auch wir And also we Yes

3.3. Sentence in the Writing Process Context

From the text production perspective, Hayes sees sentences as being typically con-
structed “from proposed sentence parts in a complex activity involving idea generation,
evaluation, planning, and reading the text produced so far” (Hayes 2009, p. 2). They are
produced as “bursts of language intended for inclusion in the text” (Hayes 2009, p. 3).
Sentence parts put together can build a complete and correct sentence, or a given sentence
part can be removed even before being transformed into a sentence.

Tracking the evolution of sentences means collecting and classifying these “sentence
parts” produced in various revisions. Each sentence part needs to be identified as belonging
to one of the previously produced sentences (or sentence parts) or as being a fragment
of a new sentence. This is one of the key challenges. When identifying the boundaries
of the SPSFs, we cannot rely on the sentencehood criteria mentioned in the sentence
definitions above. In most cases, SPSFs do not fulfil the sentencehood criteria related
to morphosyntactic form, conceptual content or pragmatic function until the production
process is finished. Additionally, an SPSF which can be identified as a sentence at the given
moment can lose this property again in the subsequent revision process and transform
into a single incomplete word or even a single letter. We describe our modelling of this
phenomenon below.

Languages 2024, 9, 71 9 of 33

3.3.1. Sentences and Sentence Candidates

Keystroke logs do not provide any information on the writer’s mental representation
of the sentence and therefore, when identifying and classifying SPSFs, we cannot take
writer’s intentions into consideration. The only information at our disposal when tracking
the sentence production process with keystroke logging is the behavioural data (the keys
the writer presses) and the text itself as the visible result of the writing process at the given
moment. We use this information and make assumptions about the intended scope and
nature of each SPSF.

In order to distinguish between full-fledged sentences and sequences of characters
that do not meet the sentencehood criteria, we introduce two types of SPSFs: a sentence
(SEN) and a sentence candidate (SEC).

We interpret the writer’s behaviour as follows: the writer indicates the beginning of a
sentence by capitalising its first letter and indicates its end by entering a final punctuation
mark (“.”, “?”, or “!”). Following this interpretation, we define a sentence (SEN) as
a sequence of characters that starts with a capital letter and ends with sentence-final
punctuation.

Once a sequence of characters has been identified as a sentence, its status remains
unchanged as long as the writer does not clearly signal a revision of the sentence scope
by removing the capitalisation of the initial letter or adjusting the final punctuation mark.
In other words, as long as the sentence frame stays untouched, we treat the sequence
of characters within this frame as a sentence, even if other sentencehood criteria are not
satisfied (see Table 3 for examples).

Table 3. Excerpt from a sentence history showing how an SPSF evolves from SEC to SEN and back
and how it can be modified while still preserving the status of SEN.

SPSF Gloss SEN or SEC?

Meiner Meinung nach, bringen die
Migrant:innen sehr viel Ressourcen mit, die
man einsetzen und förder

In my opinion, migrants bring a lot
resources with them that should be
used and promot

SEC

Meiner Meinung nach, bringen die
Migrant:innen sehr viel Ressourcen mit, die
man einsetzen und fördern sollt.

In my opinion, migrants bring a lot
resources with them that should be
used and promote.

SEN

Meiner Meinung nach, bringen die
Migrant:innen sehr viel Ressourcen mit, die
man einsetzen und fördern sollt

In my opinion, migrants bring a lot
resources with them that should be
used and promote

SEC

Meiner Meinung nach, bringen die
Migrant:innen sehr viel Ressourcen mit, die
man einsetzen und fördern sollte.

In my opinion, migrants bring a lot
resources with them that should be
used and promoted.

SEN

Meiner Meinung nachbringen die
Migrant:innen sehr viel Ressourcen
mit, die man einsetzen und fördern sollte.

In my opinionmigrants bring a lot
resources with them that should be
used and promoted.

SEN

Meiner Meinung nach bringen die
Migrant:innen sehr viel Ressourcen mit, die
man einsetzen und fördern sollte.

In my opinion migrants bring a lot
resources with them that should be
used and promoted.

SEN

Meiner Meinung nach bringen die
Migrant:innen sehr vielRessourcen mit, die
man einsetzen und fördern sollte.

In my opinion migrants bring a lotre-
sources with them that should be
used and promoted.

SEN

Meiner Meinung nach bringen die
Migrant:innen sehr viele Ressourcen mit,
die man einsetzen und fördern sollte.

In my opinion, migrants bring a lot
of resources with them that should
be used and promoted.

SEN

In contrast, a sentence candidate (SEC) is defined as a sequence of characters that
does not start with a capital letter and/or does not end in sentence-final punctuation. In

Languages 2024, 9, 71 10 of 33

other words, it fails the mechanical completeness criterion. A sentence candidate can
appear in different positions in a TPSF: (a) between the beginning and the edge of the
text or (b) between a sentence interspace or paragraph interspace and the edge of the
text or (c) between the beginning of the text and a sentence or a paragraph interspace or
(d) between a sentence interspace or paragraph interspace and a sentence or (e) between two
paragraph interspaces or (f) between two sentences. All of these positions are illustrated in
Table 4.

Table 4. Possible positions of sentence candidates. B = beginning of TPSF, E = edge of TPSF. Bold
highlights the sentence candidate considered. Last column indicates the total number of SPSFs in the
example.

SEC Position Example SPSFs

B-SEC-E This is a story of a tortoise 1
B-PIN-SEC-E <tab> This is a story of a tortoise 1
B-SEN-SIN-SEC-E This is a story of a tortoise. The tortoise carries his

home on his back
2

B-SEC-SEN-E This is a story of a tortoise The tortoise carries his
home on his back.

2

B-SEC-PIN-E This is a story of a tortoise
<newline>

1

B-SEN-SIN-SEC-SEN-E This is a story of a tortoise. The tortoise carries his
home on his back No matter how hard he tries he
cannot leave home.

3

B-SEN-PIN-SEC-SEN-E This is a story of a tortoise.
<newline> The tortoise carries his home on his
back No matter how hard he tries he cannot leave home.

3

B-PIN-SEC-PIN-E <tab> This is a story of a tortoise
<newline>

1

B-SEN-SEC-SEN-E This is a story of a tortoise.The tortoise carries his
home on his back No matter how hard he tries he
cannot leave home.

3

The definitions of what is and is not a sentence provided above present an obvious
simplification of the sentencehood concept. However, since our framework is intended
to enable the automated extraction of sentences, it is inevitably guided by the practical
limitations of its implementation. The definitions need to be broad enough to encompass
sequences ranging from a single letter to a morphosyntactically, conceptually, and prag-
matically complete sentence and enable identifying SPSFs in the text under production
in a systematic and reliable manner. The simplification allows us to collect all SPSFs per
sentence and generate sentence histories, which is a prerequisite for the further analysis of
sentences under production. This, in turn, makes it possible to apply additional automated
tools and investigate the properties of each identified SPSF with regard to the remaining
sentencehood criteria (see Section 3.3.2).

During the writing process, both a sentence and a sentence candidate can change
status. A sentence candidate can be completed and turned into a sentence, or it can be
merged with another sentence candidate or sentence. A sentence can also be revised so
that it turns into a sentence candidate. We illustrate this in the example below.

This is a short text history containing seven text versions. Each text version contains
SPSFs marked with letters A, B, and C. In text version 1, A and B are sentences, while C is a
sentence candidate. First, the writer intends to merge SPSF (B) and SPSF (C) in revisions (2)
to (5). SPSF (B) becomes a SEC in text version (2), and its status remains unchanged as long
as the writer does not remove the capitalisation of the first letter in SPSF (C) in text version
(4). This action is interpreted as a signal that the boundaries of the SPSFs are changing, and
(B) and (C) now form a single SEC. In revision (7), the merged SPSF (B + C) is split again.
The final punctuation entered after back in SPSF (B) indicates the intention of the writer to
change the SPSF scope again.

Languages 2024, 9, 71 11 of 33

(1) 1. (A) This is a story of a tortoise. | (B) The tortoise carries his home on his back. |
(C) No matter how hard he tries he cannot leave home

2. (A) This is a story of a tortoise. | (B) The tortoise carries his home on his back |
(C) No matter how hard he tries he cannot leave home

3. (A) This is a story of a tortoise. | (B) The tortoise carries his home on his back,
so | (C) No matter how hard he tries he cannot leave home

4. (A) This is a story of a tortoise. | (B + C) The tortoise carries his home on his back,
so o matter how hard he tries he cannot leave home

5. (A) This is a story of a tortoise. | (B + C) The tortoise carries his home on his back,
so no matter how hard he tries he cannot leave home

6. (A) This is a story of a tortoise. | (B + C) The tortoise carries his home on his back
so no matter how hard he tries he cannot leave home

7. (A) This is a story of a tortoise. | (B) The tortoise carries his home on his back. |
(C) so no matter how hard he tries he cannot leave home

3.3.2. Approximating the Degree of Sentencehood

An SPSF which is mechanically, syntactically, and conceptually complete and at the
same time mechanically and grammatically correct is a prototypical sentence in our model.
But an SPSF that does not meet any of these criteria can also occur in a text. Table 5 gives
an overview of the properties of the sentences and sentence candidates with regard to the
completeness and correctness criteria.

Table 5. Sentencehood criteria in relation to the type of SPSF: sentence or sentence candidate.
MCOM = mechanical completeness, SCOM = syntactical completeness, CCOM = conceptual com-
pleteness, MCOR = mechanical correctness, GCOR = grammatical correctness.

