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Abstract: In this paper, a discrete-time model predictive controller using Laguerre orthonormal
function-based (LMPC) for active flutter suppression of a two-dimensional wing with a flap is
presented. In this work, a linear mathematical state-space model for the pitch, plunge, and flap
degrees of freedom under unsteady aerodynamics is derived and used to determine the linear flutter
velocity and frequency of the parameters of a selected experimental wing. To verify the model, the
open-loop simulation results are compared to an experimental study using the same wing from the
literature. The state-space system is then discretized and LMPC with a Kalman filter is designed
and tuned using the MATLAB® simulation environment at a selected speed in the linear flutter
region. The predictive control advantage of dealing with input constraints in a systematic manner
is explored through a quantitative analysis of the response of both constrained and unconstrained
LMPC controllers. The results indicate that theoretically both cases can give excellent performance.
However, the input trajectory generated by the unconstrained LMPC is very aggressive in a way
that it is considered impractical when compared to the physical limits of an experimental actuator
from the literature. The potential of LMPC to achieve a reasonable performance at a significantly
lower computational cost compared to the classical model predictive controller (MPC) is investigated
by measuring the time required by the same computer to compute the control trajectory for both
controllers. The data suggest that LMPC requires remarkably low computational power, which makes
it an excellent choice for fast aeroelastic applications.

Keywords: active flutter suppression; model predictive control; Laguerre orthonormal functions

1. Introduction

Flutter is a self-excited dynamic aeroelastic instability that causes increasing amplitude
oscillation in the aeroelastic structure, which can lead to catastrophic structural failure.
Flutter results from the interaction between the inertial, elastic and aerodynamic forces. At
a certain airspeed (called the flutter speed), the total aeroelastic system’s damping changes
from positive (which dissipates energy) to negative due to the existence of aerodynamic
forces [1–4]. Numerous researchers conducted wind tunnel studies on an aeroelastic
structure to experimentally demonstrate the flutter. Alizadeh et al. [5] conducted an
experimental investigation of the flutter behavior of a cantilever slab wing constructed
from a Plexiglas plate in a closed-loop subsonic wind tunnel. The flutter phenomenon is
not limited to wings; it may happen to any elastic structure that is subjected to aerodynamic
forces, such as bridges, which are often carefully designed within certain limits to minimize
flutter. Construction of long span bridges in mountainous areas is likely to be more
difficult. Flutter instability during construction is a major challenge due to flexible structural
properties and strong winds with large angles of attack [6].
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As flight speeds have increased since World War II, flutter has become more important,
along with other aeroelastic phenomena. Passive solutions such as mass balancing and
structural modifications have been presented and used for many years, but since most of
these solutions involve some weight penalty that negatively affects aircraft performance,
they have not been beneficial. In addition, maximizing the performance of modern aircraft
requires extremely lightweight structures with lower stiffness, which in turn increases the
susceptibility to aeroelastic problems such as flutter. Consequently, researchers have begun
to consider the use of control technologies in aeroelasticity. If appropriate control measures
are taken to prevent flutter as soon as it begins, the onset of flutter can be delayed to a
higher airspeed without significantly modifying the structure and reducing weight. This
active approach has been shown to be theoretically and experimentally feasible in several
important research papers since the 1970s [2,7–9].

Active flutter suppression uses a control surface, as shown in Figure 1, whose deflec-
tion is controlled by an appropriate control law. The control law is the relationship between
the motion of the main wing surface and the deflection of the control surface. This control
law is determined by applying methods from control systems theory [10].
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Two approaches to the analysis of dynamic aeroelastic instability of airfoils have been
presented in the literature. The first approach uses linearized aeroelastic equations to
determine the flutter boundary. The other is a nonlinear approach that provides more
information about the nature of this boundary, which can cause catastrophic or benign
behavior [11,12]. This study is limited to the linear analysis and control of the flutter of a
2D wing.

The earliest work on flutter suppression presented an approach that examines the
physical or mathematical structure of the flutter problem to find the mechanisms respon-
sible for flutter and attempt to suppress them. Among these physical approaches, the
“aerodynamic energy” method was the most commonly presented in the literature of the
time [13]. Later, with the development of control theory, the classical control system design
and analysis techniques using the frequency domain became a feature in many works,
such as [14], where the standard root locus technique was used. In addition, classical
theory based on the Nyquist stability criterion has been used to formulate a control law
for the SISO system in other works, such as [15]. Although the methods of classical theory
successfully suppressed flutter, they were not practical for dealing with higher order and
multivariable systems [16].

Modern control theory techniques based on modeling and analysis of state spaces
have been more efficient in dealing with higher order systems and systems with multiple
inputs and outputs. These techniques have appeared in recent work. Pole assignment with
state feedback has been applied in many studies, e.g., in [2,12]. The optimal method of
linear quadratic controller LQR is another successful controller that appears in works such
as [17–21].
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Transient aerodynamic models have inherent uncertainties. The development of a
successful controller must take this aspect into account. In general, utilizing high gain
feedback while constructing a linear system controller can achieve robustness to modeling
uncertainties, but this reduces the response to high frequency measurement noise. LQG, a
linear feedback strategy that incorporates an optimum estimator into the LQR controller,
has been employed in [22–24] to strike a balance between robustness and noise suppression.

