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Abstract: Active disturbance rejection control (ADRC) is a model-independent method widely used in
passive fault-tolerant control of the quadrotor unmanned aerial vehicle. While ADRC’s effectiveness
in actuator fault treatment has been proven, its tolerance to sensor faults requires improvements. In
this paper, an ADRC-based active fault-tolerant control (AFTC) scheme is proposed to control the
flying attitude against sensor fault for reliability enhancement. Specifically, a semi-model-dependent
state tracker is raised to reduce the influence of slow tracking, and accentuate the sensor fault even in
varying maneuvers. Derived from the random forest, an enhanced method named auto sequential
random forest is designed and applied to isolate and identify faults in real time. Once the tolerance
compensation is generated with the fault information, a high-performance AFTC is achieved. The
simulation results show that the proposed method can effectively follow the residual when a sensor
fault and a change of maneuver occur concurrently. Precise fault information is obtained within
0.04 s, even for small faults on the noise level. The diagnosis accuracy is greater than 86.05% (100%
when small faults are excluded), and the identification precision exceeds 97.25%. The short settling
time (0.176 s when the small fault is excluded) and modest steady-state error validate the advanced
and robust tolerance performance of the proposed AFTC method.

Keywords: active fault-tolerant control; active disturbance rejection control; quadrotor unmanned
aerial vehicle; sensor fault; fault diagnosis; random forest

1. Introduction

Generally speaking, an unmanned aerial vehicle (UAV) is a typical aircraft which can
achieve autonomous flight through lift provided by the interaction between the airborne
power plant and external influence [1]. Typically, the quadrotor UAV (QUAV) has a broad
market perspective with high-cost performance, small volume and fast response, so it
has great civilian value [2]. The control technology is a basic and vital technology of the
QUAV system, and the controller performance directly determines whether the normal
flight is achievable. With improved information technology, the QUAV has become much
lighter and smarter over the last decade. As the task shifts from single-machine oriented
to multi-machine execution [3], QUAV functions are extended to intelligent domains, i.e.,
trajectory planning. In a complex flying mission, faults are more likely to occur and
transmit in the closed-loop system, leading to severe consequences. At the same time, the
above-mentioned operation requires a higher flight reliability. Therefore, the design of a
high-performance fault-tolerant control method is of great significance and has become the
research focus in recent years.

For complex nonlinear systems, a wide range of fault-tolerant control methods are
proposed. They are primarily divided into passive fault-tolerant control (PFTC) and active
fault-tolerant control (AFTC) [4]. PFTC ensures that the system is insensitive to specific
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faults by pre-designing a fixed robust controller. For the lack of fault identification, PFTC
usually suffers from performance loss and limited fault-tolerant capacity, failing to deal
with continuous diverging faults. By reconstructing the controller to ensure system stability,
the AFTC has a better flexibility and fault-tolerant control performance. The reconfiguration
of the control strategy requires a fault diagnostic system (FDS) to obtain accurate fault
information. For the QUAV, both the PFTC [5,6] and AFTC [7,8] methods have developed
explosively. The former has a high capacity to compensate for disturbances, but loses
tolerance for significant faults. The latter concentrates mainly on the actuator fault, whereas
the sensor fault is rarely studied in the field [9,10]. However, both of these methods rely on
a variety of high-precision sensor feedback to calculate the control output [2]. Therefore,
the fault-tolerant problem of QUAV sensor fault can not be ignored.

The AFTC method consists of three stages: state tracking, fault diagnosis and evalua-
tion (FDE), and control strategy reconfiguration. The key idea of state tracking is to estimate
the observed value of system variables by system state. The residual between the observed
and the actual is then calculated and taken as the source and basis for FDE afterwards. The
residual is generally obtained by either the state observer [11] or the reference model [12,13],
while high dynamic response and high-dimensional nonlinear system bring difficulties to
design the above models individually. To a certain extent, the accuracy of FDE is decided
directly by that of the state observer estimation and the reference model designation. As
the core of PFTC, all kinds of state observers have made great progress, such as sliding
mode observer (in the sliding model control), particle filter [14], adaptive observer (in the
adaptive control) [15] and extended state observer (in the ADRC), In Ref. [16], a composite
sliding mode observer was developed to estimate the sensor fault signal from the perma-
nent magnet synchronous machine, which proved its strong robustness. However, it is
extremely sensitive to measurement noise due to the chattering phenomenon. By breaking
the restrictions of linearity, extended state observer (ESO) accurately estimates the state of
an unknown nonlinear system [17]. When only a little system information is needed, the
ESO is considered to be model-free [18]. One problem remains: the precision of the estimate
decreases when the QUAV maneuver changes. As a result, state tracking delay after the
mutation cannot be completely eliminated [19]. Currently, the general linear system fault
diagnosis research using the reference model has yielded successful results. Nevertheless,
the uncertainty is exposed to the reference model, due to the existence of a large number of
random inferences, modeling errors, and noise in the QUAV system [20].

The FDE unit for QUAV sensor fault must serve two functions: (1) recognize the type
and severity of the fault, enabling its isolation and identification; (2) have a real-time system
state monitoring mechanism to rapidly acknowledge the occurrence of faults. Unlike the
loss-of-control-effectiveness fault of actuator, the sensor fault has various forms, which puts
forward higher requirements for the FDE. In the field, the methods are roughly divided
into model-based and model-free. In Ref. [21], the occurrence of faults was determined
by threshold setting, but this leaned on expert experience and failed to take into account
both fault types and fault sizes. Ref. [22] designed a linear regression method to estimate
the fault signal of the multiple gas engine sensor, neglecting the correlation between the
signal data. In Ref. [23], the recursive least square algorithm was modified to reduce the
burden of updating data during the online fault identification. Yet it has difficulties in
fitting the fault representation relationship of nonlinear system. Model-free fault diagnosis
was data-driven and is performed by artificial intelligence. It has become the mainstream
in recent five years due to its unified ability to classify and regress [24]. An actuator fault
estimator was built based on radical basis function neural network in Ref. [25], but ignored
the correlation of historical data in time domain. In Ref. [26], a fault signal prediction
was carried out based on long short-term memory network to consider the time-domain
correlation of the data. Since the result is decided by the single data, it is useless in the face
of significant noise and random interference. As an ensemble learning algorithm, random
forest (RF) is attached with randomness, thus has excellent anti-overfitting capability
and noise insensitivity. Compared with the neural network approaches, it has fewer
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hyperparameters and a higher processing speed. Hence, the same generalization ability
can be attained by less training data than neural network. However, problems with single
sample detection and hyperparameter tuning require further resolution [27].

Once the specific fault information is obtained, the targeted sensor compensation
control strategy is reorganized. It is then combined with the PFTC strategy for rapid and
accurate control.

Motivated by the aforementioned practical challenges and issues, this study aims at
proposing a novel AFTC scheme for QUAV with sensor fault. The main contributions of
this paper include:

1. A precise state tracker based on the linear extended state observer (LESO) and refer-
ence model is proposed, which can avoid the influence of maneuver changes, where
the LESO ensures that the observed residual is within the noise level (under no-fault
condition). The reference model makes the residual follow the transient changes, so
as to eliminate the LESO delay effect caused by slow tracking.

