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Abstract: Long-term configuration stability is essential for a space-based gravitational-wave obser-
vatory, which can be affected by orbit insertion errors. This paper investigated the stability of a
geocentric gravitational-wave observatory from the view of the configuration uncertainty propa-
gation. The effects of the orbit insertion errors on the configuration stability are propagated using
the Unscented Transformation (UT). The best UT tuning factor is selected based on the accuracy
analysis of different UT tuning factors. The effects of the position and velocity insertion errors
in different directions are firstly discussed. Compared with the Monte Carlo simulations, the UT
method has relative errors of no more than 2.7%, while the time cost is only 3.6%. It is found that
the radial position and tangential velocity insertion errors have the largest influence on the con-
figuration stability. Finally, based on the proposed method, the stability domain of the geocentric
space gravitational-wave detection constellation is investigated by considering two kinds of insertion
errors, i.e., independent and identically distributed insertion errors and insertion errors in spatial
directions. The analysis results in this paper can be potentially useful for the configuration design of
a geocentric gravitational-wave observatory.

Keywords: space-based gravitational-wave observatory; configuration stability; uncertainty propagation;
covariance analysis; stability domain

1. Introduction

Gravitational-wave detection has become increasingly attractive following the first
direct observation made by the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [1–4]. The signatures of a gravitational-wave can be detected using a laser
interferometer [5–8]. However, due to the limitation of the Earth’s curvature and vibration,
it is difficult to detect (e.g., LIGO) gravitational-waves with a frequency of lower than
10 Hz [9–13]. Compared with the ground-based observatory, space-based gravitational-
wave observatories have much longer arm lengths and are free from the noise related
to the seismic and gravity gradient [14–16]. Therefore, space-based gravitational-wave
observatories are much more sensitive to low-frequency gravitational-waves, towards
which interest and attention have recently been directed [17].

Many space-based gravitational-wave observatories are currently in the develop-
ment phase of research, such as with the Laser Interferometer Space Antenna (LISA/
eLISA) [5,9,18,19], TianQin [12,14,20,21], and TAIJI [13,22–24]. In these planned space-
based gravitational-wave observatories, three spacecraft are used; therefore, a triangular
configuration is formed. Any one of the three spacecraft can be chosen as the center of
the interferometer, while the other two become the endpoints of the two interferometer
baselines. The LISA and the TAIJI projects are classic heliocentric designs, with three
spacecraft orbiting the Sun [13]. TianQin is another space-based gravitational-wave ob-
servatory project put forward by the Sun Yat-sen University in 2016 [12]. Different from
the LISA/eLISA and TAIJI projects, the TianQin project is a geocentric gravitational-wave
observatory. The TianQin project is a constellation containing three identical drag-free
controlled detectors in high Earth orbits with an altitude of 105 km [7].
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For these mentioned space-based gravitational-wave observatories, long-term con-
figuration stability is usually required to guarantee the performance of interferometric
detection. The configuration stability of the space-based gravitational-wave observatories
can be measured with three configuration parameters: the arm length, the breathing an-
gle and the relative velocity [24]. The changes in configuration parameters will result in
Doppler shift in the laser signals and the beam pointing variations, exceeding the capacity
of the detection payloads [7]. The permitted changes in these stability indexes are deter-
mined according to the capacity of the scientific payloads, and are taken into consideration
when designing and optimizing the orbits. Although the pre-designed and optimized
nominal orbits can meet the configuration stability requirements, the long-term behavior
of the configuration may still be hazardous due to multiple factors, in which the insertion
errors are the most significant ones. Affected by the insertion errors, the spacecraft will
deviate from their nominal orbits, and in turn, the long-term stability requirements are
no longer satisfied [12,13,25]. Therefore, it is necessary to investigate the configuration
uncertainty propagation problems and analyze the influence of the insertion errors on the
configuration stability.

Generally, uncertainty propagation is used to characterize the variable’s moment
(usually represented by mean and covariance matrix) or probability density function
(PDF) [26–30]. Various uncertainty propagation methods have been proposed, including
Monte Carlo simulations [31,32], the Linear Covariance Analysis (LinCov) [33], the Covari-
ance Analysis Description Equation Technique (CADET) [34], Unscented Transformation
(UT) and its variants [35–37], Polynomial Chaos (PC) [38–40], and State Transition Tensors
(STT) and its variants [41–43]. These approaches have been well investigated to solve the
uncertainty propagation problem in orbital mechanics for a single spacecraft [26,44–46].
Few works focus on the uncertainty propagation problem of a constellation configuration.
Li et al. investigated the stability of the heliocentric gravitational detection observatory
using the CADET and the UT methods, and some properties were found [13]. The heliocen-
tric gravitational detection observatory is inherently a formation in the heliocentric inertial
coordinate, and the motions of the spacecraft can be fully described using the relative
dynamic equation. Compared with heliocentric gravitational detection observatories, the
geocentric gravitational detection observatory orbits around the Earth, and is classified
as the constellation. Therefore, the dynamic environment of the geocentric gravitational
detection observatory is different from that of the heliocentric ones, which makes stability
properties different. Thus, it is necessary to perform the stability analysis of the geocen-
tric gravitational-wave observatory, and uncover the effects of the insertion errors on the
stability of the geocentric gravitational-wave observatory.

