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Abstract: The paper’s purpose is to present a calculus model for a testing vehicle that can be used to
validate guidance, navigation and control systems for reusable launchers in all flight phases. The
technical solution is based on a throttleable engine with thrust vectoring control and a reaction control
system (RCS) used for roll. For calculus, we will develop a nonlinear model with six degrees of
freedom, based on quaternion, extended with nonlinear equations that use pulse modulation in
order to control roll. In order to synthesize the controller, we also develop a linear model similar
to the launcher model. The paper analyzes two basic scenarios, first with the ascending and the
descending flight phases and the second having a horizontal flight interleaved between ascending
and descending flight phases, both scenarios being specific for reusable launchers. Based on these
scenarios, the paper evaluates some performances of the proposed vehicle, namely flight envelope
and guidance accuracy.

Keywords: mathematical model; guidance navigation and control system; reaction control system;
testing vehicle; reusable launcher; flight envelope; guidance accuracy

1. Introduction

In the field of commercial launchers, nowadays, there are two directions for reducing
the costs: achievement of the launcher families with modular launchers like ANGARA [1]
and DELTA [2], which allow insertion on different orbits of all sorts of payloads and achieve-
ment of the reusable launchers, as it is done in the FALCON program [3,4], developed
by Space X. A problem stemming from these trends is the development of an advanced
navigation, control and guidance system that can solve the guidance problem for the entire
launcher family or make complex maneuvers for the reusable launchers. A Launcher
Testing Vehicle (LTV) can be used as an independent stage to solve these complex problems
with a low development cost, with the propulsion and control system to test in flight and
the launcher guidance navigation and control system (GNC).

In our vision, the Launch Testing Vehicle (LTV) is similar to the vehicle used for landing
on a celestial body (Moon, Mars). Discussing technical solutions, the reference landing
vehicle Apollo Lunar Module [5,6] uses a descending throttleable engine for landing and
an ascent engine for docking. This approach also uses a reaction control system (RCS)
having two blocks with four thrusters each for attitude control. An alternative technical
solution for a Lunar Lander Demonstrator (LLD) is presented in the paper [7]. LLD has
five large descending thrusters and eight small thrusters for attitude control. Many fixed
thrusters allow the use of on/off modulation to control roll pitch and yaw without throttling
or gimbaling for thrust vectoring control (TVC).

Among the important projects for reusable launchers, we can mention STARSHIP [8],
developed by SpaceX Company(Hawthorne, USA), whose technical solution is based
on the multiple Raptor Engine with gimbal capability and aerodynamic surfaces (flaps)
for control. Another is the CALLISTO project [9], developed in cooperation with Centre
National d’Etude Spatiales (CNES), Japan Aerospace Exploration Agency (JAXA), and
Deutsches Zentrum fur Luft-und Raumfahrt (DLR), whose technical solution is based on
the RV-X engine, developed by JAXA, which will have gimbaling, throttling and re-ignition
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capability. Moreover, the project supposes the aerodynamic surfaces (fins) and RCS with
6–8 thrusters for control.

Different from these solutions, specific for landing vehicles, in this paper, we will con-
sider a Launch Testing Vehicle (LTV) based on thrust vectoring control (TVC) using a throt-
tleable engine with gimbal capability for pitch and yaw, and separately, two RCS blocks
with two thrusters each with Pulse Width -Pulse Frequency modulation (PWPF) [10,11] for
roll control. In order to simplify the technical solution, we do not use aerodynamic surfaces,
which are inefficient for low velocity.

Currently, a number of current studies [12,13] focus on determining an optimal evo-
lution, in terms of low fuel consumption, by applying convex optimization methods on
models with three degrees of freedom (3DOF) for complex evolutions.

Unlike these, the current paper proposes developing a calculation model with six de-
grees of freedom (6DOF), similar to that of the launchers, to underpin the vehicle’s sub-
sequent development and conduct preliminary flight tests. The model will focus on the
movement’s control and stability, aiming to evaluate the vehicle’s performance in terms of
the flight envelope and guidance accuracy. For the synthesis of the guidance system, linear
models for longitudinal and lateral movement in the local frame based on the Hamilton
quaternion are developed. Applying Linear Quadratic Regulator (LQR) synthesis, we will
obtain an optimal regulator, and the gains used in control signals will be defined.

For performance evaluation, two simple hypothetical scenarios will be considered,
one for vertical evolution, which allows the determination of the maximum altitude, and
one for horizontal evolution, which allows the determination of the maximum flight
distance, both cases for a fixed amount of fuel. Based on these two scenarios, for two test
cases, the landing accuracy will be evaluated in the conditions of the parametric uncertainty
of the model as well as the noise introduced by the sensors. Additionally, for a test case in
the second scenario, the uniform and turbulent wind influence on lateral movement will
be evaluated.

Taking into consideration the work objectives to implement a calculus model for LTV,
which will be used to validate GNC for the launcher, the reference frames used are similar
to those used for the launcher model described in detail in prior work [14,15]. This is
characterized by the y-axis of the local frame oriented vertically upwards and, in the case
of Euler angles, the order of rotations 3-2-1 from the local frame to the body frame.

Similar to launchers, because of their shape, the LTV has the aerodynamic focus in front
of the center of mass, translating into static instability, which leads to a similar approach
regarding the control problem. Different from the launcher, for LTV, some simplifying
assumptions related to low velocities and distance domains will be made concerning the
frames and the movement equations.

In summary, the novelties proposed by the paper, related to other similar approaches, are:
A simplified technical control solution based only on propulsion. The technical solu-

tion is similar to lunar landing vehicles. Still, it is customized for the evolution of launchers
by considering the aerodynamic terms in the model and the atmospheric, disturbing effects.

Formulation of the control problem based on linear coordinates in the local frame
and the quaternion. Unlike our previous paper [16], we introduced the control of linear
coordinates to improve guidance, especially landing accuracy, and we used quaternions to
ensure the robustness of the model

Evaluation of system performance in the flight envelope and landing accuracy with
a highlight on the influence of uniform wind, turbulent wind, sensor noise, and uncertainty
of the model parameters.

The paper’s major contribution, which can be considered a contribution to the state
of the art, consists of base movement analysis and linear model, both dedicated for the
testing vehicle.

As will be shown during the work, for the technical solution adopted, the basic
movement is close to landing on a celestial body despite the presence of the atmosphere.
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Regarding the linear form of the motion equations, unlike most works [17] that use
the velocity frame for the linear form of translational equations, the local frame will be
used in our work, which will facilitate the control of the linear coordinates. Appendix A of
the paper will present the method of obtaining the coupled linear form of the equations
of motion.

In addition, for the avoidance of singularities and the system’s robustness for describ-
ing the attitude, including in the linear form, the quaternion was used, which constitutes
an additional element regarding the contributions of the work.

For the verification of the model but also for the design of a methodology for evaluating
the vehicle’s performance, two flight scenarios will be considered in both situations. The
test was performed with the control based on the previously specified linear model, which
was included in the 6 DOF nonlinear model.

2. Motion Equations
2.1. Reference Frames, Rotation Matrix

As we mentioned earlier, the reference frames used will be similar to those used for
the micro launcher model. Because LTV has a limited range, up to 10 km around the launch
position, some simplifying assumptions will be added to the launcher model. So, we will
consider the Earth flat, without rotation; hence we will use only the two frames described
below for the equation of motion.

(a) The Start frame/ The Local frame—OX0Y0Z0

This coordinate system denoted OX0Y0Z0 Figure 1 has its origin on the Earth’s surface
at the start point of the vehicle. Axis Y0 is oriented vertically upwards. The frame has X0
axis orientated to the launch direction. Z0 axis completes the right frame to the right of the
launch plane. This coordinate system is considered to be an inertial reference frame.

Aerospace 2022, 9, x FOR PEER REVIEW 3 of 44 
 

 

The paper’s major contribution, which can be considered a contribution to the state 
of the art, consists of base movement analysis and linear model, both dedicated for the 
testing vehicle. 

As will be shown during the work, for the technical solution adopted, the basic move-
ment is close to landing on a celestial body despite the presence of the atmosphere. 

Regarding the linear form of the motion equations, unlike most works [17] that use 
the velocity frame for the linear form of translational equations, the local frame will be 
used in our work, which will facilitate the control of the linear coordinates. Appendix A 
of the paper will present the method of obtaining the coupled linear form of the equations 
of motion. 

In addition, for the avoidance of singularities and the system’s robustness for de-
scribing the attitude, including in the linear form, the quaternion was used, which consti-
tutes an additional element regarding the contributions of the work. 

For the verification of the model but also for the design of a methodology for evalu-
ating the vehicle’s performance, two flight scenarios will be considered in both situations. 
The test was performed with the control based on the previously specified linear model, 
which was included in the 6 DOF nonlinear model. 

2. Motion Equations 
2.1. Reference Frames, Rotation Matrix 

As we mentioned earlier, the reference frames used will be similar to those used for 
the micro launcher model. Because LTV has a limited range, up to 10 km around the 
launch position, some simplifying assumptions will be added to the launcher model. So, 
we will consider the Earth flat, without rotation; hence we will use only the two frames 
described below for the equation of motion. 
(a) The Start frame/ The Local frame—푂푋 푌 푍  

This coordinate system denoted 푂푋 푌 푍  Figure 1 has its origin on the Earth’s sur-
face at the start point of the vehicle. Axis 푌  is oriented vertically upwards. The frame has 
푋  axis orientated to the launch direction. 푍  axis completes the right frame to the right 
of the launch plane. This coordinate system is considered to be an inertial reference frame. 

 
Figure 1. The link between local frame and body frame. 

(b) The Body frame—푂푥푦푧 

Figure 1. The link between local frame and body frame.

(b) The Body frame—Oxyz

This coordinate system originates in the center of mass of the vehicle Figure 1. The
axis x is along the longitudinal symmetry axis of the body. Axis y is in a symmetry plane of
the vehicle. The axis z arises, forming with the first two axes a right trihedral. Next, we use
this trihedral to write dynamic rotation equations around the mass center. Also, this will be
used to write thrust and aerodynamic terms.