In recent decades, MPC has attracted much attention as an effective tool for industrial
system control. MPC is a real-time optimization strategy that computes an optimal control
sequence based on knowledge of the plant dynamics (a model) and feedback information
(the current state of the plant), as well as a set of constraints at each time step [25].

Predictive control has been around since the early 1970s. However, because it requires
high computational power, it was limited to industrial applications that are considered slow
dynamic systems, such as chemical factories. However, with recent massive technological
improvements in the capabilities and speed of controllers and power electronics, MPC has
received more attention as a useful tool for a wider range of applications [26,27].

MPC is a very powerful tool because it solves an optimization problem to find the
optimal input trajectory at each time step (real-time optimization). As a result, it is able to
take into account the physical constraints of systems that occur in almost every application,
where actuators are usually limited in power or speed and ignoring these limits can lead
to a degradation of efficiency. In addition, real-time optimization helps to account for
measurement errors that may occur due to unmeasured disturbances [28].

However, compared to modern offline control methods, MPC needs to perform many
more calculations that require very powerful and expensive processors. Many research
efforts have been undertaken to simplify the computations so that MPC can be imple-
mented more easily and effectively, especially on low-power systems. In reference [29], the
author presents a design strategy for MPC based on orthonormal functions. This approach
requires less computation than classical MPC and therefore it can be used where fast system
dynamics are required, such as in aeroelasticity applications [30].

This study aims to investigate the potential effectiveness of using a discrete-time
LMPC for active wing flutter suppression application. The study also looks into LMPC
advantage over the classical MPC in terms of computational effort required, in addition to
the superiority of MPC and LMPC in terms of their capability to deal with input constraints
in a systematic manner. These goals are achieved by designing and tuning a LMPC
controller, then analyzing the response to an initial condition, in addition to the response
to step input with and without input constraints to compare the results. Furthermore,
the computational cost of LMPC is compared to the computational cost of a classical
MPC using the same computer hardware, through measuring the time required for each
controller to compute the input trajectory. LMPC is expected to provide the benefits of
real-time optimization with an acceptable computational cost for one of the most important
applications of aeroservoelasticity.

2. Theory and Methods

This section summarizes the theory behind the derivation of the aeroelastic mathemat-
ical model and the control method implemented, as well as the indices and metrics used to
analyze the results.

2.1. The Aeroelastic Model

There are several degrees of freedom (DOF) that can occur in a wing during flutter,
called ‘flutter modes’, of which two are predominant: the first plunge mode (bending)
and the first pitch mode (torsion). As a result of the undesirable coupling of aerodynamic,
inertial, and elastic forces, the flutter instability includes two or more vibrational modes
and indicates that the structure may successfully absorb energy from the air stream. The
damping ratio of the critical flutter mode may decrease with increasing airspeed beyond a



Aerospace 2022, 9, 475 4 of 19

certain point. Flutter occurs when the damping ratio of the critical flutter mode reaches
zero.

The unsteady aerodynamic forces and moments acting on a 3-DOF wing with pitch,
plunge, and flap degrees of freedom have been calculated using a variety of two-dimensional
approaches. The Theodorsen approach is applied in this investigation. According to
Theodorsen, if a thin airfoil section with infinite aspect ratio and small angle of attack is
subjected to minor oscillations in all modes of vibration, the unsteady aerodynamic forces
can be estimated as linearly dependent on the exciting structural motion. It is assumed that
the flow over the airfoil will stay potential and unseparated [31,32].

Figure 1 describes the physical two-dimensional airfoil with three degrees of freedom
(3-DOF) (plunge, pitch, and control flap). The wing is free to plunge (h) (positive down-
ward), pitch (α) (positive nose up) about its elastic axis, and the control flap is free to rotate
(β) (positive downward) around its hinge. This model served as the basis for Theodorsen’s
development of his unsteady aerodynamics theory [33].

The forces generated due to the airflow are the unsteady aerodynamic lift L (at the
elastic axis), the pitching moment Mα (about the elastic axis), and the control flap torque Mβ

about its hinge. In addition, the flap is equipped with an actuator that can apply a torque u
about the hinge line of the control flap relative to the airfoil to control the system [34].

The linearized equations of motion of the system can be represented as:

m
..
h + mxαb

..
α + mxβb

..
β + ch

.
h + kh = L (1)

Iα
..
α + mxαb

..
h +

[
(c− a)b2mxβ + Iβ

] ..
β + cα

.
α + kαα = Mα (2)

mxβb
..
h +

[
(c− a)b2mxβ + Iβ

] ..
α + Iβ

..
β + cβ

.
β + kββ = Mβ (3)

where m is the total mass of the wing per unit span, mβ is the mass of the control surface
per unit span. Iα is the mass moment of inertia of the wing about its elastic axis per unit
span, while Iβ is the mass moment of inertia of the control surface about its hinge line.