This paper focuses on investigating the stability of the geocentric gravitational-wave
observatory. The TianQin project is selected as the research object in this paper. The
stability domain of the geocentric gravitational-wave observatory is analyzed from the
view of the configuration uncertainty propagation. The effects of the insertion errors on the
configuration stability are investigated based on the UT method. The accuracy of the UT
methods with different UT tuning factors is discussed via a comparison with the Monte
Carlo (MC) simulations, and the best UT tuning factors for addressing the configuration
uncertainty propagation problem is selected. The effects of the insertion errors in different
directions and with different magnitudes are studied. Furthermore, the stability domain, in
which the stability requirements are always met, is determined and analyzed. Compared
with the configuration uncertainty propagation analysis of the heliocentric designs, some
more interesting conclusions are found.

The remainder of this paper is organized as follows. Section 2 begins by describing
the configuration design and the dynamic model of the geocentric gravitational-wave
observatory. The three stability indexes, i.e., the arm length, the breathing angle and the
relative velocity, are presented. Section 3 begins by briefly describing the UT method,
followed by an accuracy analysis of the UT method with different UT tuning factors. The
effects of the insertion errors in different spatial directions are considered. The stability
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domain of the geocentric space gravitational detection constellation is computed and
analyzed in Section 4. Finally, the conclusions are provided in Section 5.

2. Description of the Geocentric Gravitational Wave Observatory

In this section, the configuration design and dynamic environment of the geocen-
tric gravitational-wave observatory are presented first. Then, the three stability indexes
evaluating the performance of the constellation are described in detail.

2.1. Configuration Design and Dynamic Model

As shown in Figure 1, the geocentric gravitational-wave observatory is in an equilateral
triangular configuration with three identical drag-free spacecraft orbiting the Earth [26].
The constellation is designed to face the white-dwarf binary RXJ0806.3+1527 (also known
as HM Cancri, hereafter referred to as J0806) as a reference source. The symbols ‘SC1’, ‘SC2’
and ‘SC3’ denote the three spacecraft. The orbits of three spacecraft are represented in the
heliocentric-ecliptic coordinate system. The nominal orbital elements for three spacecraft
in the EarthMJ2000Ec (Keplerian, ecliptic) coordinates are illustrated in Table 1 [7]. The
currently planned initial epoch is 22 May 2034 at 12:00:00 UTC. The orbital elements a, e, ν,
i, ω and Ω, respectively, label the semimajor axis, eccentricity, true anomaly, inclination,
argument of periapsis and longitude of the ascending node, with their definitions shown in
Figure 2.

Figure 1. An illustration of the preliminary concept of the geocentric gravitational-wave observatory.

Figure 2. An illustration of the orbit elements.
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Table 1. The nominal orbital elements in the EarthMJ2000Ec coordinate at the epoch 22 May 2034
12:00:00 UT [7].

a/km e i/deg Ω/deg ω/deg ν/deg

SC1 99995.57 0.00043 94.69 210.44 358.624 61.32
SC2 100011.4 0.00000 94.70 210.44 0.0000 179.93
SC3 99993.04 0.00031 94.71 210.44 0.0016 299.91

The high-fidelity dynamic model for orbit propagation of the three spacecraft includes
the 10 × 10 spherical-harmonic model of the Earth’s gravity field (using JGM-3, JGM-3
denotes the Joint Gravity Model-3 [47]), and the point-mass gravity field from the Moon
and Sun (using the ephemeris DE421) [7]. According to [7,12,14], the dynamics of the
spacecraft are as follows: ṙi = vi

v̇i = −
µe

‖ri‖3 ri + µs

(
rs−ri
‖rs−ri‖3 − rs

‖rs‖3

)
+ µm

(
rm−ri
‖rm−ri‖3 − rm

‖rm‖3

)
+ aJ10×10(ri)

(1)

where xi = [ri; vi] = [xi, yi, zi, ẋi, ẏi, żi]
T denotes the state of the spacecraft; µe, µs and µm

are the gravitational constant of the Earth, the Sun and the Moon, respectively; rs and rm
label positions of the Sun and Moon relative to the Earth; aJ10×10(·) is the Earth’s 10× 10
spherical-harmonic perturbation acceleration.

