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Abstract: Bearings, as the key mechanical components of rotary machinery, are widely used in modern
aerospace equipment, such as helicopters and aero-engines. Intelligent fault diagnosis, as the main
function of prognostic health management systems, plays a critical role in maintaining equipment
safety in aerospace applications. Recently, data-driven intelligent diagnosis approaches have achieved
great success due to the availability of large-scale, high-quality, and complete labeled data. However,
in a real application, labeled data is often scarce because it requires manual labeling, which is time-
consuming and labor-intensive. Meanwhile, health monitoring data are usually scattered in different
regions or equipment in the form of data islands. Traditional fault diagnosis techniques fail to gather
enough data for model training due to data security, economic conflict, relative laws, and other
reasons. Therefore, it is a challenge to effectively combine the data advantages of different equipment
to develop an intelligent diagnosis model with better performance. To address this issue, a novel
clustering federated learning (CFL) method with a self-attention mechanism is proposed for bearing
fault diagnosis. Firstly, a deep neural network with a self-attention mechanism is developed in a
convolutional pipe for feature extraction, which can capture local and global information from raw
input. Then, the CFL is further constructed to gather the data from different equipment with similar
data distribution in an unsupervised manner. Finally, the CFL-based diagnosis model can be well
trained by fully utilizing the distributed data, while ensuring data privacy safety. Experiments are
carried out with three different bearing datasets in aerospace applications. The effectiveness and
the superiority of the proposed method have been validated compared with other popular fault
diagnosis schemes.

Keywords: fault diagnosis; clustered federated learning; self-attention mechanism; data privacy

1. Introduction

Prognostics health management is one of the most essential systems in modern aviation
equipment, such as helicopters and aero-engines. Bearings are a key component of rotating
machinery in aerospace applications, whose healthy state is closely related to the health of
the entire equipment [1]. Therefore, effective bearing fault diagnosis methods are of great
significance in terms of safety and reducing equipment maintenance costs.

The third wave of artificial intelligence, represented by deep learning technology, has
brought great changes and updates to many industries and fields. Benefiting from the
representational learning capabilities of deep neural networks, data-driven methods in the
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field of fault diagnosis have achieved excellent performance in many fields. Especially in
aircraft actuation systems, diagnostics, and prognostics, it is essential for adaptive planning
of maintenance and reducing operating costs [2].

Various research on essential diagnosis issues, such as deep learning methods [3,4],
knowledge transfer [5–9], fault decoupling and detection [10–12], imbalance data aug-
mentation, and model generalization [13–16], have been carried out. For example, Syed
Muhammad Tayyab et al. [17] used machine learning through optimal feature extraction
and selection for intelligent fault diagnosis of machine elements. Huang et al. [18] pro-
posed a deep decoupling convolutional network for intelligent compound fault diagnosis.
Shao et al. [19] designed an enhanced deep gated recurrent unit and complex wavelet
packet energy moment entropy for early fault prognosis of bearings. Cui et al. [20] de-
veloped a quantitative and localization diagnosis of a defective ball bearing based on
vertical–horizontal synchronization signal analysis. Chen et al. [21] studied feature-aligned
multi-scale CNNs, which mathematically revealed the relationship between input offset
and convolution stride. Chen et al. [22] proposed a domain adversarial transfer network
for cross-domain fault diagnosis of rotary machinery. Guo et al. [23] developed a new
deep convolutional transfer learning network for intelligent fault diagnosis of machines
with unlabeled data. Recently, various variants of 1D dimensional transformers have been
proposed and achieved good performance in various tasks. Long-transformer [24] is an
improved model with sparse attention to reduce computation cost and strengthen the
ability of the long-distance encoder. Reformer [25] was designed with dot-product atten-
tion with locality-sensitive hashing attention, which effectively reduces time and memory
costs. Universal transformer [26] was derived from transformer and RNN, which integrates
the advantage of the global receptive field of transformer and the inductive bias of RNN.
Transformer was firstly introduced into the image field by Vision transformer [27], which
obtained good accuracy in image tasks.

Although excellent diagnosis performance has been obtained, most of the existing
works rely on a large amount of labeled data and are trained centrally in a computing
center. It is usually time-consuming and labor-intensive work. In the actual industrial
environment, especially in aerospace applications, labeled data are usually independently
owned by different institutions, and equipment is usually small-scale. How to combine the
multiple datasets from different equipment to build a robust intelligent diagnosis model is
still challenging work.

A natural idea is to integrate multiple datasets from different equipment to train a
deep network model to form a shared large-scale dataset. However, there are two obstacles
to practical application. Firstly, data migration out of the original storage centers causes
data privacy leakage. In the information society, data have become a special resource for
holders. Its characteristic is that once it is shared, its economic value is greatly reduced.
Thus, many laws or regulations are created to prohibit data from being transmitted out of
storage centers. Second, the data of different institutions are often collected in different
working conditions or even different equipment; with a model trained on one condition, it
is harder to obtain a strong generalization performance on other conditions due to the data
distribution discrepancy.

