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Abstract: In the aviation industry, foreign object debris (FOD) on airport runways is a serious threat
to aircraft during takeoff and landing. Therefore, FOD detection is important for improving the
safety of aircraft flight. In this paper, an unsupervised anomaly detection method called Multi-Scale
Feature Inpainting (MSFI) is proposed to perform FOD detection in images, in which FOD is defined
as an anomaly. This method adopts a pre-trained deep convolutional neural network (CNN) to
generate multi-scale features for the input images. Based on the multi-scale features, a deep feature
inpainting module is designed and trained to learn how to reconstruct the missing region masked
by the multi-scale grid masks. During the inference stage, an anomaly map for the test image is
obtained by computing the difference between the original feature and its reconstruction. Based on
the anomaly map, the abnormal regions are identified and located. The performance of the proposed
method is demonstrated on a newly collected FOD dataset and the public benchmark dataset MVTec
AD. The results show that the proposed method is superior to other methods.

Keywords: anomaly detection; foreign object debris detection; feature inpainting; transfer learning

1. Introduction

In the field of aviation, foreign object debris (FOD) refers to objects that appear on the
pavements of the whole movement area, including an airport’s runways, taxiways and
apron and may cause damage to the aircraft, such as screws, nuts, rubber blocks, stones,
etc. [1]. Since the presence of FOD may pose a huge potential risk to aircraft during takeoff
and landing, it needs to be removed from the runway in time. Therefore, FOD detection
is an indispensable part of airport operation. Traditional FOD detection and removal
methods, which rely on the staff to check runways and other regions at regular intervals,
are inefficient. In addition, the reliability of traditional methods is also unsatisfactory.
Small-scale FODs, such as nuts similar in color to airport runways, are not easily detected
by the naked eye. Visual inspection systems are now widely adopted for automatic FOD
detection. Meanwhile, FOD detection has become a hot spot in academic research, and
many achievements have been attained [2–5].

Deep-learning-based methods are widely used in object detection due to their ef-
fectiveness and universality [6–9]. However, the lack of labeled FOD images remains a
major challenge in FOD detection tasks. In general, deep-learning-based detection methods
require massive labeled images and a long period of supervised training. However, a
comprehensive and balanced dataset, including different FOD, is very difficult to collect
and annotate in actual airport environments, making the model lack effectively supervised
information. More importantly, because FOD could be anything accidentally dropped on
airport runways, the model trained using only limited FOD samples may fail to generalize
on those previously unseen ones. Therefore, the supervised learning-based methods are not
the best choice for FOD detection. Conversely, the unsupervised anomaly detection method
is expected to solve this problem. In the basic anomaly detection tasks, only normal samples
are available for training to construct a machine learning system that can detect abnormal
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samples [10,11], which is exactly the goal of FOD detection tasks. In FOD detection tasks,
although images with real FOD are rare, images without FOD are sufficient for training.
Since labeled FOD samples are not required, unsupervised anomaly detection methods can
quickly adapt to different airport environments.

Recently anomaly detection methods for image focus on reconstructing the original
image to a normal image through an autoencoder network [12–14]. The input image
is assigned an anomaly score based on the reconstruction error. This method assumes
that the model trained on normal images cannot be generalized to abnormal images, that
is, the reconstruction error of abnormal images is higher than that of normal images.
However, this assumption is not always true in practice because the model has strong
generalization ability and may reconstruct abnormal images well, which makes abnormal
regions indistinguishable from normal regions only by the reconstruction error.

The methods based on pre-trained deep convolutional neural networks (CNNs) have
recently been proposed for image anomaly detection [15–17]. The pre-trained CNNs are
very helpful when the dataset is small and the normal regions show randomness. They
try to model the distribution of the pre-trained features of normal data using Gaussian
mixture models or clustering. In the inference process, if the pre-trained features of the
image deviate from the distribution, it is identified as an anomaly. These methods provide
excellent results on image-level anomaly detection. However, they cannot perform anomaly
localization. To tackle this problem, many methods perform in a region-based fashion,
which splits images into smaller patches and determines the abnormality of every patch.
This demands high computational resources and often leads to inaccurate localization.

In this work, we also leverage the pre-trained CNNs to detect anomalies. However,
we propose to train a feature inpainting model in a self-supervised manner to restore
the damaged feature maps into normal ones instead of modeling the distribution of the
pre-trained features. The trained model can thus detect abnormal regions by comparing
the original and restored features of the image. In particular, multi-scale grid masks
are designed to determine the removal and recovery regions in the feature maps. The
proposed method is termed as multi-scale feature inpainting (MSFI), where it realizes
unsupervised anomaly detection and localization by reconstructing incomplete multi-scale
features generated from the pre-trained CNN. Extensive experiments on two datasets,
MVTec AD [18] and FOD, are conducted for image-level anomaly detection and pixel-level
anomaly localization.