The generated aerodynamic forces L, Mα and Mβ are represented in terms of the
generalized coordinates (h, α, and β), in addition to two aerodynamic lag states (`1, `2) as
follows [24].

L(t) = −πρ∞b2
..
h + πρ∞b3a

..
α + ρ∞b3T1

..
β− 2πρ∞bU

.
h− 2πρ∞b2U(1− a)

.
α

+ρ∞b2U(T4 − T11)
.
β− 2πρ∞bU2α− 2ρ∞bU2T10β

+2πρ∞bUδ1 `1 + 2πρ∞bUδ2 `2

(4)

Mα(t) = πρ∞b3a
..
h− πρ∞b4

(
1
8 + a2

) ..
α + ρ∞b4(T7 + (c− a)T1)

..
β

+2πρ∞b2U
(

a + 1
2

) .
h− 2πρ∞b3Ua

(
1
2 − a

) .
α

+ρ∞b3U(T8 − T1 + (c− a)T4 + aT11)
.
β

+ρ∞b2U2(2aT10 − T4)β + 2πρ∞b2U2
(

a + 1
2

)
α

−2πρ∞b2U
(

a + 1
2

)
δ1 `1 − 2πρ∞Ub2

(
a + 1

2

)
δ2 `2

(5)

Mβ(t) = ρ∞b3T1
..
h− 2ρ∞b4T13

..
α + ρ∞b4 1

π T3
..
β− ρ∞b2UT12

.
h

+ρ∞b3U
[
2T9 + T1 + (T4 − T12)

(
1
2 − a

)] .
α

+ρ∞b3U 1
2π T11(T4 − T12)

.
β− ρ∞b2U2T12α− ρ∞b2U2 1

π [T5
−T10(T4 − T12)]β + ρ∞Ub2T12δ1 `1 + ρ∞Ub2T12δ2 `2

(6)

where ρ∞ is the air density, U is the airspeed, and the geometric coefficients Ti , i = 1, 2, . . .
are called Theodorsen constants, which are functions of the non-dimensional distances
c and b defined in the wing model, making them specific to a typical sectional model.
Theodorsen constants are given in the report of Theodorsen [35]. These constants are given
in Appendix A.
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The complete system equations combining Equations (1)–(3) with (4)–(6) are presented
in matrix form as

[
Ms − Ma

] 
..
h/b

..
α
..
β

+
[

Ds − Da
] 

.
h/b

.
α
.
β

+
[

Ks − Ka
] 

h/b
α
β

 = Lδ

{
`1
`2

}
+ Lc{βc} (7)

Equation (7) can be presented in the following standard state-space representation

.
x = Ax + Bu
y = Cx + Du

(8)

The details of the matrices of Equations (7) and (8) are given in Appendix B. In the
next section, the state space Equations (8) are discretized using MATLAB®, so that the MPC
controller can be added as explained in the next section.

2.2. Discrete Time MPC Using Laguerre Fnctions

A brief explanation of the implemented MPC strategy is given in this section, and
more details can be found in Ref. [29]. MPC is usually implemented in discrete time. The
general discrete-time state space model of the plant is described by

xm(k + 1) = Amxm(k) + Bmu(k) + w(k)
y(k) = Cmxm(k) + v(k)

(9)

Here Am is the discrete system matrix, Bm is the discrete input matrix, and Cm is the discrete
output matrix. The system has n1 states, m inputs and q outputs. u(k) is the vector of
manipulated variables (inputs), xm(k) is the state vector, and w(k) is the input disturbance,
and v(k) is the measurement noise. Both are assumed to be sequences of integrated white
noise.

To eliminate steady state errors and in the presence of uncertainties or disturbances, it
is necessary to embed integrators in the model [36].

By defining a new vector for the state variable x(k) = [∆xm(k)T y(k)T ]
T , it is shown

that the original plant model is augmented by an integrator and represented as follows[
∆xm(k + 1)

y(k + 1)

]
=

[
Am oT

m
Cm Am Iq×q

][
∆xm(k)

y(k)

]
+

[
Bm

CmBm

]
∆u(k) +

[
Bd

CmBd

]
ε(k)

y(k) =
[
om Iq×q

][∆xm(k)
y(k)

] (10)

where Iq×q is an identity matrix with q× q elements, and om is a q× n1 zero matrix and

w(k)− w(k− 1) = ε(k) (11)

For simplicity, the discrete state space system with an embedded integrator (aug-
mented model) is represented as follows

x(k + 1) = Ax(k) + B∆u(k) + Bεε(k)
y(k) = Cx(k)

(12)

where

A =

[
Am oT

m
Cm Am Iq×q

]
; B =

[
Bm

CmBm

]
;

Bε =

[
Bd

CmBd

]
; C =

[
om Iq×q

] (13)

The dimensionality of the augmented state-space equation is n which is equal to
n1 + q.
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Define ki as the sampling time. Then, the current plant states are denoted by x(ki),
and the future control trajectory is:

∆U =
[
∆u(ki)

T ∆u(ki + 1)T . . . ∆u(ki + Nc − 1)T
]

T (14)

where Nc is called the control horizon, which is the number of parameters used for the
future control trajectory.