For ensuring data privacy protection, federated learning provides a promising scheme.
Federated learning allows multiple parties to jointly train a good network model and share
the model results without revealing local original data. It not only meets the requirements of
data privacy protection, but also obtains a model with better performance. Specifically, the
participating parties, namely, clients, form a federation under the coordination of a trusted
central server and cooperate to complete the entire process of model training [28]. The
central server shares a pre-agreed network model with each client and the clients use the
local dataset to execute several update steps on the received model through optimization
methods. The model parameters are uploaded and distributed between the central server
and clients in plaintext or encrypted until the model reaches the convergence condition.
During the whole training process, there is only communication between the trusted



Aerospace 2022, 9, 516 3 of 19

central server and each participant, which avoids the risk of data privacy leakage to a
certain extent.

Federated learning (FL), as an effective method, has attracted more and more attention
in the industry. Some early applications of the federated learning techniques on intelligent
fault diagnosis have been explored [29–31]. Zhang et al. [32] proposed a federated learning
scheme based on self-supervision for bearing fault diagnosis. Zhang et al. [33] proposed
a federated learning scheme using an adversarial transfer method for cross-working con-
ditions. Chen et al. [34] designed a federated learning scheme with dynamic weighted
aggregation of parameters to improve the classical federated average algorithm. In addition
to the research on the global model, Yang et al. [35] proposed a personalized federated
learning scheme based on averaging shared layers for diagnostic tasks, which allows clients
to design classification modules according to their actual tasks.

However, there are three main challenges in FL applied to intelligent fault diagnosis.
Firstly, most of the existing federated learning methods assume that the data of each client
are collected from the same or different working conditions under the same equipment, so
that the training data and test data come from the same distribution. However, different
devices may be responsible for different products in manufacturing production lines and
work under various operating conditions. Therefore, the data collected from different
clients (devices) generally have different data distributions. If joint training is carried out
directly, the diagnosis results are often not satisfactory. Secondly, the key to federated
learning lies in the exchange of the encrypted weight or features among diagnosis models
of different regions. However, existing federated learning schemes such as the federated
averaging algorithm usually treat the encrypted features of each model equally, which
ignores the differences of features in each model on the final diagnosis performance. Thirdly,
A model structure that is adapted to the FL scenario is very important to ensure excellent
performance. Existing deep learning-based models usually use convolutional structures
to extract features, whose core mechanism is based on local receptive fields. This type of
model pays more attention to local features while ignoring global and general features,
which decreases the generalization performance of the model.

To solve the above problems, a CFL method based on a self-attention mechanism is pro-
posed for bearing fault diagnosis across different device situations. The main innovations
and contributions are as follows.

1. Under the constraints of data privacy protection, a multi-client collaborative training
solution named CFL is proposed for bearing fault diagnosis under different equipment,
which effectively improves the existing FL method in the diagnosis field.

2. To leverage the feature similarity and reduce the distribution discrepancy among
different models, a k-means-based unsupervised cluster method is developed to learn
common features from all participating clients, which integrates the data advantages
of all clients and eliminates data distribution skew among different clients.

3. A self-attention mechanism, rather than a convolutional structure, which can capture
and directly extract the local and global features of the raw data, is designed for
improving the accuracy and generalization performance of the model.

The remainder of this paper starts with related works in Section 2. The preliminaries
are shown in Section 3. The proposed method is presented in Section 4 and the experiment
result is presented in Section 5. In the end, the conclusion is arranged.

2. Analysis and Methods
2.1. Problem Description

This study focuses on federated learning for fault diagnosis of mechanical equipment
with the following assumptions.

1. A trusted central server coordinates the cooperation of each client for model training
and the model is ultimately shared by all parties.
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2. The original data cannot be transmitted out of the local client, and information
exchange between local clients is completed by the central server, which means there
is no direct communication between local clients.

3. Datasets held by multiple clients are collected from different machinery running
under different working conditions. All parties hold a small amount of labeled data,
and the data present a large distribution discrepancy.

4. The diagnostic tasks of all clients are consistent and share the same model structure
for training.

This can be summarized as follows: Assume the training data Dtrain =

{
(xi

j, yi
j)

ni

j=1

}N

i=1
,

where N represents that there are N clients totally and ni means that the client i owns ni
training samples. Therefore, (xi

j, yi
j) is one of the samples from the client i. During the

training procedure, data from N clients are jointly used to train a model under the coordina-

tion of the central server. Correspondingly, the test set Dtest =
{
(xi

k, yi
k)

nk
i=1

}M

k=1
is used to

evaluate the performance of the model. The final evaluation index of model performance is
measured by the test set under M different test conditions.