The rotation between the start frame OX0Y0Z0 and body frame Oxyz can be obtained
using Euler’s angles in order 3-2-1 or using Rodrigues parameters, or using quaternion
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components, as we can see from Figure 1. Next, for robustness, we will use quaternion
components. First, we recall the definition of quaternion components:

q1 = l sin
σ

2
; q2 = m sin

σ

2
; q3 = n sin

σ

2
; q4 = cos

σ

2
(1)

where l, m, n are the projection of the unit vector of the rotation axis:

eσ = Il + Jm + Kn (2)

and σ are the principal rotation angle.
The total rotation matrix from the local frame to the body frame according to the

paper [10] is:

AI =

q2
4 + q2

1 − q2
2 − q2

3 2(q1q2 + q3q4) 2(q3q1 − q2q4)
2(q1q2 − q3q4) q2

4 + q2
2 − q2

3 − q2
1 2(q2q3 + q4q1)

2(q3q1 + q2q4) 2(q2q3 − q4q1) q2
4 + q2

3 − q2
1 − q2

2

. (3)

2.2. Translation Equation in Local Frame

Considering the start frame as inertial, applying the impulse theorem, we obtain:

.
V0 = BIm−1(F + T) + g0 , (4)

where:

F = XAi + YAj + ZAk—Aerodynamic force in body frame;
T = XTi + YTj + ZTk—Thrust force in body frame;
g0—Gravitational acceleration

and BI matrix is the transpose of the rotation matrix AI , (3):

BI =

q2
4 + q2

1 − q2
2 − q2

3 2(q1q2 − q3q4) 2(q3q1 + q2q4)
2(q1q2 + q3q4) q2

4 + q2
2 − q2

3 − q2
1 2(q2q3 − q4q1)

2(q3q1 − q2q4) 2(q2q3 + q4q1) q2
4 + q2

3 − q2
1 − q2

2

. (5)

To the previous equation, we add the translational kinematic equations:[ .
x0

.
y0

.
z0
]T

=
[
Vx Vy Vz

]T . (6)

Regarding mass variation in time, this is due to the fuel consumption:

.
m (t) = −T0δT I−1

sp , (7)

where Isp is the specific impulse of the rocket engine, T0 is maximum thrust and δT is
throttling command.

2.3. Rotational Equations in Body Frame

To obtain rotational dynamic equations, we start with the angular momentum theorem.
As we know, the angular momentum theorem shows that a moment applied to a body will
change the angular momentum. In this case, taking into consideration that the body frame
is a non-inertial frame, we can write:

.
h = Ω× h = M, (8)

where: h—body angular momentum; M—applied moment; Ω—angular velocity of the
body frame relative to the inertial frame (start frame/local frame).
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The relation can be written in matrix form: .
p
.
q
.
r

 = J−1

 L
M
N

− J−1AΩJ

p
q
r

, (9)

where AΩ is the antisymmetric matrix associated with angular velocity vector Ω:

AΩ =

 0 −r q
r 0 −p
−q p 0

. (10)

J represents the inertial momentum matrix. If the additional hypothesis is made that
the vehicle has two symmetry planes, the inertial matrix becomes:

J =

A 0 0
0 B 0
0 0 C

, (11)

where:
A =

∫ (
y2 + z2

)
dm; B =

∫ (
z2 + x2

)
dm; C =

∫ (
x2 + y2

)
dm, (12)

L,M, N are the components of the applied moment along the body frame axis given
by aerodynamics terms and thrust terms:

L = LA + LT ; M = MA + MT ; N = NA + NT , (13)

and:
Ω =

[
p q r

]T , (14)

denotes the rotation velocity of the body frame relative to the inertial frame expressed by
projections along the body frame.

Equation (9) can be written in scalar form:

.
p = [L + qr(B− C)]A−1 ;
.
q = [M + rp(C− A)]B−1 ;
.
r = [N + pq(A− B)]C−1.

(15)

According to paper [10], the associated kinematic equations allow obtaining the
quaternion components: 

.
q1.
q2.
q3.
q4

 =
1
2


q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3


p

q
r

. (16)

2.4. Guidance Signals

As we mentioned at the beginning of the paper, because LTV has the purpose of
testing the launcher GNC, its structure will be similar to that described in [18–20]. The
main control signals result from the quaternion error between the current and reference
values. Different from the usual control system of a launcher for LTV, we will use error
signals between linear coordinates.

Considering the desired attitude quaternion:
[
q1d q2d q3d q4d

]T , and the current

attitude quaternion
[
q1 q2 q3 q4

]T , the control error quaternion
[
q1e q2e q3e q4e

]T

can be obtained by using the relation indicated in papers [7,10]:
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q1e
q2e
q3e
q4e

 =


q4d q3d −q2d −q1d
−q3d q4d q1d −q2d
q2d −q1d q4d −q3d
q1d q2d q3d q4d




q1
q2
q3
q4

. (17)

With this error quaternion, as is shown in work [10], we can obtain the guidance signal
for LTV evolution:

ul = −2k2q1e − k1 p
um = −2k6q2e − k5q + uxa3,1 + uya3,2 + uza3,3
un = un0 − 2k4q3e − k3r− uxa2,1 − uya2,2 − uza2,3
uT = uTo − uu − uxa1,1 − uya1,2 − uza1,3

, (18)

where ai,j are the elements of the rotation matrix AI (3).
The signal for velocity control along the body axis which will contribute to throt-

tling command:

uu = k7(u− ud) = k7

[
(Vx −Vxd)a1,1 + (Vy −Vyd)a1,2 + (Vz −Vzd)a1,3

]
. (19)

In relation to (18), we denoted uTo; uno the basic signals corresponding to equilib-
rium evolution.

The control signals for linear coordinate along the local frame axis ux, uy, uz will be
defined next, separately for ascending/descending evolution and for horizontal evolution.

(a) Control signals for linear coordinate during ascending/descending evolution

For ascending /descending evolutions, besides the control signals previously defined,
we will use the control signals for linear coordinates along the local frame axis:

ux = k8x0 + k9Vx; uy = k9

(
Vy −Vyd

)
; uz = k8z0 + k9Vz. (20)

(b) Control signals for linear coordinate during horizontal evolution

If we desire to have a horizontal evolution, the control signal for error quaternion and
axial velocity is supplemented by a control signal for linear coordinates in the local frame:

ux = k9(Vx −Vxd); uy = k10(y0 − y0d) + k9Vy; uz = k8z0 + k9Vz. (21)

2.5. Aerodynamic Terms

Due to large incidence angles (±180◦), determination of aerodynamics terms for the
vehicle is difficult. On the other hand, aerodynamical terms are important because they
allow the introduction of statical instability of the vehicle due to the position of aerodynamic
focus related to the center of mass. Moreover, we will analyze wind influence on vehicle
flight through aerodynamic terms and define the base movement for horizontal flight.

In order to solve this problem, we can use the approach proposed in the CALLISTO
project [21] by experimental activities in Wind Tunnel. This requires an advanced stage
of the project when the vehicle configuration is established. In our preliminary study, we
must do some simplified calculus for aerodynamics terms when the vehicle configuration
is not precisely definite. Unfortunately, for slender body shapes, the theoretical results
are valid only in the case of a small incidence angle [22]. In this case, we will make the
following simplifying hypothesis, the vehicle has a spherical shape, and the position of the
aerodynamic focus is in front of the mass center.

Based on this hypothesis, the components of the aerodynamic force in the body frame
will be considered as drag force opposite to velocity components for each axis:

XA = S
ρV2

2
CX ; YA = S

ρV2

2
CY; ZA = S

ρV2

2
CZ, (22)
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where, due to symmetry, will have:

CX = −Cd
u
V

;CY = −Cd
v
V

;CZ = −Cd
w
V

, (23)

where Cd is the drag coefficient for a sphere that depends on the Reynolds number, see
Figure 2, according to paper [23].

Figure 2. Drag coefficient for the sphere depending on Reynolds number.

Considering aerodynamic focus placed at a distance denoted with xF in front of the
mass center, the aerodynamic moments are:

LA = 0, MA = −xFZA,NA = xFYA. (24)

For LTV configuration, similar to the case of launchers xF > 0.

2.6. Thrust Vectoring Control

The guidance signals previously obtained (18) are applied to the thrust vectoring
control system (TVC), which can be approximated with a first-order delay element:

.
δlτl = −δl + ul ;

.
δmτm = −δm + um;

.
δnτn = −δn + un;

.
δTτT = −δT + uT , (25)

which provides command terms: angular deflections or linear displacements, which are
used in the thrust terms described next.

Similar to the launcher, the thrust terms are given by thrust vector projection along
the body frame, namely by a nozzle or entire engine tilt [24,25]. If we use two tilting angles
δn, δm similar to the launcher, for pitch and yaw, we can write:
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XT = δTT0cosδmcosδn;
YT = −δTT0cosδmsinδn;

ZT = δTT0sinδm,
(26)

where T0 is the maximum thrust of the engine and δT is the throttling command with
a unitary maximum value. Considering the position of the thrust vector application at the
exit of the engine nozzle, we can write the moment commands:

MT = −xTZT ; NT = xTYT , (27)

where:
xT = xcm − l, (28)

in which xcm is the current position of the center of the mass from the top of the LTV, and l
is the reference length (the distance between the body top and nozzle exit section).

Regarding the roll command, we suppose the existence of a Reaction Control System
(RCS), which ensures the roll control through two RCS blocks with two thrusters on each
one with monopropellant cold gas or another equivalent propeller, as is shown in [25].

2.7. Reaction Control System in Roll

In order to form the roll command, we start from the roll guidance signal ul . This
signal is applied to the actuator, which in this case is RCS.

As we can see from Figure 3, there are two blocks of the reactive elements located in
the yoz plane of the LTV body, which allows obtaining the roll command with the reactive
elements (δ1, δ2, δ3; δ4).
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To formulate the problem, we will consider the δi as oriented vectors along nozzles
(Figure 3) with the module in binary form, having a value “1” if the reactive element is
working or “0” if the reactive element is not working.

As shown in [10,11,26], the system uses Pulse Width-Pulse Frequency modulation
(PWPF) for roll control (Figure 4). PWPF comprises a linear integrator that allows a system
supplementary adjustment and a nonlinear element (N), Type Schmidt Trigger [11,25]. To
follow the input, a feedback reaction loop is used.
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The nonlinear element which switches between reactive elements can be equivalent to
the relay type with hysteresis and dead zone, as shown in Figure 5.
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Figure 5. Operating scheme for nonlinear element (N).

As shown in Figure 5, the dimension of the dead zone is 2a, hysteresis width is b, and
the output in saturation is ±1.

For passing from the continuous command ul to the binary values of the elements δi
we first form the intermediate signals:

u = ul − y. (29)

The signal u is integrated, obtaining the signal x:

.
xτM = −x + u. (30)

The signal x, is passed through the nonlinear element shown in Figure 5, obtaining
signal y

y = N(x), (31)

where we denoted with N(x) the nonlinear element applied to x signal in the open loop:

y = 1→ (δ1 = 0; δ2 = 1; δ3 = 0; δ4 = 1)
y = −1→ (δ1 = 1; δ2 = 0; δ3 = 1; δ4 = 0)
y = 0→ (δ1 = 0; δ2 = 0; δ3 = 0; δ4 = 0)

. (32)

Using the reactive elements, we obtain the roll equivalent command:

δl =
δ2 + δ4 − δ1 − δ3

2
. (33)

We can observe that, due to the binary structure of the elements δi, the equivalent roll
command δl can have values “±1” or “0”.