2. Trained simply by a small amount of data, an precise fault estimator is designed. The
auto sequential RF algorithm is proposed to realize real-time adaptive sensor fault
diagnosis based on multi-sample, and the improved sparrow search algorithm (LSSA)
is used for performing autonomous hyperparameter optimization.

3. A high-performance AFTC approach combines the active compensation control strat-
egy and the ADRC-based PFTC strategy is proposed for fault-tolerant control. Among
them, the novel fault diagnosis algorithm provides the necessary fault information for
the active compensation control strategy.

The paper is organized as follows. After a brief introduction, the modelling of the
QUAV and the ADRC controller for the longitudinal channel, together with the sensor
fault formulation, are addressed in Section 2. Section 3 details the complete ADRC-based
AFTC control design in three stages. Then, in Section 4, the wide range of the simulation
experiments of the developed fault tolerance controller is performed and analyzed. Finally,
conclusions and future developments are reached in Section 5.

2. Mathematical Modeling of QUAV with Sensor Fault

In this section, QUAV mathematical modeling is provided to describe the drone’s
motion. As the reference model, the nominal model established under ideal conditions lays
the foundation for simulation experiments and state tracker design. The QUAV passive
attitude controller is modeled based on parameter uncertainties and external disturbances.
The sensor fault model discusses the change in QUAV output casued by typical type of
fault, and supports the follow-up study on the AFTC method.

Remark 1. Without losing generality, it is assumed that only the pitch angle sensor fails. Conse-
quently, the longitudinal channel is considered in the QUAV attitude control modelling.

2.1. Modeling of the QUAV System

A QUAV is made up of four cross-placed rotors, as shown in Figure 1, with a symmetric
pattern. Only the aerodynamic force on the rotor and its lift on the airframe are concerned
during constructing the nominal model. After the QUAV is supposed to be a rigid body
with uniform mass distribution, the modification of gravity acceleration is further ignored.
QUAV is regarded as a mass point with three degrees of freedom (3-DOF) of motion on the
x, y and z axes within the earth coordinate system OeXeYeZe. At the same time, it can be
seen as a rigid body with 3-DOF roll, pitch and yaw movements in the body coordinate
system ObXbYbZb.
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Figure 1. Intuitive representation of the Euler angle for QUAV.

As rendered in Figure 1, φ, θ and ψ refer to the roll, pitch and yaw angle, respectively.
Correspondingly, they are defined as the rotation angle of the body coordinate system
around xb, yb and zb axes. Rolling to the right, up along the nose and yawing to the right
are denoted as the positive directions.

The Newton equation is used for analyzing the planar motion of the QUAV:

ẍ = U1(sin θ cos ψ cos φ + sin ψ sin φ)/m− Dx ẋ2/m
ÿ = U1(sin θ cos ψ cos φ− cos ψ sin φ)/m− Dyẏ2/m
z̈ = U1 cos θ cos φ/m− g− Dz ż2/m

(1)

where x, y and z represent the three-axis direction in the earth coordinate system, U1 is
the total lift force of rotors, Dx, Dy and Dz are the air-drag coefficients in the three-axis
direction, m is the total mass, g indicates the gravitational acceleration.

The Euler equation is employed to analyze the rotation process:

φ̈ = (Jy − Jz)θ̇ψ̇/Jx + jr θ̇(−ω1 + ω2 −ω3 + ω4)/Jx + U2/Jx
θ̈ = (Jz − Jx)φ̇ψ̇/Jy + jrφ̇(−ω1 + ω2 −ω3 + ω4)/Jy + U3/Jy
ψ̈ = (Jx − Jy)φ̇θ̇/Jz + U4/Jz

(2)

where J = diag(Jx, Jy, Jz) is the inertia tensor. jr is the propeller moment of inertia. U2, U3
and U4 denote the roll, pitch and yaw moment of the body, respectively. ω is the rotor speed.
A comprehensive nominal 6-DOF model of the QUAV is obtained by simultaneous (1)
and (2).

The second-order system model is established as the actuator model to represent the
rotor speed change, and the model transfer function Gr(s) is written as:

Gr(s) =
ω2

n
s2 + 2ξωns + ω2

n
(3)

where ξ and ωn are damping ratio and natural frequency, respectively.
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2.2. Problem Formulation

To facilitate the control system design, the QUAV dynamic model is simplified as a
longitudinal mode and thus reduced to a second-order system:

θ̈ = U3/Jy (4)

Denote xl = [x1 x2]
T =

[
θ θ̇
]T as the state variable, yl = θ as the system output, ul =

[F1 F2 F3 F4]
T as the control input. Equation (4) is further written in the state-space form:

ẋl = Al xl(t) + Blul(t)
yl(t) = Cl xl(t)

(5)

With reference to the disturbance and sensor fault, (5) is further modified as:

ẋl = Al xl(t) + Blul(t) + g(xl , ul , t)
yl(t) = Cl xl(t) + H(t)

(6)

where g(xl , ul , t) represents both internal and external uncertainties in QUAV. Internal
uncertainties include sensor noise and model parameter uncertainties, while external

uncertainties include external disturbances such as gusts. Al =

[
0 1
0 0

]
is the nominal

system state transition matrix. Bl =

[
0 0 0 0
− l

Jy
− l

Jy
l
Jy

l
Jy

]
and Cl =

[
1 0

]
are the

input and output matrices, respectively. l represents the distance from the rotor to the
center of mass. H(t) represents the sensor fault.

2.2.1. Quadrotor Attitude Passive Controller Modeling

In practice, time-consuming parameter tuning and fuzzy physical meaning limit
the application of the ADRC [28]. Therefore, the idea of Linear ADRC (LADRC) was
raised. By reducing the amount of parameters and endowing them with the significance of
bandwidth, LADRC thus simplifies the tuning process [29]. Hence, this paper adopts the
LADRC method for designing the passive controller, including tracking differentiator (TD),
PD controller and LESO [30].

The controller structure is detailed in Figure 2, where the desired pitch angle is
determined by the reference signal r.

TD
PD 

Controller
Actuator 

Model

Kinematic  

Model

LESO

r
1

2
0u

2z
3z

1z

b

1 b

g

se+

−

−

−+

+

Feedback 

Controller

Disturbance 

Rejector

LADRC

lu ly

Figure 2. Layout of the Quadrotor LADRC controller.

Remark 2. In the design of the PFTC, the sensor fault is ignored. In other words, term H(t) in (6)
is removed.

Inspired by the idea of the state observer in modern control theory, LESO expands the
total disturbance g(xl , ul , t) into a new state variable z3 based on the state variables z1 = θ
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and z2 = θ̇ of the observation system. Using its special feedback mechanism, an extended
state observer is established to observe the total disturbance.