2.2. Stability Indexes

The three stability indexes related to configuration geometry are used to evaluate the
performance of the gravitational-wave observatory constellation [7,13]. The three stability
indexes are the arm length lij, the breathing angle θi and the relative velocity l̇ij. These
indexes can be expressed as:

lij = ‖rij‖ (2)

θi(t) = arccos

(
rij(t) · rik(t)
lij(t) · lik(t)

)
(3)

l̇ij(t) =
rij(t) · vij(t)∥∥rij(t)

∥∥ (4)

where rij = r j − ri is the position vector from spacecraft i to spacecraft j.
Figure 3 illustrates the arm length and the breathing angle. The desired values and

the permissible variations of the three geometry parameters are listed in Table 2. For the
geocentric gravitational-wave observatory, the arm length of the constellation is expected
to be maintained at around

√
3× 105 km, with changes of no larger than 1%. The variations

of the breathing angle are required to be smaller than 0.2◦ in the five years. Moreover,
the relative velocity should not be larger than 10 m/s within five years. Note that in the
mission period, it is assumed there are no orbital maneuvers as the orbital maneuvers will
affect the performance of the observatory.

Table 2. The desired value and permitted range of the stability indexes.

Stability Index Desired Value Permitted Range

Arm length lij
√

3× 105 km ±1%×
√

3× 105 km
Breathing angle θi 60◦ ±0.2◦ for 5 years; ±0.1◦ for the first 2 years
Relative velocity l̇ij 0 m/s ±10 m/s for 5 years; ±5 m/s for the first 2 years
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Figure 3. An illustration of the arm length and the breathing angle. SC1, SC2 and SC3, respectively,
represent the spacecraft 1, spacecraft 2 and spacecraft 3.

With the dynamics in Equation (1) and the initial states in Table 1, the orbits of the
three spacecraft within five years are propagated using a fifth-order RungeKutta integrator
with fourth-order error control (RungeKutta45). Under the multiple perturbations, the
three stability parameters are not time-varying. The changes of the arm length lij, the
breathing angle θi and the relative velocity l̇ij in five years are shown in Figure 4. As shown
in Figure 4, the changes of the arm length are no greater than 0.1309% (around 226.8277 km).
Furthermore, when the mission lifetime is five years, the maximal changes of the breathing
angle and the relative velocity are 0.0949 deg and 4.3614 m/s, respectively.

0 500 1000 1500

-0.1

0

0.1

(a)

0 500 1000 1500

-0.1

-0.05

0

0.05

0.1

(b)

0 500 1000 1500

-5
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5

(c)

Figure 4. Changes of the stability indexes in a 5-years’ lifetime. (a) Arm length. (b) Breathing angle.
(c) Relative velocity.
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The configuration uncertainty propagation is used to analyze the influence of the initial
uncertainty on the constellation geometry. To be specific, it is used to predict the distribution
of the three configuration stability indexes lij(t), θi(t) and l̇ij(t) at any epoch t, with a given
initial orbit insertion uncertainty. Usually, the distribution of a random variable can be
characterized by its first two moments, i.e., the mean value and the covariance matrix. The
distribution assumption can be true for the insertion-errors-propagation problem, as the
initial orbit insertion errors are often considered as the Gaussian-distributed errors [13]. The
initial orbit insertion uncertainty refers to the orbit insertion errors in the EarthMJ2000Eq
coordinate. Let x̄0

i ∈ R6 and P0
i ∈ R6×6 be the mean value and the covariance matrix

of the i-th spacecraft’s insertion state (i.e., x0
i ), respectively, and the mean values and the

covariance matrices of the stability indexes are written as follows:

[ȳ(t), P(y(t))] = UP
(

x̄0
1, P0

1, x̄0
2, P0

2, x̄0
3, P0

3, t
)

(5)

where y = [l12, l13, l23, θ1, θ2, θ3, l̇12, l̇13, l̇23]
T is the vector of the stability indexes; ȳ(t) ∈ R9

and P(y(t)) ∈ R9×9 are the mean and covariance matrix of the stability index vector y(t);
UP(·) denotes the uncertainty propagation process. The method for predicting the mean
ȳ(t) and covariance matrix P(y(t)) will be detailed in Section 3.

3. Configuration Uncertainty Propagation Based on UT Method

This section begins with a brief review of the UT method, followed by the accuracy of
the UT method using different tuning factors which are analyzed in Section 3.2. The best UT
tuning factors are determined. Finally, the characteristics of the configuration uncertainty
propagation of the geocentric gravitational-wave observatory is analyzed based on the
UT method.