Finally, using the Fourier transform [27], we can obtain a linear differential equation:

.
δlτl
∼= −δl + ul (34)

similar to relation (25).
Given the previous reactive force of the RCS element R and body diameter d, we can

obtain the roll command moment given by:

LT = Rdδl . (35)

3. Base Movement, Linear Form of the Equation of Motion, Stability and
Command Matrices

To define the base movement, we start from the dynamic equations for translation
(4) and rotation (9). Due to the initial hypothesis for the equation of motion, the Earth is
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considered a flat surface that does not rotate; the gravity acceleration does not depend on
the orientation of the local frame, which can be arbitrarily chosen. In this case, we can
suppose, without reducing the problem generality, that the base movement takes place
in a vertical plane X0OY0 of a local frame, the lateral motion being null. Simultaneously,
we suppose a configuration with two symmetry planes adopted for the inertia matrix in
dynamic rotation equations, and we can choose the roll angle null. That means in the
base movement; we have only q3 as an independent parameter, the other quaternions
components being:

q1 = 0;q2 = 0; q4 =
(

1− q2
3

)1/2
. (36)

In this case, the rotation matrix (5) becomes:

BI =

1− 2q2
3 −2q3q4 0

2q3q4 1− 2q2
3 0

0 0 1

. (37)

From the translation equation, we will consider the relations in the vertical plane:

m
.

Vx =
(
XA + XT)(1− 2q2

3
)
− 2
(
YA + YT)q3q4

m
.

Vy = 2
(
XA + XT)q3q4 +

(
YA + YT)(1− 2q2

3
)
− G ,

(38)

where we denoted G = mg, and from rotation equations, we hold the pitch equation:

.
rC = NT + NA, (39)

If we cancel the velocity derivatives, it results:(
XA + XT)(1− 2q2

3
)
− 2
(
YA + YT)q3q4 = 0;

2
(
XA + XT)q3q4 +

(
YA + YT)(1− 2q2

3
)
− G = 0,

(40)

and from the pitch equation, we cancel the angular acceleration, obtaining:

NT + NA = 0. (41)

The nonlinear system (40), (41) can be solved with Newton’s iterative algorithm. If
we impose as a base movement the horizontal flight at a specified altitude and velocity,
from Equations (40) and (41), we obtain the component q3, and thrust components XT ,
YT , the thrust moment in pitch NT being linked to the component YT of the thrust given
by Equation (27).

From thrust components, we can obtain the throttling command δT and the angular
pitch thrust command δn, which means the equilibrium commands:

δT = T−1
0

√
(XT)

2
+ (YT)

2; δn = −atan
YT

XT . (42)

Taking into consideration that the actuators in Equation (25) have unitary gain, the
guidance signals equilibrium commands uT0 and un0 from the relation (18) can be obtained
with the relations (42).

Having base movement defined, considering as commands: throttling command δT
the angular deflections δm, δn, and equivalent command δl the stability matrix and the
command matrix can be obtained. For cross-checking, the stability and command matrices
were determined both numerically and by analytical relations, obtaining identical results.
For clarity, next, we present their analytical expressions.

Because in the base movement, the longitudinal motion is decupled from lateral
motion, we will separately analyze these two motions.
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Starting from the coupled linear development presented in Appendix A, for longitudi-
nal motion, having the states Vx, Vy, r, q3, x, y and the commands δT , δn, the linear form of
the equations are:

∆
.

Vx = −KV
m

(
1 + aV2

x
V2

)
∆Vx − aK

m
VxVy

V ∆Vy +
2δT T0
q4m

[(
1− 2q2

3
)
sinδn − 2q3q4cosδn

]
∆q3

− bK
m VVx∆y0 +

T0
m
[
2q3q4sinδn +

(
1− 2q2

3
)
cosδn

]
∆δT

+ T0δT
m
[
2q3q4cosδn −

(
1− 2q2

3
)
sinδn

]
∆δn ;

∆
.

Vy = − aK
m

VxVy
V ∆Vx − KV

m

(
1 +

aV2
y

V2

)
∆Vy +

2δT T0
q4m

[(
1− 2q2

3
)
cosδn + 2q3q4sinδn

]
∆q3

− bK
m VVy∆y0 +

T0
m
[
2q3q4cosδn −

(
1− 2q2

3
)
sinδn

]
∆δT

− T0δT
m
[
2q3q4sinδn +

(
1− 2q2

3
)
cosδn

]
∆δn ;

∆
.
r = KVxF

C

[
2q3q4

(
1 + aV2

x
V2

)
−
(
1− 2q2

3
) aVxVy

V2

]
∆Vx

+KVxF
C

[
2q3q4

aVxVy
V2 −

(
1− 2q2

3
)(

1 +
aV2

y
V2

)]
∆Vy

+2 KVxF
q4C

[(
1− 2q2

3
)
Vx + 2q3q4Vy

]
∆q3

− bK
C xFV

[(
1− 2q2

3
)
Vy − 2q3q4Vx

]
∆y0 − xT T0

C sinδn∆δT

− xT T0δT
C cosδn∆δn.

∆q3 = q4
2 ∆r ;

∆
.
x0 = ∆Vx ;

∆
.
y0 = ∆Vy ;

(43)

where K = S
2 ρCd and the drag dependence of the velocity and the altitude is given by:

a = 1 + V
∂Cd

Cd∂V
∼= 1.− 0.5683·V + 0.6409× 10−1·V2 − 0.2332× 10−2·V3;

b =
∂Cd

Cd∂y0
+

∂ρ

ρ∂y0
∼= 0.318× 10−4 .

Denoting:

aVx
Vx = −KV

m

(
1 + aV2

x
V2

)
; aVy

Vx = − aK
m

VxVy
V ;aq3

Vx = 2δT T0
q4m

[(
1− 2q2

3
)
sinδn − 2q3q4cosδn

]
;

ay
Vx = − bK

m VVx;

aVx
Vy = − aK

m
VxVy

V ;aVy
Vy = −KV

m

(
1 +

aV2
y

V2

)
; aq3

Vy = 2δT T0
q4m

[(
1− 2q2

3
)
cosδn + 2q3q4sinδn

]
;

ay
Vy = − bK

m VVy;

aVx
r = KVxF

C

[
2q3q4

(
1 + aV2

x
V2

)
−
(
1− 2q2

3
) aVxVy

V2

]
;

aVy
r = KVxF

C

[
2q3q4

aVxVy
V2 −

(
1− 2q2

3
)(

1 +
aV2

y
V2

)]
; aq3

r = 2 KVxF
q4C

[(
1− 2q2

3
)
Vx + 2q3q4Vy

]
;

ay
r = − bK

C xFV
[(

1− 2q2
3
)
Vy − 2q3q4Vx

]
;

bδT
Vx = T0

m
[
2q3q4sinδn +

(
1− 2q2

3
)
cosδn

]
; bδn

Vx = T0δT
m
[
2q3q4cosδn −

(
1− 2q2

3
)
sinδn

]
;

bδT
Vy = T0

m
[
2q3q4cosδn −

(
1− 2q2

3
)
sinδn

]
;bδn

Vy = − T0δT
m
[
2q3q4sinδn +

(
1− 2q2

3
)
cosδn

]
;

bδT
r = − xT T0

C sinδn; bδn
r = − xT T0δT

C cosδn,

(44)

we obtain for the longitudinal motion the stability matrix in Table 1
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Table 1. Stability matrix for longitudinal motion A.

aVx
Vx aVy

Vx aq3
Vx ay

Vx
aVx

Vy aVy
Vy aq3

Vy ay
Vy

aVx
r aVy

r aq3
r ay

r
q4
2

1
1



and the command matrix in Table 2.

Table 2. Command matrix for longitudinal motion B.

bδT
Vx bδn

Vx
bδT

Vy bδn
Vy

bδT
r bδn

r



Because in longitudinal motion, the controlled states differ from the ascending/descending
evolutions to the horizontal evolution, we will define a separate stability matrix and
command matrix for each type of longitudinal evolution.

For longitudinal motion in ascending/descending evolution, the states are Vx, Vy, r, q3, x,
and the commands are δT , δn. Because in this particular case, the basic movement has
supplementary conditions:

Vx = 0; δn = 0; q3 = q4 =

√
2

2
;
(

1− 2q2
3

)
= 0, 2q3q4 = 1, (45)

the stability matrix has the form from Table 3,

Table 3. Stability matrix for longitudinal motion in ascending/descending evolution A.
aVx

Vx aq3
Vx

aVy
Vy

aVx
r aq3

r√
2

4
1



and the command matrix has the form from Table 4.

Table 4. Command matrix for longitudinal motion in ascending/descending evolution B.

bδn
Vx

bδT
Vy

bδn
r



where:

aVx
Vx = − K

m V; aq3
Vx = −2

√
2 δT T0

m ; aVy
Vy = −(1 + a) K

m V;

aVx
r = 2 KxF

C V;aq3
r = 2

√
2 KxF

C VVy;bδn
Vx = T0δT

m ;bδT
Vy = T0

m ;bδn
r = − xT T0δT

C .
(46)
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For longitudinal motion in horizontal evolution, the states are Vx, Vy, r, q3, y and
the commands are δT , δn. Because in this particular case, the basic movement has the
supplementary condition:

Vy = 0, (47)

The stability matrix has the form from Table 5,

Table 5. Stability matrix for longitudinal motion in horizontal evolution A.
aVx

Vx aq3
Vx

aVy
Vy

aVx
r aq3

r√
2

4
1



and the command matrix has the form from Table 6.

Table 6. Command matrix for longitudinal motion in horizontal evolution B.

bδn
Vx

bδT
Vy

bδn
r



where:

aVx
Vx = −(1 + a)KV

m ; aq3
Vx = 2δT T0

q4m
[(

1− 2q2
3
)
sinδn − 2q3q4cosδn

]
; ay

Vx = − bK
m VVx;

aVy
Vy = −KV

m ; aq3
Vy = 2δT T0

q4m
[(

1− 2q2
3
)
cosδn + 2q3q4sinδn

]
; aVx

r = (1 + a)KVxF
C 2q3q4;

aVy
r = −KVxF

C
(
1− 2q2

3
)
; aq3

r = 2 KVxF
q4C

[(
1− 2q2

3
)
Vx
]
;ay

r = bK
C xFV2q3q4Vx;

bδT
Vx = T0

m
[
2q3q4sinδn +

(
1− 2q2

3
)
cosδn

]
; bδn

Vx = T0δT
m
[
2q3q4cosδn −

(
1− 2q2

3
)
sinδn

]
;

bδT
Vy = T0

m
[
2q3q4cosδn −

(
1− 2q2

3
)
sinδn

]
;bδn

Vy = − T0δT
m
[
2q3q4sinδn +

(
1− 2q2

3
)
cosδn

]
;

bδT
r = − xT T0

C sinδn; bδn
r = − xT T0δT

C cosδn.