After a new state variable x3 = g(xl , ul , t) is introduced in (6), the second-order system
is expanded into the following system:

ẋ1 = x2
ẋ2 = x3 + bul
ẋ3 = g(xl , ul , t)
yl = x1

(7)

In order to better estimate the expanded system, the third-order LESO is conceived
with the formula modified from (7):

e = z1 − yl
ż1 = z2 − β1e
ż2 = z3 − β2e + bul
ż3 = −β3e

(8)

where z1 and z2 are the pitch angle observation and its differential, respectively. z3 refers
to the total disturbance. e is the residual between the observation and the actual angle. b
represents system parameters. β1, β2 and β3 are tunable parameters.

To reduce the system overshoot caused by the step signal and to balance the response
speed, TD is used to track and smooth the desired signal [31]. The filter factor h and speed
factor r′ are introduced into TD to soften the reference signal r, reduce the overshoot, and
enhance controller stability. The expression is as follows:

e = z1 − yl
θ1(t + 1) = θ1(t) + hθ2(t)
θ2(t + 1) = θ2(t) +

[(
−r′2θ1(t)− r(t)

)
− 2r′θ2(t)

] (9)

where θ1(t) is the pitch angle output by TD at moment t, and θ2(t) is its differential.
LADRC controller parameters are configured by the bandwidth parameterization:

(1) Depending on the control bandwidth ωc, the system poles are positioned at (−ωc, 0);
(2) The observer bandwidth is set to be ω0 = 5 ∼ 10ωc, and β is set to meet β1 = 3ω0,
β2 = 3ω0

2 and β3 = 3ω0
3.

With proper β setting, the residual e→ 0, and the ideal system can be written as:

ÿl = x3 + bul (10)

As illustrated in Figure 2, the controller is designed as ul = −z3
b + u0, which can

be substituted into (10) and obtained ÿl = x3 − z3 + bu0 = e + bu0 ≈ bu0. u0 is the PD
controller control output that is determined by:

u0 = Kp(r− z1) + Kd(ṙ− z2) (11)

Assuming that the reference signal is a constant value, then ṙ = 0, (11) can be rewritten
as ÿ = bKp(r− θ)− bKd θ̇. Finally, the transfer function can be written as:

Gcl(s) =
Y(s)
R(s)

=
Θ(s)
R(s)

=
bKp

s2 + bKds + bKp
(12)

where, when Kp = ω2
c

b , Kd = 2ξω2
c

b , the entire closed-loop system is equivalent to a standard
second-order system. The above derivation demonstrates that the LADRC controller is stable.
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2.2.2. Sensor Fault Description

For the feedback control, the QUAV attitude controller relies on the observation
information obtained by the sensors to determine the system output. Therefore, the sensor
fault directly causes the control loss or even controller failure. Although the sensor fault
has been studied by researchers, it is usually considered as an interference term regardless
of mechanism [32]. To solve the above problems, the possible types of the angle sensor
fault are analyzed and summarized based on the QUAV characteristics. Afterwards, typical
fault models are established for the pitch angle sensor.

Hard-Over Fault

Voltage or current bias in the sensor circuit is caused by a sudden temperature change.
The fault presents as a large constant bias value ∆ added to the non-faulty signal. The
system response is suddenly unstable with an evident steady-state error.

Stuck Fault

An unstable transmission, even a permanent failure of sensors, is caused by a high
overload. The measured signal maintains a certain value θs since the fault occurred.

Remark 3. Generally, θs = θ(t f ) is the last value measured by the sensor before it fails.

Slow-Varying Fault

The Parts are slowly worn out and age by the body vibration during long-term
maneuvering, leading to the slow divergence of the sensor signal. The non-faulty signal is
multiplied by a constant gain, which causes a slight fluctuation and a modest steady-state
error at the beginning.

Outlier-Data Fault

Electromagnetic interference is produced by precise sensors with dense circuits and
high-frequency switching power supply, causing local shock waves. Sensor signal deviates
from the non-faulty signal in an instant. The system response is added with an impulse
response, but recovers quickly without lasting impact.

The sensor fault is summarized and specified as follows:

θ f ,b(t) = θ(t) + f alb

(
∆, t f ,b

)
θ f ,s(t) = θ(t) + f als

(
θ(t), θs, t f ,s

)
θ f ,g(t) = θ(t) + f alg

(
θ(t), Kg, t f ,g

)
θ f ,o(t) = θ(t) + f alo

(
δo, t f ,s

) (13)

where the fault profile function f al(•) is decided by H(t) = [0 f al(•)]T and satisfies:

f al
(

θ(t), ∆, θs, Kg, δo, t f

)
=
[
(Kg − 1) · θ(t) + ∆ + θs + δo(t f )

]
· β(t− t f ) (14)

where β(t) = (sgn(t) + 1)/2 is the occurrence time profile function, ∆ is a constant bias
value, θs is a certain value, Kg is a constant gain, δo(t) is an impulse signal.

3. LADRC-Based Active-Tolerant Control Strategy

Although sensor measurement noise and small disturbances in the QUAV system are
tolerated, the LADRC failed to handle most sensor fault according to the system response
stated in Section 2.2.2. To address the above issue, a LADRC-based active fault-tolerant
strategy is designed as shown in Figure 3. It is realized in three stages: (1) Semi-model-
dependent state tracking. The residual is obtained from the difference between the nominal
model output and the simulation model output, both of which are estimated by the LESO
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in advance. Not only is the reliable anti-interference ability retained to the internal and
external disturbances of QUAV, but also the accurate state-tracking is reached by eliminating
the maneuvering influence. (2) Intelligent fault estimating. If a fault beyond the tolerance
of the passive controller occurs, the sequential RF-based classifier can separate the fault in
real-time. The classification result is then used by the RF-based identifier to obtain the fault
size. Among them, the LSSA is applied to automatically build the optimal fault diagnosis
model, significantly reducing labor and time costs. (3) Fault-tolerant control compensating.
The accurate fault information is used for the subsequent reconstruction of the fault-tolerant
strategy to compensate for the LADRC control output. It should be noted that the core of
this paper is to realize active control compensation through accurate and rapid real-time
fault diagnosis, which is also the point of innovation.

LADRC Controller

LADRC Controller

QUAV Simulation 

Model

QUAV Nominal 

Model

Sensor

(IMU)
TD

Sequential 

RF-based 

classifier

RF-based Identifier #1

Tolerant compensation 

constructor

RF-based Identifier #3

Reference 

Signal

se
nele

Parameter 

Uncertainty
Fault and 

Measured Noise

−

+
+

+
−

Fault Estimator 

Reconstructed AFTC 

State Tracker

y

Figure 3. Overview of the LADRC-based AFTC for the QUAV with sensor fault.

3.1. Semi-Model-Dependent LESO State Tracker

Based on (1), (2) and (5), the nominal model is constructed. Once the LESO residual
of the nominal model (en) and the simulation model (es) are obtained, the residual to be
measured is calculated:

el = es − en (15)

The resulting residual signal el are processed as the input of FDS.