SPSF MCOM SCOM CCOM MCOR GCOR

SEN + +/− +/− +/− +/−
SEC − +/− − − +/−

As the criterion of mechanical completeness is the main distinction between the
sentence and the sentence candidate in our framework, it is always fulfilled by the sentence
and never met by the sentence candidate. Additionally, it is is a prerequisite for both the
conceptual completeness and mechanical correctness. Hence, the latter two criteria can
never by satisfied by sentence candidates. In the case of the remaining two categories, both
the sentence and the sentence candidate can meet or miss them. The example in Table 6
shows how an SPSF can evolve from a sentence candidate not meeting any sentencehood
criteria to a sentence with a maximum degree of sentencehood. The example in Table 7
shows how the sentencehood degree of a SEN can change as a result of revisions.

Each sentencehood criterion is investigated for each SPSF: it is tested if the given SPSF
fulfils the criterion. If the criterion is met, the SPSF receives a score of 1 in the given category;
otherwise, it receives a score of 0. This way, a total sentencehood score can be calculated:
for example, if an SPSF fulfils all criteria, the score is 3/3 for completeness and 2/2 for
correctness; if its content is just one letter not constituting a complete word, the score is 0/3
for completeness and 0/2 for correctness. Based on the scores, we distinguish between three
degrees of sentencehood: full, partial, and missing. The partial sentencehood is further
divided into three subcategories: (1) complete and incorrect, (2) partially complete and
incorrect, and (3) partially complete and partially correct. A case that a sentence does not
meet any completeness criteria but is correct with regard to mechanics and grammar is not
possible due to the dependencies between these properties discussed above. An overview
of the sentencehood degrees is presented in Table 8. Calculating the sentencehood degree
for each SPSF allows for tracking the sentencehood evolution and provides a high-level
view on the fluency and efficiency of the sentence production process.

Languages 2024, 9, 71 12 of 33

Table 6. Sentence history containing 4 SPSFs (3 SECs and 1 SEN) meeting a different set of sen-
tencehood criteria. MCOM = mechanical completeness, SCOM = syntactical completeness, CCOM =
conceptual completeness, MCOR = mechanical correctness, GCOR = grammatical correctness.

SPSF MCOM SCOM CCOM MCOR GCOR

Ich s (‘I s’) SEC − − − − −

Ich stehe also in direkter Re (‘So I
stand in direct re’)

SEC − + − − −

Ich stehe also in direkter Relation
zu zwei Sprachen (‘So I stand in
direct relation to two languages’)

SEC − + − − +

Ich stehe also in direkter Relation zu
zwei Sprachen, zwei Ländern, zwei
Kulturen und zwei Gesellschaften.
(‘So I stand in direct relation to
two languages, two countries,
two cultures, and two societies’.)

SEN + + + + +

Table 7. Sentence history containing 4 SPSFs (1 SEC and 3 SENs) meeting a different set of sen-
tencehood criteria. MCOM = mechanical completeness, SCOM = syntactical completeness, CCOM =
conceptual completeness, MCOR = mechanical correctness, GCOR = grammatical correctness.

SPSF MCOM SCOM CCOM MCOR GCOR

Genauso wichtig ist es, wenn m (‘It
is just as important when y’)

SEC − + − − −

Genauso wichtig ist es, wenn man
versucht zu verstehen, wie jemand
anderes etwas versteht. (‘It is just
as important when you try to un-
derstand how someone else un-
derstands something’.)

SEN + + + + +

Genauso wichtig ist es, wenn man
versuchzu verstehen, wie jemand
anderes etwas versteht. (‘It is just
as important when youtry to un-
derstand how someone else un-
derstands something’.)

SEN + + + − −

Genauso wichtig ist es, wenn man
versuchen zu verstehen, wie jemand
anderes etwas versteht. (‘It is just
as important when you to try to
understand how someone else
understands something’.)

SEN + + + + −

Genauso wichtig ist es, versuchen
zu verstehen, wie jemand anderes
etwas versteht. (‘It is just as im-
portant to try to understand how
someone else understands some-
thing’.)

SEN + + + + +

Languages 2024, 9, 71 13 of 33

Table 8. Possible sentencehood degrees.

Sentencehood
Degree

Definition Completeness
Criteria

Correctness
Criteria

Full Complete and correct 3/3 2/2
Partial

Complete and incorrect 3/3 0/2
Partially complete and incorrect 1/3 or 2/3 0/2
Partially complete and partially correct 1/3 or 2/3 1/2
Incomplete and correct n/a n/a

Missing Incomplete and incorrect 0/3 0/2

To summarise, our framework is centred around the notion of sentence history: the
collection of all the versions of a given sentence throughout the writing process. We define a
sentence by its formal, morpho-syntactic, semantic, and pragmatic properties and consider
completeness (mechanical, syntactical, and conceptual) and correctness (mechanical and
grammatical) as sentencehood criteria. During the writing process, these properties of a
sentence under production are in flux. In order to capture this evolution, we rely on the
concept of a sentence produced so far (SPSF) while distinguishing between full sentences
(SENs) and sentence candidates (SECs). Finally, we propose to capture the evolution of a
sentence along different axes by evaluating the sentencehood of SPSFs according to the
completeness and correctness categories mentioned above.

In the following section, we describe how this framework can be implemented.

4. Implementation of the Theoretical Framework

The framework implementation is a modification and an extension of the existing
application THEtool8, which is an open-source solution implemented in Python9. We
extend THEtool with the following processing steps that allow for a more detailed and
reliable analysis of sentences under production: (1) segmentation of text versions into
text units and classification of text units based on their content, (2) aggregation of text
units into sentence histories, and (3) evaluation of the degree of sentencehood for different
sentence versions.

4.1. Automatic Segmentation of the Text into SPSFs

THEtool transforms the keystroke logs provided by a keystroke logging tool into a
series of text versions. The keystroke logs are collected in an XML-based IDFX format
which is a widely used format for storing keystroke-logging data (e.g., Inputlog in Leijten
et al. (2012) and ScriptLog in Johansson et al. (2018)). The IDFX file contains detailed
information about each keystroke detected during a writing session. Listing 1 shows two
keystrokes logs recorded during the production of the English pronoun it.

Each text version extracted by THEtool from keystroke logs is a sequence of characters
containing sentences, sentence candidates, sentence interspaces, and paragraph interspaces,
but their boundaries are unknown at the beginning.

For sentence boundaries detection, we apply the statistical DependencyParser from
spaCy, which is an open-source Python software library for advanced NLP (Montani et al.
2023). According to the spaCy technical documentation, the dependency parser provides
the most accurate sentence boundaries from the tools offered by spaCy10 and hence has
been selected for our implementation. Our tests showed that it performs very well on
complete sentences. However, in case of incomplete and ill-formed sentences, it does not
always provide correct results, as already shown in Mahlow et al. (2022). An example of an
erroneous segmentation encountered in our own data is presented in Table 9.

Languages 2024, 9, 71 14 of 33

Listing 1. Example of raw logging data in XML format, showing the sequence needed to produce the
pronoun it.

<event id ="388" type=" keyboard">
<part type=" wordlog">

<position >567 </ position >
<documentLength >569 </ documentLength >
<replay >True </replay >

</part >
<part type=" winlog">

<startTime >233465118 </ startTime >
<endTime >233465123 </ endTime >
<key >VK_I </key >
<value >i</value >
<keyboardstate ></keyboardstate >

</part >
</event >
<event id ="389" type=" keyboard">

<part type=" wordlog">
<position >568 </ position >
<documentLength >570 </ documentLength >
<replay >True </replay >

</part >
<part type=" winlog">

<startTime >233465771 </ startTime >
<endTime >233465776 </ endTime >
<key >VK_T </key >
<value >t</value >
<keyboardstate ></keyboardstate >

</part >
</event >

Table 9. Example of an incorrect automated detection of sentence boundaries by spaCy.

Unsegmented
text:

Diese Texte wurden auf Inception annotiert, indem die Fehler in den
entsprechenden Fehlerkategorien markiert wur (‘These texts have been anno-
tated on Inception by mar the errors in the appropriate error categories’)

Segmented text: (1) Diese Texte wurden auf Inception annotiert, (‘These texts have been anno-
tated on Inception’)

(2) indem die Fehler in den entsprechenden Fehlerkategorien markiert wur (‘by
mar the errors in the appropriate error categories’)

In order to minimise the effect of these issues, the segmentation proposed by spaCy
is improved by THEtool in two steps. First, each sequence identified as a sentence by
spaCy is classified according to the four text unit categories: SEN (sentence), SEC (sentence
candidate), SIN (sentence interspace), and PIN (paragraph interspace)11. The classification
algorithm is an implementation of the definitions provided in Section 3.3.1 and is visualised
in Figure 2.

The first processing step transforms each text version into a sequence of SENs, SECs,
SINs, and PINs. The second step consists in verifying if the generated sequences are
acceptable according to our definitions. We defined the following restrictions with regard
to the text unit order:

• SIN can only follow SEN.
• SEC can follow PIN, SIN, or SEN. However, a sequence of SEN-SEC is assumed to be

rare and occurs only if the writer does not enter a whitespace character between the
text units.

Languages 2024, 9, 71 15 of 33

• SEN can follow all text unit types: SEN, SIN, PIN, and SEC. However, a sequence
of SEN-SEN is assumed to be rare and occurs only if the writer does not enter a
whitespace character between the text units.

• SIN-SIN, PIN-PIN, PIN-SIN, SIN-PIN, SEC-SIN, and SEC-SEC sequences are not
allowed. Sequences containing several whitespace characters are considered as a
single interspace unit. SECs integrate any trailing space characters. Since SECs do not
have any surface properties that would allow us to reliable identify their beginning
and end, they are always considered to be delimited by text units of a different type.
If we encounter any of the six unacceptable sequences of text units, we merge them
into one text unit: SIN-SIN becomes one SIN, PIN-PIN turns into one PIN, both PIN-
SIN and SIN-PIN are merged and build a PIN, and both SEC-SIN and SEC-SEC are
transformed into an SEC.

