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Abstract: An adaptive weighted strong tracking unscented Kalman filter is proposed in this paper
for long-range relative navigation alongside non-cooperative maneuvering targets. First, an equation
for obtaining the relative motion of two bodies is derived, it can be well adapted for a problem that
has medium or long-distance. Secondly, a variance statistics function is introduced in the method
to calculate residual weight in real time. The residual weight can be used to adjust the contribution
of different measurement information to the fading factor. In this way, the sensitivity of the system
to small pulse maneuvers is improved. Finally, the mean and covariance of the posterior state are
calculated by the unscented transformation. A replacement equation for the fading factor is derived
to improve the first-order approximation accuracy for a strong tracking system. Impulsive maneuvers
with three different magnitudes are employed in a series of tests. Results from different methods
showed that the proposed method could effectively detect pulse maneuvers with low latency. The
proposed method is also numerically stable.

Keywords: adaptive weighted; relative navigation; fading factor; unscented transformation

1. Introduction

In recent years, as the number of spacecraft has increased drastically, space situation
awareness (SSA) technology has attracted more and more attention [1–3]. In particular, a
real-time orbit determination method for non-cooperative maneuvering targets is urgently
needed for space security [4–7]. For a ground system, the response time and the accu-
racy of orbit determination no longer meet the requirements of relative navigation with
targets that are 100 km apart. To obtain space situational awareness ability, it is vital to
develop an orbit determination method for medium or long-distance space non-cooperative
maneuvering targets based on a spaceborne platform [8]. For the current research, meth-
ods for maneuvering detection and relative navigation for non-cooperative targets are
investigated [9].

In order to accurately detect the maneuvers of a non-cooperative target, the system
state equation and measurement equation are needed, and a filtering method needs to
be appropriately selected [10–13]. The system state equations that describe the relative
navigation are composed of an algebraic method and a geometric method. Based on relative
motion between spacecraft, the algebraic method establishes simplified dynamic equa-
tions [14], which include the Clohessy–Wiltshire (CW) equation, the Tschauner–Hempel
(TH) equation, and the relative motion equation, which considers the perturbation term.
On the other hand, the algebraic method can directly be employed for short-range missions
such as satellite formation and spacecraft rendezvous and docking. However, because
of the assumptions that were made beforehand, the algebraic method is not suitable for
long-range (more than 100 km) relative navigation. The geometric method describes the
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relative motion of two spacecraft by orbital elements. Perturbations on the spacecraft can
be described clearly in the geometric method, and the orbital design can be easily con-
ducted [15–17]. Nevertheless, the equations for the geometric method are complex, and it
is difficult to be applied in the relative navigation for a non-cooperative target. The double
line-of-sight angle measurement method and line-of-sight angle combined-ranging method
are usually employed in the measurement equation [18–21]. For the double line-of-sight
angle measurement method, two observation satellites are required to observe the target
satellite at the same time. The cost of the method is high, and there are lots of risks. The
line-of-sight angle combined-ranging method is generally utilized in long-distance obser-
vation. For this method, the relative distance, velocity and relative angle can be obtained
by different sensors, which has the advantages of low cost and strong reliability. It also
meets the requirements of relative navigation. The filtering method generally adopts the
non-linear Kalman filtering method [22–24], including extended Kalman filtering (EKF)
and unscented Kalman filtering (UKF). However, when the target is being maneuvered,
especially a non-cooperative target, the lack of maneuvering information will cause dis-
agreement between the dynamic model and the actual maneuvering state, which affects the
tracking performance of the filter, and can even lead to divergence. To solve the issue, Zhou
proposed a strong tracking method and employed a residual orthogonality principle to
make the system more robust to maneuverings [25,26]. Wang combined the strong tracking
filter (STF) with the unscented Kalman filter (UKF), and they proposed the strong tracking
unscented Kalman filter (STUKF) method to improve the non-linear processing ability of
the system [27]. Jiang proposed residual normalized strong tracking extended Kalman
filter, which adjusts the fade factor by residual normalization to improve the tracking ability
of the filter [28]. However, for a strong non-linear system, with small maneuver changes,
detection latency and filtering divergence are presented in the existing methods.

To solve the abovementioned problems, the adaptive weighted strong tracking un-
scented Kalman filter (AWSTUKF) method is proposed in the present paper. First, the
relative motion equation that is suitable for a medium or long-distance problem is derived
from the relative motion equation of a space target. Secondly, considering that a small pulse
maneuver is hard to be detected by a strong tracking filter, the proposed method introduces
the statistical variance function, which calculates a weight coefficient in real-time. The
weight coefficient controls the contribution of different measurement information to the at-
tenuation factor. Therefore, the filter can detect the small pulse maneuver faster with higher
precision. Finally, the mean and covariance of the posterior state are calculated by using
the unscented transformation to overcome the problem of first-order low-approximation
accuracy in a strong tracking filter system. Impulsive maneuvers with three different
magnitudes are employed in a series of simulations. The result showed that the proposed
method could effectively detect pulse maneuvers with low delay. It also has a good tracking
performance and good numerical stability.

The remainder of the manuscript is organized as follows. In Section 2, the dynamic
model and the observation equation are introduced. Details of the proposed AWSTUKF
method are presented. In Section 3, different simulation scenarios are designed to illustrate
the feasibility of this method with respect to various maneuvers. The performance of
the proposed method is verified by comparing the CWSTF and the STUKF methods. In
Section 4, conclusions and discussions are provided.