3.2. Model-Free Intelligent Fault Estimator

Prior to diagnosis, feature extraction is required to obtain sensitive features. Generally,
feature extraction is realized by advanced signal processing technologies, including time
and frequency domain methods, i.e., the principal component analysis and the Fourier
transform. In the high dynamic and high maneuvering QUAV system, the sensor fault is
usually presented by a vibration time sequence signal. For feature diversity and sensitivity
are increased by extracting time-frequency features, the combination of wavelet packet
translation (WPT) and statistical variable calculation is perfectly suitable for this task [33].

The residual signal to be measured is first decomposed by n-layer wavelet packet.
After reconstruction at the m-th node, nine statistical parameters of each signal c f sm(el) are
calculated respectively. The feature vector, with (9× 2n)× 1 dimensions, of the residual
signal is ultimately obtained:

X(t) = [F1(t) F2(t) . . . F9(t)]
T (16)

where Fi(t) =
[

fi(c f sm+1(θ f (t))) fi(c f sm+2(θ f (t))) . . . fi(c f sm+2n
(θ f (t)))

]T
, m = 2n − 2,

n ≥ 1.
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Remark 4. Shape factor f1, Margin factor f2, Pulse factor f3, Crest factor f4, Absolute mean
f5, Mean square error f6, Skewness f7, Kurtosis f8, and Mean square value f9 are included in
aforementioned parameters.

After extraction is realized by (16), features X(t) are input into the intelligent fault
estimator as training samples. As discussed in Section 1, the model-free FDE poses flaws
in terms of poor generalization performance with small samples, bad real-time capacity,
and high model construction cost. Once the sensor fault occurs during high dynamic
and maneuvering flight, they can cause the QUAV attitude to diverge rapidly. In this
paper, sequentiality is introduced into the RF to realize real-time fault diagnosis with small
samples. And the heuristic algorithm is applied to perform auto model construction. Fault
estimator implements fault isolation and identification by sequential RF classification and
RF regression method, respectively. In addition, Levy mutation factor is introduced to
achieve the auto-optimization of RF hyperparameter based on the LSSA, then the best fault
estimator is obtained.

As illustrated in Figure 4, the fault diagnosis process involves two parts: offline
training and online testing. The principal design ideas are outlined below.

Online Testing set (0)

In Bag 2

OOB 2

In Bag 2

OOB 2Random

Subset 2

In Bag 2

OOB 2

In Bag 2

OOB 2Random

Subset 2

Pre-trained RF 

Classifier

Sequential Probability 

Ratio Test 

tt-1t-2...0

Fault Type

Pre-trained RF 

Identifier
Binary tree 2

Training

Set 2

Random

Subset 1

Random

Subset n

In Bag 1

OOB 1

In Bag 1

OOB 1

In Bag n

OOB n

In Bag n

OOB n

Prediction 1

Binary tree 1

Binary tree n

Average 

Prediction 

(Fault 

Size)

OOB 

Error
Random 

Selected m 

Features

Improved Sparrow Search Algorithm

Prediction 2

Prediction n

Binary tree 2

Training

Set 1

Random

Subset 1

Random

Subset n

In Bag 1

OOB 1
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In Bag n
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Vote 1

Vote 2
Binary tree 1

Binary tree n

Vote n

Voting 

Result 

(Fault 

Type)

OOB 

Error
Random 

Selected m 

Features

Improved Sparrow Search Algorithm

Fault Size

Offline 

Training

Online

Testing

Optimized parameters n, m

Optimized parameters n, m

Online Testing set (t)

...
...

...
...

Figure 4. The flow of the sequential RF-based fault isolation and identification system.
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3.2.1. Data Acquisition

The training set is composed of all signals with length tw under k + 1 states in [t f −
tw, t f + tw] obtained by continuously intercepting the residual signal data, where the
sampling time is Ts and the intercept gap is ts. The online test set is made up of residual
signals from moment t− tw to present moment t. Both sets are formed as the final feature
data set after extracting features, and the former is labeled.

3.2.2. Parameter Optimization Based on the Improved Sparrow Search Algorithm

In this paper, the RF model is composed of n binary trees. Each tree selects a certain
number of features from the training set as the root node. After randomly extracting m
candidate features, each tree splits and grows in the fastest declined direction of information
entropy until the features are not separable. The separable point of the tree is called the
node of the tree, with a quantity of d. In the case of a few features, the depth of the tree p
is not explicitly limited. In this way, fault type and fault size are obtained by voting and
mean value calculating, respectively.

Both precision and rapidity of the fault diagnosis are required by the AFTC. As in other
artificial intelligence methods, RF has structure-affected accuracy and speed. When the RF
is running, its time complexity and space complexity are O(p · n) and O(d · n), respectively.
Once d is settled, p is determined by m. Thus, the RF operating speed is closely related to m
and n. However, the mainstream manual tuning usually involves considerable professional
knowledge and experience. In order to construct the optimal RF in a practical way, an
automatic optimization algorithm for structural parameters is needed. Parameters include
the number of decision trees contained in the RF and the number of feature variables used
for binary tree (d ≤ 2p−1) nodes. The SSA is a novel optimization algorithm based on
the sparrow’s foraging and anti-predatory behavior [34]. Compared to other heuristic
algorithms, i.e., the ant colony, bee colony and beetle antennae search algorithm [35], it has
a better capacity for local development and global exploration. Furthermore, SSA performs
better in optimizing multi-dimensional parameters.

To begin with, each structural parameter set is regarded as a sparrow. The optimum
solution with minimum fitness is obtained iteratively by updating the population class and
the individual position. In this paper, the mixed-performance fitness function is designed
based on the requirements of the sensor fault diagnosis:

f it f (X) = ξ1, f oob f (X) + ξ2, f Tf (X) (17)

where X represents a parameter set, T(X) is the processing time of the RF built with X,
oob(X) refers to the out of bag error, and ξ are the mixed-performance attention coefficients.

The sparrow population is composed of producers and scroungers, while its class and
regeneration are determined by the fitness order. Producers location is updated as follows:

Xit+1
i,j =

{
Xit

i,j · exp(−i/(γ · itmax)), R2 < St

Xit
i,j + q · L, R2 > St

(18)

where the random numbers R2 ∈ [0, 1], γ ∈ (0, 1] and Q ∼ N(0, 1). St is the safety value. it
and itmax indicate the current iteration and the maximum iterations. All elements in L is 1.

Scrounger location updating is described as follows:

Xit+1
i,j =

Q · exp
(
(Xit

worst − Xit
i,j)/i2

)
, i > Npop/2

Xit+1
best + |Xit

i,j − Xit+1
best | · A

+ · L, i ≤ Npop/2
(19)

where Xit+1
best is the optimal producer location after update. Xit

worst is the current global worst
position. Npop is the population size. A+ = AT(AAT)−1, where A is a real matrix with
elements in {±1}.
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In particular, each sparrow has same awareness of danger. Sparrows who aware of
danger update their position as:

Xit+1
i,j =

Xit
best + λ · |Xi

i,jt− Xit
best|, f it f ,i > f it f ,g

Xit
i,j + K ·

[
|Xit

i,j − Xit
worst|/( f it f ,i − f it f ,w + ε)

]
, f it f ,i = f it f ,g

(20)

where Xit
best indicates the global best position. The random numbers λ ∼ N(0, 1) and

K ∼ [−1, 1]. f it f ,g and f it f ,w represent the minimum and maximum fitness, respectively. ε
is an extremely small constant.