(48)

Starting from the coupled linear development presented in Appendix A, for lateral
motion, the states are Vz, p, q, q1, q2, z and the commands are δl , δm the linear form of the
equations are:

∆
.

Vz = −KV
m ∆Vz +

2δT T0
m (q3cosδn − q4sinδn)∆q1 − 2δT T0

m (q4cosδn + q3sinδn)∆q2+

T0δT
m ∆δm;

∆
.
p = Rd

A ∆δl ;
∆

.
q = KVxF

B ∆Vz + 2 KVxF
B
(
q3Vx − q4Vy

)
∆q1 + 2 KVxF

B
(
q4Vx + q3Vy

)
∆q2 − xT T0δT

B ∆δm;
.

∆q1 = q4
2 ∆p− q3

2 ∆q;
.

∆q2 = q3
2 ∆p + q4

2 ∆q;
.

∆z0 = ∆Vz.

(49)



Aerospace 2022, 9, 504 14 of 42

Denoting:

aVz
Vz = −

KV
m ; aq1

Vz =
2δT T0

m (q3cosδn − q4sinδn); aq2
Vz = −

2δT T0
m (q4cosδn + q3sinδn);

aVz
q = KVxF

B ; aq1
q = 2 KVxF

B
(
q3Vx − q4Vy

)
; aq2

q = 2 KVxF
B
(
q4Vx + q3Vy

)
bδm

Vz = T0δT
m ; bδl

p = Rd
A ; bδm

q = − xT T0δT
B ,

(50)

we obtain for the lateral motion the stability matrix shown in Table 7

Table 7. Stability matrix for lateral motion A.

aVz
Vz aq1

Vz aq2
Vz

aVz
q aq1

q aq2
q

q4
2

−q3
2q3

2
q4
2

1



and the command matrix shown in Table 8.

Table 8. Command matrix for lateral motion B.

bδm
Vz

bδl
p

bδm
q



For lateral motion in ascending/descending evolution, considering condition (45), the
matrix elements become:

aVz
Vz = −

K
m V; aq1

Vz =
√

2δT T0
m ; aq2

Vz = −
√

2δT T0
m ;

aVz
q = KxF

B V; aq1
q = −

√
2 KxF

B VVy; aq2
q =

√
2 KxF

B VVy;

bδm
Vz = T0δT

m ; bδl
p = Rd

A ; bδm
q = − xT T0δT

B ; q3 = q4 =
√

2
2 .

(51)

For lateral motion in horizontal evolution, considering condition (47), the matrix
elements become:

aVz
Vz = −

K
m V; aq1

Vz =
2δT T0

m (q3cosδn − q4sinδn); aq2
Vz = −

2δT T0
m (q4cosδn + q3sinδn);

aVz
q = KxF

B V; aq1
q = 2 KxF

B VVxq3; aq2
q = 2 KxF

B VVxq4;

bδm
Vz = T0δT

m ; bδl
p = Rd

A ; bδm
q = − xT T0δT

B .

(52)

4. Linear Form of the Guidance Signals, the Regulator’s Design

The linearization of guidance signals will be done related to the system’s states:
Velocity in local frame: Vx; Vy; Vz; Coordinate in local frame: x0; yo; z0; Angular

velocity in body frame: p; q; r; Attitude (quaternion): q1; q2; q3. First, we linearized the
error quaternion given by relation (17). Considering for the basic movement, the desired
quaternion is equal to the basic quaternion, the relation (17) becomes:
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∆q1e
∆q2e
∆q3e
∆q4e

=


q4 q3 0 0
−q3 q4 0 0

0 0 q4 −q3
0 0 q3 q4




∆q1
∆q2
∆q3
∆q4

+


∆q4d ∆q3d −∆q2d −∆q1d
−∆q3d ∆q4d ∆q1d −∆q2d
∆q2d −∆q1d ∆q4d −∆q3d
∆q1d ∆q2d ∆q3d ∆q4d




0
0
q3
q4

. (53)

Separating the deviation of the desired quaternion as an input signal and considering:

∆q4 = − q3

q4
∆q3. ; ∆q4d = − q3

q4
∆q3d, (54)

we obtain:
∆q1e = q4∆q1 + q3∆q2 + f1d;
∆q2e = q4∆q2 − q3∆q1 + f2d;

∆q3e =
1−2q2

3
q4

∆q3 + f3d,
(55)

where the input signals are:

f1d= −q4∆q1d − q3∆q2d; f2d = −q4∆q2d + q3∆q1d; f3d = −
1− 2q2

3
q4

∆q3d. (56)

Next, we linearized the axial velocity control (19). Considering the basic movement,
the linear form of the relation (19) becomes:

∆uu = k7∆u + ∆ fu = k7
[
a1,1∆Vx + a1,2∆Vy + Vx∆a1,1 + Vy∆a1,2

]
+ ∆ fu, (57)

where ∆ fu is an input signal containing desired axial velocities.
On the other hand, for basic movement, the elements of the rotation matrix (3) become:

a1,1 =
(
1− 2q2

3
)
; a1,2 = 2q3q4 ;

∆a1,1 = 2q4∆q4 − 2q3∆q3 = −2q4
q3
q4

∆q3 − 2q3∆q3 = −4q3∆q3;
∆a1,2 = 2q4∆q3 + 2q3∆q4 = 2q4∆q3 − 2q3

q3
q4

∆q3 = 2
q4

(
1− 2q2

3
)
∆q3.

(58)

This means that the relationship (57) becomes:

∆uu = k7

[(
1− 2q2

3

)
∆Vx + 2q3q4∆Vy + 4q3

(
Vy

(
1− 2q2

3
)

2q3q4
−Vx

)
∆q3

]
+ ∆ fu. (59)

Having the quaternion-related functions linearized, we will look for the linear form of
the guidance signal for linear coordinates in different evolutions.

For ascending/descending evolution, the linear coordinate signal in local frame (20) becomes:

∆ux = k8∆x0 + k9∆Vx + ∆ fx ; ∆uy = k9∆Vy + ∆ fy ;
∆uz = k8z0 + k9∆Vz + ∆ fz,

(60)

where ∆ fz; ∆ fy is the input signal containing the desired linear coordinates.
Then, for q3 =

√
2/2 corresponding base movement for θ = 90◦, we add axial

velocity control (59):
∆uu = k7∆Vy + ∆ fu . (61)

For horizontal evolution, the linear coordinate in the local frame (21) became:

∆ux = k9∆Vx + ∆ fx ; ∆uy = k8∆y0 + k9∆Vy + ∆ fy;
∆uz = k8z0 + k9∆Vz + ∆ fz.

(62)

Then, for Vy = 0 we add axial velocity control (58), (59):
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∆uu = k7
[(

1− 2q2
3
)
∆Vx + 2q3q4∆Vy − 4q3Vx∆q3

]
+ ∆ fu. (63)

If we neglected the time delay introduced by actuator Equations (25) and (34), we
obtain a direct link between the linear form of the guidance signals and commands:

∆δT = ∆uT ; ∆δl = ∆ul ; ∆δm = ∆um; ∆δn = ∆un. (64)

In this case, starting from the scalar form of the guidance signals (18), we can write the
linear form of the command components directly, separately, for the two motions.

The command for longitudinal motion in ascending/descending evolution becomes:

∆δT = −(k9 + k7)∆Vy ;
∆δn = −k3∆r− 2k4q−1

4 ∆q3 + k8∆x0 + k9∆Vx.
(65)

Denoting:
kVy

T = k9 + k7; kq3
n = 2k4q−1

4 , (66)

we obtain the regulator matrix indicated in Table 9.

Table 9. The regulator matrix for longitudinal motion in ascending/descending evolution K.[
kVy

T
−k9 k3 kq3

n −k8

]

The command for longitudinal motion in horizontal evolution becomes:

∆δT = −(k9 + k7)
(
1− 2q2

3
)
∆Vx − 2(k9 + k7)q3q4∆Vy + 4(k9 + k7)Vxq3∆q3−

2k8q3q4∆y0

∆δn = −k3∆r− 2k4q−1
4 ∆q3 − k10

(
1− 2q2

3
)
∆y0 + 2k9q3q4∆Vx−

k9
(
1− 2q2

3
)
∆Vy.

(67)

Denoting:

∆kVx
T = (k9 + k7)

(
1− 2q2

3
)
; kVy

T = 2(k9 + k7)q3q4;

kq3
T = −4(k9 + k7)Vxq3q4; ky

T = 2k8q3q4; kVx
n = −2k9q3q4;

kVy
n = k9

(
1− 2q2

3
)
; kq3

n = 2k4q−1
4 ; ky

n = k8
(
1− 2q2

3
)
,

(68)

we obtain the regulator matrix shown in Table 10.

Table 10. The regulator matrix for longitudinal motion in horizontal evolution K.[
kVx

T kVy
T kq3

T ky
T

kVx
n kVy

n k3 kq3
n ky

n

]

The commands for lateral motion in all evolutions are:

∆δl = −k1∆p− 2k2q4∆q1 − 2k2q3∆q2;
∆δm = −k5∆q− 2k6q4∆q2 + 2k6q3∆q1 + k8∆z0 + k9∆Vz.

(69)

Denoting:

kq1
l = 2k2q4; kq2

l = 2k2q3; kq1
m = −2k6q3; kq2

m = 2k6q4, (70)
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the regulator matrix for lateral motion is shown in Table 11.

Table 11. The regulator matrix for lateral motion K.[
k1 kq1

l kq2
l

−k9 k5 kq1
m kq2

m −k8

]

To obtain the matrix terms, as shown in work [28], we can apply an LQR synthesis to
an optimal regulator. The problem implies solving an algebraic Riccati equation.

Finally, the control coefficients introduced in control signals relations (18)–(21) can be
obtained from the regulator’s elements:

For longitudinal motion in ascending/descending evolution, k3, k8, k9, are obtained
directly, while the others are given by: k4 = q4kq3

n /2; k7 = kVy
T − k9.

For longitudinal motion in horizontal evolution, k3 is obtained directly, while the others are
given by:k4 = q4kq3

n /2; k8 = ky
T(2q3q4)

−1; k9 = −kVx
n (2q3q4)

−1; k7 = kVy
T (2q3q4)

−1 − k9.
For lateral motion, k1, k5, k8, k9 are obtained directly, while the others are given by:

k2 = kq1
l q−1

4 /2; k6 = kq2
m q−1

4 /2.