The future state variables are:

x(ki + 1 | ki) x(ki + 2 | ki) . . . x(ki + m | ki) x
(
ki + Np

∣∣ ki
)

(15)

where x(ki + m | ki) is the predicted state variable at instant m given the current plant
information. Np is called the prediction horizon and represents the optimization window
such that Nc ≤ Np.

To reduce the computational effort, an MPC method based on orthonormal Laguerre
functions was chosen for this study. This method is proposed for applications where rapid
system dynamics is required [30,37].

In this method, the control trajectory ∆U is expressed by a set of orthonormal functions
called Laguerre functions. The Laguerre networks are known for their orthonormality. The
z-transforms of the discrete-time Laguerre networks are written as

Γ1(z) =
√

1−a2

1−az−1

Γ2(z) =
√

1−a2

1−az−1
z−1−a

1−az−1

...

ΓN(z) =
√

1−a2

1−az−1

(
z−1−a

1−az−1

)N−1

(16)

where a is the pole of the discrete-time Laguerre network. a is also called the scaling
factor and must be selected by the user. To ensure the stability of the network, a should be
0 ≤ a ≤ 1.

N is the order of the Laguerre network and is used to capture the control signal. N
has a similar function to the control horizon in classical MPC.

The inverse z-transform of ΓN(z) is denoted by lN(k), thus the set of discrete-time
Laguerre functions for i = 1, . . . , m inputs is represented in vector form as

Li(k) = [l1(k) l2(k) . . . lN(k)] T (17)

Li(k) is solved as follows
Li(k + 1) = Al iLi(k) (18)

where Al i is a (N × N) matrix and a function of a and β =
(
1− a2).

The initial condition of Equation (18) is

Li(0) =
√

β
[
1 − a a2 . . . (−1)N−1aN−1

]T
(19)

At time instant ki, the control trajectory (14) is considered as the impulse response of a
stable dynamical system. Therefore, a set of Laguerre functions, l1(k), l2(k), . . . , lN(k) is
used to capture this response with a set of Laguerre coefficients cj determined during the
design. At any arbitrary future time instant k, the control input ∆u(ki + k) is represented as

∆u(ki + k) =
N

∑
j=1

cj(ki)lj(k) = Li(k)Tηi (20)

where ηi = [c1 c2 . . . cN]T, and cj are functions of the initial time instant of the moving
horizon window ki.
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The control horizon Nc from classical MPC disappears here. Instead, the number of
terms N and the parameter a are used to describe the complexity of the control trajectory.

The goal now is to find the optimal coefficient vector η that minimizes the cost function
J, which is represented as

J =
Np

∑
m=1

x(ki + m |ki)
TQ x(ki + m |ki) + ηT R η (21)

where Q and R are symmetric, positive definite weight matrices chosen by the designer.
Once the optimal coefficient vector η is found, the receding horizon control law is

obtained using Equation (20), which is written in terms of linear state feedback control as
follows [29].

∆u(k) = −Kmpcx(k) (22)

where

Kmpc = Li(0)T
((

∑Np
m=1 φ(m)Q φ(m)T + R

)−1
∑Np

m=1 φ(m)QAm
)

(23)

or it can be written as
Kmpc = Li(0)TΩ−1Ψ (24)

where φ(m)T = ∑m−1
i=0 Am−i−1BL(i)T is the convolution sum to compute the prediction

of the augmented state space system of Equation (10), Ω = ∑
Np
m=1 φ(m)Q φ(m)T + R and

Ψ = ∑
Np
m=1 φ(m)QAm.

Since the prediction of future states is based on the current information about x(ki),
the set point information is contained in x(ki) as

x(ki) =

[
∆xm(ki)

e(ki)

]
e(ki) = y(ki)− r(ki)

(25)

and Kmpc gain is rewritten and divided into two parts as

Kmpc =
[
Kx Ke

]
(26)

Equation (26) is used to represent the closed loop of the discrete-time MPC system
using the Laguerre function as[

∆xm(k + 1)
y(k + 1)

]
=
(

A− BKmpc
)[∆xm(k)

y(k)

]
+ BKey(k)y(k) = C

[
∆xm(k)

y(k)

]
(27)

Operational constraints are known to be a reason for performance deterioration of the
control system when the control signals from the original design meet them. The ability
to deal with hard constraints is one of the main features of the MPC. In this study, the
constraint on the amplitude of the control signal and its rate of change is considered.

Using the Laguerre functions in the design, the incremental control signal is repre-
sented by

∆u(ki + m) = L(m)Tη (28)

The constraints are processed as linear inequalities and combined with the cost func-
tion. In other words, the optimization procedure now consists of minimizing the cost
function J while ensuring that

∆umin ≤ ∆u(ki + m) ≤ ∆umax (29)

and
umin ≤ u(ki + m) ≤ umax (30)
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In principle, all constraints are defined within the prediction horizon. The controller
calculates the input trajectory at each time step and implements only the first step of the
calculated trajectory if it is within the set limits. However, if, for example, the first step of
the input u is greater than the maximum limit umax, then the controller would implement
the value of umax; then, it would reoptimize and calculate a new input trajectory at the next
time step. These limits are implemented in the code for calculating the control trajectory
after determining the affected matrices [29].