The rest of this paper is organized as follows. Section 2 discusses the latest methods of
image anomaly detection. Section 3 introduces the overall anomaly detection framework in
detail. In Sections 4 and 5, the experimental conditions are introduced and the experimental
results are shown, respectively. Section 6 presents the ablation study. Section 7 and Section 8
provide the discussion and conclusion of this paper, respectively.

2. Related Work

Unsupervised image anomaly detection methods require only normal images during
training. These methods can be divided into two methods: image reconstruction and
feature modeling.

In many recent image reconstruction-based anomaly detection methods, autoencoders
and a range of variants have been widely used, such as autoencoders [19,20] and varia-
tional autoencoders [21,22]. The core idea of these methods is to convert an image into an
abstract representation and then try to find its inverse mapping to reconstruct the original
image. They assumed that the model trained on normal samples could not reproduce
abnormal samples. However, the autoencoder could not only generalize well but could
reconstruct the abnormal samples well [23,24]. To address this problem, Gong et al. [24]
proposed the memory-augmented autoencoder that designs a memory module for record-
ing representations of normal samples. As the reconstruction consists of representations
of normal samples, the reconstruction errors of abnormal samples will be increased. Gen-
erative adversarial network (GAN) [25] is also a network used for reconstruction, which
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aims to improve the quality of reconstruction through adversarial training. For example,
Schlegl et al. [26] took the lead in using generative adversarial networks (GAN) for image
anomaly detection and proposed AnoGAN. In addition, some methods [27,28] perform
anomaly detection by masking multiple regions of the input image and using an autoen-
coder to reconstruct the masked regions only from its neighborhood information rather
than the information of the region being reconstructed. It is assumed that the possibility of
accurately reconstructing abnormal regions by generalizing neighborhood appearances is
very low. For instance, Li et al. [27] proposed superpixel masking and inpainting (SMAI),
which combines superpixel segmentation to determine the missing regions of an image.

Unlike the model based on image reconstruction, which detects anomalies in the image
space, feature-modeling-based methods [29–32] detect anomalies in the feature space. For
example, Ruff et al. [33] proposed deep support vector data description (Deep SVDD),
which trains a neural network while minimizing the volume of the hypersphere containing
normal sample representation. Since the network must map normal samples closely to
the hypersphere’s center, minimizing the hypersphere’s volume forces the network to
extract common features of the normal samples. However, since Deep SVDD maps the
whole image to a point in the feature space, it can only infer whether there is an anomaly
in the image and cannot indicate the location of the abnormal regions. Therefore, Patch
SVDD was proposed, which detects each patch to localize anomalies [34]. More recently,
Bergmann et al. [35] proposed a student–teacher knowledge distillation framework for
unsupervised anomaly detection, which uses the deep features from the pre-trained CNNs
to detect anomalies in images through feature regression. Specifically, a pre-trained CNN
(e.g., resnet18 [36]) is defined as a teacher network and several simple networks are defined
as the student networks. During the training, the student networks are trained to imitate
the behavior of the teacher network only on normal images. During the test, the anomaly
score is calculated based on the predicted errors between the output of the teacher network
and the student networks. The method assumes that the student networks only learn how
to regress the output of the teacher network on normal images. Thus, the student networks
may not be able to predict the output of the teacher network on abnormal images.

3. Method

Figure 1 shows the framework of the multi-scale feature inpainting (MSFI) for image
anomaly detection, which contains four parts: multi-scale feature generation module, multi-
scale grid masks module, deep feature inpainting module, and anomaly detection and
localization module. Given an input image, first the multi-scale features are constructed
using the pre-trained CNN. Then, the multi-scale features are transformed to the masked
feature maps via the multi-scale grid masks. Following this, the deep feature inpainting
model recover and reconstruct each masked feature map. Finally, the anomaly map is
obtained through calculation of the l2 value of the original feature and its reconstruction
version. The framework will be detailed in the following sections.
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Figure 1. The overview of the multi-scale feature inpainting (MSFI). It consists of four parts: multi-
scale feature generation, multi-scale grid masks, deep feature inpainting and anomaly detection
and localization.

3.1. Multi-Scale Feature Extraction

A pre-trained CNN is used to generate discriminative deep features, which are then
fed into the deep feature inpainting module with the multi-scale grid mask.