5. Model Parameters, Flight Scenarios, Results
5.1. Model Parameters

To build a performance evaluation methodology, including the quality of the guidance
system, it is necessary to define a realistic LTV model. Since the data for such test vehicles
is uncertain, we will refer to the information for classical launcher stages. For this purpose,
we consider the Lox-Kerosene pair as fuel for the rocket engine, which is a common solution
found in a series of classic (Soyuz) but also current launchers (Atlas V, Antares, Falcon 1,
Falcon 9)

If we adopt an initial take-off mass, the ratio between the structural mass and the mass
at the start is defined by the structural coefficient [29]:

ε =
ms

mp + ms
, (71)

where ms is the structural mass and mp is the propellant mass.
As shown in [29], this coefficient measures the vehicle designer’s skill and evolved

over time for different launchers. Thus, if for the stages of the Soyuz launcher, the structural
coefficient is around 9% for Falcon 1, it becomes 6%, and for Falcon 9, it becomes 3%, which
shows the technological evolution of the launchers. In order to have a realistic model for
LTV, we will consider a structural coefficient of 30%, which is much oversized and will
allow the introduction of additional control and testing elements, specific to a test vehicle,
into the structural mass.

Based on the previous statements, we will consider a hypothetical LTV with an initial
mass of 100 kg, from which propellant is 70 kg, equipped with a liquid rocket engine with
a specific impulse Isp = 230[s], specific for the regular liquid engine (Kerosene + LOX),
with maximum thrust T0 = 1200 [N] and reactive force of one RCS element R = 5 [N].

The vehicle has the shape and the dimension presented in Figure 6.
From a dimensional point of view, we can check if the volume of the imposed fuel is

compatible with the dimensions indicated in Figure 6.
For this, we start from the density of LOX of 1141 kg/m3 and Kerosene of 825 kg/m3.

Considering the LOX/Kerosene mixture ratio = 2.72, we obtain an average propellant
density of 1056 kg/m3, which for a mass of 70 kg leads to a hypothetical spherical tank
with a radius of 0.25 m, a size compatible with the geometric dimensions of the vehicle
indicated in Figure 6.

For the considered configuration, the reference length is l = 1 m, the reference surface
S = 0.283 m2 and the position of aerodynamic focus is xF = 0.4 m.
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(a) Mechanical data

For mechanical data, we will consider two cases. The first will be the LTV at the
start, with full fuel, and the second at the end of evolution, without fuel. Because the fuel
consumption defined through Equation (7) depends on flight conditions, the intermediate
values of the other mechanical data will be obtained through interpolation as a function of
LTV mass. The mechanical characteristics of LTV are shown in Table 12.

Table 12. Mechanical characteristics.

Phase Mass
m [kg]

Center of Mass
xcm [m]

Roll Inertial
Moment A

[kgm2]

Yaw Inertial
Moment B

kgm2

Pitch Inertial
Moment C

kgm2

Initial 100 0.666 10 15 15

Final 30 0.456 3 7 7

(b) Time constants and controller gains

The time constants for actuators are: τT = 0.5 s; τn = 0.1 s; τl = 0.1 s; τm = 0.1 s and
the gains used in control signals are: k1 = 3.9; k2 = 2.5; k3 = 2.0; k4 = 5.5; k5 = 2.2; k6 = 6.9;
k7 = 0.32; k8 = 0.7; k9 = 1. Model parameters defined will be used for the development
of subsequent applications. For the evaluation of the guidance precision, an uncertainty
of these parameters will be considered, which will lead to a dispersion of the evaluated
trajectories, including the impact point.

5.2. Flight Scenarios

Although in some papers [12,13], the optimal trajectories for reaching a desired final
position are analyzed, in the initial phase of LTV testing, it is necessary to define some
simple trajectories to verify the vehicle’s controllability as its field of use by defining the
flight envelope.

For this purpose, we will further define two flight scenarios, one vertical ascent/descent
type, and the second having a horizontal evolution interspersed between the vertical evolu-
tions of ascent/descent.

In the first scenario, LTV starts at an altitude y0 = 0.1 [m], with an initial velocity
Vy0 = 0.1

[
ms−1] and initial pitch angle: θ0 = 90◦. Next, the ascending phase follows,

which lasts until LTV achieves the desired altitude yd, evolving at an imposed pitch an-
gle θd1 = 90◦ and imposed ascensional velocity Vyd1 = V. After ascending phase, the
descending phase follows with imposed pitch angle θd2 = 90◦, evolution being vertical
with descending constant velocity Vyd2 = −V, which lasts until it reaches the breaking
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altitude y f . After y f braking occurs, and the speed decreases until Vy4 = 1
[
ms−1] ensuring

a smooth landing for the LTV.
In the second scenario, LTV starts at an altitude y0 = 0.1 [m], with an initial velocity

Vy0 = 0.1
[
ms−1] and initial pitch angle: θ0 = 90◦. Next, the ascending phase follows,

which lasts until LTV achieves the desired altitude yd evolving at an imposed pitch angle
θd1 = 90◦ and imposed ascensional velocity Vyd1 = V. After the ascending phase, the

horizontal phase follows at an imposed altitude yd, with Vyd2 = 0, until LTV achieves
the desired abscissa xd, with imposed velocity Vxd = V. After the horizontal phase, the
descending phase follows with imposed pitch angle θd2 = 90◦, evolution being vertical
with descending constant velocity Vyd3 = −V which lasts until it reaches the breaking
altitude y f . After y f braking occurs, and the speed decreases until Vy4 = 1

[
ms−1] ensuring

a smooth landing for the LTV.
To synthesize the flight evaluation, we chose to have the same module of velocity V in

the entire flight evolution, except for the breaking phase when the value is 1
[
ms−1]. The

value of flight velocity V will be particularized for the test case.

5.3. Results

(a) First test case

In order to exemplify the first scenario, we will consider an evolution with V = 10
[
ms−1],

with the desired altitude yd = 400 [m]. Figure 7 presents the vertical trajectory obtained by
LTV for this first test case. The trajectory contains two flight phases: ascending phase and
descending phase.
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Figure 7. Vertical ascending—descending trajectory.

Figure 8 shows the equilibrium solutions of Equations (40) and (41) (q3_e, dt_e, dnt_e)
compared to the solutions obtained through differential equations integration for the 6DOF
model in the first scenario (q3, dt, dnt).

Figure 9 shows eigenvalues of the stability matrix A for longitudinal motion in as-
cending/descending evolution corresponding to Table 3. We can observe a pair of complex
eigenvalues with real part positive due to static instability (position aerodynamics focus in
front of the mass center). The variation of the eigenvalues corresponds with the variation
of the flight parameters in the first scenario.
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Figure 9. Eigenvalues of the stability matrix A for longitudinal motion in ascending/descending evolution.

Figure 10 shows the eigenvalues of the regulated matrix A − BK for longitudinal
motion in ascending/descending evolution. Considering the variation of the eigenvalues
for the open loop system in Figure 9, one can observe that the real part of all eigenvalues
for the closed-loop system is negative, resulting in stability for the first scenario evolution.

Figure 11 shows the eigenvalues of the stability matrix A for the uncontrolled lateral
motion corresponding to Table 7. We can observe a pair of complex eigenvalues with
real part positive due to static instability (position aerodynamics focus in front of the
mass center). The variation of the eigenvalues corresponds to the variation of the flight
parameters in the first scenario. Due to the symmetry of the configuration and evolution,
the shown eigenvalues of the stability matrix for the lateral motion correspond to the
eigenvalues of the stability matrix A for longitudinal motion presented in Figure 9. The
difference consists in the number of eigenvalues. For lateral motion, we have six values; for
longitudinal, we only have five values.
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Figure 11. Eigenvalues of the stability matrix A in lateral motion.

Figure 12 shows eigenvalues of the regulated matrix A− BK for lateral motion in all
evolutions. One can observe that the real part of all eigenvalues has real negative parts,
implying the stability of this evolution. Due to the symmetry of the configuration and
evolution, the shown eigenvalues of the regulated matrix for lateral motion correspond
to the eigenvalues of the regulated matrix A− BK for longitudinal motion presented in
Figure 10. The difference consists in the number of the eigenvalues. For lateral motion,
there are six values, while for longitudinal only five.

From Figure 13, we can observe that vertical velocity Vy increases during ascending
phase to 10 m/s and becomes negative (−10 m/s) during the descending phase and finally
has the value of −1 m/s during the breaking phase. Moreover, we can observe the vertical
coordinate y that increases from 0.1 m to 400 m and then decreases to zero.

From Figure 14, we observe that the thrust throttling command dT decreases during
ascending and descending phases, following the corresponding decrease in LTV mass. The
command reaches peak values during transition phases.
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Figure 13. Vertical velocity and altitude.

In terms of lateral and rolling movement, the values of states and commands are null
during all flight phases.

The lateral and roll channels have no state or command variations (their derivatives
remain null) during the first flight scenario.

(b) Second test case

In order to exemplify the second scenario, we will consider an evolution with V = 7 [m/s],
at altitude yd = 300 m with the imposed distance of the horizontal flight xd = 1000 m.

Figure 15 presents the vertical trajectory obtained by LTV. We can observe three flight
phases: ascending, horizontal, and descending. We can also observe that the flight atti-
tude for LTV in all three phases is with the pitch angle close to 90 degrees (q3 = 0.707)
corresponding to the basic movement shown in Figure 16.
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Figure 15. Vertical trajectory with horizontal flight.
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Figure 16 shows the equilibrium solutions of Equations (40) and (41) (q3_e, dt_e, dnt_e)
compared to the solution obtained through the integration of differential equations for the
6 DOF model in the second scenario (q3, dt, dnt).

Figure 17 shows eigenvalues of the stability matrix A for longitudinal motion in hori-
zontal evolution corresponding to Table 5. We can observe a pair of complex eigenvalues
with real part positive due to static instability (position of the aerodynamics focus in front
of the mass center). The variation of the eigenvalues corresponds to the variation of the
flight parameters in horizontal evolution in the second scenario.
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Figure 18 shows eigenvalues of the regulated matrix A− BK for longitudinal motion
during horizontal evolution. Taking into consideration the variation of the eigenvalues
for the open loop system in Figure 17, one can observe that the real part of all eigenvalues
for the closed-loop system is negative, resulting in stability for the entire evolution for the
second scenario.
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Figure 19 shows vertical velocity and vertical coordinate (altitude). We can observe that
vertical velocity Vy increases during ascending phase until 7 m/s and is null in horizontal
evolution, then becomes negative

(
Vy = −7 m/s

)
during the descending phase and finally

has the value Vy = −1 m/s during the breaking phase. Moreover, we can observe the
vertical coordinate y that increases from 0.1 [m] to 300 [m] and decreases to zero.
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Figure 19. Vertical velocity and altitude.