2.3. Discrete Time Kalman Filter

The general discrete-time state-space model of the plant with process noise and
measurements v(k) and w(k) is described by Equation (9) in Section 2.2. These are assumed
to be integrated white noise sequences with covariances QK and RK [38].

The discrete time Kalman filter is a feedback controller that estimates the state variables
from the system model and the available measured outputs. Thus, if Am and Cm are
observable quantities, then the control law is computed using the estimated state variables,
which are as follows

x̂(ki + 1) = Ax̂(ki) + B∆u(ki) + Kobs(y(ki)− Cx̂(ki)) (31)

where x̂(ki) is the current state of the observer, and Kobs is the Kalman filter found by
solving the discrete time Riccati equation [29,39].

P(k + 1) = APAT − APCT
(

RK + CPCT
)−1

CPAT + QK (32)

then
Kobs(k) = APCT

(
RK + CPCT

)−1
(33)

where, the covariances QK and RK are used as weighting matrices for the filter to tradeoff
between the measured values and the values estimated by the model. A block diagram for
the closed loop system with Kalman filter is shown in Figure 2.
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2.4. Simulation Results Analysis

Controller performance is quantitatively assessed through several performance mea-
sures and indices. In this study, three performance metrics are used to compare the step
responses of different systems:

1. The 10–90% rise time Tr to give an indication of the speed of the response.
2. The present overshoot, P.O., which measures the similarity with which the actual

response matches the step input.
3. The settling time, Ts, which indicates how quickly the system settles within 2% of the

input amplitude.
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In addition to these measures, the integral of the square of the error, ISE, is used as a
performance indicator. It is defined as

ISE =

T∫
0

e2(t) dt (34)

where the error e is the difference between the input and output signals and the upper limit
of the integral T is the settling time [40].

Similarly, the integral of the control action (ISU) associated with the input u is [27]

ISU =

T∫
0

u2(t) dt (35)

3. Results and Discussion

In this section, the open-loop system is analyzed, then the closed-loop system is
designed, tuned, and simulated. The results of both systems—which are restricted to a
linear system with no control delay—are plotted and discussed.

3.1. The Open Loop System Analysis

To validate the model, the system parameters used by Conner et al. [41] and listed in
Appendix C were used in this work.

Using the eigenvalue analysis of the state-space model with a constant air density
(1.225 kg/m3), as shown in Figure 3, the linear instability (flutter speed) was found to be
23.96 m/s at a frequency of 6.12 Hz.
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Figure 3a shows that the damping of both pitch and plunge modes initially increases
(in the negative direction), but at some point, the damping of the pitch mode continues
to increase, while the damping of the plunge mode begins to decrease and becomes zero
at the flutter speed of 23.96 m/s. After this critical speed, the plunge damping becomes
positive [42].

Flutter is the result of a combination of at least two modes. This can be seen in
Figure 3b, where the pitch and plunge frequencies (the imaginary parts of the eigenvalues)
begin to approach each other near the flutter speed without coalescence. At this point, the
mode shapes are similar enough to allow energy exchange between them. The pitch mode
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loses energy to the plunge mode, which is why the pitch mode is highly damped (high
negative real part) and the plunge mode is undamped (zero real part) [33,43].

These results are within 15% difference when compared with the experimental work of
Conner et al. [41], where the experimental flutter speed was 20.6 m/s at 5.47 Hz. However,
they are in exact agreement with the numerical simulation results of the same work. In
the author’s opinion, this error is most likely due to the aerodynamic effects not modeled
by Theodorsen’s model, as well as the three-dimensional aerodynamic effects in the wind
tunnel.

The results in Figure 3b also indicate that the degree of freedom of the control surface
has no effect on flutter, which means that a wing system with two degrees of freedom and
coalescence between the plunge and pitch modes would lead to the same results. This
can be explained by comparing the uncoupled natural frequencies of the studied model:
ωh =

√
kh/m = 42.42 rad/s, which is very close to ωα =

√
kα/Iα = 52.65 rad/s, while the

flap natural frequency is much higher ωβ =
√

kβ/Iβ = 109.3 rad/s.
To compare the open-loop response of the linear system to an initial disturbance before

and after the critical linear flutter speed, the response of the system to the initial condition
(2◦ pitch-angle disturbance) was simulated in the time domain at 1% less and 1% more
than the calculated flutter speed. The results are shown in Figure 4.
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Figure 4 demonstrates that the generated oscillation of the plunge, pitch, and flap
angle asymptotically approaches zero after a few seconds at speeds lower than the critical
flutter speed. The aeroelastic system is stable as a result. The oscillations increase infinitely
with increasing time at a speed just a little bit over the critical flutter speed. In other words,
a tiny unintentional perturbation of the airfoil might act as a catalyst for a severe oscillation.
Real physical systems could experience wing separation or damage because of this.