It is supposed that there is a CNN with L convolutional blocks, and each convolutional
block consists of multiple consecutive convolutional layers and pooling layers. I represents
an input image with the size of h× w× c. Feeding I into the CNN, a set of feature maps
{φ1(I), φ2(I), . . . , φL(I)} from the L convolutional blocks can be obtained. The size of the
l-th feature map φl(I) is hl × wl × cl . Since each feature map comes from a convolutional
layer with a specific receptive field, it represents an abstract representation of the input
image. In general, the low convolutional layers with small receptive field capture low-
level features or local structural information, such as textural structure. In contrast, the
deep convolutional layers with a large receptive field capture high-level features or global
semantic information. Therefore, the fusion of the feature maps {φl(I)}L

l=1 naturally forms
a discriminative representation for the image. The process of fusion consists of two steps,
as shown in Equation (1). First, the feature map φl(I) is resized to the space size (h0, w0, cl),
but the channel is unchanged. Then, all the scaled feature maps are concatenated to an
integrated feature map:

f (I) = cat(resize(φ1(I), φ2(I), . . . , φL(I))) (1)

where resize(·) denotes the function of resizing. cat(·) denotes the function of concatenating.
f (I) denotes the generated multi-scale feature with the size of (h0, w0, c0). c0 is the number
of channels and satisfies c0 = ∑L

l=1cl .

3.2. Multi-Scale Grid Masks

As mentioned above, MSFI first removes a part of the regions in the multi-scale feature
map and then makes the deep feature inpainting network learn to generate the original
feature map. One problem during the process is which part of the regions should be
removed. To solve this issue, two design principles are presented. On the one hand, since
the anomalies may appear anywhere in the feature map, the regions should have equal
probability to be removed. On the other hand, since the anomalies may have different sizes,
the removed regions should have multiple scales.
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To meet these requirements, multi-scale grid masks are designed to indicate the regions
that should be removed and the pixel values at the removed regions are set as zero. As
shown in Figure 2, the black grids indicate the regions to be removed, and the number
of white girds is equal to that of black grids. The multi-scale grid masks are generated as
follows. A mask with the same size as the input feature map is first divided into h0

k ×
w0
k

grids, where k is the size of the grid. Then, all grids are randomly divided into two disjoint
sets Sg, each containing half of the grids, where g ∈ {1, 2}. Following this, a mask MSg

is generated for each grid set Sg. MSg is a binary mask in which the pixel values at the
regions belonging to Sg are set as zero. The masks with different scales could be obtained
by changing the grid size. In this paper, three grid sizes are adopted, namely, K = {2, 4, 8}.

k=2

k=4

k=8

Figure 2. Visualization of the multi-scale grid masks.

3.3. Deep Feature Inpainting

The U-Net network [37] is adopted to recover the removed regions in the multi-scale
feature map. During the training, a pair of binary masks MSg are first generated using
a grid size k, which is randomly selected from set K = {2, 4, 8} and leveraged to set the
regions belong to Sg as zero in the multi-scale feature map f (I):

fSg(I) = MSg � f (I), g = 1, 2 (2)

where fSg(I) is the masked feature map; �means the element-wise multiplication.
Then, the masked feature maps fSg(I) are fed into the network sequentially. The

network reconstructs each masked feature map individually and outputs the partially
reconstructed feature map frg(I). Finally, the partially reconstructed feature map frg(I) are
masked and summed into the entire reconstructed feature map fr(I):

fr(I) =
2

∑
g=1

(
1h0×w0 −MSg

)
� frg(I) (3)
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where 1h0×w0 represents a matrix with the height h0 and the width w0, in which the elements
are all one.

The entire reconstructed feature map fr(I) is constructed using the partially recon-
structed feature map frg(I), in which the value of the regions not belonging to Sg are zero.
Therefore, each frg(I) contributes only the regions belonging to Sg that are removed in the
original feature map.

The network is trained with a joint loss that takes into account the distance loss Lval
and directional similarity loss Ldir. Lval is the averaged pixel-level l2 distance between the
reconstructed feature fr(I) and the original feature f (I), as shown in Equation (4). The
smaller the distance, the higher the similarity between the two:

Lval =
1

h0 × w0

h0

∑
i=1

w0

∑
j=1

∥∥ fr,i,j(I)− fi,j(I)
∥∥

2 (4)

where (i, j) is the spatial position on deep feature maps.
Ldir aims to increase the directional similarity between feature description vectors.

Cosine similarity is used to measure the directional similarity between the reconstructed
feature fr(I) and the original feature f (I). The greater the cosine value, the higher the
directional similarity between the two. The Ldir is defined as:

Ldir = 1− vec( f (I))T · vec( fr(I))
‖vec( f (I))‖‖vec( fr(I))‖ (5)

where vec(·) is a vectorization function transforming a matrix with arbitrary dimensions
into a one-dimensional vector.