From Figure 20, we can observe that horizontal velocity Vx, which is zero during the
ascending phase, has a value of 7 [m/s] in horizontal evolution and then becomes zero
during the descending and breaking phases. Moreover, we can observe the abscissa x that
increases from 0 m until 1000 m.
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Figure 21 shows the velocity components in the local frame. We can observe that
vertical velocity Vy increases during the ascending phase, null in the horizontal evolution
and becomes negative during the descending phase. The horizontal velocity Vx is null
during the ascending phase, becomes constant during the horizontal phase, and null during
the descending phase.
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Figure 21. Velocity components along the local frame.

Even though a quaternion approach is used in the 6DOF model, we prefer to present
the results using Euler angles for a better understanding. Figure 22 shows the desired
pitch angle (ted) and the achieved pitch angle (te). We can observe that in ascending phase,
the pitch angle has the value θd1= 90◦, during horizontal evolution, follows the value
of the equilibrium pitch angle, which becomes smaller while the mass decreases, and in
descending phase, it takes the value θd2= 90◦. Figure 23 shows a detail of Figure 22.
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Figure 22. Diagram of the pitch angle: ted—desired pitch angle; te—achieved pitch angle.



Aerospace 2022, 9, 504 27 of 42Aerospace 2022, 9, x FOR PEER REVIEW 28 of 44 
 

 

 
Figure 23. Diagram of the pitch angle: ted—desired pitch angle; te—achieved pitch angle (detail). 

Figure 24 shows the longitudinal commands. We observe that thrust throttling com-
mand dT has maximum value during the ascending phase, after which it decreases con-
tinuously during horizontal and descending evolutions. Pitch deflection command dn is 
null during the ascending phase, becomes negative during horizontal evolution, and is 
null during descending evolution. 

 
Figure 24. Diagram of longitudinal commands dT—thrust throttling command; dn—pitch deflection 
command. 

Figure 25 shows the incidence angle alfa and the pitch angle te. We can observe that 
incidence reaches the value of the pitch angle after the ascending phase, then maintains a 
value equal to the value of the pitch angle during horizontal evolution, and during the 
descending phase, it gets close to 180 degrees due to vertical descending evolution. The 
incidence angles and related pitch angle values prove that vehicle maintains a vertical 
attitude with the tip up in all flight phases. 

t [s]

te
[d
eg
]

0 50 100 150 200

60

70

80

90

100

110
te [deg]
ted [deg]

t[s]

dn
[d
eg
]

dT

0 50 100 150 200-15

-10

-5

0

5

10

15

0

0.2

0.4

0.6

0.8

1

dn [deg]
dT

Figure 23. Diagram of the pitch angle: ted—desired pitch angle; te—achieved pitch angle (detail).

Figure 24 shows the longitudinal commands. We observe that thrust throttling com-
mand dT has maximum value during the ascending phase, after which it decreases contin-
uously during horizontal and descending evolutions. Pitch deflection command dn is null
during the ascending phase, becomes negative during horizontal evolution, and is null
during descending evolution.

Aerospace 2022, 9, x FOR PEER REVIEW 28 of 44 
 

 

 
Figure 23. Diagram of the pitch angle: ted—desired pitch angle; te—achieved pitch angle (detail). 

Figure 24 shows the longitudinal commands. We observe that thrust throttling com-
mand dT has maximum value during the ascending phase, after which it decreases con-
tinuously during horizontal and descending evolutions. Pitch deflection command dn is 
null during the ascending phase, becomes negative during horizontal evolution, and is 
null during descending evolution. 

 
Figure 24. Diagram of longitudinal commands dT—thrust throttling command; dn—pitch deflection 
command. 

Figure 25 shows the incidence angle alfa and the pitch angle te. We can observe that 
incidence reaches the value of the pitch angle after the ascending phase, then maintains a 
value equal to the value of the pitch angle during horizontal evolution, and during the 
descending phase, it gets close to 180 degrees due to vertical descending evolution. The 
incidence angles and related pitch angle values prove that vehicle maintains a vertical 
attitude with the tip up in all flight phases. 

t [s]

te
[d
eg
]

0 50 100 150 200

60

70

80

90

100

110
te [deg]
ted [deg]

t[s]

dn
[d
eg
]

dT

0 50 100 150 200-15

-10

-5

0

5

10

15

0

0.2

0.4

0.6

0.8

1

dn [deg]
dT

Figure 24. Diagram of longitudinal commands dT—thrust throttling command; dn—pitch deflec-
tion command.

Figure 25 shows the incidence angle alfa and the pitch angle te. We can observe that
incidence reaches the value of the pitch angle after the ascending phase, then maintains
a value equal to the value of the pitch angle during horizontal evolution, and during the
descending phase, it gets close to 180 degrees due to vertical descending evolution. The
incidence angles and related pitch angle values prove that vehicle maintains a vertical
attitude with the tip up in all flight phases.
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In terms of lateral and roll motion, the values of states and commands are null during
all the flight phases.

During the second flight scenario, the lateral and roll channels have no state or
command variations (their derivatives remain null).

6. Performances
6.1. Flight Envelopes

We will evaluate the vehicle’s performance based on the previously presented scenar-
ios. According to [19], the performance of the guided vehicle means the flight envelope
and the guidance precision. Next, we will evaluate the flight envelope using the previous
described scenarios by determining maximum altitude and distance. Then, considering
the uncertainty of the model parameters and sensor noise, we will evaluate the trajectory
dispersions.

(a) Maximum altitude

Considering the first scenario, the vertical evolution, and using different ascend-
ing/descending velocities, we can obtain the maximum altitude of the vehicle as a velocity
function, presented in Figure 26.
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Figure 26. Maximum altitude for vertical evolution—first scenario.
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From Figure 26, we can observe that maximum altitude increases with velocity until
it reaches a peak after that decreases. The maximum altitude obtained by the vehicle
was Hmax = 2.4 km, corresponding to V = 21 [m/s]. Moreover, from Figure 26, we
can observe three restrictions that limit the flight envelope: fuel consumption; exceeding
maximum acceleration during maneuver

(
amax = 30

[
m/s2]); exceeding final velocity

(Vf inal max = 2 [m/s]).

(b) Maximum distance

Considering the second scenario, with horizontal evolution, and using different veloc-
ities and different altitudes for the horizontal flight, we can obtain the maximum distance
of the vehicle as a velocity and altitude function is presented in Figure 27.
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Figure 27. Maximum distance for horizontal evolution—second scenario.

Figure 27 shows that maximum distance increases with velocity and decreases with the
horizontal flight altitude. The maximum distance obtained by vehicle was Dmax = 3.52 km,
corresponding to V = 15 [m/s] and an altitude of horizontal flight H = 0.1 [km]. Addition-
ally, from Figure 27, we can observe a restriction of the flight envelope due to the exceedance
of the final velocity

(
Vf inal max = 2 [m/s]

)
, fuel consumption and exceedance of maximum

acceleration
(
amax = 30

[
m/s2]), the same restriction as in the case of maximum altitude.

6.2. Wind Influence

For wind influence, we consider the second scenario, uniform wind and turbulence,
as described in [17]. First, we consider lateral wind, with the velocity Wz = 1 m/s, the
influence of lateral parameters being presented in the next figure (Figure 28).

Further, we consider a layer of turbulence between the altitude of 200–250 m. This
layer of turbulence influences the motion in the ascending and descending phases, as seen
in Figure 29.

The results prove that the vehicle is stable when considering the wind influence, lateral
deviation in z coordinate, and Vz velocity in both cases being insignificant.
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Figure 28. Influence of lateral wind on the lateral coordinate (z) and corresponding velocity (Vz).
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6.3. Flight Parameters Dispersion

To evaluate dispersion of flight parameters we consider the dispersion with normal
distribution of some uncertain model parameter, defined in Section 2.5 and Section 5.1, as
a percentage of the nominal value, as follows:

Dispersions of aerodynamic drag coefficient and position of the aerodynamic focus
related reference length:

DA = EA(Cds)
2; DX = EX

(
x̃2

f

)2
. (72)

Dispersion of mass and inertial moments:

Dm = Emm2 ; DI = EIC2. (73)
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For LTV, the following values for standard deviations were considered:√
EA = 5%;

√
Ex = 5%;

√
Em = 2%;

√
EI = 2%. (74)

The uncertainty of the model parameters described previously are considered input
data and do not change over time during the flight.

Supplementary an additive noise affecting sensors measurement having uniform
distribution was considered: sensors for angular attitude ±1/60 deg; sensors for linear
position ±0.3 m.

The additive noise of the sensor will be variable in time but maintain uniform distribution.
To obtain the trajectory dispersion, we ran 500 tests for each flight case presented

previously, the values for uncertain sizes and noise for the sensor being obtained by random
number generators [30].

Figure 30 shows a trajectory beam in a vertical plane corresponding to the first case.
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Figure 30. Trajectory beam in lateral view, case 1.

Figure 31 shows a trajectory beam in a horizontal plane corresponding to the first case.
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Synthesizing the results for landing positions in Table 13, we can observe that the final
coordinate average does not exceed the desired values (X = 0, Z = 0) with more than a few
centimeters, and standard deviations are also small values. Regarding final velocity, this is
very close to the desired values (V = 1 m/s), and the standard deviation has a small value
(12 cm/s).

Table 13. Statistic elements of the landing position in case 1.

Phase T [s] V [m/s] X [m] Z [m]

Average 88.28 1.053 −0.085 −0.203

Standard deviation 0.416 0.128 0.122 0.072

Figure 32 shows a trajectory beam in a vertical plane corresponding to the second case.
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Figure 32. Trajectory beam in lateral view, case 2.

In Figures 33 and 34, we present the trajectory details (A,B) in the vertical plane to high-
light the trajectory dispersion in transition phases between vertical and horizontal evolution.
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Figure 35 shows a trajectory beam in a horizontal plane corresponding to the second case.
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Synthesizing the results for landing positions (Tables 13 and 14), we can observe that
the average of the final coordinate does not exceed the desired values (X = 500 m, Z = 0 m)
with more than a few centimeters, and standard deviations are also small values. Regarding
final velocity, this is very close to the desired value (V = 1 m/s), and the standard deviation
has a very small value (0.8 cm/s).

Table 14. Statistic elements of the landing position in case 2.