2.2. Self-Attention Mechanism

The self-attention mechanism allows the model to directly utilize local and global
features, resulting in better generalization performance than CNNs that rely on local
features only. Much research denotes that using self-attention for model training can
capture more general features of the data, which is more suitable for applications in various
fields. A basic comparison of a CNN and a self-attention network is presented in Figure 1.
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Figure 1. Comparison of CNN and self-attention structure. (a) CNN model structure. (b) Self-
attention model structure.

The CNN performs feature extraction in a sliding window manner through a con-
volution kernel shared by weights and obtains distributed feature representations by
continuously stacking convolutional layers. The acquired high-dimensional features are
used as the input of downstream tasks and the whole model is trained through the back-
propagation algorithm. The network model, which is formed by stacking the basic blocks
of convolution–activation–pooling, has information redundancy in the convolution op-
eration and information loss in the pooling operation. These factors inevitably affect the
generalization of the model performance.

By contrast, the model with the self-attention mechanism divides the input signal
into small segments of equal length and uses them as basic signal elements to calculate
the weights so that any segment of the basic signal can maintain the connection with the
entire input signal. Specifically, the original signal is first divided into small segments
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of equal length and denoted as a token. The positional embedding information is added
as alternative information for timing. It performs three sets of equal-dimensional linear
transformations on each token to obtain three tokens, denoted as query, key, and value.
Then, attention is implemented to each key for any query, and the attention result is
normalized by the softmax layer, then multiplied by the value of the corresponding key as
a new value.

The information loss is reduced by reconstructing the input signal through the at-
tention mechanism so that the model can focus on more general features with significant
correlation. In this way, the generalization performance of the model can be improved to a
certain extent.

3. Proposed Clustering FL Method
3.1. Overview of The Proposed Method

The overall flowchart of the proposed CFL is shown in Figure 2. Typically, the first
and essential part is data acquisition, which use accelerators to collect vibration signals
from different devices and build corresponding datasets. Then, the model can be designed
with a deep neural network under the federated learning framework. In the model training
stage, datasets from different clients are used to update the model parameters. Then, the
updated results are sent to the central server. In addition, the server uses the KMeans
cluster method to divide the clients into serval groups by the representation vectors, which
further conduct a corresponding federated aggregation strategy to improve the learning
performance under the data privacy condition. A detailed description of the proposed
method is illustrated as follows.
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3.2. Model Structure

The deep neural network structure designed with a self-attention mechanism is en-
hanced with a one-dimensional signal, which is named SiT in this paper. Its main structure
is shown in Figure 3 and the main parameters are shown in Table 1.

Table 1. Parameters of signal transformer.

Parameters Value

Token size 4
Patch embedding size 64

Position embedding size 64
K blocks 2
MLP size 256
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As shown in Figure 3, the model structure mainly contains three parts. The first is the
signal-embedding part, which is composed of patch embedding and position embedding.
The raw signal is firstly divided into small patches and transformed into high-dimensional
vectors by the patch-embedding module, where 1*1024 denotes the input dimension of
[1, 1024]. The position-embedding part is an independent module from the signal, which
provides position information for the sequential signal. The output is a variable that has
the same dimension as the patch embedding size. After patch embedding and position
embedding, the outputs are added together into the next part.

After the first embedding process, raw signal data are transformed into a new form,
namely, tokens, which is the addition of the patch embedding and position embedding
results. Then, tokens are the input of the encoder part. The second part is the encoder block,
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which takes advantage of the self-attention mechanism. In detail, a token is transformed
into a query, a key, and a value vector by three different transformation matrices. Then, the
query and key vectors are used to calculate the attention score by the scaled dot-product
computation, as shown in the self-attention module. After a softmax process, the new
scores are the weight of the corresponding value vectors to obtain new tokens. The whole
process can be represented as a formula.

Attention(Q, K, V) = so f tmax(
QKT
√

d
)V (1)

The encoder block also contains a residual connection layer, layer norm, etc., besides
the self-attention module. All the details can be obtained in Figure 3.

The last part is a common classifier module. It is worth noting that the input of the
classifier is not all the matrix, but just a slice of it. Usually, it is the zero position of the final
feature map.