Finally, the total loss function is defined as:

Ltotal = λval Lval + λdirLdir (6)

where λval and λdir are the hyper-parameters to balance the weights of the distance loss
and directional similarity loss.

3.4. Anomaly Detection and Localization

During testing, multiple masks with different grid sizes are adopted to remove regions
from the multi-scale feature map and merge the multiple outputs from the model to
compute the final anomaly map.

Given a test image I, the multi-scale feature map f (I) is first extracted. Then, the deep
feature map is masked and reconstructed several times for each k ∈ K. The anomaly map
A(I) for a grid size k is defined as the pixel-level l2 distance between the original feature
f (I) and its reconstruction fr(I):

A(I) = ‖ fr(I)− f (I)‖2 (7)

The final anomaly map A f inal(I) is then obtained by taking the average of the anomaly
maps Ak(I):

A f inal(I) =
1
N ∑

k∈K
Ak(I) (8)

where Ak(I) is the anomaly map generated using the grid size k as defined in Equation (7).
N is the number of the grid size k.

Finally, the image-level anomaly score S is calculated by taking the maximum of
A f inal(I):

S = max
(

A f inal(I)
)

(9)
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The spatial size of A f inal(I) is h0 × w0. To further obtain the anomaly map with the
same size as the image, A f inal(I) performs bilinear interpolation. To obtain the segmen-
tation result, the anomaly map A f inal(I) is binarized using the threshold, which is the
anomaly score corresponding to the maximum F1 score on the test set.

4. Experimental Setup
4.1. Datasets

Specially designed to evaluate the performance of unsupervised image anomaly
detection methods, the MVTec AD dataset has 5354 images. It contains 10 object classes
and 5 texture classes with more than 70 different types of anomalies, such as breaks,
contamination, holes and other structural defects. The images of each class are divided into
training set and testing set, in which the former contains only normal images, while the
latter contains both normal and abnormal images. Each abnormal image has a pixel-level
annotation; thus, the MVTec AD dataset is well suited for evaluating unsupervised image
anomaly detection methods. The Figure 3 shows many examples of normal and abnormal
images in MVTec AD dataset.

Grid Tile Carpet Leather Wood

Bottle Cable Hazelnut Capsule Transistor

Toothbrush Pill Zipper Screw Mental Nut

Figure 3. Examples of normal and abnormal images for each class on MVTec AD dataset. For each
class, the top row shows normal image, and the bottom abnormal image.
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Specifically designed for FOD detection, FOD dataset is structured the same as MVTec
AD dataset (i.e., the training set contains only normal images, and the testing set has both
normal and abnormal images). Normal image refers to the absence of FOD on the airport
runways, and an abnormal image refers to the presence of FOD on the airport runways.
FOD dataset includes 9042 images. To achieve the diversity in the FOD dataset, the images
containing different FOD samples and runway surface disturbances are collected. FOD
samples contains 15 objects which cover different real FOD collected from the airport
runways or standard samples made by factories. Real FOD samples include screws,
nuts, steel balls, gaskets, locks, clamps, rubber blocks and stones, which are found most
frequently on the airport runways. Standard samples contain metal cylinders, plastic
cylinders, metal spheres, glass spheres and marble spheres. Runway surface disturbances
include tire marks, marker lines, splice joints, holes and others. Each abnormal image
provides pixel-level annotation. Examples of normal and abnormal images for the FOD
dataset are shown in Figure 4.

Screws Nuts Steel balls Gaskets Locks

Rubber blocks Stones

Silver metal 

spheres

White marble 

spheres

Golden marble 

spheres
Glass spheres

Golden metal 

spheres

White plastic 

cylinders

Golden plastic 

cylinders

Silver metal 

cylinders

Figure 4. Examples of normal and abnormal images for each class on FOD dataset. For each class,
the top row shows normal images without FOD, and the bottom shows abnormal images with FOD.
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4.2. Evaluation Metrics

The proposed method is evaluated in terms of image-level anomaly detection and
pixel-level anomaly localization. The area under the receiver operating characteristic curve
(AUROC) [18] is used as the evaluation metric. In addition, image-level AUROC is used to
evaluate the performance for anomaly detection, while pixel-level AUROC evaluates the
performance for anomaly localization. F1 score is also reported to evaluate the performance
of MSFI and baselines.

4.3. Implementation Details

In the deep feature extraction module, the VGG19 [38] pre-trained on ImageNet [39]
was used to produce deep features. The last three full connection layers were removed,
and the output feature maps from the final four convolutional blocks were selected for
feature fusion. For all the experiments on MVTec AD and FOD datasets, the deep feature
inpainting network was trained by Adam optimizer with a batch size of 4 for 300 epochs.
The initial learning rate was set as 1× 10−4. After 200 epochs, the learning rate decayed to
1× 10−5. During training, the weights of the pre-trained VGG19 were froze, and only the
weights of the deep feature inpainting network were updated. The proposed model was
implemented using the deep learning framework Pytorch.