Phase T [s] V [m/s] X [m] Z [m]

Average 151.47 1.01 499.97 −0.02

Standard deviation 1.248 0.008 0.17 0.021
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7. Conclusions

In order to build the equation of motion for the testing vehicle, we use two frames.
The first one is the Local Frame/Start Frame, which allows us to write the translational
equations; the second is the Body Frame, which allows us to write rotational dynamic
equations. In order to correlate the model and the result of the testing vehicle with the
model and results of the launcher, we use the Start Frame with the y-axis up and quaternion
Hamilton. Further, we write the relations that describe the guidance command, which
allows for building a 6DOF guided model. To complete the definition, aerodynamics, and
thrust terms were introduced. Starting from the 6DOF nonlinear model, we obtained the
basic movement, the linear form of the motion equation, and the stability and command
matrices. From the analysis of the basic movement, it was found that for the technical
solution adopted, the flight attitude is always vertical. Figure 15 shows that it leads to
horizontal evolution with a high incidence angle, close to 90 degrees. Using the model,
two flight scenarios were evaluated. The first one contains only ascending and descending
evolution, and the second contains three phases: ascending, horizontal, and descending.
For each scenario, a flight case was defined and analyzed, and the flight envelope of the
testing vehicle was defined. Supplementary, the influence of the uncertainty of the model
parameters and sensor noise on trajectory dispersion was evaluated. Moreover, the influ-
ence of uniform wind and turbulence on lateral trajectory deviation was analyzed. The
model developed must be improved by using experimental measurements of the dynamic
regime’s aerodynamic terms and thrust characteristics. After completing ground measure-
ments, the 6DOF model can be used for flight experiments design. In order to achieve
the control system, it is necessary to use the inertial measurement unit (IMU) combined
with GPS measurements to obtain information on the position, as well as the attitude and
angular rate of the vehicle. The developed model for LTV, which is similar to the launcher
model, can be used to validate the reusable launcher GNC in ascending/descending and
horizontal flight phases.

In summary, the novelty element of the paper, and at the same time, the contributions
in the field are:

- Building a complex computational model dedicated to the autonomous flight of
the LTV;

- Defining the basic movement for the LTV and checking its concordance with the
numerical solution obtained for autonomous flight Figures 8 and 16;

- Obtaining the linear form of the equations of motion in the local frame with the
exclusive use of the quaternion and the cross-check between the analytical and the
numerical solution;

- Obtaining the linear form of the guidance relations and using them to build the
regulator matrix in the required form;

- Methodology for evaluation of LTV performances using two flight scenarios.

The proposed model can be improved especially in the guidance part regarding the
transition from one flight phase to another, where the state variables are observed in
strong oscillations.
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Nomenclature

q1, q2, q3, q4; Quaternion components;
ρ Air density;
m Mass;
A, B, C Inertial moments;
G Weight
g Gravity acceleration;
F Aerodynamic force;
H Aerodynamic momentum;
XA; YA; ZA Aerodynamic force components in body frame;
LA; MA; NA; Aerodynamic momentum components in body frame;
T Thrust force;
U Thrust momentum;
XT ; YT ; ZT Thrust force components in body frame;
LT ; MT ; NT Thrust momentum components in body frame

Appendix A. Coupled form of the Linear Equations of Motion

The objective of the appendix is to obtain the coupled linear form of the equations of
motion. The basic movement considered is a translation in a vertical plane. This appendix
uses the same nomenclature as the main paper.

A.1. Translation Movement

Starting from the nonlinear equations for translation in local frame:
The dynamic equations:

.
Vx.
Vy.
Vz

 = m−1BI

XA

YA

ZA

+

XT

YT

ZT

+ g0. (A1)

The kinematic equations:[ .
x0

.
y0

.
z0
]T

=
[
Vx Vy Vz

]T . (A2)

The linear form of the translation equations becomes:
The dynamic equations:∆

.
Vx

∆
.

Vy

∆
.

Vz

 = m−1

∆

BI

XA

YA

ZA

+ ∆

BI

XT

YT

ZT

. (A3)

The kinematic equations:[ .
∆x0 ∆

.
y0

.
∆z0

]T
=
[
∆Vx ∆Vy ∆Vz

]T . (A4)

For the kinematic equations, the previous relation becomes the final form.
Regarding the dynamic equations, aerodynamic terms can be written as:

BI

XA

YA

ZA

 = −KVBI

u
v
w

 = −KV

Vx
Vy
Vz

, (A5)
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where K = S
2 ρCd depends on altitude y0 and velocity V.

The linear form of the aerodynamic term becomes:

∆

BI

XA

YA

ZA

 = −KV

∆Vx
∆Vy
∆Vz

− K

Vx
Vy
Vz

∆V −V

Vx
Vy
Vz

∆K = −KV

∆Vx
∆Vy
∆Vz

−
K

Vx
Vy
Vz

∆V −V

Vx
Vy
Vz

 ∂K
∂V ∆V −V

Vx
Vy
Vz

 ∂K
∂y0

∆y0 = −KV

∆Vx
∆Vy
∆Vz

− K

Vx
Vy
Vz

∆V−

VK ∂Cd
Cd∂V

Vx
Vy
Vz

∆V −VK
(

∂Cd
Cd∂y0

+ ∂ρ
ρ∂y0

)Vx
Vy
Vz

∆y0 = −KV

∆Vx
∆Vy
∆Vz

−
K
(

1 + V ∂Cd
Cd∂V

)Vx
Vy
Vz

∆V −VK
(

∂Cd
Cd∂y0

+ ∂ρ
ρ∂y0

)Vx
Vy
Vz

∆y0.

(A6)

The form of the aerodynamic term is:

∆

BI

XA

YA

ZA

 = −KV

∆Vx
∆Vy
∆Vz

− K
V

(
1 + V ∂Cd

Cd∂V

)
V0VT

0

∆Vx
∆Vy
∆Vz


−VK

Vx
Vy
Vz

( ∂Cd
Cd∂y0

+ ∂ρ
ρ∂y0

)
∆y0,

(A7)

where:

V0VT
0

V
=

1
V

Vx
Vy
Vz

[Vx Vy Vz
]
=

1
V

 V2
x VxVy VxVz

VyVx V2
y VyVz

VzVx VzVy V2
z

, (A8)

and:

∆K = S
2 (Cd∆ρ + ∆Cdρ) = K

(
∆ρ
ρ + ∆Cd

Cd

)
= K

(
1
ρ

∂ρ
∂y0

∆y0 +
1

Cd

∂Cd
∂y0

∆y0 +
1

Cd

∂Cd
∂V ∆V

)
=

bK∆y0 +
a−1
V K∆V.

(A9)

In order to evaluate the influence of altitude and velocity, based on the hypothesis of
the spherical shape of the vehicle, for the considered velocity and altitude regime, through
regression, the following approximation functions were obtained:

a = 1 + V ∂Cd
Cd∂V

∼= 1.− 0.5683·V + 0.6409× 10−1·V2 − 0.2332× 10−2·V3;

b = ∂Cd
Cd∂y0

+ ∂ρ
ρ∂y0
∼= 0.318× 10−4,

(A10)

where:
∂ρ

ρ∂y0
= −0.96× 10−4;

∂Cd
Cd∂y0

= 1.278× 10−4.

Next, we resume the development of the translational aerodynamic term (A7), which
becomes:

∆

BI

XA

YA

ZA

 = −KV

∆Vx
∆Vy
∆Vz

− a K
V

 V2
x VxVy VxVz

VyVx V2
y VyVz

VzVx VzVy V2
z

∆Vx
∆Vy
∆Vz

− bVK

Vx
Vy
Vz

∆y0

= −KV

I + a
V2

 V2
x VxVy VxVz

VyVx V2
y VyVz

VzVx VzVy V2
z

∆Vx
∆Vy
∆Vz

− bKV

Vx
Vy
Vz

∆y0.

(A11)
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Because in the basic movement Vz = 0, the translational aerodynamic term becomes:

∆

BI

XA

YA

ZA

 = −KV

I + a
V2

 V2
x VxVy 0

VyVx V2
y 0

0 0 0

∆Vx
∆Vy
∆Vz

− bKV

Vx
Vy
0

∆y0

= −KV

1 + aV2
x

V2
aVxVy

V2 0
aVxVy

V2 1 +
aV2

y
V2 0

0 0 1


∆Vx

∆Vy
∆Vz

− bKV

Vx
Vy
0

∆y0.

(A12)

Returning to the dynamic equations of translation (A3), the linear form of the propul-
sive term is:

∆

BI

XT

YT

ZT

 = BI

∆XT

∆YT

∆ZT

+
[

∂BI
∂q1

; ∂BI
∂q2

; ∂BI
∂q3

]T
T

T

∆q1
∆q2
∆q3

. (A13)

For the first term of the propulsive force development, we start from the nonlinear expression:

T =

XT

YT

ZT

 =

 δTT0cosδmcosδn
−δTT0cosδmsinδn

δTT0sinδm

, (A14)

which can be expressed in the linear form:∆XT

∆YT

∆ZT

 = T0

 cosδmcosδn −δTcosδmsinδn −δTsinδmcosδn
−cosδmsinδn −δTcosδmcosδn δTsinδmsinδn

sinδm 0 δTcosδm

∆δT
∆δn
∆δm

. (A15)

Because in the basic movement, the yaw command is null δm = 0, we will obtain:∆XT

∆YT

∆ZT

 = T0

 cosδn −δTsinδn 0
−sinδn −δTcosδn 0

0 0 δT

∆δT
∆δn
∆δm

. (A16)

For the second term of relation (A13), relying on the inverse rotation matrix:

BI =

q2
4 + q2

1 − q2
2 − q2

3 2(q1q2 − q3q4) 2(q3q1 + q2q4)
2(q1q2 + q3q4) q2

4 + q2
2 − q2

3 − q2
1 2(q2q3 − q4q1)

2(q3q1 − q2q4) 2(q2q3 + q4q1) q2
4 + q2

3 − q2
1 − q2

2

, (A17)

the derivatives with respect to the quaternion components are:

∂BI
∂q1

= − q1
q4

∂BI
∂q4

+ 2

 q1 q2 q3
q2 −q1 −q4
q3 q4 −q1

; ∂BI
∂q2

= − q2
q4

∂BI
∂q4

+ 2

 −q2 q1 q4
q1 q2 q3
−q4 q3 −q2

;

∂BI
∂q3

= − q3
q4

∂BI
∂q4

+ 2

 −q3 −q4 q1
q4 −q3 q2
q1 q2 q3

; ∂BI
∂q4

= 2

 q4 −q3 q2
q3 q4 −q1
−q2 q1 q4

.

(A18)

In the basic movement, we have: q1 = 0; q2 = 0; δm = 0, from where:
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T =

XT

YT

ZT

 =

 δTT0cosδn
−δTT0sinδn

0

;

∂BI
∂q1

= 2

 0 0 q3
0 0 −q4
q3 q4 0

; ∂BI
∂q2

= 2

 0 0 q4
0 0 q3
−q4 q3 0

; ∂BI
∂q3

= − q3
q4

∂BI
∂q4

+

2

−q3 −q4 0
q4 −q3 0
0 0 q3

 =

− 2q3
q4

q4 −q3 0
q3 q4 0
0 0 q4

+2

−q3 −q4 0
q4 −q3 0
0 0 q3

= 2
q4

−q3q4 −q4q4 0
q4q4 −q3q4 0

0 0 q3q4

−
2
q4

q3q4 −q3q3 0
q3q3 q4q3 0

0 0 q4q3

= 2
q4

 −2q3q4 q3q3 − q4q4 0
q4q4 − q3q3 −2q3q4 0

0 0 0

;

∂BI
∂q3

= 2
q4

−2q3q4 2q2
3 − 1 0

1− 2q2
3 −2q3q4 0

0 0 0

; BI =

1− 2q2
3 −2q3q4 0

2q3q4 1− 2q2
3 0

0 0 1

.