According to (19), the Vanilla SSA lacks an effective mutation mechanism. A producer
can be directly replaced by any superior scrounger, making individuals easily attracted
by the local optimum. For improvement, the Levy flight is introduced to modify the indi-
vidual position, enhancing their local escape ability and accelerating the convergence [36].
The tournament selection is first used to select individuals, and the Levy mutation is
then performed:

Xit+1
i = Xit

i + (Xit
i − Xit

best)⊗ Levy(2) (21)

where Levy(2) is the Levy mutation factor. If fitness declines after the update, the update is
accepted, otherwise the original position is retained.

3.2.3. Fault Isolation and Identification Based on the Auto Sequential RF

Once the optimal RF model is trained, online test data are input into each tree for
classification or regression. The sliding window method is used by most of the existing
real-time algorithms to realize the multi-sample diagnosis, while its own time delay is
ignored. In this paper, to reduce the time delay and accomplish an adaptive multi-sample
diagnosis, the RF classifier is enhanced by introducing the sequentiality. More specifically,
the online-test data is input into the trained classification RF, and the probability output of
each fault corresponding to the current state is obtained according to the voting results:

hn,m(xk
t ) =

1
n

(
n

∑
i=1

x0
t (S

i
m)

n

∑
i=1

x1
t (S

i
m) · · ·

n

∑
i=1

xk
t (S

i
m)

)
(22)

where k is the fault label. xk
t is 1 when the binary tree votes for fault k at moment t,

otherwise it is 0. Si
m is the i-th binary tree classification strategy based on m randomly

selected feature variables.
The fault type is assumed as discrete random variable X = 0, 1, 2, · · · , k, and the

probability distribution of hn,m(Xt) in (22) is satisfied at moment t. For the k-th type fault,
the sequential probability ratio statistic at moment t is computed [37]:

LRt = LRt−ts + ln (Pk(Xt)/P0(Xt)) (23)

where Pk(X) is the probability of k-th type fault, and P0(X) represents the probability of
normal state.

LRt is calculated iteratively in accordance with (23) for sequential possibility ratio
test (SPRT):

1. If LRt ≤ ln (PFNR/(1− PFPR)), the test is terminated and the system is ruled normal,
where PFNR and PFPR are the false negative rate and false positive rate, respectively.

2. If LRt ≥ ln ((1− PFNR)/PFPR), the test is terminated and the k-th fault is justified to
occur the system.

3. If ln ((1− PFNR)/PFPR) ≤ LRt ≤ ln (PFNR/(1− PFPR)), then the system is deter-
mined of the same state as the previous, and next sampling sample is waited to test.

Most notably, the detecting and lasting delay can be caused by the negative value
accumulation below the negative threshold and the positive value accumulation above
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the positive threshold, respectively. In order to eliminate the delay, the iteration of LRt
is modified:

LRt =


0, LRt < 0, Xt = 0
LRt, LRt ≥ 0, Xt = 0
LRt−1, ˙LRt ≥ 0, Xt 6= 0
LRt, ˙LRt < 0, Xt 6= 0

(24)

where ˙LRt indicates the increment in LRt.
Because the aforementioned test can only examine the single fault occurrence, test rule

is improved in this paper application of the multiple fault detection. To summarize, the
detailed flow of the auto sequential RF online fault isolation and identification is listed in
Algorithm 1.

Algorithm 1 The auto sequential RF-based online fault isolation procedure
Obtain the online test set Xtst after the feature extraction;
Given the sampling time Ts, intercept gap ts, false negative rate PFNR, false positive rate PFPR;
Input: The online test set Xtst
Output: Fault type Yf in(end)
Initialization: The sequential probability ratio statistic LR = 0, final type Yf in = 0, justified result
Ytst = 0.

1: for each sampling time i in [1, ((t− tw)/Ts) + 1] do
2: Obtain votes ∑ xk

i (Sm) through the pre-trained classification RF.
3: Calculate fault probability distribution h(xk

i ) according to (22);
4: end for
5: Calculate LR(1, k) = ln(Pk(X1)/P0(Xi));
6: while i ≤ ((t− tw)/Ts) + 1 do
7: if Yf in(i− 1) is 0 then
8: for each fault type j in [1, k] do
9: compute LR(i, j) according to (23) and (24);

10: Obtain the justified result Ytst(i, j) according to SPRT;
11: end for
12: if Ytst is 0 then
13: Yf in(i) = 0;
14: jcha = {j | Ytst(i, j) 6= 0};
15: else if ∃!jcha : Ytst(i, jcha) 6= 0 then
16: Yf in(i) = jcha;
17: else
18: Yf in(i) = {jcha | max(LR(i, jcha))};
19: end if
20: else
21: Compute LR(i, Yf in(i− 1)) according to (23) and (24);
22: Obtain the justified result Ytst(i, Yf in(i− 1)) according to SPRT;
23: Yf in(i) = Ytst(i, Yf in(i− 1));
24: end if
25: end while

3.3. Reconfigurable Tolerant Compensation Constructor

After the sensor fault is identified successfully, the reconstructed AFTC strategy is
obtained according to the fault-tolerant compensating. The control structure is described in
Figure 3.

The AFTC strategy is designed as:

θAFTC(t) =


θ(t), 0 ≤ t ≤ t f

θ f (t), t f ≤ t ≤ td

θcomp(t), t ≥ td

(25)
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where td is when the fault estimator determines the fault, θcomp(t) is the control compensa-
tion, which is determined by the fault-tolerant compensation strategy for a specific fault:

θcomp,b(t) = θ(t) + ∆− ∆est(td)
θcomp,s(t) = θest(t)
θcomp,g(t) = Kgθ(t)/Kest(td)
θcomp,o(t) = θ(t)

(26)

where ∆est is the size of the identified hard-over fault, Kest is the gain of the identified slow-
varying fault, and θest is the observed value of the system regardless of the state feedback.

Remark 5. As a short-term fault, outlier-data fault is considered to require no additional compen-
sation, for the reliable sensor data is easy to get by either filtering or information fusion.

4. Simulation Results

To verify the effectiveness of the proposed AFTC method, the simulation trials of the
QUAV attitude control against the sensor fault are presented in this section. High-fidelity
simulations is conducted to simulate an actual QUAV. As the T-MOTOR’s AntiGravity
MN2214 engine is adopted, this QUAV is fitted with 1045 carbon fiber composite propellers
and a 16.8 V, 4S lithium polymer battery. The nominal parameters are defined as given
in Table 1, and the simulation model contains 10% parameter uncertainty. The damping
ratio of the actuator model is set as 0.9 and the natural frequency is set to 98 rad. The
inertial measurement unit (IMU) is used as the sensor, and the measurement noise of
0.0045rad is accounted for the model. The initial status of the QUAV is assumed x = z = 0,
h = 0 m, V = 0 m/s, θ = φ = ψ = 0◦, u = 0. In the nominal system design, the controller
and the LESO observer are stabilized by setting the cut-off frequencies ωc = 20 rad and
ω0 = 100 rad respectively. The desired pitch angle signal is chosen as the reference signal,
with a 10◦ amplitude and 3 s simulation time. At the same time, given the change in flight
conditions caused by the maneuver change request, the expected pitch angle changes to 8◦

at 2 s.