In multiple cases, merging adjacent SPSFs of the same type leads to improving sentence
segmentation provided by spaCy. If we look at the example of erroneous segmentation
provided in Table 9, we see that for the sentences detected, there are two sentence candidates.
Merging them by means of our algorithm leads to a creation of one sentence candidate.
This, in turn, results in a correct segmentation. Merging may also cause a formation of
a sentence if two sentence candidates combined together form a sequence which starts
with a capital letter and ends with the final punctuation mark. The merging algorithm is
presented in Figure 3.

For seg in
segments

Create SIN or PIN from
segment

Yes

Create SINs and / or PINs
from leading whitespaces

till no leading
whitespaces left

Create SIN from
trailing whitespace if

any

Create SEN from
segment without

trailing whitespace

No

End of
segments

START

Does seg
start with

whitespaces?

Does seg
contain only

space
characters?

Yes

No

Remove leading
whitespaces

Add SIN or PIN to text
unit list

Does seg
contain paragraph

whitespaces in
the middle (tabs,

returns, or
newlines)?

Collect a list of
paragraph whitespaces

For each paragraph
whitespace in

paragraph whitespaces
list

Split seg by the
paragraph whitespace

START

Create PIN from the
paragraph whitespace

Does first
sequence in the

split seg start with
capital letter and

end with final
punctuation?

Create SEC from
segment including

trailing white space Add SEN (and SIN) to
text unit list

Add SEC to text unit list Add PIN to text unit list

Remove the content of
created text units from

seg

END

END

End of
paragraph

whitespaces
list

START

END

Figure 2. Algorithm for assigning segments identified as sentences by spaCy to one of four text unit
categories: SEN, SEC, SIN, or PIN.

Languages 2024, 9, 71 16 of 33

For text_unit in
text_units

Yes

No

Merge text_unit with
previous text_unit

START

END

START

END

End of
text_units

No

Yes

Remove trailing white space
from merged text_unit if

any

No

Create SEC from merged
text_unit including trailing

whitespace

Create SIN or PIN from
trailing whitespace if

any

Create SEN from
merged text_unit
without trailing

whitespace

Yes

Is text_unit
category same

as previous
text_unit?

Does merged
text_unit starts

with capital
letter and ends

with final
punctuation?

Is text_unit a
SEN?

Figure 3. Algorithm for merging adjacent SECs, SINs, and PINs and transforming them into new
SECs, SINs, PINs and SENs.

4.2. Automatic Aggregation of SPSFs into Sentence Histories

Once a given text version has been segmented into text units, an automated analysis
is performed to determine which text unit has been impacted by the latest revision of the
text and what kind of impact this was. Depending on the impact, a text unit can have
one of the following states: (1) new, (2) modified, or (3) unchanged (refer to Figure 4 for a
graphical representation of the algorithm). This classification is the basis for generating
sentence histories. The sentence histories are extracted only from text units which belong
to the category SPSF: sentences and sentence candidates. SINs and PINs are excluded from
sentence histories. The sentence history generation is based on (1) the comparison of SPSF
lists from the previous and the current text version and (2) the state of each SPSF in the
current text version. The algorithm is presented in Figure 5.

Languages 2024, 9, 71 17 of 33

No

Set state to unchanged

Yes Yes Set state to new

For text_unit in
text_units

START

No

Yes

Set state to split

No Set state to modified

END

End of
text_units

END

START

Does text_unit
start and end

within
transforming
sequence?

Does
transforming

sequence
overlap with

text_unit?

Has number of
text_units increased

in comparison to
previous text

version?

Figure 4. Algorithm for detecting TPSFs’ states.

4.3. Measuring Sentencehood

The final processing step of our implementation performs an evaluation of the sen-
tencehood criteria discussed in Sections 3.2.1 and 3.2.2. The tests are described below.

The mechanical completeness test consists in checking if the given sequence starts
with a capital letter and ends with a final punctuation mark.

The conceptual completeness is dependent on the mechanical completeness of an
SPSF. After the mechanical completion of an SPSF, it is verified where the next revision
takes place. If the next revision does not impact the given SPSF, the SPSF is classified as
conceptually complete.

For the syntactic completeness check, we apply an external Python library: spaCy
(Montani et al. 2023). Each SPSF is parsed with the spaCy dependency parser. If an SPSF
contains a subject in the form of a noun or a pronoun and a predicate in the form of a finite
verb with the role of the root, it is labelled as syntactically complete.

For the correctness check, we apply a Python wrapper for an open-source proofreading
tool called LanguageTool (Naber 2003). LanguageTool is based on human-curated rules for
multiple languages. For the mechanical correctness check, it verifies if an SPSF contains
spelling, punctuation or capitalisation errors. If no such errors are identified, we classify
the SPSF as mechanically correct. We also check if the output from LanguageTool contains
any grammatical errors. If no errors are detected, the SPSF is marked as grammatically
correct. When checking correctness, typographic errors such as double whitespaces are not
taken into consideration.

Thus, a sentencehood degree score can be calculated for each SPSF in a given sentence
history (see Section 3.3.2 for details on the sentencehood degree score). Measuring the
sentencehood degree of each SPSF allows for tracking the evolution of the sentence in a
systematic and automated manner. For example, we can observe how the sentencehood
of an SPSF increases and decreases as a result of revisions or how many SPSFs in the
sentence history reached the full sentencehood degree at a certain point and lost it again.
This enables us to collect statistics and draw conclusions related to sentence production
efficiency but also helps to identify sentences or sentence parts which were particularly

Languages 2024, 9, 71 18 of 33

challenging for the writer. It can also allow for a better understanding of issues related
to automated sentence processing with NLP tools by identifying the relation between
sentencehood degree and quality of automated output.

For each SPSF in the
text_version

Create a new
sentence_history

More

For each SPSF in the
text_version

Less

Same

Assign SPSF to an
existing

sentence_history based
on position in text

For each SPSF in the
text_version

Assign SPSF to an
existing

sentence_history based
on SPSF state

(unchanged or
modified) and position

in text

Yes

No

END

END

END

For text_version in
text_history

END

START

START

End of
text_history

START START

END

START

START

For each SPSF in the
text_version

Create a new
sentence_history

Yes

No
Assign SPSF to an

existing
sentence_history based

on position in text

Is is the first
text_version in

the text_history?

Is the number of
SPSFs the same as

in previous
text_version?

Is SPSF state
”new” or
“split”?

Figure 5. Algorithm for generating sentence histories.

5. Evaluation of the Theoretical Framework and Its Implementation

In order to understand the applicability and reliability of the theoretical framework and
its implementation in the context of writing process research, we performed a quantitative
and qualitative evaluation of THEtool. This was achieved by processing keystroke logs
from multiple writing sessions. The output was evaluated against a manually annotated
gold standard corpus. The evaluation took into account the three processing steps described
in Section 4: (1) segmenting the TPSF into text units and identifying text unit categories;
(2) aggregating sentence histories; and (3) evaluating the sentencehood of the detected

Languages 2024, 9, 71 19 of 33

SPSFs. In the remainder of this section, we first present the evaluation corpus and then
describe in detail the three axes of evaluation.

5.1. Evaluation Corpus

The goal of this evaluation was to investigate how well the framework performs on
texts with various properties produced in various conditions to deepen our understanding
of its suitability for a wide range of scenarios. For this reason, we compiled a corpus of
10 texts written in three different languages (French, German, and English), belonging to
different genres, produced by writers of varying ages, educational levels, and language
competencies. The texts in French come from the Pro-TEXT corpus (Cislaru and Olive
2020), whereas the one in English and German were collected specifically for the evaluation
of THEtool. The writing sessions were recorded with Inputlog (Leijten and Van Waes 2005)
and ScriptLog (Johansson et al. 2018), and we used the IDFX files produced by these tools as
input for THEtool (see Section 4.1 for more information on the IDFX format). An overview
of the evaluation corpus is given in Table 10.

Table 10. Evaluation corpus.

Text ID Lang. Genre Writer’s Age Education Level Number of
Keystrokes

Children_1 FR (L1) essay 11–12 secondary school 551
Children_2 FR (L1) narrative 8–9 primary school 334
Children_3 FR (L1) narrative 8–9 primary school 552
Children_4 FR (L1) narrative 10–11 primary school 583
Translation_1 FR (L1) translation young adult university 3769
Composition_1 FR (L1) essay young adult university 5012
Composition_2 FR (L1) essay young adult university 2417
Composition_3 FR (L1) essay young adult university 3326
Composition_4 DE (L1) blog post young adult university 2710
Composition_5 EN (L2) blog post young adult university 2653

We based the evaluation on text histories generated by THEtool. The quality of the
extracted text histories was verified by comparing the final version of each text history with
the corresponding final text generated by a keystroke logging tool. If no differences were
detected, we assumed that the text history has been extracted correctly. This assumption is
based on the observation that an error in a previous text version propagates to subsequent
versions and in most cases impacts the extraction of the final text version. However, we
cannot be sure that no errors occur in the extracted intermediate text versions. They have
been neither verified nor corrected manually.

5.2. Evaluation of Text Unit Segmentation and Identification

This part of the evaluation focuses on two aspects: THEtool’s capacity to correctly
segment the text into text units and its capacity to assign them to the right text unit category
(SIN, PIN, SEC or SEN). Additionally, to provide a wider context for this evaluation and
demonstrate the encountered challenges, we investigate to what extent the concept of text
units, as implemented at the moment, allows us to improve the initial sentence boundary
detection performed by spaCy.

5.2.1. Evaluation Corpus

The segmentation and the identification of text units were evaluated on the corpus
presented in Table 10. The manual annotation of the corpus was based on text histories
extracted automatically for each text by THEtool. For each TPSF in a text history, the
human annotator manually created a list of all text units constituting it (see Table 11 for
an example). This file served as a reference annotation against which THEtool’s output
was evaluated.