3.3. Model Pretraining

In the entire clustering federated learning method, the clients perform local model
optimization and update steps. During the model optimization process performed by the
clients, the local private dataset and classic optimization algorithm, i.e., stochastic gradient
descent, are used to train the model. For labeling data, the optimization objective is to
minimize the cross-entropy loss function, and the overall loss function of federated learning
is defined as follows.

min∑
i∈K

L( fi(x); y) (2)

L =
N

∑
c=1
− 1

nc

nc

∑
i=1

K

∑
k=1

I(yi = k) log
exi,k

K
∑

m=1
exi,m

(3)

where L represents the classification loss, N represents the number of clients and represents
the total number of samples of client C. At the same time, it can be seen from Figure 2
that the high-dimensional features obtained by the feature extraction module through the
backbone network are in the shape of 1*64. This means a sample can be compressed into
a 64-dimensional vector. The same operation is performed on all the samples to obtain a
sample size * 64 matrices; then, further compression in the sample dimension is executed to
obtain a 64-dimensional vector, which is used as the data distribution representation vector
of this client. Finally, the representation vector, together with the optimized model weights,
are uploaded to the central server.

3.4. K-Means Cluster in CFL

Unlike the classical federated learning algorithm, which directly implements the
weighted average obtained from the models in all the clients (devices), the proposed
federated learning strategy first implements the device clusters based on the feature simi-
larity among different models in each client. Then, the features from similar groups are
implemented with the federated average algorithm, as shown in Figure 4.

Since the k-means, as the typical unsupervised clustering method, can classify the
clients with high similarity into the same cluster and those with low similarity into different
clusters, it is used to cluster the clients with similar data distribution into the same cluster,
and then perform federated learning training within the cluster. The clustering algorithm
and the federated aggregation are executed sequentially. The clustering results are adjusted
iteratively until they converge to the desired effect.
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During the clustering procedure, the features are extracted from self-attention mecha-
nism, which further extracted the statistical average information along each channel as the
input of k-means clustering. It not only reduces the additional calculation amount, but also
avoids possible data privacy leakage. Then, the unsupervised clustering is further imple-
mented to determine the similarity of clients, which can not only effectively utilize data
resources with high similarity, but also reduce the impact of data distribution discrepancy
on model performance.

Specifically, after the server receives the statistical average representation vectors
and model weights are uploaded by the clients, an unsupervised clustering algorithm
is performed first to divide the clients into different cluster groups with similar data
distribution. In the proposed scenario, since there are not many categories and the data
dimension is not high, a k-means clustering algorithm with the specified number of clusters
is directly used. The objective optimization function is as follows:

J(c, µ) =
K

∑
i=1
||xi − µci||2 (4)

where xi is the i-th vector, ci is the cluster that xi is resigned. µci represents the center
of the cluster and K is the number of vectors. During the implementation procedure, it
should select the cluster centroid with the closest distance to the vector and repeat the
above optimization process until the above formula converges for any data point. After
the clustering is completed, the clustering results are analyzed. The silhouette coefficient,
named SC, is selected as the evaluation clustering index. The formula for calculating the
contour coefficient is listed as follows.

SC =
1
K

K

∑
i=1

b(x(i))− a(x(i))
max

{
a(x(i)), b(x(i))

} (5)

where x(i) is one of the vectors for clustering, a(x(i)) is the average distance between x(i)

and others in the same cluster, and b(x(i)) is the minimum distance between x(i) and others
in the different clusters. K is the total number of clusters. SC is the average value of the
sum of all vectors. The value of SC is between −1 and 1. What is more, the closer SC is
to 1, the better the clustering performance will be. After the central server executes the
clustering algorithm, it selects the corresponding federated aggregation strategy according
to the confidence of the clustering effect.
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We can take advantage of the SC value to build the update strategy. For example, ε1 and
ε2 are adopted to represent the two thresholds of the silhouette coefficient (−1 ≤ ε1 ≤ ε2 ≤ 1).

Generally, if the contour coefficient of the clustering result is greater than the threshold
ε1, it means that the clustering performance of the current round is ideal and the similarity
between clusters is small; then, the model weights are clustered according to the clustering
results. The aggregation formula is given as follows.

wgk = Avg(∑
c∈k

wc) (6)

where Wgk represents the averaging weights of clients belonging to k-th cluster. Then, Wgk
is sent to the corresponding clients to optimize the parameter of each model.

If the contour coefficient of the clustering result is less than the threshold ε2, it means
that the clustering effect of the current round is relatively poor, and the similarity between
clusters is large. Then, the server does not process the weights of the models in this round.
If the silhouette coefficient is between ε1 and ε2, then a global federated averaging update
is performed.

wg = Avg( ∑
c∈all

wc) (7)

Usually, the threshold should be carefully designed to control the weight of clustering
federated learning. In the proposed method, ε1 and ε2 are two significant factors in the
performance of federated learning, which should be carefully selected to control the weight
of clustering federated learning. In this study, the grid-search method, as a widely adopted
technique, is adopted to determine the value of ε1 and ε2. To be specific, ε1 and ε2 are
set in the range of −1 to 1, and ε2 should be larger than ε1 to construct a suitable bound.
When ε1 is large, it is more inclined to perform a local update and when the value is
small, it is inclined to adopt federated averaging updates. When ε2 is small, it prefers
to use a clustered federation update, while if the value is large, it prefers to use a global
federation update. Finally, ε1 is set at 0.5 and ε2 is set at 0.8 by a grid search among
the restricted hyper-parameter ranges. With such a general clustering federated learning
strategy, the constructed fault diagnosis model can be well trained under the data privacy
preservation framework.