5. Results

MSFI is evaluated on MVTec AD and FOD datasets in terms of anomaly detection
and localization and is compared with the existing methods such as AE-l2 [19], RIAD [40],
MRKD [31] and DFR [41].

5.1. Anomaly Detection

Table 1 shows the anomaly detection results on the MVTec AD dataset. MSFI records
the highest AUROC in nine categories and is superior to other anomaly detection methods
in terms of average AUROC. In addition, MSFI outperforms the best baseline method DFR
by 1%. Table 2 shows the anomaly detection results on FOD dataset. MSFI achieves the
highest average AUROC. Compared with other methods, MSFI obtains the highest AUROC
in nine foreign objects. MSFI also demonstrates superior performance over other methods
in terms of F1 score on all the datasets.

Table 1. The anomaly detection results on MVTec AD dataset. The best result for each class is bolded.

Category
AE-l2 RIAD MRKD DFR MSFI

AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Carpet 0.539 0.863 0.842 0.859 0.792 0.859 0.961 0.938 0.976 0.960
Grid 0.779 0.855 0.996 0.957 0.780 0.862 0.968 0.927 0.921 0.922

Leather 0.841 0.865 1.000 0.956 0.950 0.847 0.984 0.963 1.000 0.995
Tile 0.795 0.847 0.987 0.850 0.915 0.830 0.896 0.883 0.870 0.894

Wood 0.892 0.902 0.930 0.884 0.942 0.923 0.981 0.977 0.996 0.983
Bottle 0.877 0.889 0.999 0.968 0.993 0.855 0.993 0.980 1.000 0.986
Cable 0.477 0.755 0.819 0.755 0.891 0.755 0.831 0.809 0.967 0.923

Capsule 0.660 0.904 0.884 0.906 0.804 0.926 0.975 0.983 0.888 0.943
Hazelnut 0.951 0.924 0.833 0.865 0.983 0.843 0.989 0.982 0.995 0.978
Metal Nut 0.415 0.889 0.885 0.893 0.735 0.889 0.929 0.921 0.955 0.963

Pill 0.625 0.912 0.838 0.919 0.827 0.912 0.931 0.928 0.942 0.954
Screw 0.746 0.878 0.845 0.865 0.833 0.863 0.958 0.931 0.866 0.878

Toothbrush 0.589 0.829 1.000 0.967 0.921 0.817 0.981 0.964 0.969 0.933
Transistor 0.703 0.619 0.909 0.619 0.855 0.569 0.801 0.787 0.964 0.916

Zipper 0.765 0.881 0.981 0.963 0.932 0.877 0.903 0.915 0.925 0.955

Mean 0.710 0.854 0.917 0.882 0.877 0.842 0.939 0.926 0.949 0.945
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Table 2. The anomaly detection results on FOD dataset. The best result for each class is bolded.

Category
AE-l2 RIAD MRKD DFR MSFI

AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Screws 0.715 0.712 0.788 0.754 0.933 0.908 0.777 0.775 0.997 0.947
Nuts 0.670 0.629 0.759 0.758 0.944 0.897 0.975 0.970 0.995 0.954

Steel balls 0.713 0.710 0.741 0.763 0.924 0.873 0.745 0.714 0.993 0.984
Gaskets 0.799 0.726 0.843 0.765 0.959 0.951 0.991 0.983 0.998 0.990
Locks 0.864 0.808 0.941 0.846 0.924 0.907 0.985 0.968 0.979 0.634

Rubber blocks 0.744 0.769 0.891 0.853 0.931 0.918 0.990 0.977 0.993 0.977
Stones 0.771 0.833 0.787 0.782 0.921 0.900 0.932 0.905 0.968 0.918

Silver metal cylinders 0.777 0.699 0.835 0.770 0.928 0.906 0.989 0.984 0.986 0.976
White plastic cylinders 0.733 0.734 0.844 0.822 0.924 0.915 0.993 0.984 0.980 0.971

Golden plastic cylinders 0.744 0.681 0.861 0.829 0.925 0.913 0.982 0.970 0.973 0.961
Silver metal spheres 0.742 0.837 0.823 0.781 0.937 0.929 0.992 0.984 0.998 0.990

Golden metal spheres 0.898 0.855 0.981 0.851 0.944 0.921 0.987 0.964 0.997 0.974
Glass spheres 0.802 0.807 0.876 0.780 0.932 0.922 0.985 0.975 0.978 0.958