Languages 2024, 9, 71 20 of 33

Table 11. Excerpt from manual annotation of text units.

TPSF ID Text Units Total Text Units

0 SEN-SIN-SEN-SIN-SEN-SIN-SEN-SIN 8
1 SEN-SIN-SEN-SIN-SEN-SIN-SEN-SIN-SEC 9

5.2.2. Evaluation Metrics

We evaluate THEtool with respect to the segmentation accuracy and measure the
ratio of over- and under-segmented TPSFs. Segmentation accuracy is calculated as the
percentage of TPSFs in the given text history for which THEtool identified the correct
number of text units. The over-segmentation error rate (OER) indicates the percentage of
TPSFs that were segmented into more TUs compared to the manual annotation. Conversely,
the under-segmentation error rate (UER) indicates the percentage of TPSFs that were
segmented into fewer TUs compared to the manual annotation.

Additionally, for the texts with the highest and the lowest segmentation accuracy
score, we compare the result of the SPSF boundary detection by THEtool with the initial
sentence segmentation provided by spaCy.

When it comes to text unit identification, we compare the manual and the automatic
annotation and measure the difference between the two sequences by calculating Leven-
shtein distance. Note that this is only performed on text histories for which THEtool has
identified the correct number of text units. The content of the text units is not verified.

Filtering out incorrectly segmented TPSFs also allows us to disentangle the tasks and
evaluate them separately. TU identification accuracy is calculated as the percentage of
correctly classified TUs out of all TUs found in the correctly segmented TPSFs.

For the comparison of the SPSF detection performed by THEtool and by spaCy, we
calculate how many of the SPSFs identified by the two tools are contained in manually
created sentence histories. We concentrate merely on the textual content of the SPSFs and
to this end remove all preceding and trailing whitespaces from all SPSFs.

5.2.3. Results and Discussion

We report TU segmentation accuracy and TU identification accuracy in Tables 12 and 13,
respectively. The results are given for each text and as an average over the number of texts
in the evaluation corpus.

The TU segmentation results show that THEtool’s performance on this task are solid:
9 out of 10 texts were segmented with an accuracy >90%. It is also clear that it is more
prone to under-segmenting than to over-segmenting given that only three texts have
over-segmented TUs, whereas six have issues with under-segmentation.

Table 12. TU segmentation accuracy. # TPSF: number of TPSFs in text history. SEG acc.: TU
segmentation accuracy (%). OER: % of over-segmented TPSFs. UER: % of under-segmented TPSFs.

Text ID Genre Age # TPSF SEG acc. OER UER

Children_1 essay 11–12 46 100.00 0.00 0.00
Children_2 essay 8–9 21 100.00 0.00 0.00
Children_3 narrative 8–9 21 95.24 0.00 4.76
Children_4 narrative 10–11 32 12.50 6.25 81.25
Composition_1 essay young adult 235 98.30 1.70 0.00
Composition_2 essay young adult 69 92.75 0.00 7.25
Composition_3 essay young adult 254 98.82 0.79 0.39
Composition_4 blog post young adult 100 100.00 0.00 0.00
Composition_5 blog post young adult 217 99.54 0.00 0.46
Translation_1 translation young adult 130 99.23 0.00 0.77

Average 101 85.26 1.25 13.49

Languages 2024, 9, 71 21 of 33

Table 13. TU identification accuracy. # corr. TPSF: number of correctly segmented TPSF used
to calculate classification accuracy. # TU: total number of extracted TUs per text. CLASS acc.:
classification accuracy (%).

Text ID Genre Age # corr. TPSF # TU CLASS acc.

Children_1 essay 11-12 46 54 100.00
Children_2 essay 8-9 21 22 100.00
Children_3 narrative 8-9 21 23 100.00
Children_4 narrative 10-11 4 4 100.00
Composition_1 essay young adult 231 4646 100.00
Composition_2 essay young adult 64 823 100.00
Composition_3 essay young adult 251 4868 100.00
Composition_4 blog post young adult 100 2419 100.00
Composition_5 blog post young adult 216 4744 100.00
Translation_1 translation young adult 129 1886 100.00

Average 103 1753.14 100.00

The TU identification results in Table 13 seem to indicate that this part of the task
is trivial as long as the segmentation is correct. However, the segmentation itself is not
trivial. It is noteworthy that there was one text in particular that proved difficult to segment:
Children_4, for which the segmentation accuracy was only 12.5. Upon examining the data,
we found that the main problem stemmed from sentence frame inconsistencies: as shown
in Example 2, the first sentence ends in a space followed by a fullstop, which is followed
immediately by a capital letter. This sentence boundary is not detected by THEtool.

(2) Il était une fois ,à l’ école des enfants avec leurs amis qui joue au loup .Tout d,

‘Once upon a time ,at school children with their friends were playing tag .Sudd’

This specific situation could be considered as ambiguous, since the status of the text
sequence after the fullstop is not clear at this stage. However, six text versions later, the
second sentence is completed (see Example 3).

(3) Il était une fois ,à l’ école des enfants avec leurs amis qui joue au loup .Tout d’un
coup c’etait a shazya de touche et san faire espres elle a giffle morgane.

‘Once upon a time ,at school children with their friends were playing tag .Suddenly
shazya was it and witout meanin to she slaped morgane’.

Now, the segment contains two sequences with an identifiable sentence frame (they
start with a capital letter and end with a sentence-final punctuation). Nevertheless, this
remains undetected, and the full sequence is considered as a single text unit. This error
propagates through all the subsequent text versions, leading to a very low accuracy score.

In order to better identify the challenges related to segmentation and evaluate the
performance of THEtool’s algorithm for segmentation improvement (see Figure 3), we
compared the SPSF detection accuracy of THEtool and spaCy for the texts with the worst
and the best segmentation accuracy scores from the evaluation above. The results are
presented in Table 14. Table 15 provides examples of segmentation errors found in the
output of spaCy and/or THEtool.

As can be observed in Table 14, THEtool’s algorithm manages to rectify some of the
erroneous segmentations by spaCy (see the first three examples). However, the error in
the last example (the one identified as the source of segmentation issues in Children_4) is
not detected either by spaCy or by THEtool. This points towards the need to improve the
robustness of both algorithms to sentence frame inconsistencies.

Languages 2024, 9, 71 22 of 33

Table 14. SPSF detection accuracy of spaCy and THEtool on the example of 4 texts. SPSF DET acc.:
SPSF detection accuracy (%)

Text ID Genre Age SPSF DET acc. SPSF DET acc.
of SpaCy of THEtool

Children_1 essay 11–12 85.10 100.00
Children_2 essay 8–9 80.95 100.00
Children_4 narrative 10–11 56.41 79.49
Composition_4 blog post young adult 100.00 100.00

Average 80.62 94.87

Table 15. Example segmentation errors found in spaCy and THEtool output.

Text ID SPSFs by SpaCy SPSFs by THEtool Correct SPSFs

Children_1 (SPSF 1) Ce que je pense de la
violence (SPSF 2) c’est que al

(SPSF 1) Ce que je pense
de la violence c’est que al

(SPSF 1) Ce que je pense
de la violence c’est que al

(SPSF 1) ‘What I think of vi-
olence’ (SPSF 2) ‘is that ats’

(SPSF 1) ‘What I think of
violence is that ats’

(SPSF 1) ‘What I think of
violence is that ats’

Children_2 (SPSF 1) Je pance que la vi-
olance a l’ecole est un peut
i peut tros danjereut il y a
de la bagare de l’insuletans et
(SPSF 2) de

(SPSF 1) Je pance que la vi-
olance a l’ecole est un peut
i peut tros danjereut il y a
de la bagare de l’insuletans
et de

(SPSF 1) Je pance que la vi-
olance a l’ecole est un peut
i peut tros danjereut il y a
de la bagare de l’insuletans
et de

(SPSF 1) ‘I think that vi-
olance at school is a litle
bitt too danjerous there are
fites insultings and ’ (SPSF
2) ‘de’

(SPSF 1) ‘I think that vi-
olance at school is a litle
bitt too danjerous there
are fites insultings and
de’

(SPSF 1) ‘I think that vi-
olance at school is a litle
bitt too danjerous there
are fites insultings and
de’

Children_4 (SPSF 1) Elle vat giffler (SPSF
2) shazya puie ainsi de suite.

(SPSF 1) Elle vat giffler
shazya puie ainsi de suite.

(SPSF 1) Elle vat giffler
shazya puie ainsi de suite.

(SPSF 1) ‘She gos an slaps’
(SPSF 2) ‘shazya an so on’.

(SPSF 1) Elle vat gif-
fler shazya puie ainsi de
suite.

(SPSF 1) Elle vat gif-
fler shazya puie ainsi de
suite.

Children_4 (SPSF 1) Il était une fois ,à
l’ école des enfants avec leurs
amis qui joue au loup .Tout d,

(SPSF 1) Il était une fois
,à l’ école des enfants avec
leurs amis qui joue au loup
.Tout d,

(SPSF 1) Il était une fois
,à l’ école des enfants avec
leurs amis qui joue au loup
. (SPSF 2) Tout d,

(SPSF 1) ‘Once upon a time
,at school children with
their friends were playing
tag .Sudd’

(SPSF 1) ‘Once upon a
time ,at school children
with their friends were
playing tag .Sudd’

(SPSF 1) ‘Once upon a
time ,at school children
with their friends were
playing tag .’ (SPSF 2)
‘Sudd’

5.3. Evaluation of Sentence History Aggregation

Another evaluation criterion is THEtool’s capacity to aggregate SPSFs into sentence
histories, i.e., to identify which SPSFs represent different versions of the same sentence. We
present the evaluation corpus, the metrics and the results below.