3.5. Flowchart and Algorithm of CFL

The flowchart of the entire CFL is presented in Figure 5. The specific steps are as
follows. Furthermore, algorithm 1 shows the pseudocode of the proposed method.

Step 1: The server initializes the model parameters and sends them to the clients.
Step 2: The client uses local data to optimize the model and uploads the model weights

and data representation vector to the server.
Step 3: The server first uses the client’s representation vectors to perform unsupervised

clustering of k-means to gather clients with similar data distributions into the same cluster.
Then, the corresponding federated update strategy is decided and performed according to
the clustering performance.

Step 4: The server sends the weight obtained by the aggregation process to the
corresponding clients, which is used for updating the independent model in each client.

Step 5: Repeat steps 3–5 until the model stop condition is reached.
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4. Experimental Results
4.1. Dataset Description

To validate the effectiveness of the proposed fault diagnosis method under the FL
framework, there are three bearing datasets adopted which can be used in aerospace
applications. The first one, named the CNC bearing dataset, is collected from a CNC milling
machine operated at different speeds. The other two datasets are the public testbed bearing
datasets, i.e., the Machinery Failure Prevention Technology (MFPT) bearing dataset [36]
and the Paderborn University bearing dataset [37].

CNC machining services are highly essential in the aerospace sector. It is a manufac-
turing process that uses a combination of high-speed rotation and cutting tools to remove
material from a solid workpiece. The failure of bearings in CNC has a big effect on the
reliability of high-quality aerospace parts. The CNC dataset is collected from a rotary
spindle of a CNC machine, which was used for cutting aluminum and steel materials in
aerospace applications. The speed condition covers from 6000 rpm to 10,000 rpm. The data
are collected with vibration sensors and the sampling frequency is 25 kHz.

The MFPT bearing dataset comprises data from a bearing test rig (nominal bearing
data, an outer race fault at various loads, and inner race fault and various loads). Further-
more, the vibration signals are acquired. The test rig in the MFPT can be used for simulating
the failure of bearings of the transmission system in aerospace applications. The sampling
frequency for the normal state is 97,656 Hz and 48,828 Hz for the fault state, respectively.

Similar to the MFPT bearing dataset, the Paderborn bearing dataset is constructed for
simulating the failure of bearings in aviation systems under different operation conditions.
This bearing dataset is provided by the Chair of Design and Drive Technology, Paderborn
University. It is collected in the test bench under different rotational speeds, torques, and
radial force conditions, where three kinds of health statuses, including inner race fault (IR),
outer race fault (OR), and normal state (N), are obtained. The sampling frequency is 64 kHz
and the vibration signals are obtained with vibration sensors. A detailed description is
shown in Table 2.
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Table 2. Description of the three datasets.

Dataset CNC MFPT Paderborn

Health condition IR, OR, N IR, OR, N IR, OR, N

Rotate speed (rpm) 6000, 7000, 8000
9000, 10,000 1500 900, 1500

Load 0 0 0.1, 0.7 (Nm)

Radial force 0 25, 50, 100, 150, 200,
250, 280, 300 (lbs) 400, 1000 (N)

Static load rating (N) 7950 / 4750
Dynamic load rating (N) 106,000 / 9500

The measurements collected in the three considered datasets are all vibration signals.
Naturally, the data forms are homogeneous. As shown in Table 2, we can see that health
condition contains three states, that is, inner fault (IR), outer fault (OR), and normal (N),
in the three considered datasets. Rotate speed is the rotation speed of the shaft and load
represents a moment acting on the shaft, while radial force is a force acting on the bearing
in the radial direction.

As shown in Table 2, we can see that health condition contains three states, that is,
inner fault (IR), outer fault (OR), and normal (N), in the three considered datasets. Rotate
speed is the rotation speed of the shaft, and load represents a moment acting on the shaft,
while radial force is a force acting on the bearing in the radial direction.

It is worth noting that 0 means the load is an operation in a no-load condition or the
applied radial force is 0 in Table 2. This means that the machine is working in an idle state,
which is a normal state. It should also be noted that for the three different datasets, there
are 30 samples available for model training in each class under each condition. Each sample
has a length of 1024 data points. In addition, there are 150 samples available in each class
under each condition for the final testing.