Golden marble spheres 0.771 0.702 0.841 0.762 0.932 0.922 0.987 0.977 0.989 0.979
White marble spheres 0.721 0.711 0.943 0.860 0.926 0.922 0.986 0.982 0.976 0.972

Mean 0.764 0.748 0.850 0.798 0.932 0.914 0.953 0.941 0.987 0.946

5.2. Anomaly Localization

Table 3 presents the anomaly localization results on the MVTec AD dataset. MSFI
exceeds the recent state-of-the-art method DFR in eight categories and achieves a higher
average AUROC. Table 4 displays the anomaly localization results on the FOD dataset.
MSFI outperforms all of the tested methods. MSFI outperforms DFR in eleven classes and
carries out a higher average ROC-AUC. In addition, MSFI is simpler than DFR, as it extracts
CNN feature maps from only 4 convolutional layers, compared to DFR, which requires 16
convolutional layers to generate the regional feature. The results in Table 3 and 4 show that
MSFI also outperforms other models by F1 score on all the datasets.

The qualitative comparison between MSFI and other methods on the MVTec AD
and FOD datasets is visualized in Figures 5 and 6, which show the anomaly maps of
both methods and the segmentation maps of MSFI. For visualization, the anomaly map is
normalized to the range of [0,1], and then superimposed on corresponding testing images.
It can be observed that MSFI generally produces more reasonable anomaly maps compared
with other methods. The reconstruction error is low for normal regions and high for
abnormal regions, reducing the incorrect classification of normal regions and missing
detection of abnormal regions. Visually, MRKD, DFR and MSFI can capture abnormal
regions in images more accurately than AE-l2 and RIAD based on image reconstruction.
This may be because the former adopts the pre-trained features that can bolster their
pattern-recognition abilities. This indicates that the method using pre-trained CNN is
better for image anomaly detection than the method of learning image representation
from scratch.
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Input
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Figure 5. Qualitative comparison between the proposed method and other methods on MVTec AD
dataset. Input represents the input abnormal image. Ground Truth represents the actual abnormal
regions (in white). AM represents the anomaly map. SM represents the segmentation map. The red
region represents the high anomaly score of AM, the solid red line indicates the boundary of the
actual abnormal region and the green region represents the predicted abnormal region in SM.
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Figure 6. Qualitative comparison between the proposed method and other methods on FOD dataset.
Input represents the input abnormal image. Ground Truth represents the actual abnormal regions
(in white). AM represents the anomaly map. SM represents the segmentation map. The red region
represents the high anomaly score of AM, the solid red line indicates the boundary of the actual
abnormal region and the green region represents the predicted abnormal region in SM.
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Table 3. The anomaly localization results on MVTec AD dataset. The best result for each class is
bolded.

Category
AE-l2 RIAD MRKD DFR MSFI

AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Carpet 0.566 0.153 0.963 0.386 0.956 0.458 0.970 0.554 0.980 0.680
Grid 0.605 0.132 0.988 0.392 0.917 0.432 0.980 0.406 0.992 0.535

Leather 0.735 0.275 0.994 0.558 0.981 0.236 0.980 0.380 0.996 0.518
Tile 0.593 0.258 0.891 0.425 0.827 0.655 0.870 0.535 0.928 0.546

Wood 0.734 0.346 0.858 0.317 0.848 0.426 0.930 0.449 0.914 0.522
Bottle 0.704 0.294 0.984 0.650 0.963 0.340 0.970 0.719 0.968 0.760
Cable 0.750 0.254 0.842 0.311 0.824 0.411 0.920 0.635 0.971 0.465

Capsule 0.788 0.205 0.928 0.383 0.958 0.248 0.990 0.499 0.974 0.591
Hazelnut 0.788 0.544 0.961 0.468 0.946 0.238 0.990 0.634 0.981 0.729
Metal Nut 0.704 0.424 0.925 0.523 0.863 0.530 0.930 0.862 0.972 0.769

Pill 0.855 0.376 0.957 0.514 0.896 0.171 0.970 0.738 0.977 0.727
Screw 0.898 0.156 0.988 0.390 0.959 0.390 0.990 0.281 0.963 0.591

Toothbrush 0.864 0.217 0.989 0.552 0.961 0.547 0.990 0.656 0.985 0.647
Transistor 0.548 0.212 0.877 0.395 0.764 0.381 0.800 0.642 0.924 0.489

Zipper 0.682 0.220 0.978 0.627 0.939 0.320 0.960 0.441 0.952 0.660

Mean 0.720 0.271 0.942 0.459 0.907 0.385 0.949 0.562 0.965 0.615

Table 4. The anomaly localization results on FOD dataset. The best result for each class is bolded.