5.3.1. Evaluation Corpus

The aggregation of sentence histories is evaluated on the corpus presented in Table 10.
The annotation of the gold standard corpus consisted in manually building sentence

histories. To facilitate the work of the human annotator, we use THEtool’s sentence history
output as a preannotation, which is then verified against the manually identified SPSFs.

Languages 2024, 9, 71 23 of 33

The manually annotated corpus contains, for each text, a collection of sentence histories.
Each sentence history has a unique ID, and for each sentence version in the history, the file
also indicates the position of the sentence version in the text as well as the sentence version
itself (see Table 16 for an example).

Table 16. Excerpt from manual annotation of sentence histories.

Sentence
History ID

TPSF
ID

Position
in Text

SPSF Text

101877 0 1 il etait une foi

101882 2 1 i

101886 4 1 Il etait ue
101886 5 1 Il etait u
101886 6 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait

copinee
101886 7 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait

copine
101886 8 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait

copine et touta
101886 9 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait

copine et tout
101886 10 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait

copine et tout aje
101886 11 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait

copine et tout a
101886 12 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait

copine et tout a je mm
101886 13 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait

copine et tout a je m
101886 14 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait

copine et tout a je me suis retour
101886 15 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait

copine et tout a
101886 16 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait

copine et tout a cout je me suis retour nait et il y a un eleve qui
ma tape la et qui ma pousse par terre.

101886 17 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait
copine et tout a cout je me suis retour nait et il y a un eleve qui
ma tape la et qui ma pousse par t

101886 18 1 Il etait une fois cans on sortait de la classe j’ai jouer avec mait
copine et tout a cout je me suis retour nait et il y a un eleve qui
ma tape la et qui ma pousse par terre.

5.3.2. Evaluation Metrics

We frame the aggregation of sentence histories as a classification task. We consider
each sentence history in the reference annotation as a class. For each SPSF in THEtool’s
output, we check if it was assigned to the right sentence history. We calculate the precision,
recall, and F1 score for sentence aggregation.

Segmentation errors can lead to SPSFs in THEtool’s output that do not exist in the
reference file. All such SPSFs are considered as misclassifications.

5.3.3. Results and Discussion

We report sentence history aggregation metrics in Table 17. The metrics are reported
on text level and as a macro-average over the whole evaluation corpus.

Languages 2024, 9, 71 24 of 33

Table 17. Sentence history aggregation results. # senhis: number of sentence histories in reference
corpus. P: precision. R: recall. F1: F1 score. Metrics are macro-averaged.

Text ID Genre Age # senhis P R F1

Children_1 essay 11–12 2 1.00 1.00 1.00
Children_2 essay 8–9 1 1.00 1.00 1.00
Children_3 narrative 8–9 7 0.71 0.70 0.71
Children_4 narrative 10–11 11 0.82 0.80 0.81
Composition_1 essay young adult 28 1.00 1.00 1.00
Composition_2 essay young adult 12 1.00 1.00 1.00
Composition_3 essay young adult 18 1.00 1.00 1.00
Composition_4 blog post young adult 30 0.94 0.94 0.94
Composition_5 blog post young adult 24 0.92 0.92 0.92
Translation_1 translation young adult 15 1.00 1.00 1.00

Average 14.80 0.94 0.94 0.94

THEtool performs very well on this task: for six out of eight texts, it achieves perfect
scores. This shows that THEtool’s algorithms for detecting the state of an SPSF states based
on the revision scope analysis and for aggregating the sentence history on this basis provide
solid results and are well applicable for an automated analysis of writing data.

A closer look at the data underlines once again the importance of the correct segmen-
tation. One of the problematic texts here is the one that proved most difficult in the TU
segmentation task (Children_4). The reason for the low scores is the same unsegmented
sequence of two sentences as in the SPSF detection evaluation: as the amalgamated sentence
in THEtool’s output is not correctly segmented, the second sentence is not recognised and
the generation of its history is never triggered.

A similar problem occurs in the text with the lowest score (Children_5). Its text history
contains the SPSF shown in Example 4. The fullstop is not recognised as a sentence bound-
ary, and so the sequence remains identified as a single SPSF, which entails classification
issues downstream.

(4) Il etait une fois cans on sortait de la classe j’ai jouer avec mait copine et tout a cout
je me suis retour nait et il y a un eleve qui ma tape la et qui ma pousse par terre.n

‘Once upon a time wen we were coming out of class I plaid with mai friend and
sudenly I tur ned and one pupil hitme there and pushedme down.n ’

These observations stress once again that any errors that occur in the initial sen-
tence segmentation process tend to propagate and compromise the quality of subsequent
processing steps.

5.4. Evaluation of Sentence Completeness and Sentence Correctness Detection

In Sections 3.2.1 and 3.2.2, we presented five sentencehood criteria: mechanical, syn-
tactic, and conceptual completeness, and mechanical and grammatical correctness. For
each SPSF, THEtool detects which of these criteria are met. Below, we evaluate the quality
of the module for automatic sentencehood detection.

5.4.1. Evaluation Corpus

The detection of sentence completeness and correctness is evaluated on a corpus of
489 SPSFs selected from four blog posts written in German by young adults. Each SPSF
was annotated manually with the five sentencehood criteria mentioned above. An example
of the manual annotation in provided in Table 18.

Languages 2024, 9, 71 25 of 33

Table 18. Excerpt from manual annotation of sentencehood. MCOM = mechanical completeness,
SCOM = syntactic completeness, CCOM = conceptual completeness, MCOR = mechanical correctness,
GCOR = grammatical correctness.

Sentence
History ID

Sentence Text MCOM CCOM SCOM MCOR GCOR

146291 Wenn ich meine bisherige berufliche Laufbahn ber (‘When I lok at my
professional career so far’)

MCOR GCOR

146291 Wenn ich meine bisherige berufliche Laufbahn be (‘When I lo at my
professional career so far’)

MCOR GCOR

146291 Wenn ich meine bisherige berufliche Laufbahn betrachte (‘When I look
back at my professional career so far’)

MCOR GCOR

146291 Wenn ich meine bisherige berufliche Laufbahn betrachte muss ich
feststellen, dass ich sehr vielseitige Br (‘When I look back at my
professional career so far, I have to say that I very varied po’)

SCOM MCOR GCOR

146291 Wenn ich meine bisherige berufliche Laufbahn betrachte muss ich
feststellen, dass ich sehr vielseitige B (‘When I look back at my pro-
fessional career so far, I have to say that I very varied p’)

SCOM MCOR GCOR

146291 Wenn ich meine bisherige berufliche Laufbahn betrachte muss ich
feststellen, dass ich sehr vielseitige Berufserfahrungen machen durfte.
(‘When I look at my professional career so far, I have to say that I
have been able to gain very varied professional experience’.)

MCOM CCOM SCOM MCOR GCOR

5.4.2. Evaluation Metrics

We evaluate the sentencehood detection as a multilabel classification task. We consider
each sentencehood property (MCOM, CCOM, SCOM, MCOR, and GCOR) as a class. An
SPSF is assigned to one or multiple classes or remains unassigned. For each SPSF in
THEtool’s output, we check if the assignment was correct. We calculate the precision, recall,
and F1 score for each of the sentencehood properties.

5.4.3. Results and Discussion

The evaluation results are presented in Table 19. THEtool detected the mechanical
and conceptual completeness correctly for all sentences. It also performed very well on the
syntactic completeness and grammatical correctness detection, where the scores are close
to 1. The lowest scores are achieved in the mechanical correctness category.

Table 19. Sentencehood detection results. # occurrences: number of SPSFs which were assigned to
the particular category. P: precision. R: recall. F1: F1 score. Metrics are macro-averaged.

Sentencehood Category # occurrences P R F1

Mechanical completeness 92 1.00 1.00 1.00
Syntactic completeness 378 0.98 0.99 0.98
Conceptual completeness 65 1.00 1.00 1.00
Mechanical correctness 59 0.86 0.81 0.83
Grammatical correctness 465 0.97 0.99 0.98

Average 211.8 0.96 0.96 0.96

Multiple errors in the syntactic completeness category result from the missing dis-
tinction between the main and the subordinate clauses in the current implementation of
the framework. If the main clause of a sentence has not yet been produced at all, THEtool
classifies the existence of the subject and the predicate in a subordinate clause as syntactic
completeness. This does not correspond to our definition as provided in Section 3.2.1.
However, if the beginning of the main clause has already been produced and it is missing

Languages 2024, 9, 71 26 of 33

a subject or a predicate, then the SPSF is correctly classified by THEtool as syntactically
incomplete. The first three SPSFs in Table 20 provide examples for this observation.

When analysing the errors, we also discovered undesired behaviour related to subject
and predicate detection. There are SPSFs where a single letter or an incomplete word at
the subject position has been detected as a subject and similarly, an incomplete word at the
predicate position has been recognised as a predicate. This is illustrated in the last four
examples in Table 20. The early presumption about the existence of a subject or predicate
seems to make the results less reliable. A potential solution to this would be to suspend the
syntactic completeness judgment until the writer produces a complete word. This would
allow us to asses more reliably if the SPSF turned into a syntactically complete sentence or
not. A way to achieve this would be to remove the incomplete words from the given word
sequence prior to sentencehood detection.

Table 20. Examples of errors in the syntactic completeness detection.