According to the actual situation, the equipment of different clients may be different
and the operating conditions of the equipment also vary with the change in the manu-
facturing products. Naturally, the datasets constructed from the same machinery under
different operation conditions or similar machinery follow different distributions. Without
loss of generality, different datasets under eight working conditions are designed as the
corresponding clients for experimental validation. The experimental setup is detailed
in Table 3.

Table 3. Client dataset and test task description.

Client Dataset Working Condition

Client 1 CNC 6000 rpm
Client 2 CNC 7000 rpm
Client 3 CNC 8000 rpm
Client 4 CNC 9000 rpm
Client 5 CNC 10,000 rpm
Client 6 MFPT 25 lbs
Client 7 MFPT 50 lbs
Client 8 MFPT 150 lbs
Client 9 Paderborn N15_M01_F10

Client 10 Paderborn N09_M07_F10
Client 11 Paderborn N15_M07_F10
Client 12 Paderborn N15_M07_F04
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4.2. Comparison Methods

To demonstrate the advantage of the proposed method, three different methods,
namely, local update (Baseline), Federated Averaging (FedAvg), and FedProx, are adopted
for algorithm comparison.

Baseline: For the baseline method, only local data are involved in model training
and the trained model is tested on testing data. It corresponds to the extreme case of the
proposed method where the number of cluster centers is equal to the number of clients.

FedAvg: As a classic federated learning algorithm, the federated averaging algorithm
has always been an essential criterion for baseline comparison. For FedAvg, the weights
of each local model are firstly averagely aggregated to obtain the total weights, which
are further downloaded into the local model for the updated weight. It corresponds to
the extreme case of the proposed method where the cluster center is equal to 1. Some
research-related FedAvg algorithms have been developed in the fault diagnosis field, such
as enhanced weight aggregation and federated transfer learning.

FedProx: As an improved method of federated averaging learning, FedProx recon-
structs the local optimization goal, which is the combination of the empirical risk of the
local dataset and the regularization term of the global model and the local model in each
iteration process. It aims to force the client model intending to the global model so as to
accelerate model convergence and improve accuracy.

The experimental settings in all the comparison algorithms are shown in Table 4.

Table 4. Experimental setup parameters.

Parameter Value

Global iteration 50
Local iteration 5
Sample length 1024

Batch size 8
Learning rate 0.001
Optimization Adam

4.3. Experimental Results
4.3.1. Effectiveness of the Constructed Self-Attention Model

Firstly, an experiment is conducted for comparing the performance of different ad-
vanced networks. In this study, the considered networks contain RNN, LSTM [3,4], 1D-
CNN [5], and the constructed self-attention module (named SiT). For a fair comparison,
the difference among all the networks is the backbone module, which is used for feature
extraction, and the classifier modules are the same. In detail, the raw vibration signals
are taken as the input of all networks and the dimension is 1*1024. RNN and LSTM have
two layers and the hidden size is 128. 1D-CNN has one convolutional module, where the
kernel size is 64 and the stride is 16. Furthermore, there is only one self-attention block in
SiT, where the main parameters are similar to Table 1 and the number of blocks is only one.
After the feature extraction process with the backbone module and a ravel operation, the
raw signal is encoded into a vector, whose dimension is 1*128. Then, the feature vectors
are sent into a classifier module, which is composed of two fully connected layers, whose
hidden units are 128 and 3.

What is more, the number of experimental samples is 20 per class and the experimental
results are listed in Table 5.
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Table 5. Performance comparison of different networks.

Client 2 Client 3 Client 4 Client 5

RNN 40.77 ± 3.17 60.62 ± 1.34 40.02 ± 7.51 45.08 ± 1.11
LSTM 66.1 ± 8.17 69.2 ± 6.4 78.2 ± 10.89 64.95 ± 13.2

1D-CNN 90.9 ± 0.13 88.37 ± 1.34 89.25 ± 0.05 86.93 ± 5.42
SiT 100 ± 0 100 ± 0 99.08 ± 0.03 99.93 ± 0.08

As shown in Table 5, RNN and LSTM are not good at handling vibration signals,
because the signal is too long to be processed well. 1D-CNN has a better performance
for vibration signals. Compared with the three networks, the proposed SiT has the best
performance in all clients.

As shown in Table 5, both RNN and LSTM achieve low testing accuracy, as the signal
is too long to be processed well, while 1D-CNN has a better performance than the above
methods due to its advantages of handing vibration signals. By contrast, the proposed
SiT has the best performance in all clients, which demonstrates its superiority in feature
extraction and fault classification.

What is more, to further evaluate the performance of the proposed method, two
further experiments were conducted to verify the superiority of SiT. Two different experi-
mental datasets including the same operating conditions and cross-operation conditions
have been designed.