Table 1. QUAV nominal model parameters.

Parameter Symbol Value

Mass (kg) m 1.44

Inertia tensor (kg·m2) diag(Jx, Jy, Jz)

 0.0097 0 0
0 0.0097 0
0 0 0.0178


Propeller moment of inertia (kg·m2) jr 1.04× 10−4

When the above parameters are disturbed and external disturbances occur, as depicted
in Figure 5a, the simulation response shows that the settling time is 0.49 s (with an error
in 2%). In order to explore the LESO disturbance estimation ability, a 0.01 N·m moment
disturbance is injected into the system to simulate external gust disturbance. The injection
time is 1.5 s, when the QUAV maintains a steady flight. According to the disturbance
estimation curve depicted in Figure 5b, the LESO designed in this paper estimates the
external disturbance well.

The sensor fault may occur at any time in the normal flight process, and it arises
more easily as time increases. In preset working conditions, the range of hard-over and
slow-varying fault sizes are [1.275◦, 5◦] and (0.90, 0.97)

⋃
(1.04, 1.10), respectively. And the

stuck- and outlier-data faults are 10◦ and 40◦, respectively. To guarantee the universality of
the training data for the FDS, the data are obtained by injection of faults at 1.5s. For the
sampling time of 0.001 s (The frequency of IMU is 1 kHz), the interception interval is 0.02 s
and the data range is 0.2 s. After the raw training data are processed by three-layer WPT
using the db2 wavelet, nine statistical parameters of eight nodes in the third layer are then
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computed. A total of 72 features are extracted. As the normal state, Hard-over fault, stuck
fault, slow-varying fault and outlier-data fault are labeled as 0, 1, 2, 3 and 4, respectively,
an the training set is eventually obtained.

(a) (b)

Figure 5. System simulation in normal state with internal and external disturbances. (a) Pitch angle
response of the simulation model in normal state. (b) LESO external disturbance estimation results.

4.1. State Tracking Tests

The direct residual is derived by subtracting the pitch angle signal generated by the
nominal model from that measured in the simulation model. Which is greatly affected
by the modeling accuracy. Since the LESO is model-independent, the residual signal may
converge to the measured noise level in the normal state, but cannot completely track
the maneuver changes. To demonstrate the superiority of the LESO and reference model
combination, the direct and LESO residuals are used for the fault data respectively to
explore the fault representation capacity.

The training sets for fault isolation are obtained by feature extraction of direct and
LESO residuals with sensor fault. Where the fault sizes are 2◦, 10◦, 0.94 and 40◦ respectively.
The importance of each feature Xi is expressed by a Gini index score VIMGini

i , which
indicates the average change in node splitting impurity in all binary trees. Then the feature
importance of the two training sets is plotted in Figure 6. Furthermore, the size of the most
sensitive (most important) feature of each training data is given in Figure 7.

(a) (b)

Figure 6. The feature importance distribution. (a) The LESO residual features. (b) The direct residual
features. The x-axis is the feature number. For a feature with the i-th statistical parameter of the m-th
WPT node, it is numbered as 72. If the nodes are sorted according to the frequency band, the order is:
7, 8, 10, 9, 13, 14, 12, 11 (nodes from the third layer after three-layer WPT).
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(a) (b)

Figure 7. The distribution of the most sensitive feature in different training set. (a) Feature distribution
of nominal model with LESO. (b) Feature distribution of nominal model.

Results show that the LESO residual has a smaller intra-class variance and a larger
inter-class distance, with a less overlap of feature dispersion. Based on the LESO residual
features, different types of faults are better distinguished, resulting in a better fault represen-
tation capacity. This is because LESO can eliminate certain high-frequency interference as a
low-pass filter, generating a residual signal noise smaller than the direct residual. Due to the
integration, the residual signal fluctuation has inertia and is no longer highly oscillatory. In
addition, the sudden sensor fault usually appears as a high-frequency signal [33]. Figure 6a
shows that the application of high-frequency features increases, and further proves that the
LESO residual signal can describe fault signal more comprehensively.

4.2. Performance Metrics

In order to make the performance of the fault diagnosis algorithm more intuitive,
four main metrics are employed in this paper. Among them, False positive rate (FPR),
Precision rate, Recall rate and False negative rate (FNR) are widely used in multi-class
classification:

FPR = FP
TN+FP

Precision = TP
TP+FP

Recall = TP
TP+FN

FNR = FN
TP+FN

(27)

where the samples can be divided into four categories according to the combination of their
real type and the predicted type of the classifier: TP is true positive, FN is false negative,
FP is false positive and TN is true negative.

4.3. Fault Estimation Tests

In the offline training, the fault estimator first isolates faults based on the RF classifier
to determine the fault type. If the hard-over fault or slow-varying fault is justified, the fault
size is further obtained by the fault identification based on the RF identifier. Therefore, a pre-
trained RF classifier and two pre-trained RF identifiers are needed, which are constructed
separately. For model optimization purposes, the LSSA is used to optimize the RF structure
parameters. The amount of training data, classification complexity and regression precision
are involved in the parameter search space. Mixed performance attention coefficients
are generally defined as a constant that makes terms have a same order of magnitude.
Particularly, the training set composition and optimization related settings of above three
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learning machines are listed in Table 2. It needs to be claimed that the auto sequential RF
algorithm relies on large-scale voting bases to ensure the accuracy of statistical probability.
Therefore, the construction of RF classifier ignores the influence of processing time, but
pursues the accuracy as much as possible.

Table 2. Offline training settings and results of RF model.

Model Fault Size
Data
per Class 1

Parameter
Search Space

Attention
Coefficient

Optimal
Parameters Error

n m ξ1 ξ2 n m

The RF classifier ∆b = 2◦,θs = 10◦,
Kl = 0.94,δo = 40◦

500 (0, 500] [2 : 2 : 8] 1 0 500 8 0
(OOB error)

The RF identifier
for hard-over fault

∆b ∈ {1.275◦, 1.5◦, 2◦, 2.5◦,
3◦, 3.5◦, 4◦, 4.5◦, 5◦} 9 (0, 300] [2 : 2 : 28] 1 10−3 136 12 0.0068

(MSE error)
The RF identifier
for slow-varying fault

Kl ∈ {1.1, 1.0, 0.95, 0.9} 9 (0, 300] [2 : 2 : 28] 1 10−3 92 12 0.0004
(MSE error)

1 Number of training data with the same label.

The optimal structure parameters and accuracy of above three models are obtained
after training according to Table 2. In the process of training, parameters of the LSSA are
set as follows: the population size Npop = 5, the maximum iterations itmax = 50, the safety
value St = 0.8, the proportion of producers Pd = 0.2 and the proportion of those aware of
danger Sd = 0.2. The results show that the optimal RF model can accurately distinguish
different faults in the offline situation. For simplicity, the following analysis is based on
the hard-over fault. Compared to the performance of Vinalla SSA in Figure 8b, the LSSA
method can jump out of the local optimum and get the global optimum earlier. As the
prediction follows the actual value perfectly in Figure 8c, the optimal RF identifier can
accurately and quickly identify the fault size. In addition, the optimal RF identifier requires
only a few training data matching a small part of the amplitude to predict perfectly, which
demonstrates its high capacity for prediction using small samples.