Sentence
History ID

Sentence Text SCOM
(Manual)

SCOM
(THEtool)

146291 Wenn ich meine bisherige berufliche Laufbahn betrachte
(‘When I look at my professional career so far’)

No Yes

221283 Wenn Menschen in das Land migrieren (‘When people
migrate to the country’)

No Yes

352745 Jahre später, als ich mich schon in Verzweiflung wiegte,
weil ich absolut nciht (‘Years later, when I was already
in despair because I absolutely could nto’)

No No

300739 Eigentlich ist e (‘Actually i is’) No Yes

185864 Natürlich waren die meixsten (‘Of course mst were’) No Yes

352745 Alle diese Erfahrungen hab (‘All these experiences ha’) No Yes

300741 Und auch wir wärn (‘And we woud also’) No Yes

Another indicator for the potential need for preprocessing the SPSFs before assess-
ing their sentencehood are errors discovered in the automated detection of grammatical
correctness. Table 21 provides examples for differences between the human judgement
which is based on the definitions provided in Section 3.2.2 and the automated detection
by LanguageTool integrated in THEtool. The first sentence in the table is classified as
grammatically correct despite the existence of the verb gäbe ‘would be’ in the first clause
which obviously does not fit there. On the other hand, the second sentence in the table
is classified as grammatically incorrect, although there are no grammatical errors in the
sequence. There is just an incomplete word at the end.

Incomplete words, when detected in an SPSF, seem to typically lead to the detection
of grammatical incorrectness by LanguageTool. This behaviour is not in line with our
definition of grammatical correctness. On the other hand, when manually analysing the
outputs of LanguageTool, we were also able to detect certain inconsistencies within this
behaviour. As presented in the first example in Table 22, an incomplete word does not
always lead to grammatical incorrectness. Both wärn ‘woud’ and wär ‘wou’ are incomplete
words, but in the first case, the SPSF is classified as grammatically correct and in the
second case as incorrect. At the moment, we cannot draw any clear conclusions about this
behaviour, and additional tests and manual analysis are required to understand it better.

Languages 2024, 9, 71 27 of 33

Table 21. Examples of differences in the detection of grammatical correctness between a human
annotator and THEtool.

Sentence
History ID

Sentence Text GCOR
(Manual)

GCOR
(THEtool)

300739 So habe ich nach anderen Möglichkeitn gäbe und bin auf
den Studiengang ’Sprachliche Integration’ gestossen. (‘So
I looked for other optios would be and came across
the degree programme ‘Linguistic Integration’.’)

No Yes

185273 Integration sowie die gesellschaftliche Partizipation
geschieht zu einem seh (‘Integration and social par-
ticipation happen at a ver’)

Yes No

Table 22. Examples of differences in the automated detection of grammatical correctness between
SPSFs containing incomplete or incorrect words and SPSFs where all words are complete.

Sentence
History ID

Sentence Text GCOR
(Manual)

GCOR
(THEtool)

300741 Und auch wir wärn (‘And we woud also’) No Yes

300741 Und auch wir wär (‘And we wou also’) No No

185273 Integration sowie die gesellschaftliche Partizipation
geschieht zu einem seh (‘Integration and social par-
ticipation happen at a ver’)

Yes No

185273 Integration sowie die gesellschaftliche Partizipation
geschieht zu einem (‘Integration and social participa-
tion happen at a’)

Yes Yes

The mechanical correctness is the category with the lowest scores. Our manual analysis
showed that there are SPSFs which do not contain any mechanical errors but despite that
are categorised as mechanically incorrect. On the other hand, we also observed SPSFs
where punctuation went undetected. Table 23 provides examples of these issues. As with
grammatical correctness, the reasons for this behaviour remain unexplained for now.

Table 23. Examples of errors in the automated detection of mechanical correctness.

Sentence
History ID

Sentence Text GCOR
(Manual)

GCOR
(THEtool)

185272 Diese Ausgrenzung der Minderheitsgesellschaften kann
zu einem grossen Teil verhindert werden, wenn sich
ausländische Personen schnell integrieren. (‘This exclu-
sion of minority communities can be prevented to
a large extent if foreigners integrate quickly’.)

Yes No

300740 Ich kenne viele Menschen, die eine Arbeit haben die sie
nicht erfüllt. (‘I know many people who have a job
that does not fulfil them’.)

No Yes

To sum up, our evaluation shows that the results of automated completeness detection
in all three categories are solid. The inconsistencies in the current implementation of
grammatical correctness detection deserve further attention; despite this, the results in
this category remain reliable. On the other hand, the automated detection of mechanical
correctness requires further refinement in order to provide solid results.

6. Discussion

The evaluation presented in Section 5 allowed us to have a better understanding of
the applicability of THEtool on writing data and the scope covered by the framework and

Languages 2024, 9, 71 28 of 33

the software. It also helped us identify current limitations of both the framework and the
tool. We discuss these aspects below.

6.1. Framework’s Applicability and Performance

The evaluation results presented above show that both the theoretical framework for
sentence history extraction and its implementation are operational. In its current state,
THEtool is capable of taking as input a keystroke log file in XML format and outputting
the list of sentence histories for the full text history, in which every sentence version is
accompanied by an indication of its sentencehood degree. Furthermore, THEtool achieves
solid results on all three steps of the process: segmentation and identification of text units,
sentence history aggregation, and sentencehood evaluation. The module for text unit
segmentation and identification is capable of identifying and correcting issues in the under-
lying segmentation performed by spaCy. THEtool’s text unit algorithm can improve the
SPSF extraction accuracy for up to 20% on a given text compared to spaCy. When it comes
to sentence history aggregation, 6 out of 10 analysed texts are processed without errors,
and only 2 out of 10 receive scores <0.9. THEtool’s modules for evaluating mechanical
completeness, syntactic completeness, conceptual completeness, and grammatical correct-
ness are highly reliable with evaluation scores of ≥0.97. Only the mechanical correctness
module scores lower.

THEtool’s solid performance in the evaluation shows that its output is reliable and
can be used as a foundation for further studies of the writing process. The sentence
histories allow for a detailed observation of the sentence genesis. The sentencehood
degree annotation can be used to track the evolution of the sentence along different axes
(mechanical, morpho-syntactical, conceptual). Moreover, the reconstructed sentences, be
they complete or not, can be fed to tools for automatic annotation, which would open
avenues for different types of analyses.

The evaluation process also leads to interesting observations related to the writer’s
age and text genre. We have already noted that the most problematic texts for text unit
segmentation and sentence history aggregation were often the ones written by young chil-
dren. Among adult writing, manual inspection of sentence histories revealed a particularly
relevant point about genres. The translation text in our evaluation corpus contains much
fewer revisions around sentence boundaries. On the other hand, the texts that are original
adult productions contain a noticeable amount of back and forth at this position. We can
reasonably suppose that this is due to the fact that during translation, the writer is following
the text unit structure of the original text and therefore hesitates less when making the
decision about ending a sentence.

Given the current size of our evaluation corpus, the observations cited above remain
anecdotal evidence. However, we believe that the existence of our framework will facilitate
processing larger amounts of data, which will in turn allow for large-scale, robust analyses
of such phenomena.

6.2. Challenges and Limitations

During our work, we have also faced challenges and identified limitations of the
current version of the framework and its implementation in THEtool. We discuss a selection
of them here.

Some of the issues that remain unresolved concern technical aspects of keystroke
log processing and sentence extraction, one of them being the reconstruction of linguistic
content from keystroke logs. The work presented here was conducted using logs from
ScriptLog (Strömqvist and Malmsten 1998) and Inputlog (Leijten and Van Waes 2005). Com-
paring the XML outputs of the two tools revealed inconsistencies which made adaptations
in THEtool’s keystroke processing module necessary. Additional programming was also
required in order to accommodate differences between operating systems or different key-
board layouts when it comes to key press combinations needed to produce certain special
characters, especially for texts in French. An important amount of work was invested

Languages 2024, 9, 71 29 of 33

in order to overcome these difficulties and avoid producing incorrect sentence versions.
Nevertheless, not all discovered issues could be resolved.

Another technical aspect that remains problematic for now was already touched upon
in Sections 4 and 5: the suboptimal quality of the initial sentence segmentation by spaCy
and its impact on the subsequent processing stages. Note nonetheless that segmenting a
text containing incomplete sentences poses a challenge to sentence tokenizers, which, as a
rule, are not trained on this type of data. One possible path for improvement in this regard
would be to leverage sentence histories as training data for these tools.

We also discovered limitations related to sentencehood detection and a need to intro-
duce at least two steps of sentence preprocessing prior to evaluating the sentencehood of an
SPSF. The preprocessing should encompass extracting main clauses from the SPSFs. This
would enable us to improve syntactic completeness detection and make it more consistent
with our definition. Another preprocessing step should exclude incomplete words occur-
ring in an SPSF from the syntactic completeness and grammatical correctness detection
process. Incomplete words lead to errors in both categories. The two preprocessing mecha-
nisms would allow for better alignment between the definitions, and the implementation
and would make the results more reliable.

Another set of limitations that merit discussion are related to our framework itself.
One of the constraints concerns the method for SPSF identification. The identification is
based on the opposing notions of sentence and sentence candidate. At this processing
stage, the distinction between the two is based on strictly formal properties: the sentence
starts with a capital letter and ends with a sentence-final punctuation. All other strings
of content characters are considered as sentence candidates. From the theoretical point of
view, this definition of a sentence is oversimplified. We are well aware of this, as illustrated
by our implementation of sentencehood evaluation which resides on more complex criteria.
However, this initial simplification is driven by the absence of other data on which the
TPSF segmentation can be based: since we do not have access to the writer’s intentions, we
can only make assumptions based on the behavioural data and the formal properties of the
produced text. Moreover, our evaluation indicates that this approach yields good results
and the output builds a solid basis for more advanced analysis.

We acknowledge that our definitions of sentencehood criteria and their implementa-
tions are simplified compared to the descriptions of these phenomena in the theoretical
literature. For instance, the only check we perform for syntactic completeness includes
verifying if the SPSF in question contains a finite verb and a realised subject which exhibit
agreement. However, this definition does not preclude the presence of other elements,
which may or may not be syntactically complete. Consider the following example: He
was in the. Such an SPSF would be annotated as syntactically complete by our system,
whereas it contains a clearly incomplete structure. Furthermore, the definition we adopt
would prove ill adapted for null subject languages, which do not require an overtly realised
subject. Once again, this limitation was dictated by the application scenario, which required
definitions that could be applied in an automated manner and would be able to reflect the
properties of sentences under production.