(A19)

The first propulsive term from relation (A13) is:

BI

∆XT

∆YT

∆ZT

 = T0

(1− 2q2
3
)
−2q3q4 0

2q3q4
(
1− 2q2

3
)

0
0 0 1

 cosδn −δTsinδn 0
−sinδn −δTcosδn 0

0 0 δT

∆δT
∆δn
∆δm

 =

T0

2q3q4sinδn +
(
1− 2q2

3
)
cosδn 2δTq3q4cosδn − δT

(
1− 2q2

3
)
sinδn 0

2q3q4cosδn −
(
1− 2q2

3
)
sinδn −2δTq3q4sinδn − δT

(
1− 2q2

3
)
cosδn 0

0 0 δT

∆δT
∆δn
∆δm

,

(A20)

and the second one becomes:

[
∂BI
∂q1

; ∂BI
∂q2

; ∂BI
∂q3

]T
T

T

∆q1
∆q2
∆q3

 =

2
q4

 0 0 −2q3q4XT +
(
2q2

3 − 1
)
YT

0 0
(
1− 2q2

3
)
XT − 2q3q4YT

q3q4XT + q2
4YT −q2

4XT + q3q4YT 0

∆q1
∆q2
∆q3

 =

2δT T0
q4

 0 0 P13
0 0 P23

P31 P32 0

∆q1
∆q2
∆q3

,

(A21)

where:

P31 = q3q4cosδn − q2
4sinδn, P32 = −q2

4cosδn − q3q4sinδn, P13 = −2q3q4cosδn+(
1− 2q2

3
)
sinδn,P23 =

(
1− 2q2

3
)
cosδn + 2q3q4sinδn.

Cumulating the two terms, the linear form of the propulsive term from the translation
Equation (A13) is obtained:

∆

BI

 XT

YT

ZT

 = 2δT T0
q4

 0 0 P13
0 0 P23

P31 P32 0

 ∆q1
∆q2
∆q3

+
T0

 2q3q4sinδn +
(
1− 2q2

3
)
cosδn 2δTq3q4cosδn − δT

(
1− 2q2

3
)
sinδn 0

2q3q4cosδn −
(
1− 2q2

3
)
sinδn −2δTq3q4sinδn − δT

(
1− 2q2

3
)
cosδn 0

0 0 δT

 ∆δT
∆δn
∆δm

.

(A22)



Aerospace 2022, 9, 504 39 of 42

A.2. Rotational Movement

In this section, we will obtain the linear form of the rotational equations in the
body frame:

The nonlinear rotational equations are:
The dynamic equations: .

p
.
q
.
r

 = J−1

 L
M
N

− J−1 AΩJ

p
q
r

. (A23)

The kinematic equations:
.

q1.
q2.
q3.
q4

 =


q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3


p

q
r

. (A24)

If we consider as a basic movement the translation in the vertical plane, we have:

q1 = 0; q2 = 0; q4 = ±
√

1− q2
3, with zero angular velocity: p = 0, q = 0, r = 0, the linear

form of the rotational equations become:
The dynamic equations:∆

.
p

∆
.
q

∆
.
r

 =

1/A 0 0
0 1/B 0
0 0 1/C

 ∆L
∆M
∆N

. (A25)

The kinematic equations
.

∆q1.
∆q2.
∆q3

 =
1
2

q4 −q3 0
q3 q4 0
0 0 q4

∆p
∆q
∆r

. (A26)

For the kinematic equations, the previous relation becomes the final form.
Regarding the dynamic equations, linear forms of the applied moments must

be expressed.
For the development of the aerodynamic moment, we start from the aerodynamic

force in the body frame, which can be expressed as follows:XA

YA

ZA

 = −KV

u
v
w

. (A27)

Expanding linearly, we obtain:∆XA

∆YA

∆ZA

 = −KV

∆u
∆v
∆w

− K

u
v
w

∆V −V

u
v
w

∆K. (A28)

The three terms can be developed separately:
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KV

∆u
∆v
∆w

 = KVAI

∆Vx
∆Vy
∆Vz

+ KV
[

∂AI
∂q1

; ∂AI
∂q2

; ∂AI
∂q3

]V0
V0

V0

∆q1
∆q2
∆q3

 ;

K

u
v
w

∆V = K
V AIV0VT

0

∆Vx
∆Vy
∆Vz

 ;

V

u
v
w

∆K = bVKAI

Vx
Vy
Vz

∆y0 + (a− 1)KAI

Vx
Vy
Vz

∆V = bVKAI

Vx
Vy
Vz

∆y0+

(a−1)
V KAIV0VT

0

∆Vx
∆Vy
∆Vz

,

(A29)

thus resulting:∆XA

∆YA

∆ZA

 = −KVAI

∆Vx
∆Vy
∆Vz

− KV
[

∂AI
∂q1

; ∂AI
∂q2

; ∂AI
∂q3

]V0
V0

V0

∆q1
∆q2
∆q3

−
aKAI

V0VT
0

V

∆Vx
∆Vy
∆Vz

− bVKAI

Vx
Vy
Vz

∆y0,

(A30)

or yet∆XA

∆YA

∆ZA

 = −KVAI

(
I + aV0VT

0
V2

)∆Vx
∆Vy
∆Vz

− KV
[

∂AI
∂q1

; ∂AI
∂q2

; ∂AI
∂q3

]V0
V0

V0

∆q1
∆q2
∆q3

−
bVKAI

Vx
Vy
Vz

∆y0,

(A31)

where

∂AI
∂q1

= − q1
q4

∂AI
∂q4

+ 2

 q1 q2 q3
q2 −q1 q4
q3 −q4 −q1

; ∂AI
∂q2

= − q2
q4

∂AI
∂q4

+ 2

 −q2 q1 −q4
q1 q2 q3
q4 q3 −q2

;

∂AI
∂q3

= − q3
q4

∂AI
∂q4

+ 2

 −q3 q4 q1
−q4 −q3 q2
q1 q2 q3

; ∂AI
∂q4

= 2

 q4 q3 −q2
−q3 q4 q1
q2 −q1 q4

.

(A32)

In the basic movement case, q1 = 0; q2 = 0; Vz = 0, from where:

V0 =

Vx
Vy
0

;

V0VT
0

V2 = 1
V2

 V2
x VxVy 0

VyVx V2
y 0

0 0 0

;

∂AI
∂q1

= 2

 0 0 q3
0 0 q4
q3 −q4 0

; ∂AI
∂q2

= 2

 0 0 −q4
0 0 q3
q4 q3 0

;

∂AI
∂q3

= 2
q4

−2q3q4 1− 2q2
3 0

2q2
3 − 1 −2q3q4 0
0 0 0

; AI =

1− 2q2
3 2q3q4 0

−2q3q4 1− 2q2
3 0

0 0 1

.

(A33)
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In this case, after successive computations, the relation (A31) becomes:∆XA

∆YA

∆ZA

 = −KV

Q11 Q12 0
Q21 Q22 0

0 0 1

∆Vx
∆Vy
∆Vz

− 2 KV
q4

 0 0 R13
0 0 R23

R31 R32 0

∆q1
∆q2
∆q3


+aVK

 (1− 2q2
3
)
Vx + 2q3q4Vy

−2q3q4Vx +
(
1− 2q2

3
)
Vy

0

∆y0,

(A34)

where

Q11 = 2q3q4
aVxVy

V2 +
(
1− 2q2

3
)(

1 + aV2
x

V2

)
, Q12 = 2q3q4

(
1 +

aV2
y

V2

)
+(

1− 2q2
3
) aVxVy

V2 , Q21 = −2q3q4

(
1 + aV2

x
V2

)
+
(
1− 2q2

3
) aVxVy

V2 ,Q22 = −2q3q4
aVxVy

V2 +(
1− 2q2

3
)(

1 +
aV2

y
V2

)
.

R13 = −2q3q4Vx +
(
1− 2q2

3
)
Vy, R23 = −

(
1− 2q2

3
)
Vx − 2q3q4Vy, R31 =

(
q3Vx − q4Vy

)
q4,

R32 =
(
q4Vx + q3Vy

)
q4.

Regarding the aerodynamic moments, for the configuration considered, the linear
form is:

∆LA = 0; ∆MA = −xF∆ZA ; ∆NA = xF∆YA. (A35)

Considering the development of the aerodynamic force presented previously (A34),
we obtain: ∆LA

∆MA

∆NA

 = −KVxF

 0 0 0
0 0 −1

S31 S32 0

∆Vx
∆Vy
∆Vz


−2 KVxF

q4

 0 0 0
−
(
q3Vx − q4Vy

)
q4 −

(
q4Vx + q3Vy

)
q4 0

0 0 −
(
1− 2q2

3
)
Vx − 2q3q4Vy

∆q1
∆q2
∆q3


−bKxFV

 0
0

−2q3q4Vx +
(
1− 2q2

3
)
Vy

∆y0,

(A36)

where

S31 = −2q3q4

(
1 +

aV2
x

V2

)
+
(

1− 2q2
3

) aVxVy

V2 , S32 = −2q3q4
aVxVy

V2 +
(

1− 2q2
3

)(
1 +

aV2
y

V2

)
.

For the propulsive moments of (A25), we resume the linear form of the translation
terms (A16): ∆XT

∆YT

∆ZT

 = T0

 cosδn −δTsinδn 0
−sinδn −δTcosδn 0

0 0 δT

∆δT
∆δn
∆δm

, (A37)

and we consider that the command propulsive moments are:

∆MT = −xT∆ZT = −xTT0δT∆δm;
∆NT = xT∆YT = −xTT0sinδn∆δT − xTT0δTcosδn∆δn.

(A38)

Regarding the roll moment command, it is considered as:

∆LT = Rd∆δl , (A39)

where δl is the equivalent roll deflection.
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The linear form of the propulsive moment term becomes:

 ∆LT

∆MT

∆NT

 =

 0 0 Rd 0
0 0 0 −xTT0δT

−xTT0sinδn −xTT0δTcosδn 0 0




∆δT
∆δn
∆δl
∆δm

, (A40)

Thus, obtaining the linear form for the dynamic equations of rotation in the body frame.
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