3.1. Unscented Transformation Method

According to Equations (1)–(4), the transformation from the orbit insertion state
X = [x0

1; x0
2; x0

3] to the stability indexes y(t) is nonlinear, which has two distinctive fea-
tures. The first is that this transformation is a black-box model, which has no analytical
solutions. Therefore, analytical uncertainty propagation methods, such as the CADET or
STT, are not appropriate for solving the configuration uncertainty propagation. The second
feature is that the calculation of this transformation is an expensive process as long-term
numerical integration is required.

The sigma-point based methods allow for the use of already existing propagation tools
as a black-box and avoids any analytical solutions or gradient information, which can be
conveniently extended to solve the configuration problem. The widely used sigma-point
methods include the UT method, Conjugate Unscented Transform (CUT) and Cubature
rules (CRs). These sigma-point methods approximate the probability distribution at a
future time by nonlinearly integrating a few sigma-samples, which are deterministically
selected according to the given initial distribution. Among these sigma-point methods, the
UT method has less computational overhead and has been successfully applied to solve
the configuration uncertainty propagation problem of a heliocentric gravitational-wave
observatory (the TAIJI project). Thus, considering the factors of time, cost and convenience,
the UT is used in this paper.

The schematic diagram of the UT method is illustrated in Figure 5. Consider the
random variable X with the mean X̄ and covariance PX as follows:

X̄ = [x̄0
1; x̄0

2; x̄0
3] (6)

PX =

 P0
1 06×6 06×6

06×6 P0
2 06×6

06×6 06×6 P0
3

 (7)
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Figure 5. A schematic diagram of the unscented transformation. x and y denote the input and output
variables, respectively.

According to the mean X̄ and covariance PX , the sigma-point set {χi} is then formu-
lated as:

χi = X̄ i ∈ {0}

χi = X̄ +

[√
(n + λ)PX

]
i

i ∈ {1, 2, · · · , n}

χi = X̄ −
[√

(n + λ)PX

]
i

i ∈ {n + 1, n + 2, · · · , 2n}

(8)

where n = 18 is the dimension of the variable X; [·]i denotes the i-th column of the matrix; λ
is an adjusting dispersion parameter called the UT tuning factor; and

√
PX can be obtained

using the Cholesky decomposition, which satisfies PX =
√

PX
(√

PX
)T .

The weights of the i-th sigma points χi are obtained as follows:

wi =
λ

λ + n
i ∈ {0}

wi =
1

2(λ + n)
i ∈ {1, 2, · · · , 2n}

(9)

For each orbit insertion state χi, the orbits of the three spacecraft are propagated using
the RungeKutta45 method; then, the corresponding stability indexes yi(t) are obtained
according to Equations (2)–(4). According to the UT method, the mean ȳ(t) and covariance
matrix P(y(t)) of the stability indexes are approximated by

ȳ(t) =
2n

∑
i=0

wiyi(t) (10)

P(y(t)) =
2n

∑
i=0

wi[yi(t)− ȳ(t)][yi(t)− ȳ(t)]T (11)

According to the equations above, the distributions of the stability indexes of any time
in the mission lifetime can be obtained by calculating 37 sigma points.

3.2. Selection of the UT Tuning Factor

In this subsection, the accuracy of the UT method is analyzed. To use the UT method,
the UT tuning factor λ should be carefully selected. In [13], the value of λ is selected as
3− n, for which the selection followed from the recommendation in Julier and Uhlmann
that n + λ = 3 [35]. In this case, the kurtosis of one state of the sigma points agrees with
that of the Gaussian distribution. However, for high-dimensional problems such as the
configuration uncertainty propagation, this value produces a negative weight at the mean,
which may adversely affect the performance of the UT. Therefore, it is worth testing the UT
methods with different tuning factors and comparing the performances.
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For simplicity, κ = λ + n denotes the variable related to the UT tuning factor. A total
of nine UT methods are tested, with the variable κ ∈ {1, 2, 3, 8, 9, 10, 17, 18, 19}. Two cases,
including a standard case and a severe case, are simulated to verify the performance of the
UT methods with different tuning factors. The standard deviation (STD) of the insertion
errors of the two cases are listed in Table 3. The covariance matrix of the insertion errors of
the standard case is written as:

P0
1 = P0

2 = P0
3 =

[
100I3 m2 03×3

03×3 100I3 mm2/s2

]
(12)

where I3 ∈ R3×3 denotes the 3-dimensional identified matrix.
According to Table 3, for the severe case, the covariance matrix of the insertion errors

is partitioned as:

P0
1 = P0

2 = P0
3 =

[
10000I3 m2 03×3

03×3 100I3 cm2/s2

]
(13)

Table 3. The STDs of the insertion errors of the simulated cases.