Another example of a limitation driven by this specific application setup concerns
the definition of sentence histories. In the current state of the framework implementation,
we consider that a sequence of characters belongs to the same sentence version as the
previous one if at least one of the characters from the original sequence remains. If the
initial sequence is fully deleted, the new sequence will be considered as the beginning of a
new sentence history. This can be problematic in two ways.

First, consider the case in which a later sentence version reproduces the original one
with a minor difference, such as in sentence versions 0 and 4 in Table 24.

Languages 2024, 9, 71 30 of 33

Table 24. Sentence versions with minor differences.

Sentence Version SPSF Gloss

0 il etait une foi ‘once upon a time’

1

2 i

3

4 Il etait ue ‘once upon an’

On the other hand, consider the case where characters from the initial sequence survive
into the modified sequence, but the rest of the content is different (Table 25). The pronoun il
in text versions 0 and 2 does not have the same syntactic or semantic properties: the former
is an expletive subject that is considered to be semantically empty, whereas the latter is a
personal pronoun with a referent. It can therefore be argued that the two text versions do
not share the same content.

Table 25. Sentence versions with shared surface content and syntactic/semantic differences.

Sentence Version SPSF Gloss

0 il etait une foi ‘once upon a time’

1 il ‘he/it’

2 il a décidé de ‘he decided that’

The first limitation could be addressed relatively straightforwardly. It could, for
example, be defined that differences in capitalisation or whitespaces do not constitute a
difference that triggers the creation of a new sentence history. The second is more delicate
to handle. On the one hand, the syntactic parsing of incomplete sentences proves often
incorrect (see Mahlow et al. 2022; Miletić et al. 2022); hence, it cannot be reliably used for
detecting syntactically or semantically “path-breaking” revisions. Secondly, defining a
“path-breaking” revision which triggers the generation of a new sentence history might
prove highly challenging. One possible question that could arise when analysing the
example from Table 25 is which sentence history the SPSF 1 (il) should belong to. Another
question could refer to SPSF 2: is it another way of expressing the same thought or is it
a new idea that arose in the writer’s mind after producing the SPSF 0 and therefore an
entirely new sentence? We choose to consider these questions as another justification of the
approach we take: founding the decisions on the only reliable sources of information—the
writer’s behaviour and the text itself. Generating sentence histories in this manner provides
us with a solid foundation for further processing. These further steps could, in the future,
consist in creating more fine-grained sentence histories which result from further analysis
or interpretation of the available data.

6.3. Outlook

As the evaluation showed, our theoretical framework and its current implementation
build a solid foundation for the automated analysis of sentences under production. There
are, however, areas which require improvement before our software can be used with
very large volumes of writing data. These enhancements relate to extracting TPSFs from
keystroke logs and improving the segmentation of TPSFs into text units.

The keystrokes processing module of THEtool needs to be more robust in order to
be able to correctly extract sentence histories from any IDFX file produced by Inputlog or
ScriptLog. This requires a detailed investigation of the differences between the outputs of
these keystroke logging tools and inconsistencies within the outputs of one tool which result
from differences in keyboard layouts or operating systems used in the writing sessions. The
improvement of text segmentation into text units seems to be a much more straightforward

Languages 2024, 9, 71 31 of 33

task. The observations derived from the evaluation build a good basis for enhancements in
this area.

The presented framework is a first attempt at a systematic analysis of sentences under
production. As already stated, in the current version, it applies certain simplifications
of sentence and sentencehood definitions. The simplifications built a necessary step for
validating the concepts and understanding the data under investigation better. Having col-
lected initial observations, we are now equipped to integrate new aspects into the analysis.
One of them would be extending the scope of syntactic completeness evaluation or intro-
ducing appropriate SPSF preprocessing steps to enable more consistent and solid results.
Another potential extension would be an algorithm for a more fine-grained assignment of
SPSFs into sentence histories, including identifying "path-breaking" revisions which should
trigger the generation of a new sentence history.

The framework and its implementation open new possibilities for analysing the
writing data. Sentence histories allow for investigating revisions within one sentence. The
sentence evolution can be analysed by identifying types of revisions: typo corrections,
syntax-related changes, changes with semantic impact and more. At the moment, we do
not take into consideration behavioural information relative to the duration of writing
events, but measuring pauses within SPSFs and calculating production process duration
per SPSF could build a first attempt to associate the linguistic information about SPSFs
with assumptions about the writer’s cognitive effort. Another potentially highly interesting
avenue would consist of projecting writing bursts and transforming sequences (cf. Mahlow
et al. 2022) onto SPSFs to better examine the relationship between syntactic structure
and revisions.

We hope that our work on improving and extending THEtool’s capacities contributes
to the advancement of research on the writing process and opens new perspectives.

Author Contributions: M.A.U.: conceptualization, data curation, investigation, methodology, project
administration, software development, writing—original draft, review and editing. A.M.: data
curation, investigation, methodology, writing—original draft, review and editing. All authors have
read and agreed to the published version of the manuscript.

Funding: The work of Malgorzata Anna Ulasik has been supported by ZHAW DIZH Fellowship
Call 2021. The work of Aleksandra Miletić has been partly supported by the Pro-TEXT project (grant
number ANR-18-CE23-0024-01).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used for evaluation will be made available for research purposes
upon the publication of the paper at the following address: https://github.com/mulasik/wta, 31
January 2024.

Acknowledgments: We would like to thank Cerstin Mahlow and Michael Piotrowski for inspiring
discussions, for reading drafts of the paper, and for their support. We would like to thank Ramona
Peyer and Gina Vogel for the manual annotation of the German data. The authors would also like to
thank the reviewers for their valuable feedback.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Notes
1 This is obviously limited to the part of the process which is visible on the surface as text being produced.
2 https://pro-text.huma-num.fr/, 31 January 2024.
3 https://github.com/mulasik/wta, 31 January 2024.
4 Original text: “Ein Satz ist eine grammatisch geformte kleinste Redeeinheit, die ihren Inhalt im Hinblick auf sein Verhältnis zur

Wirklichkeit zum Ausdruck bringt”, (Ries 1931, p. 99) translated in (Panther and Köpcke 2008, p. 87).

https://github.com/mulasik/wta
https://pro-text.huma-num.fr/
https://github.com/mulasik/wta

Languages 2024, 9, 71 32 of 33

5 A Latin grammarian, author of the “Institutiones grammaticae”, an exposition of Latin grammar, which is an influential work
largely used in Europe in the Middle Ages.

6 Note that this definition of the sentence frame is language-dependant. For instance, it would not be relevant for writing systems
that do not distinguish between capital and small letters, such as Arabic.

7 Note that this definition would be too restrictive when dealing with null subject languages.
8 https://github.com/mulasik/wta, 31 January 2024
9 https://www.python.org/, 31 January 2024

10 https://spacy.io/usage/linguistic-features, 31 January 2024
11 Please refer to Section 3.1 for the definitions of SIN and PIN and to Section 3.3.1 for the definitions of SEN and SEC.

References
Allerton, David J. 1969. The sentence as a linguistic unit. Lingua 22: 27–46. [CrossRef]
Alston, William P. 1964. Philosophy of Language. Englewood Cliffs : Prentice Hall. [CrossRef]
Alves, Rui Alexandre, São Luís Castro, Liliana de Sousa, and Sven Strömqvist. 2007. Influence of typing skill on pause–execution

cycles in written composition. In Writing and Cognition: Research and Applications. Amsterdam: Elsevier , pp. 55–65. [CrossRef]
Bloomfield, Leonard. 1933. Language. New York: Henry Holt and Company. [CrossRef]
Bowers, John. 2001. Predication. In The Handbook of Contemporary Syntactic Theory. Edited by Mark Baltin and Chris Collins. Oxford:

Blackwell, pp. 299–333. [CrossRef]
Bühler, Karl. 1918. Kritische Musterung der neuen Theorien des Satzes. Indogermanisches Jahrbuch 6: 1–20. [CrossRef]
Chenoweth, N. Ann, and John R. Hayes. 2001. Fluency in writing: Generating text in L1 and L2. Written Communication 18: 80–98.

[CrossRef]
Cinato, Franck. 2018. Ancient Greek and Latin Grammarians. New York: Oxford University Press. [CrossRef]
Cislaru, Georgeta, and Thierry Olive. 2018. Le processus de textualisation: Analyse des unités linguistiques de performance écrite. Louvain-la-

Neuve: De Boeck Supérieur. [CrossRef]
Cislaru, Georgeta, and Thierry Olive. 2020. French Keylog Writing Corpora. Available online: https://pro-text.huma-num.fr/

ressources/ (accessed on 20 February 2024).
Connors, Robert J. 1985. Mechanical correctness as a focus in composition instruction. College Composition and Communication 36:

61–72. [CrossRef]
Feltgen, Quentin, Georgeta Cislaru, and Christophe Benzitoun. 2022. Étude linguistique et statistique des unités de performance écrite:

Le cas de et. SHS Web of Conferences 138: 10001. [CrossRef]
Feltgen, Quentin, Florence Lefeuvre, and Dominique Legallois. 2023. Sujet clitique et dynamique de l’écrit: un éclairage par les

jets textuels. Discours. Revue de Linguistique, Psycholinguistique et informatique. A Journal of Linguistics, Psycholinguistics and
Computational Linguistics 32. [CrossRef]

Fortes, Fábio. 2022. “Order of Things” and “Order of Words” in Priscian: Grammatical and Logical-Ontological Arguments in the
Division and Ordering of Word Classes in De Constructione (ars gl 2, 116.9–121.15). Histoire Épistémologie Langage 44: 139–54.
[CrossRef]

Foulin, Jean-Noël. 1995. Pauses et débits: les indicateurs temporels de la production écrite. L’année Psychologique 95: 483–504.
[CrossRef]

Gardiner, Alan Henderson. 1922. The definition of the word and the sentence. British Journal of Psychology: General Section 12: 352–61.
[CrossRef]

Gilquin, Gaëtanelle. 2020. In search of constructions in writing process data. Belgian Journal of Linguistics 34: 99–109. [CrossRef]
Hayes, John R. 2009. From idea to text. In The SAGE Handbook of Writing Development. Edited by Roger Beard, Debra Myhill, Martin

Nystrand and Jeni Riley London: SAGE Publications Ltd.
Montani, Ines, Matthew Honnibal, Adriane Boyd, Sofie Van Landeghem, and Henning Peters. 2023. explosion/spaCy: v3.7.2: Fixes for

APIs and requirements (v3.7.2) . Zenodo. Available online: https://zenodo.org/records/10009823 (accessed on 31 January 2024).
https://doi.org/10.5281/zenodo.1212303.