In the constant operation condition experiment, the data from Client 9, Client 10,
Client 11, and Client 12 are selected. Different training samples with 10 and 30 in each class
are adopted for training the model, while the rest of the samples are utilized for testing.
The experimental results are shown in Figure 6a. Under cross-operation conditions, data
from Client 1 are used as training data, and data from Client 2, Client 3, Client 4, and
Client 5 are used as test data. In the experiment, the number of 5 and 10 samples in each
class is adopted for training the model, respectively, while the rest are for testing. The
experimental results with different sample numbers are shown in Figure 6b.
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Figure 6. Performance of CNN and the constructed SiT. (a) The diagnosis results of SiT and
CNN under constant operation conditions. (b) The diagnosis results of SiT and CNN under cross-
operation conditions.

It can be seen from the results that the proposed SiT is much better than that of the
CNN under the same working conditions. With the availability of the limited 10 samples,
the CNN only achieves below 60% accuracy, while the proposed method is much higher in
most of cases. What is more, with the increase in the number of samples, the accuracy of the
CNN is raised, but is still lower than the proposed SiT. Under the cross-working conditions,
similar results can be found among all the cases, which indicates that the proposed SiT has
better performance. The better performance achieved is possibly due to the advantages of
the constructed self-attention mechanism in capturing the local and global features from
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the input samples. As such, the learned features are much more robust than that of the
CNN, especially in the case of the limited samples.

4.3.2. Experiment Results among Different Methods

In real industrial applications, the monitoring data may come from different devices
under different operation conditions. However, the limited data cannot meet the training
of a robust decision model. Thus, it is expected that similar mechanical data scattered
across different areas can be effectively combined to leverage its potential and business
value under the federated learning framework. In this experiment, three federated learning-
based fault diagnosis tasks (task1, task2, and task3) were designed, as shown in Table 1.
In the constructed tasks, the mechanical data from Client 1, Client 2, Client 3, Client 4,
Client 6, Client 7, Client 9, Client 10, and Client 11 are adopted for training. For each client,
there are only 10 training samples in each class available, while the data from Client 5,
Client 8, and Client 12 are adopted for testing. It can be seen that the training data cover
different operation conditions and three different machinery equipment. They also follow
the different data distribution due to the variation of the working environment. It should be
noted that data from different clients are separately utilized to train its independent model
to carry out its diagnosis task without direct contact with each other at the data level. Thus,
each task attempts to make use of the additional mechanical data from different clients to
improve its diagnosis performance under the condition of the limited available data.

To validate the effectiveness and superiority of the proposed method (CFL), which
is implemented as CFedAvg, three existing techniques, including Baseline, FedAvg, and
FedProx methods, are adopted for performance a comparison. A total of five repetitive
experiments are conducted and the average results, including the testing accuracy and
standard deviations, are presented in Figure 7.
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It can be seen that the worst diagnosis performance is obtained in the Baseline method,
where there is below 40% testing accuracy in each test task. This is because the learning
ability of a deep neural network should be activated by sufficient training data. In the
Baseline method, there are only ten samples in each class adopted for the training, which
is not enough for training a robust diagnosis model. For the FedAvg and FedProx, it is
expected that obvious improvement on accuracy can be found in each task in comparison
with the Baseline method, since multiple different bearing datasets from different clients are
jointly used in the federated learning framework. The learned diagnosis knowledge from
different models can be utilized with the weight average algorithms. Thus, the learning
ability of the model in each Client trained with limited training data can be enhanced by
the global weight share strategy obtained through the combination of the weight in each
client. In particular, the proposed CFL method obtains an excellent diagnosis performance
which is superior to all the other methods. The advantages lie in the use of the constructed
federated cluster learning strategy, which not only effectively reduces the negative effects
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caused by data distribution shifts, but also uses the data resources of similar clients to
improve model performance.

4.3.3. Parameter Effect of the Number of the Cluster

During the model training procedure, it is important to select the suitable parameter
of the number of cluster K, which directly determines the different federated clustering
strategy. In this experiment, since the maximum number of clients is eight (representing
eight different training datasets), the number of the clusters are changed from 1 to 8 to
investigate its effect on the final diagnosis performance. It should be noted that when the
number of cluster K is equal to 1, it corresponds to the global federated averaging algorithm
(FedAvg), and when K equals 8, it corresponds to the Baseline method, where no federated
learning strategy is implemented. The effect of different values of k on model performance
is presented in Figure 8.
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It can be seen that when K equals 1, it corresponds to the FedAvg method, which
achieves high diagnostic accuracy in all three tasks. This is because each model in the
client could leverage the diagnosis knowledge from other clients by implementing the
federated average algorithm. When K is equal to 4, the diagnostic accuracy is improved;
the improvement is nearly 20% for task 2. When only using local data for training (K = 8),
the model achieves the lowest test accuracy on the three tasks. This is consistent with the
results of the Baseline method obtained in Figure 7 due to the limitation of the small sample
sizes and lack of data utilization from other clients.