Initial Position Errors Initial Velocity Errors

Standard case 10 m per axis 10 mm/s per axis
Severe case 100 m per axis 100 mm/s per axis

The results predicted by the UT methods are compared with the Monte Carlo simula-
tion method. The number of the samples used in the Monte Carlo simulation is set to 1000.
Taken the covariance predicted by the Monte Carlo simulation as a standard, the relative
error of the covariance obtained by the UT methods is defined as:

η(t) =
‖PUT(t)− PMC(t)‖

‖PMC(t)‖
(14)

where η(t) is the defined relative errors of two matrices; PMC(t) and PUT(t) are the
covariance matrices calculated by the Monte Carlo simulation and UT methods at the
epoch t, respectively; and ‖ · ‖ represents the Frobenius norm (sum square of the elements).
The smaller the η(t), the better the performance.

The relative errors η(t) of the UT methods using different tuning factors are computed.
For each UT tuning factor, the relative errors at 11 epochs are tested. The testing epochs
begin at 0 and end at 5 years, with a time interval of 0.5 years. The average relative errors of
the 11 epochs of different UT methods are listed in Table 4. For the standard case, the nine
UT methods possess a similar performance. However, for the severe case, the performances
of the nine UT methods differ. For example, the relative error of the UT method κ = 9 is
around 0.1103, while for the UT method κ = 19, the relative error is around 0.2188. To
better compare the performance of different UT methods in predicting the covariance of
the three stability indexes, a weighted index is proposed by combing the relative errors of
the arm length, the breathing angle and the relative velocity as follows:

η̄ =
η(l) + η(θ) + η(l̇)

3
(15)

where η̄ denotes the weighted relative error. The values of the weighted relative errors
of different UT methods are also listed in Table 4. The UT method with a tuning factor λ
of equal to −9 (κ = 9) has the smallest relative errors; therefore, in this paper, λ = −9 is
selected as the UT tuning factor for the following analysis.
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Table 4. Accuracy test results of the UT methods with different tuning factors.

κ λ = κ − n
Standard Case Severe Case

η(l) η(θ) η(l̇) η̄ η(l) η(θ) η(l̇) η̄

1 −17 0.0261 0.0239 0.0425 0.0308 0.1141 0.0499 0.1285 0.0975
2 −16 0.0261 0.0239 0.0425 0.0308 0.1074 0.0499 0.1136 0.0903
3 −15 0.0261 0.0239 0.0425 0.0308 0.1012 0.0499 0.1129 0.0880
8 −10 0.0261 0.0239 0.0424 0.0308 0.0781 0.0499 0.1135 0.0805
9 −9 0.0261 0.0239 0.0424 0.0308 0.0760 0.0499 0.1103 0.0787

10 −8 0.0262 0.0239 0.0424 0.0308 0.0751 0.0499 0.1186 0.0812
17 −1 0.0262 0.0239 0.0425 0.0309 0.0954 0.0499 0.1954 0.1136
18 0 0.0263 0.0239 0.0425 0.0309 0.1005 0.0499 0.2071 0.1192
19 1 0.0263 0.0239 0.0424 0.0309 0.1058 0.0499 0.2188 0.1248

Figure 6 shows the STD results of the standard case obtained by the UT method
(κ = 9), and the results are compared with those obtained by the Monte Carlo simulation
(1000 samples). The blue lines represent the results of Monte Carlo and the red dashed
lines represent the results obtained by the UT. Moreover, the predicted stability indexes’
uncertainties at epoch t = 5 years, are illustrated in Figure 7. The corresponding means and
the 3σ ellipsoid bounds are projected. In addition, for the sake of comparison, 1000 Monte
Carlo samples are plotted the grey ‘x’. The mean and the 3σ ellipsoid bounds obtained
by the Monte Carlo simulation are shown by the blue squares and blue dashed lines. It
can be seen that the UT method can accurately represent the curvature exhibited by the
Monte Carlo samples and the predicted 3σ bounds are very close to that of the Monte Carlo
simulation. The STDs of the three stability indexes at the epoch t = 5 year predicted by the
UT and Monte Carlo simulation are shown in Table 5. It can be found that compared with
the Monte Carlo simulation, the UT can predict the STDs with errors of no more than 2.7%.

Table 5. STD comparison of the UT (κ = 9) and the Monte Carlo simulation.

Monte Carlo UT RE/%

Arm length/km
l12 3342.7926 3338.7718 0.1202
l13 3340.4763 3340.7576 0.0084
l23 3412.3042 3340.1915 2.1133

Breathing angle/◦
θ1 1.9427 1.9129 1.5306
θ2 1.9084 1.9138 0.2831
θ3 1.9190 1.9137 0.2794

Relative velocity/(m/s)
l̇12 0.2094 0.2037 2.7001
l̇13 0.2513 0.2517 0.1638
l̇23 0.2089 0.2118 1.3645

The simulations were performed using MATLAB R2018b on a computer with a 3.6 GHz
AMD Ryzen processor and 16 GB RAM. As shown in Table 6, with the 1000 samples
(including 3000 orbits) made for the Monte Carlo simulation, it takes about 9728.3374 s
(around 2.7 h). However, the computational time of the UT method is only 347.2791 s
(around 5.8 min), which is only 3.5697% that of the Monte Carlo simulations.