Immonen, Sini, and Jukka Mäkisalo. 2017. Pauses reflecting the processing of syntactic units in monolingual text production and
translation. HERMES—Journal of Language and Communication in Business 23: 45–61. [CrossRef]

Johansson, Victoria, Johan Frid, and Åsa Wengelin. 2018. Scriptlog—An experimental keystroke logging tool. Paper presented at 1st

Literacy Summit, European Literacy Network, Porto, Portugal, November 1–3.
Lardilleux, Adrien, Serge Fleury, and Georgeta Cislaru. 2013. Allongos: Longitudinal alignment for the genetic study of writers’ drafts.

Paper presented at International Conference on Intelligent Text Processing and Computational Linguistics, Samos, Greece, March
24–30 . Berlin and Heidelberg: Springer, pp. 537–48.

Leijten, Mariëlle, and Luuk Van Waes. 2005. Inputlog: A Logging Tool for the Research of Writing Processes. Technical Report Number
2005:11, Antwerp: University of Antwerp, Faculty of Business and Economics.

Leijten, Mariëlle, Eric Van Horenbeeck, and Luuk Van Waes. 2019. Analysing keystroke logging data from a linguistic perspective. In
Observing Writing. Edited by Eva Lindgren and Kirk Sullivan. Leiden: Brill, pp. 71–95. [CrossRef]

https://github.com/mulasik/wta
https://www.python.org/
https://spacy.io/usage/linguistic-features
http://doi.org/10.1016/0024-3841(69)90042-4
http://dx.doi.org/10.1086/464915
http://dx.doi.org/10.1163/9781849508223_005
http://dx.doi.org/10.1515/if-1936-0137
http://dx.doi.org/10.1002/9780470756416.ch10
http://dx.doi.org/10.1515/if-1927-0121
http://dx.doi.org/10.1177/0741088301018001004
http://dx.doi.org/10.1093/OBO/9780195389661-0321
http://dx.doi.org/10.3917/dbu.cisla.2018.01
https://pro-text.huma-num.fr/ressources/
https://pro-text.huma-num.fr/ressources/
http://dx.doi.org/10.2307/357607
http://dx.doi.org/10.1051/shsconf/202213810001
http://dx.doi.org/10.4000/discours.12509
http://dx.doi.org/10.4000/hel.2299
http://dx.doi.org/10.3406/psy.1995.28844
http://dx.doi.org/10.1111/j.2044-8295.1922.tb00067.x
http://dx.doi.org/10.1075/bjl.00038.gil
https://zenodo.org/records/10009823
https://doi.org/10.5281/zenodo.1212303
http://dx.doi.org/10.7146/hjlcb.v23i44.97266
http://dx.doi.org/10.1163/9789004392526_005

Languages 2024, 9, 71 33 of 33

Leijten, Mariëlle, Lieve Macken, Veronique Hoste, Eric Van Horenbeeck, and Luuk Van Waes. 2012. From character to word level:
Enabling the linguistic analyses of inputlog process data. Paper presented at Second Workshop on Computational Linguistics
and Writing (CL&W 2012): Linguistic and Cognitive Aspects of Document Creation and Document Engineering, Avignon, France,
April 23. pp. 1–8.

Leijten, Mariëlle, Luuk Van Waes, and Eric Van Horenbeeck. 2015. Analyzing writing process data: A linguistic perspective. In
Writing(s) at the Crossroads: The Process-Product Interface. Amsterdam and Philadelphia: John Benjamins, pp. 277–302. [CrossRef]

Mahlow, Cerstin. 2015. A definition of “version” for text production data and natural language document drafts. Paper presented at
3rd International Workshop on (Document) Changes: Modeling, Detection, Storage and Visualization, Lausanne, Switzerland,
September 8. pp. 27–32. [CrossRef]

Mahlow, Cerstin, Malgorzata Anna Ulasik, and Don Tuggener. 2022. Extraction of transforming sequences and sentence histories from
writing process data: a first step towards linguistic modeling of writing. Reading and Writing (Online First) 1–40. Available online:
https://link.springer.com/article/10.1007/s11145-021-10234-6#citeas (accessed on 31 January 2024). [CrossRef]

Matsuhashi, Ann. 1981. Pausing and planning: The tempo of written discourse production. Research in the Teaching of English 15:
113–34.

Matthews, Peter. 1993. Central Concepts of Syntax. In Syntax. Edited by Joachim Jacobs, Arnim Von Stechow, Wolfgang Sternefeld and
Theo Vennemann. Berlin: De Gruyter Mouton, pp. 89–117. [CrossRef]

Medimorec, Srdan, and Evan F. Risko. 2017. Pauses in written composition: On the importance of where writers pause. Reading and
Writing 30: 1267–85. [CrossRef]

Miletić, Aleksandra, Christophe Benzitoun, Georgeta Cislaru, and Santiago Herrera-Yanez. 2022. Pro-text: An annotated corpus of
keystroke logs. Paper presented at Thirteenth Language Resources and Evaluation Conference, Marseille, France, June 20–25.
pp. 1732–39.

Naber, Daniel. 2003. LanguageTool: A Rule-Based Style and Grammar Checker. Master’s Thesis, University of Bielefeld, Bielefeld,
Germany.

Noreen, Adolf. 1903. Vårt språk: Nysvensk grammatik i utförlig framställning. Bd 1. Lund: C. W. K. Gleerup.
Olive, Thierry. 2012. Writing and Working Memory: A Summary of Theories and of Findings. New York: Psychology Press.
Panther, Klaus-Uwe, and Klaus-Michael Köpcke. 2008. A prototype approach to sentences and sentence types. Annual Review of

Cognitive Linguistics 6: 83–112. [CrossRef]
Paul, Hermann. 2010. Prinzipien der Sprachgeschichte. Berlin: De Gruyter, vol. 6. [CrossRef]
Ries, John. 1927. Beiträge zur Grundlegung der Syntax. . . : Was ist Syntax? 2nd ed. Prague: Taussig & Taussig, vol. 1.
Ries, John. 1931. Beiträge zur Grundlegung der Syntax. . . : Was ist ein Satz? Prague: Taussig & Taussig, vol. 3.
Sauerland, Uli. 2016. On the definition of sentence. Theoretical Linguistics 42: 147–53. [CrossRef]
Serbina, Tatiana, Sven Hintzen, Paula Niemietz, and Stella Neumann. 2017. Changes of word class during translation – insights from a

combined analysis of corpus, keystroke logging and eye-tracking data. In Empirical Modelling of Translation and Interpreting. Edited
by Silvia Hansen-Schirra, Oliver Czulo and Sascha Hofmann. Berlin: Language Science Press, chp. 7, pp. 177–208. [CrossRef]

Strömqvist, Sven, and Lars Malmsten. 1998. ScriptLog Pro 1.04. In User’s Manual. Göteborg: University of Göteborg.
Wundt, Wilhelm Max. 1922. Die Sprache. Stuttgart: Alfred Kroner, vol. 2.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1075/z.194.14lei
http://dx.doi.org/10.1145/2881631.2881638
https://link.springer.com/article/10.1007/s11145-021-10234-6#citeas
http://dx.doi.org/10.1007/s11145-021-10234-6
http://dx.doi.org/10.1515/9783110095869.1.1.89
http://dx.doi.org/10.1007/s11145-017-9723-7
http://dx.doi.org/10.1075/arcl.6.05pan
http://dx.doi.org/10.1515/9783110929461
http://dx.doi.org/10.1515/tl-2016-0007
http://dx.doi.org/10.5281/zenodo.1090968

	Introduction
	Related Work
	ProTEXT
	THEtool
	Present Work

	Theoretical Framework
	Central Concepts and Terminology
	Sentencehood Definitions in Literature
	Sentence Completeness
	Sentence Correctness

	Sentence in the Writing Process Context
	Sentences and Sentence Candidates
	Approximating the Degree of Sentencehood

	Implementation of the Theoretical Framework
	Automatic Segmentation of the Text into SPSFs
	Automatic Aggregation of SPSFs into Sentence Histories
	Measuring Sentencehood

	Evaluation of the Theoretical Framework and Its Implementation
	Evaluation Corpus
	Evaluation of Text Unit Segmentation and Identification
	Evaluation Corpus
	Evaluation Metrics
	Results and Discussion

	Evaluation of Sentence History Aggregation
	Evaluation Corpus
	Evaluation Metrics
	Results and Discussion

	Evaluation of Sentence Completeness and Sentence Correctness Detection
	Evaluation Corpus
	Evaluation Metrics
	Results and Discussion

	Discussion
	Framework's Applicability and Performance
	Challenges and Limitations
	Outlook

	References