3.2. Closed Loop MPC Using Laguerre Functions

In this section, the discrete-time MPC using Laguerre Functions described in Section 2.2
is designed and tuned to stabilize the wing system in the linear flutter instability region.
The calculated optimal controller trajectory is a function of the discrete system matrix Am,
which has a different element value at each value of free-stream velocity and air density.
For simulation purposes, the airspeed of 25.16 m/s and density of 1.225 kg/m3 (5% above
the flutter critical speed) were chosen, and the closed-loop response of the system to the
initial disturbance, in addition to the response to step input, were simulated at this speed.

Equation (20) indicates that the LMPC control trajectory ∆u is a function of the set of
discrete-time Laguerre functions Li(k), which in turn depend on the choice of the pole of the
discrete-time Laguerre network a and the order of the Laguerre network N. In addition, ∆u
is a function of η, calculated from the cost function J shown in Equation (21) and depends
on the selection of the weighting matrices Q and R. These controller tuning parameters
were obtained by trial and error with NP = 500, a = 0.3, N = 16, Q = C′C, R = 25, and the
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control horizon for classic MPC was chosen as Nc = 30. For more details on the influence
of the MPC and LMPC parameters on the controller performance, see Refs. [29,37].

Table 1 shows the closed-loop response of the system to the initial conditions (distur-
bance) of the unconstrained LMPC in trials 1 and 2 compared to the constrained LMPC
in trials 3 and 4 for the same values of tuning parameters. The input constraints must
be chosen lower than the physical limits of the actuator to avoid saturation and perfor-
mance deterioration. For the simulation purpose in this work, the limits were set to
−10◦ ≤ u ≤ 10◦, and − 105◦/s ≤ du

dt ≤ 105◦/s.

Table 1. The closed-loop unconstrained and constrained LMPC system responses to initial conditions
(disturbance).

Trial
No. R

u(deg)
Input
Const.

du/dt
Input
Const.

Ts
for h

ISE
for h

Ts
for α

ISE
for α

Ts
for β

ISE
for β

ISU u(deg)
max.

du/dt
max.

1 25 No No 0.6 0.02 0.7 0.02 0.5 0.16 0.14 11.8 2000

2 50 No No 0.8 0.03 0.8 0.02 0.6 0.17 0.15 7.9 1194

3 25 10 105 0.8 0.03 0.8 0.02 0.7 0.13 0.16 3.9 105

4 50 10 105 0.8 0.03 0.8 0.02 0.8 0.14 0.16 3.7 105

From Table 1, although the performance is theoretically better when the value of the
control cost R is less (more aggressive control input), the control input rate in trials 1 and 2
is too high when compared with the physical limits of an experimental actuator, such as the
one reported in Ref. [19], where the dynamics of the motor are neglected, but the maximum
deflection of the control surface is reported to be ± 32◦ and the maximum velocity is only
4.75 rad/s (272 deg/s); this makes trials 1 and 2 impractical. In trials 3 and 4, the effect
of the control cost R is less significant in the presence of the controller-imbedded input
constraints, as the values of ISE, the settling time, and the ISU are almost similar for the
three position states h, α, and β.

The position and speed states of the constrained classical MPC and constrained LMPC
closed-loop system response to an initial disturbance of 2◦ pitch angle are shown in Figure 5,
and the constrained input with its rate of change are shown in Figure 6. From Figure 6, the
rate of change of the input signal cannot exceed the set constraint of 105 deg/s. Limiting
the input signal or its rate of change to a certain constraint value such as shown in Figure 6
would be a problem if the control input were calculated offline, as in traditional optimal
control methods, but with MPC, the controller measures the output and recalculates the
input trajectory at each time step, based only on current states and independent of history.

Figure 5 shows that the system states were successfully and very quickly driven to
zero in less than one second with both controllers. Although the final system response
is almost the same, the elapsed time required to calculate the control trajectory with the
classical MPC was estimated using tictoc function in MATLAB® environment. The result
was 311 milliseconds, while for the LMPC it was 56 milliseconds (82% less). The used
hardware was a DELL Inspiron 5559 laptop made by Dell Inc. in China, with Intel® Core™
i7-6500U CPU at 2.50 GHz microprocessor, and 16 GB of RAM, while the software was
MATLAB® version R2021a from The MathWorks, Inc., Natick, MA, USA, installed over MS
Windows 10 Home, version 21H2 operating system from Microsoft Corporation, Redmond,
WA, USA. This result suggests that LMPC can be used in place of classical MPC to achieve
very similar performance with much less computing power.

In addition, the closed loop system response of the LMPC to a step input of 5◦ flap
angle was tested in the linear flutter instability region, using the same selection of tuning
parameters as described above. The results are shown in Table 2, Figures 7 and 8 below. As
shown, the response is very fast and stable with a settling time of less than 0.5 s and less
than 20% overshoot.
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Table 2. The closed-loop unconstrained and constrained LMPC system response to step input.