(a) (b) (c)

Figure 8. The offline training results of hard-over fault. (a) Parameter and objective space of the RF
structure parameter optimization. (b) Fitness curves of the LSSA and the Vanilla SSA. (c) Prediction of
the trained RF identifier. The test data used for (c) are obtained by injecting the hard-over fault with
different size into the QUAV system 160 times, where fault size is between 1 to 5 with an interval of 0.25.

To explore the optimal RF classifier’s generalization performance to the same type of
fault, the above classification model is used to classify the fault sets with changing sizes. The
results presented in Table 3 show that the optimal RF classifier can accurately distinguish the
hard-over fault of different sizes. Moreover, it can isolate a slow-varying fault with others
in most cases. However, at the bounds of fault size, the classifier effect has a certain degree
of deterioration. This is because, if the slow-varying fault is too small, it will be covered by
noise and confused with the normal state. If it is too large, it will evolve into a hard-over
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fault, which is difficult for the classifier to distinguish. However, the performance loss of
fault isolation caused by these two situations will not affect the fault-tolerant compensation.
The former can be eliminated by the passive ADRC based controller, while the latter is
directly compensated by the identified hard-over fault. Meanwhile, to better present the
classifier’s performance, the following hybrid generalization accuracy index (hereinafter
referred to as hybrid accuracy) is proposed to globally assess the classifier’s precision and
generalization capability:

Accm = ∑ Accs · ω̂s
ωs = 1/(

√
2πσ) · exp

(
−(s− µ)2/2µ2)

ω̂s = ωs/ ∑ ω

(28)

where Accs is the accuracy when the fault size is s, ω̂s is the importance function, s ∼
N(µ, σ2), µ is set to the training set fault size, and the standard deviation is defined as
σ = min(smax − µ, µ− smin)/3. smax and smin are the bounds of the fault size.

Table 3. Classification results of RF classifier for faults with different sizes.

Fault Type Fault Size Accuracy (%) Hybrid Accuracy (%) 1

Hard-over fault

1.275◦ 100

100

2◦ 100

3◦ 100

4◦ 100

5◦ 100

Slow-varying fault

1.10 86.20

88.0516

1.06 100

1.04 89.20

0.97 89.60

0.94 100

0.90 53.40
1 The accuracy of slow varying fault with bound size refers to the accuracy of corresponding hard-over fault or
normal state.

Based on the design of the RF-based offline fault diagnosis system, further real-time
diagnosis is needed. After PFNR = PFPR = 0.01 are set, the auto sequential RF-based
classifier proposed in this paper is used for online fault diagnosis. To prove that the
proposed method can reduce the time delay while ensuring the accuracy, the RF classifier
combined with the sliding window method is used for comparative experiments. The
performance metrics of the proposed and contrast method are listed in Table 4. It can be
seen that the auto sequential RF provides better performance in most cases. However, the
recall rate of slow varying fault is slightly lower and its missed diagnosis rate is higher.
Meanwhile, the normal state false alarm rate is higher and its precision rate is lower. In
order to further investigate the reasons for the above results, Detailed results of different
fault sizes and types are provided in Tables 5–7. It can be seen that the proposed method can
diagnose the fault more precisely within a very short time, and has lower missed diagnosis
and misdiagnosis rates. Although the accuracy of the auto sequential RF classifier is lower
in the slow-varying fault diagnosis, it is still superior. On the one hand, the contrast
method allows early diagnosis. Once the stuck fault is judged, the fault-tolerant system
will inject corresponding compensation immediately. The wrong compensation leads to
faster divergence of the whole system and even serious consequences. On the other hand,
although the proposed method may misdiagnose the developed slow-varying fault, the
fault-tolerant demands can be met by judging it as the hard-over fault, and vice versa.



Aerospace 2022, 9, 518 18 of 25

Table 4. Real-time fault diagnosis result.

Performance Metric
Auto Sequential RF Contrast

Normal Hard-Over Stuck Slow-Varying Outlier-Data Normal Hard-Over Stuck Slow-Varying Outlier-Data

FPR(%) 4.52 0 0 1.87 0 0.40 0 6.75 4.43 0.36
Precision(%) 84.70 100 100 91.63 100 98.43 100 78.73 83.37 98.44

Recall(%) 100 92.52 100 81.93 100 100 72.36 100 88.87 91
FNR(%) 0 7.48 0 18.07 0 0 27.64 0 11.13 9

Table 5. Real-time fault diagnosis result of the hard-over fault.

Method Fault Size (◦) Accuracy (%) Time Delay (s)
Fault Probability (%)

Hybrid Accuracy (%)
Hard-Over Stuck Slow-Varying Outlier-Data Normal

Auto Sequential RF

1.275 62.6 0.04 62.6 0 37.4 0 0

99.6

2 100 0.02 100 0 0 0 0

3 100 0.02 100 0 0 0 0

4 100 0.02 100 0 0 0 0

5 100 0.02 100 0 0 0 0

Contrast

1.275 0 0.1 0 11.4 88.6 0 0

91.8

2 92.8 0.1 92.8 0 0 7.2 0

3 86.4 0.1 86.4 13.6 0 0 0

4 92.6 0.1 92.6 7.4 0 0 0

5 90 0.1 90 10 0 0 0
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Table 6. Real-time fault diagnosis result of the slow-varying fault.

Method Fault Size Accuracy (%) Time Delay (s)
Fault Probability (%)

Hybrid Accuracy (%)
Hard-Over Stuck Slow-Varying Outlier-Data Normal

Auto Sequential RF

1.10 100 0.02 0 0 100 0 0

86.05

1.06 100 0.02 0 0 100 0 0

1.04 53.6 0.02 0 0 53.6 0 46.4

0.97 38.0 0.02 0 0 38.0 0 62.0

0.94 100 0.02 0 0 100 0 0

0.90 100 0.02 0 0 100 0 0

Contrast

1.10 90.6 0.1 0 9.4 90.6 0 0

81.95

1.06 91.4 0.1 0 8.6 91.4 0 0

1.04 86.2 0.1 0 7.6 86.2 0 6.2

0.97 84.6 0.1 0 12.0 84.6 0 3.4

0.94 89.4 0.1 0 10.6 89.4 0 0

0.90 91.0 0.1 0 9.0 91.0 0 0

Table 7. Real-time fault diagnosis result of the stuck fault and the outlier-data fault.