Category
AE-l2 RIAD MRKD DFR MSFI

AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Screws 0.714 0.241 0.826 0.301 0.964 0.479 0.936 0.651 0.995 0.704
Nuts 0.700 0.237 0.864 0.305 0.989 0.610 0.993 0.826 0.997 0.849

Steel balls 0.740 0.215 0.876 0.245 0.980 0.260 0.953 0.544 0.997 0.697
Gaskets 0.718 0.253 0.927 0.496 0.990 0.633 0.996 0.862 0.998 0.924
Locks 0.703 0.445 0.868 0.627 0.861 0.538 0.979 0.887 0.985 0.875

Rubber blocks 0.678 0.433 0.845 0.522 0.869 0.461 0.952 0.772 0.953 0.920
Stones 0.597 0.252 0.741 0.291 0.898 0.498 0.971 0.604 0.946 0.562

Silver metal cylinders 0.576 0.284 0.719 0.330 0.929 0.561 0.989 0.809 0.987 0.783
White plastic cylinders 0.527 0.292 0.672 0.494 0.852 0.498 0.990 0.827 0.985 0.810

Golden plastic cylinders 0.779 0.378 0.693 0.340 0.896 0.548 0.976 0.727 0.960 0.798
Silver metal spheres 0.637 0.289 0.800 0.379 0.962 0.452 0.992 0.832 0.992 0.833

Golden metal spheres 0.695 0.308 0.644 0.291 0.968 0.487 0.992 0.823 0.994 0.862
Glass spheres 0.589 0.282 0.714 0.309 0.949 0.553 0.979 0.703 0.984 0.737

Golden marble spheres 0.695 0.325 0.595 0.290 0.957 0.526 0.990 0.819 0.991 0.851
White marble spheres 0.569 0.298 0.751f 0.455 0.896 0.539 0.980 0.735 0.985 0.783

Mean 0.661 0.302 0.769 0.378 0.930 0.509 0.977 0.761 0.983 0.799

6. Ablation Studies
6.1. Effectiveness of Multi-Scale Features

This study adopts a series of different hierarchical features (that is, the last, the last two,
the last three and the last four convolution blocks) to construct the model. The effectiveness
of the models with different hierarchical features is evaluated on MVTec AD and FOD
datasets, and the results are shown in Table 5. Obviously, the performance of MSFI becomes
better as the number of layers increases.

Figure 7 represents the qualitative results of MSFI with different hierarchical features
on MVTec AD and FOD datasets. It can be seen that with the use of more hierarchical
features, the regions that are incorrectly detected as anomalies gradually decrease, and the
predicted abnormal regions gradually approach the real abnormal regions. This is because
the deep features with more hierarchical features will encode more local details and spatial
context information for images, thus making the detection more robust and accurate.



Aerospace 2022, 9, 480 14 of 18

Table 5. The results of MSFI on the MVTec AD and FOD datasets with different hierarchical features.
Image-level AUROC represents the average AUROC of all the classes for anomaly detection. Pixel-
level AUROC represents the average AUROC of all the classes for anomaly localization.

Category Metric Last1 Last2 Last3 Last4

MVTec AD Image-level AUROC 0.828 0.905 0.944 0.949
Pixel-level AUROC 0.822 0.910 0.950 0.965

FOD Image-level AUROC 0.878 0.919 0.984 0.988
Pixel-level AUROC 0.826 0.908 0.976 0.985

(a) Input (b) Ground Truth (c) Last1 (d) Last2 (e) Last3 (f) Last4
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Figure 7. Qualitative results of MSFI with increasing hierarchical features on the MVTec AD and
FOD datasets. Last l: anomaly map of MSFI using the hierarchical features from the last l convolu-
tion blocks.

6.2. Loss Function

This section analyzes the impact of each loss component on MSFI. Table 6 represents
the average AUROC of all classes for anomaly detection and anomaly localization on the
MVTec AD and FOD datasets, respectively. MSFI combining two loss functions performs
best, and the results show that the performance of anomaly detection could be improved
by considering the directional similarity between feature vectors.

Table 6. The results of MSFI using different loss functions on the MVTec AD and FOD datasets.