Table 6. Run time of a 5-year configuration uncertainty propagation.

Methods Number of the Orbital Propagation Time Consumption

Monte Carlo simulation (with 1000 samples) 3000 (1000 samples and each contains three
spacecraft) 9728.3374 s (around 2.7 h)

UT (κ = 9) 111 (37 sigma points and each contain three
spacecraft) 347.2791 s (around 5.8 min)
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Figure 6. Comparison diagram of the UT (κ = 9) and the Monte Carlo simulation. The blue lines and
the red dashed lines respectively represent the results of the MC simulation and UT method.

3.3. Configuration Uncertainty Propagation Analysis for the Geocentric Space Gravitational Wave
Detection Constellation

The effects of the insertion errors in different directions are investigated using the UT
method. For an uncertainty variable δp ∈ Rm, given a certain direction d = [d1, · · · , dm]T

and the standard deviation σp, the corresponding covariance matrix of δp is written as:

P(δp) = σ2
pddT (16)

The radial, tangential and normal position and velocity insertion errors are considered.
For radial position and velocity uncertainty, the covariance matrices are obtained as follows:

P
(

r0
i

)
= σ2

r
r0

i∥∥r0
i

∥∥
(
r0

i
)T∥∥r0
i

∥∥ (17)

P
(

v0
i

)
= σ2

v
r0

i∥∥r0
i

∥∥
(
r0

i
)T∥∥r0
i

∥∥ (18)

For tangential position and velocity uncertainty:

P
(

r0
i

)
= σ2

r
v0

i∥∥v0
i

∥∥
(
v0

i
)T∥∥v0
i

∥∥ (19)
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P
(

v0
i

)
= σ2

v
v0

i∥∥v0
i

∥∥
(
v0

i
)T∥∥v0
i

∥∥ (20)

Additionally, for normal position and velocity uncertainty:

P
(

r0
i

)
= σ2

r
r0

i × v0
i∥∥r0

i × v0
i

∥∥
(
r0

i × v0
i
)T∥∥r0

i × v0
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where σr and σv represent the STD of the position and velocity insertion errors, respectively.
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Figure 7. Comparison of the distribution of the stability indexes predicted by the UT (κ = 9) and the
Monte Carlo simulation. The blue lines and the red dashed lines respectively represent the 3σ bounds
predicted by the MC simulation and UT method.

Note that to use the UT method, Cholesky decomposition is required to calculate the
matrix

√
PX . To avoid numerical singularity, an identified matrix with tiny values is added
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to the matrix PX . For example, for the condition that only radial position insertion errors
exist, the covariance matrix PX is obtained as follows:

PX =



σ2
r

r0
1(r0

1)
T

‖r0
1‖

2 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 σ2
r

r0
2(r0

2)
T

‖r0
2‖

2 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 σ2
r

r0
3(r0

3)
T

‖r0
3‖

2 03×3

03×3 03×3 03×3 03×3 03×3 03×3


+ 10−16I18 (23)

where I18 ∈ R18×18 is an 18-dimensional identified matrix.
First, the configuration stability considering only the insertion errors of spacecraft 1 is

investigated. When we consider the effects of the position insertion errors of spacecraft
1 in different directions, only three variables are included, which can be plotted using a
three-dimensional figure.

The effects of the position and velocity insertion errors on the stability indexes are
studied independently. Assume that the STD of the position and velocity insertion error
are 100 m and 0.001 m/s, respectively. A myriad of directions are generated, and for each
direction, configuration uncertainty propagation is performed based on the UT method.
The results are shown in Figures 8 and 9. In Figures 8 and 9, n = [nx, ny, nz]T denotes
the direction of the insertion errors and each point on the united sphere denotes a spatial
direction, and the predicted STD of the arm length is represented by the color. For better
comparison, the radial, the tangential and the normal directions are labeled by the blue
(d1), red (d2) and green (d3) lines, respectively, in Figures 8 and 9. It can be seen that the
effects of the radial position insertion errors and the tangential velocity insertion errors are
much more significant than the insertion errors in other directions.

Figure 8. The effects of the position insertion errors of SC1 on the configuration stability. d1, d2 and
d3 represent the radial, the tangential and the normal directions, respectively.