Trial
No. R

u(deg)
Input
Const.

du/dt
Input
Const.

ISE
for β

Tr P.O. % Ts ISU u(deg)
max.

du/dt
max.

1 25 No No 0.04 0.08 21 0.46 0.17 7.6 332

2 50 No No 0.04 0.08 19 0.47 0.17 7.5 263

3 25 10 105 0.05 0.09 20 0.47 0.18 7.6 105

4 50 10 105 0.06 0.09 18 0.48 0.18 7.5 105
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Appendix A 

Theodorsen’s functions are required to include the effect of a control surface on the 

aerodynamics and so the flutter dynamics of the model [35]. 

𝑇1 = −
1

3
√1 − 𝑐2(2 + 𝑐2) + 𝑐 cos−1(𝑐) (A1) 

𝑇2 = 𝑐(1 − 𝑐2) − √1 − 𝑐2(1 + 𝑐2) cos−1(𝑐) + 𝑐[cos−1(𝑐)]2 (A2) 

𝑇3 = −(
1

8
+ 𝑐2) [cos−1(𝑐)]2 +

1

4
𝑐√1 − 𝑐2 cos−1(𝑐)(7 + 2𝑐2) −

1

8
(1 − 𝑐2)(5𝑐2 + 4) (A3) 

𝑇4 = −cos−1(𝑐) + 𝑐√1 − 𝑐2 (A4) 

𝑇5 = −(1 − 𝑐2) − [cos−1(𝑐)]2 + 2𝑐√1 − 𝑐2 cos−1(𝑐) (A5) 

𝑇6 = 𝑇2 (A6) 
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4. Conclusions

The objective of this work was to investigate the effectiveness of using discrete LMPC
in suppressing the flutter of a two-dimensional wing with a control surface (flap). A
mathematical state-space model for a two-dimensional wing with a flap under unsteady
aerodynamics was derived and used to determine the linear flutter speed and frequency
of an experimental wing. A discrete-time LMPC with Kalman filter for states estimation
was then designed, tuned, and quantitatively analyzed for response to initial condition
and step input with and without input constraints. The results indicate that the feature of
systematic dealing with input constraints is very powerful and useful to avoid actuator
saturation and performance deterioration.

To investigate the advantages of LMPC over classical MPC in fast aeroelastic applica-
tions that requires powerful computer hardware, the elapsed time required to compute the
control trajectory was measured for classical MPC compared to LMPC using tictoc function
in the MATLAB environment. The result showed a time saving of 82% when using LMPC,
making it a very powerful approach to reduce the required computing power.
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Appendix A

Theodorsen’s functions are required to include the effect of a control surface on the
aerodynamics and so the flutter dynamics of the model [35].

T1 = −1
3

√
1− c2

(
2 + c2

)
+ c cos−1(c) (A1)

T2 = c
(

1− c2
)
−
√

1− c2
(

1 + c2
)

cos−1(c) + c[cos−1(c)]
2

(A2)

T3 = −
(

1
8
+ c2

)[
cos−1(c)

]2
+

1
4

c
√

1− c2 cos−1(c)
(

7 + 2c2
)
− 1

8

(
1− c2

)(
5c2 + 4

)
(A3)

T4 = − cos−1(c) + c
√

1− c2 (A4)

T5 = −
(

1− c2
)
− [cos−1(c)]

2
+ 2c

√
1− c2 cos−1(c) (A5)

T6 = T2 (A6)

T7 = −
(

1
8
+ c2

)
cos−1(c) +

1
8

c
√

1− c2
(

7 + 2c2
)

(A7)

T8 = −1
3

√
1− c2

(
2c2 + 1

)
+ c cos−1(c) (A8)

T9 =
1
2

[
1
3

(
1− c2

) 3
2
+ aT4

]
(A9)

T10 =
√

1− c2 + cos−1(c) (A10)

T11 = cos−1(c)(1− 2c) +
√

1− c2 (2− c) (A11)

T12 =
√

1− c2(2 + c)− cos−1(c)(1 + 2c) (A12)

T13 =
1
2
[−T7 − (c− a)T1] (A13)

T14 =
1

16
+

1
2

ac (A14)

Appendix B

The full system Equations in Matrix form is

[
Ms − Ma

] 
..
h/b

..
α
..
β

+
[

Ds − Da
] 

.
h/b

.
α
.
β

+
[

Ks − Ka
] 

h/b
α
β

 = Lδ

{
`1
`2

}
+ Lc{βc} (A15)

where the dimensionless system matrices are

Ms = µ


1 xα

mβ

m xβ

xα r2
α

mβ

m

[
(c− a)xβ + r2

β

]
mβ

m xβ
mβ

m

[
(c− a)xβ + r2

β

] mβ

m r2
β

 (A16)
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Ds = 2µ

σζh 0 0
0 r2

αζα 0
0 0

mβ

m
ωβ

ωα
r2

βζβ

 (A17)

Ks = µ

σ2 0 0
0 r2

α 0

0 0
mβ

m

(
ωβ

ωα

)2
r2

β

 (A18)