Furthermore, different values of K have different influences on the final testing accu-
racy. Choosing the appropriate K value plays a crucial role in the whole model training.
When the K value reaches 4, it obtains the best performance, which is selected as the
optimal parameter.

4.3.4. Feature Visualization with Quantitative and Qualitative Analysis

To better estimate the learning performance of the extracted features among different
methods, taking the diagnosis task T1 as an example, the learned high-dimensional data
representations in the fully connected layers are adopted. They are further reduced into 2-D
features for feature visualization to provide a better understanding of the discriminability
by using the typical t-SNE technique.

The results are presented in Figure 9, where different colors denote different health
conditions. It can be seen that the Baseline performs worst among all the methods. The
sample points corresponding to class 2 scatter into two different regions, indicating that
they follow two different feature distributions. It can be expected that the learned feature
cannot meet strong generalization performance and the diagnosis accuracy is poor, which
is consistent with the result in Figure 2. While the other two federated learning-based
diagnosis methods are all superior to the Baseline method, the sample points from the same
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classes can cluster well and those from different categories can be easily distinguished,
which contributes to obtaining better diagnosis accuracy.
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However, from the intuitive visualization results, it is still difficult to judge which
models are better for learning strong discriminative features. Furthermore, quantitative
analysis indexes, named the intra-class and inter-class correlations, are further constructed
to evaluate the learned high-dimensional features of the test dataset. Specifically, two
parametric metrics are used: between-class covariance and within-class covariance. Among
them, the high-dimensional feature matrix of the test set samples is:

f = [ f1, f2, . . . , fN ]

where fi denotes the extracted features in the i-th samples. Then, the between-class covariance
and the within-class covariance are defined as:

Sb =
K

∑
c=1

Nc(mc −m)(mc −m)T (8)

Sw =
K

∑
c=1

∑
n∈c

( fn −mc)( fn −mc)
T (9)

where Nc is the total number of class c, mc refers to the mean value of features in the class
c of all K classes, and m is the total mean value of all the features. Sb is the inter-class
covariance and Sw is the between-class covariance. If Sb is bigger, the more dispersed the
different classes are. The smaller Sw is, the more concentrated the samples within the class
are. The relationship between Sb and Sw is used to define four indicators to characterize
the classification performance.

J1 = Tr[S−1
w Sb] (10)

J2 =
|Sb|
|Sw|

(11)

J3 =
Tr[S b]

Tr[S w]
(12)
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J4 =
|Sw + Sb|
|Sw|

(13)

Though the forms of J1, J2, J3, and J4 are different, they have a similar meaning
to evaluate the classification manner. Generally speaking, if the value of J is larger, the
performance of the model is better.

The qualitative analysis of the extracted features among different methods is presented
in Table 6. It can be seen that the proposed method achieves obviously better learning
performance among all the compared methods based on evaluation indexes. The excellent
clustering ability of the extracted features further demonstrates the effectiveness and
superiority of the proposed method, which provides an effective solution for the machinery
fault diagnosis under the data privacy preservation condition.

Table 6. Quantitative analysis of J.

J1 J2 J3 J4

Baseline 404.9 14.6 11.0 15.5
FedAvg 431.6 7.5 6.2 8.2
FedProx 248.3 1.9 1.9 2.6
CFedAvg 621.1 19.7 15.4 20.2

5. Conclusions

Under the limited available samples and data privacy requirement, a novel CFL
method integrating a self-attention mechanism and a clustering federated learning strategy
is proposed for the intelligent fault diagnosis of bearings in aerospace applications. At
the network level, a network model based on a self-attention mechanism is constructed
to replace the traditional CNN model, which can directly utilize global and local features
for model learning to improve the generalization performance. At the federated learn-
ing level, an enhanced k-means-based federated learning strategy is proposed based on
client data distribution similarity, which improves the performance of the model effec-
tively. The proposed approach has been fully validated by bearing datasets from different
equipment in aviation systems under different operation conditions. The effectiveness
and superiority have been fully validated in comparison with other methods, which pro-
vides an effective learning scheme for intelligent fault diagnosis under the data privacy
preservation framework.

Although good performance has been achieved, it should be noted that the client data
distribution representation vector in the proposed method is determined in the form of
a data statistic, and there may be a certain deviation in practice. In the future, we will
consider designing a representation method for adaptively learning the local data feature
distribution to accurately characterize client data distribution. In addition, there is a certain
deviation in the theory of specifying the number of clusters in advance, which has a certain
degree of influence on the performance of the model, which will be further studied in
following work.
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