Aerospace 2022, 9, 519 13 of 20

Figure 9. The effects of the velocity insertion errors of SC1 on the configuration stability. d1, d2 and
d3 respectively represent the radial, the tangential and the normal directions.

According to the parameter setting in the standard case in Table 3, let σr = 10 m
and σv = 10 mm/s. The effects of the radial, tangential and normal position insertion
errors on the stability indexes are shown in Figure 10 and Table 7. Figure 10 illustrates the
time history of the STDs of the arm length, the breathing angle and the relative velocity
considering only the position insertion errors. Table 7 lists the STDs of the three stability
indexes at the epoch year under the position insertion errors in different directions. It
is found that the arm length and the breathing angle are mainly affected by the radial
position insertion errors. The arm length STDs under radial position errors are around
66.8 km, which is about 20 times that under tangential and normal position insertion errors
(around 3.34 km).Furthermore, the relative velocity is mainly affected by the radial position
insertion errors, and is greatly influenced by the tangential position insertion errors. Among
the three directions, the normal position insertion errors have the least effect on the three
stability indexes.

Table 7. STDs of the three stability indexes considering position insertion errors in different directions.

Radial Tangential Normal

Arm length/km
l12 66.7896 3.3390 3.3387
l13 66.8430 3.3412 3.3409
l23 66.8267 3.3414 3.3402

Breathing angle/◦
θ1 0.0382 0.0019 0.0019
θ2 0.0382 0.0019 0.0019
θ3 0.0382 0.0019 0.0019

Relative velocity/(m/s)
l̇12 0.0035 0.0008 2.0383×10−4

l̇13 0.0032 0.0013 2.5182×10−4

l̇23 0.0034 0.0011 2.1227×10−4

The effects of the radial, tangential and normal velocity insertion errors on the stability
indexes are shown in Figure 11 and Table 8. It can be seen that the tangential velocity inser-



Aerospace 2022, 9, 519 14 of 20

tion errors have strong influences on the arm length, the breathing angle and the relative
velocity. The normal velocity insertion errors have moderate effects on the relative velocity.

0 500 1000 1500

10
-4

10
-2

10
0

0 500 1000 1500

10
-4

10
-2

10
0

0 500 1000 1500

10
-4

10
-2

10
0

0 500 1000 1500

10
-7

10
-5

10
-3

0 500 1000 1500

10
-7

10
-5

10
-3

0 500 1000 1500

10
-7

10
-5

10
-3

0 500 1000 1500

10
-5

10
-4

10
-3

0 500 1000 1500

10
-5

10
-4

10
-3

0 500 1000 1500

10
-4

10
-3

Figure 10. Effects of position insertion errors in different directions.

Table 8. STDs of the three stability indexes considering velocity insertion errors in different directions.

Radial Tangential Normal

Arm length/km
l12 3.9615 3338.5467 3.3413
l13 3.8673 3340.7479 3.3457
l23 5.3745 3339.9500 3.3429

Breathing angle/◦
θ1 0.0025 1.9125 0.0019
θ2 0.0025 1.9134 0.0019
θ3 0.0020 1.9133 0.0019

Relative velocity/(m/s)
l̇12 0.0428 0.1994 3.2657×10−4

l̇13 0.0666 0.2427 3.4147×10−4

l̇23 0.0557 0.2042 3.4498×10−4

According to the above discussion, the effects of the position and velocity insertion
errors in different directions are summarized as follows. The radial position insertion errors
and the tangential velocity insertion errors strongly affect the three stability parameters.
The tangential position insertion errors and radial velocity insertion errors only affect
the relative velocity. Moreover, the normal insertion errors have almost no effect on
the three stability parameters. The effects of the radial position insertion errors and the
tangential velocity insertion errors can be explained as follows. The radial position and
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the tangential velocity deviation will directly affect the potential energy and kinetic energy
of the spacecraft, which causes the orbital period of the spacecraft to be at variance with
another spacecraft in the constellation. The phase difference between two spacecraft
deviates in the long-term; as a result, the desired regular triangle configuration is impacted.
In this case, the arm length and the breathing angle change considerably. However, the
insertion errors in other directions only change the spacecraft’s orbital plane, which almost
has no influence on the configuration.
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Figure 11. Effects of velocity insertion errors in different directions.

4. Stability Domain Analysis for the Geocentric Space Gravitational Wave
Detection Constellation

This section provides the stability domain analysis for the geocentric space gravitational-
wave detection constellation. First, the stability domain is analyzed by considering the
independent and identically distributed insertion errors in position and velocity. Moreover,
following the studies on the effects of uncertainty in different directions in Section 3.3, the
stability domains with uncertainty in spatial directions are investigated.