Lc = µ

 0
0

mβ

m

(
ωβ

ωα

)2
r2

β

 (A19)

Ma =

−1 a T1
π

a −
(

1
8 + a2

)
− 2T13

π
T1
π − 2T13

π
T3
π2

 (A20)

Da = V

 −2 −2(1− a) T4−T11
π

1 + 2a a(1− 2a) 1
π (T8 − T1 + (c− a)T4 + aT11)

− T12
π

1
π

(
2T9 + T1 + (T12 − T4)

(
a− 1

2

))
T11
2π2 (T4 − T12)

 (A21)

Ka = V2

0 −2 − 2T10
π

0 1 + 2a 1
π (2aT10 − T4)

0 − T12
π − 1

π2 (T5 − T10(T4 − T12))

 (A22)

Lδ = 2V

 δ1 δ2

−
(

1
2 + a

)
δ1 −

(
1
2 + a

)
δ2

T12δ1
2π

T12δ2
2π

 (A23)

Qa =

[
1 1

2 − a T11
2π

1 1
2 − a T11

2π

]
(A24)

Qv = U

[
0 1 T10

π

0 1 T10
π

]
(A25)

Lλ = V
[
−λ1 0

0 −λ2

]
(A26)

The dimensionless variables are [1]
µ = m

πρ∞b2 ; The ratio of the total wing’s mass to the mass of the air affected by the wing

r2
α = Iα

mb2 ; The dimensionless radius of gyration of the wing about the elastic axis

r2
β =

Iβ

mβb2 ; The dimensionless radius of gyration of the control surface about its hinge

Kh = mω2
h; The plunge structural stiffness, where ωh is uncoupled plunge fre-quency

Kα = Iαω2
α; The pitch structural stiffness, where ωα is uncoupled pitch fre-quency

Kβ = Iβω2
β;

The control surface structural stiffness, where ωβ is uncoupled control
surface frequency

σ = ωh
ωα

; The ratio of uncoupled plunge and pitch natural frequencies
V = U

bωα
; The reduced velocity, or the dimensionless free stream speed of air

ch = 2mωhζh; The plunge structural damping, where ζh is the plunge damping ratio
cα = 2Iαωαζα; The pitch structural damping, where ζα is the pitch damping ratio

cβ = 2Iβωβζβ;
The control surface structural damping, where ζβ is the control sur-face
damping ratio

τ = ωαt; The dimensionless time
Equation (A15) is converted to the following standard state space form

.
x = Ax + Buy = Cx + Du (A27)
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where the complete state vector x is defined by combining
.
xs, xs and xa as following

x =
[ .

h/b
.
α

.
β h/b α β `1 `2

]T
(A28)

The system matrix A is

A =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 (A29)

where
A113x3 = −

[
Ms − Ma

]−1[ Ds − Da
]

(A30)

A123x3 = −
[

Ms − Ma
]−1[ Ks − Ka

]
(A31)

A133x2 =
[

Ms − Ma
]−1 Lδ (A32)

A213x3 =

1 0 0
0 1 0
0 0 1

 (A33)

A223x3 =

0 0 0
0 0 0
0 0 0

 (A34)

A233x2 =

0 0
0 0
0 0

 (A35)

A312x3 = QaA11 + Qv (A36)

A322x3 = QaA12 (A37)

A332x2 = QaA13 + Lλ (A38)

The input matrix B is

B8x1 =

B11
B21
B31

 (A39)

B113x1 =
[

Ms − Ma
]−1[ Lc

]
(A40)

B213x1 =

0
0
0

 (A41)

B312x1 = QaB11 (A42)

The output matrix C relates the state variables to the measured system variables.

C =
[
0 0 0 0 0 1 0 0

]
(A43)

And the feed through matrix D is

D = [0] (A44)

Appendix C

The system parameters used in the aeroelastic system simulation in this study are
adapted from Conner et al. [41] and shown in Table A1.
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Table A1. System’s Numerical data for Simulation.

Geometric Parameters

Chord 0.254 m
Span 0.52 m

Semi-chord, b 0.127 m
Elastic axis, a with respect to b −0.5
Hinge line, c with respect to b 0.5

Mass Parameters

Mass of the wing 0.62868 kg
Mass of the aileron 0.18597 kg

Mass/length of the wing-aileron 0.1558 kg/m
Mass of support blocks 0.47485 × 2 kg

Inertial Parameters

Sα (per span) 0.08587 kg m
Sβ (per span) 0.00395 kg m

xα 0.434
xβ 0.01996

Iα (per span) 0.01347 kg m2

Iβ (per span) 0.0003264 kg m2

rα 0.7321
rβ 0.11397
κ 0.03984

Stiffness Parameters

Kα (per span) 14,861 1/s2

Kβ (per span) 155 1/s2

Kh (per span) 1809 1/s2

Damping Parameters

ζα (log-dec) 0.01626
ζβ (log-dec) 0.0115
ζh (log-dec) 0.0113

W.P. Jones’ Approximation

λ1 0.014
δ1 0.165
λ2 0.320
δ2 0.335
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