Category Metric Ldir Lval Ltotal

MVTec AD Image-level AUROC 0.835 0.934 0.949
Pixel-level AUROC 0.863 0.949 0.965

FOD Image-level AUROC 0.956 0.967 0.988
Pixel-level AUROC 0.966 0.976 0.985

6.3. Grid Size

This part analyzes the impact of the grid size on MSFI. The results of MSFI with a
single grid size on the MVTec AD and FOD datasets are shown in Table 7. To evaluate the
influence of the grid size, a single grid size is used to train the model in the training stage.
The testing set also adopts the single grid size during testing. It can be seen from Table 7
that grid size has a great influence on the detection results. No matter what the grid size
is, it is difficult to reconstruct the deep features of abnormal regions. This is because the
model must infer deep features of abnormal regions from the surrounding regions, which
is more difficult than reconstructing the abnormal regions only by a deep autoencoder.
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The qualitative results of the model trained using different grid sizes are shown in
Figure 8. As the grid size increases, abnormal regions become more difficult to recover and
have high anomaly scores. However, normal regions also become difficult to recover and
are given high anomaly scores, especially for normal regions with more randomness. As
shown in the fourth row of Figure 8, the regions with marker lines in the image produce
higher anomaly scores. Adoption of a combination of different grid sizes helps to generate
high anomaly scores in abnormal regions and maintain low anomaly scores in normal
regions, as shown in column (f) of Figure 8.

Table 7. The results of MSFI trained and evaluated using a single gird size on the MVTec AD and
FOD datasets.

Category Metric k = 2 k = 4 k = 8

MVTec AD Image-level AUROC 0.914 0.936 0.920
Pixel-level AUROC 0.922 0.952 0.931

FOD Image-level AUROC 0.948 0.967 0.935
Pixel-level AUROC 0.936 0.956 0.926

(a) Input (b) Ground Truth (c) AM (k = 2)  (d) AM (k = 4) (e) AM (k = 8) (f) AM (k = {2, 4, 8})
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Figure 8. Qualitative results of MSFI trained and evaluated on a single gird size on the MVTec AD
and FOD datasets. AM (k = 2), AM (k = 4) and AM (k = 8) respectively represent the anomaly map
of MSFI trained with a single grid sizes of 2, 4 and 8. AM (K = {2, 4, 8}) represents the anomaly map
of MSFI trained and evaluated on the set K = {2, 4, 8}.

7. Discussion

In this study, the current FOD detection methods based on optical images are inves-
tigated. The existing FOD detection methods are mainly based on supervised learning,
which require massive labeled images. However, since FOD is not clearly defined, the FOD
samples cannot be collected comprehensively and easily. Consequently, once the method is
applied to a new airport, it would be very time-consuming to collect enough FOD samples.
Therefore, the methods based on supervised learning are not suitable for FOD detection.
Conversely, the unsupervised anomaly detection methods are introduced to perform FOD
detection on pavement images for the first time while requiring no real FOD samples. In
this study, the images containing FOD are defined as abnormal images and the images
without FOD as normal images. Since real FOD samples are not required in the training
phase, the unsupervised anomaly detection methods could quickly adapt to a new airport.

The current anomaly detection methods could be divided into two methods: image
reconstruction and feature modeling. The methods based on image reconstruction mainly
use an autoencoder to reconstruct an original image to a normal image, making the as-
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sumption that anomalous regions would not be reconstructed well. The methods of feature
modeling leverage pre-trained features of the normal images to train the model, assuming
that the distance between the abnormal image and the normal image is larger than that
between the normal pairs in feature space. Although these methods do achieve some
success, we propose a much more effective method. Our method combines the pre-trained
features and self-supervised learning. According to the comparison experiments, these
methods, such as AE-l2, RIAD, MRKD and DFR, raised many false alarms in the regions
with pavement defects. The results prove that the proposed method is effective and could
better distinguish FOD from pavement defects.

Hundreds of aircraft take off and land in airports every day, which means that the time
left for FOD detection and cleanup is extremely little. In order to minimize the interference
of FOD detection with airport operations, the detection method needs to guarantee real-
time FOD detection. In this paper, the experiments were performed on an Nvidia GeForce
RTX 2080 Ti GPU and an Intel I9-9940 CPU@3.30 GHz. As for the anomaly detection phase,
the inference of the proposed method takes about 0.07 s per image, and the running speed
of MSFI is about 15 fps. As we can see, there is still room for improvement in our method
in inference speed, which will be investigated in future work.

8. Conclusions

This study proposes a multi-scale feature inpainting method to perform FOD detection
on images with various pavement backgrounds while requiring no real FOD. The pre-
trained CNN is fully utilized to establish discriminative multi-scale features for the images.
A deep feature inpainting module is designed and trained to learn how to reconstruct
the missing region removed by multi-scale grid masks to match normal features. During
testing, the abnormal regions, i.e., FOD, are inferred according to the difference between
the original feature and its reconstruction version. Furthermore, a new dataset (FOD)
containing 9042 airfield pavement images that covers 15 types of FOD is established for
FOD detection. Extensive experiments and analysis on the FOD dataset and a public
benchmark dataset, MVTec AD, have indicated that the proposed method is effective and
outperforms other methods.
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