Fault Type Method 1 Accuracy (%)
Fault Probability (%)

Early Diagnosis (%) Time Delay (s)
Hard-Over Stuck Slow-Varying Outlier-Data Normal

Stuck
A 100 0 100 0 0 0 0 0.04

B 94.6 0 100 0 0 0 5.4 0.1

Outlier-data
A 100 0 0 0 100 0 0 0.02

B 91.0 0 9.0 0 91.0 0 9.0 0.1
1 A and B refers to the auto sequential RF-based method and the contrast method, respectively.
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For the purpose of a proof of the effectiveness of the proposed fault diagnosis algo-
rithm, Monte Carlo experiments [38] are carried out with varying fault sizes and random
noises. A total of 295 groups of hard-over faults are set, and their constant bias value of
hard-over fault changes from 1.275◦ to 2◦ with a 0.005◦ interval and from 2◦ to 5◦ with
a 0.02◦ interval. A total of 295 groups of slow-varying faults are set, and their constant
gain value varies from 0.9 to 0.97 and from 1.04 to 1.1 with a 0.0005 interval. The proposed
fault diagnosis algorithm runs five times under random noise for each fault size. The
diagnosis results show that only the false alarm of slow-varying fault will appear in the
diagnosis of the hard-over fault, while only the false alarm of normal state will appear
in the diagnosis of the slow-varying fault, which is consistent with the previous analysis
results. According to FPR results indicated in Figure 9, the false alarm rate keeps low when
the fault is obvious. Therefore, the proposed algorithm is indicated for good generalization
ability and strong robustness.

(a) (b)

Figure 9. Fault diagnosis result of Monte Carlo experiments. (a) The FPR of the slow-varying fault
when the hard-over fault occurs. (b) The FPR of the normal state when the slow-varying fault occurs.

Considering that QUAVs are resource constrained devices, the memory occupation of
the proposed fault algorithm is discussed. For each type of fault, the memory occupied by
the offline-formed auto sequential RF classifier is only 2 KB. The memory of the random
forest identifier for hard-over fault and slow-varying fault is 11 KB. The size of sensor signal
feature data processed by the diagnosis algorithm at one time is 33 KB. The Pixhawk flight
control board commonly used by QUAV is equipped with a 4 GB memory card, which is
more than sufficient for the implementation of the fault diagnosis algorithm.

4.4. Fault-Tolerant Control Tests

The high-performance fault-tolerant control is realized as follows: As soon as a sensor
fault occurs, the residual will rapidly follow the state changes, the fault information will be
precisely estimated, and the compensation strategy will reconstruct to control the QUAV
attitude perfectly. Hence, the AFTC controller needs to tackle faults with all possible sizes.
Additionally, the fault can occur at any time, even when the reference signal changes. To
illustrate the proposed method can solve above concerns, fault with different size and
type is injected into the QUAV system at different times for the simulation. The above
simulation results are organized by fault type in Figures 10–12 and the following analyses
are conducted.

Unlike the oscillation, large static error, and even divergence in the PFTC pitch re-
sponse curve, the proposed AFTC curves indicate improved control performance under all



Aerospace 2022, 9, 518 21 of 25

simulation conditions. For the hard-over fault, the settling time increases when the fault
size decreases, while the overshoot is on the opposite. The main reasons are as follows:
(1) relatively small faults are more difficult to distinguish and take a longer time, leading
to compensation delays; (2) larger faults are detected faster, but the system needs more
time to recover gradually. It can be seen from Figure 10a that when the fault occurs with
an unchanged reference signal, the settling time is only 0.176 s. For the slow-varying
fault, when the fault size is at the upper and lower bounds (Kl = 0.90, 1.10), it is treated
as a hard-over fault. The settling time in Figure 11a is 0.155 s, supporting the statement
mentioned in Section 4.3 that a proper misdiagnosis of the fault estimator can be tolerated.
In addition, the disturbance of the reference signal change makes no affection on the AFTC
controller when the fault and maneuver change occur at the same time.

(a) (b)

Figure 10. Comparative results of the proposed ADRC-based active fault-tolerant control for QUAV
with the hard-over fault occurred at (a) 1.5 s. (b) 2 s.

(a) (b)

Figure 11. Comparative results of the proposed ADRC-based active fault-tolerant control for QUAV
with the slow-varying fault occurred at (a) 1.5 s. (b) 2 s.
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(a) (b)

Figure 12. Comparative results of the proposed ADRC-based active fault-tolerant control for QUAV.
(a) With the stuck fault. (b) With the outlier-data fault.

As a complex and high-dimensional nonlinear system, QUAV has sensor fault that is
easy to cause, interact and develop between themselves. This requires the proposed AFTC
to have a certain fault-tolerance capability for sequential multiple faults. Consequently,
seven representative scenarios in Table 8 are developed for simulation verification.

Table 8. Representative scenarios of the sequential multiple faults.

Fault Type Occurrence Time (s) Fault Size

Scenario 1 (S1)
Slow-varying 1.5 0.94

Hard-over 2 2◦

Scenario 2 (S2)
Slow-varying 1.5 1.06

Hard-over 2 4◦

Scenario 3 (S3)
Hard-over 1.5 2◦

Hard-over 2 4◦

Scenario 4 (S4)
Slow-varying 1.5 0.94

Slow-varying 2 0.90

Scenario 5 (S5)
Hard-over 1.5 4◦

Stuck 2 θ(2)

Scenario 6 (S6)
Slow-varying 1.5 0.94

Stuck 2 θ(2)

Scenario 7 (S7)
Outlier-data 1.5 40◦

Stuck 2 θ(2)

The results in Figure 13 reveal that AFTC is capable of handling sequential multiple
faults. Although the cumulative compensation mechanism has certain limits, the extremely
rapid settling speed of the proposed method makes it possible to compensate for multiple
faults within short periods of time.
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Figure 13. Comparative results of the proposed ADRC-based active fault-tolerant control for QUAV
in various scenarios.

5. Conclusions

To summarize, this paper investigates the attitude control of the QUAV with sensor
fault. By combining the ADRC design method with the auto sequential RF diagnosis
method, an AFTC method is proposed. Its anti-disturbance ability and control performance
are explored.

1. A semi-model-dependent state tracker is obtained by innovatively combining the
LESO with reference model. The slow-tracking problem is solved, that residual signal
changes are easily confounded when faults occur and reference signal changes.

2. Based on the accurate classification and prediction of the RF, an adaptive real-time
fault diagnosis for the multi-sample data is achieved. To autonomously construct the
fault estimator, the LSSA optimization achieves high speed and accuracy.

3. The control effect is verified by experiments using the high fidelity simulation model.
The results show that the proposed ADRC-based AFTC method can track the desired
attitude signal precisely and quickly, and that performance requirements are met.
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Although the proposed method can effectively deal with the typical sensor fault, there
is still room for development and progress. Since the probability of fault in auto sequential
RF is calculated cumulatively, composite fault (when signals occur simultaneously or show
time overlaps) cannot be distinguished. The slow-varying fault is weak, but it still has
a sudden hop at the beginning and an unchanged slope. It cannot fully represent the
gradually changing fault. The above problems require further consideration and resolution.

6. Patents

The fault diagnosis method proposed in this paper has been licensed as a patent in
China (Patent No.: ZL202111058850.3).
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