The independent and identically distributed insertion errors are firstly considered. For
a case where the STD of the position insertion errors along three axes of the three spacecraft
gradually increase from 30 m to 300 m, and the STD of the velocity insertion error increases
from 0.5 mm/s to 5 mm/s, the maximal STDs of the arm length, the breathing angle and
the relative velocity within three months are shown in Figures 12–14. For the case where
the STD of the position insertion error equals 300 m and the STD of the velocity insertion
error equals 5 mm/s, the maximal STDs of the arm length, the breathing angle and the
relative velocity are 129.4790 km, 0.0742 deg and 0.0289 m/s, respectively. According to the
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permitted ranges of the three stability indexes listed in Table 2, it is found that the breathing
angle is most likely to exceed the stability constraint.
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Figure 12. Effects of position and velocity errors on the arm length (three months’ propagation).
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Figure 13. Effects of position and velocity errors on the breathing angle (three months’ propagation).
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Figure 14. Effects of position and velocity errors on the relative velocity (three months’ propagation).
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According to the predictions in Figures 12–14 and the stability constraints in Table 2,
the stability domain (inside the constraints) for a three-month propagation is determined
and shown in Table 9. For the three-month propagation, the insertions errors inside the
constraints should satisfy the following equations:

3σ(l) ≤ 1%×
(√

3× 105
)

km (24)

3σ(θ) ≤ 0.1◦ (25)

3σ(l̇) ≤ 5 m/s (26)

The stability domains of the three-month propagation considering only radial insertion
errors (i.e., the radial position insertion errors and the radial velocity insertion errors) were
calculated; however, only tangential insertion errors and normal insertion errors are shown
in Table 9. It can be seen that when considering only radial insertion errors, if the position
insertion errors exceed 340 m, or the velocity insertion errors exceed 600 mm/s, the three
stability indexes will not meet the requirement in Table 2. For the case of considering
only tangential insertion errors, the permitted ranges of the position and velocity insertion
errors are 40 km and 3 mm/s. Moreover, when considering only normal insertion errors,
the permitted values of the position and velocity insertion errors are 140 km and 2.5 m/s,
respectively. It was clearly found that the case of considering only normal insertion errors
has the largest permitted ranges. As shown in Tables 7 and 8, this is due to the findings that
neither the normal position insertion error nor the normal velocity insertion error impart a
strong influence on the configuration stability.

Table 9. Permitted ranges of the stability domains.

Period Case
Permitted Range

Position Velocity

3 months

In all directions 340 m 3.4 mm/s
Only radial direction 340 m 0.6 m/s

Only tangential direction 40 km 3 mm/s
Only normal direction 140 km 2.5 m/s

2 years

In all directions 21 m 0.4 mm/s
Only radial direction 21 m 300 mm/s

Only tangential direction 18 km 0.4 mm/s
Only normal direction 45 km 900 mm/s

Furthermore, the maximal STDs of the arm length, the breathing angle and the relative
velocity for a two-year mission lifetime under different insertion errors are also shown in
Table 9. It can be seen that, compared with the three-month case, the maximal position
insertion error decreases from 340 to 21 m, and the maximal velocity insertion error de-
creases from 3 mm/s to 0.4 mm/s. The stability domains of the two-year case considering
only radial insertion errors, tangential insertion errors and normal insertion errors are
illustrated in Table 9. For the two-year case considering only normal insertion errors, the
position insertion errors should not exceed 45 km and the velocity insertion errors should
not exceed 0.9 m/s.

The stability domains of different mission lifetimes are shown in Figure 15. It can be
seen that the longer the mission lifetime, the smaller the stability domain. Considering the
insertion errors under current techniques [12], the six-month mission is recommended.
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Figure 15. Stability domain of different mission life time.

5. Conclusions

This paper investigated the configuration uncertainty propagation problem of the geo-
centric gravitational-wave observatory using the unscented transformation (UT) method.
It was found that the UT method with a UT tuning factor equal to −9 (κ = 9) has the
best performance in predicting accuracy. Taking the Monte-Carlo simulation results as the
standard, the UT method has relative errors of no larger than 2.7% with only 3.5697% of the
computational consumption of the Monte Carlo method. Meanwhile, it was found that the
radial position insertion errors and the tangential velocity insertion errors have the most
significant effect on the configuration stability. The normal position and velocity insertion
errors have the least effect on the stability. Furthermore, among the three stability indexes,
the breathing angle is most likely to exceed the stability constraint. The stability domain of
the geocentric gravitational-wave observatory is computed and analyzed. For a two-year
mission lifetime, the configuration can remain stable if the standard deviation (STD) of the
position insertion errors is no more than 21 m and the STD of the velocity insertion errors
does not exceed 0.4 mm/s. The results in this paper can provide reference for the design of
the navigation and control of the geocentric gravitational-wave observatory.
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