2. Methodology
2.1. Relative Navigation Dynamics Equation and Observation Equation

To describe the relative position and velocity of two spatial objects, a reference coordi-
nate system is first defined as the orbital coordinate system (Figure 1). The earth center, OE,
is the origin. The origin of the orbital coordinate system is the centroid of the space-based
platform. The X-axis is in the direction of the earth center to the space-based platform.
Y-axis points in the velocity direction of the space-based platform, and it is perpendicular
to the X-axis on the orbital plane. The Z-axis points in the normal direction of the orbital
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plane. The coordinate system is a right-hand system. A typical relative position of the
space-based platforms and the non-cooperative targets are plotted in Figure 2.

X
Y

Z

Oe

O

Figure 1. The Orbital Coordinate System.

ST

So
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TR 

EO

Figure 2. The Position Vector from the Observer to the Target.

In Figure 2, So is the space-based platform or the observer, ST is the non-cooperative tar-
get, Ro and RT are the position vectors of the space-based platform and the non-cooperative
target, respectively. The relative position vector is defined as ρ = RT − Ro. According to the
vector differential method in the dynamic coordinate system, the second-order derivative
of the relative position vector is,

d2ρ

dt2 = ρ̈ + 2ωo × ρ̇ + ωo × (ωo × ρ) + ω̇o × ρ, (1)

where d2ρ

dt2 is the absolute derivative, ωo = [0, 0, n]T is the orbital angular velocity vector of
the space-based platform, ρ̇ and ρ̈ is the local derivative in the dynamic coordinate system.
Assuming that the spacecraft is not maneuvered,

d2ρ

dt2 = ∆ρg + ∆ρp. (2)
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In Equation (2), ∆ρg is the central gravitational acceleration, and ∆ρp is the perturba-
tion acceleration. Combining Equations (1) and (2), neglecting perturbation acceleration,
two-body relative motion equations can be obtained as,

ρ̈ = −2ωo × ρ̇−ωo × (ωo × ρ)− ω̇o × ρ + ∆ρg (3)

The relative vector of the two targets is projected to the orbital coordinate system. The
gravitational acceleration of the non-cooperative target and the space-based platform in
the orbital coordinate system can be derived as,

aT = − µ

r3
T

[ro + x, y, z]T , (4)

ao = − µ

r3
o
[1, 0, 0]T , (5)

where µ is the gravitational constant of the earth, rT is the center distance of the non-
cooperative target, and ro is the center distance of the space-based platform. The central
gravitational acceleration difference between the two is calculated as,

∆ρg = − µ

r3
T

[ro + x, y, z]T +
µ

r3
o
[1, 0, 0]T , (6)

where rT =
√
(ro + x)2 + y2 + z2. Substituting Equation (6) into Equation (3) and replace

it into the coordinate component form, the system state equation can be obtained as,

Ẋ =



ẋ
ẏ
ż
n2x + 2nẏ + µ

/
r2

o − µ(ro + x)
/

r3
T

n2y− 2nẋ− µy
/

r3
T

−µz
/

r3
T

+ w, (7)

where,
X = [x, y, z, ẋ, ẏ, ż]T ,

is the state vector of the filter, n is the rotational angular velocity of the earth, w represents
the model error which can be represented by Gaussian white noise. This equation describes
the relative motion between the target spacecraft and the space-based platform. In the
equation, only gravity of the earth’s center is considered, it does not consider the earth’s
non-spherical perturbation, atmospheric drag, and unknown maneuvers. Different from
the CW equation, the equation considers the influence of the relative distance between
targets on the state equation, which is more suitable for medium and long-distance relative
navigation systems [8].

In the relative navigation observation system, the main measurement equipment
are line-of-sight angle measurement and range measurement. In order to simplify the
calculation, the measurement coordinate system and the orbital coordinate system are
overlapped, and the azimuth and elevation angles are defined as [20,21],

A = arctan
(

x
y

)
E = arctan

(
z√

x2+y2

) . (8)

The range and range rate in the target coordinate measurement system can be ex-
pressed as [24],

roT =
√

x2 + y2 + z2

ṙoT = dot(roT ,ṙoT)
roT

}
, (9)
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Hence, the observation equation of the relative navigation system can be established as,

Z =



√
x2 + y2 + z2

arctan
(

x
y

)
arctan

(
z√

x2+y2

)
dot(roT ,ṙoT)

roT

+ v, (10)

where v represents the measurement error which is analogous to Gaussian white noise, the
state equation and observation equation for non-cooperative target tracking are included in
Equations (7) and (10). It can be observed that the state function and observation function
are non-linear. To solve the equation, the non-linear state estimation method should be
employed.

2.2. Adaptive Weighted Strong Tracking Unscented Kalman Filter
2.2.1. Strong Tracking Filter

For the strong tracking filter (STF), it is basically an extended Kalman filter. By utilizing
fading factor λk+1, the one-step prediction covariance matrix Pk+1|k is corrected in real-time.
The gain of the filtering Kk+1 is adjusted to satisfy [25,26],

(1) E
[
(xk+1 − x̂k+1)(xk+1 − x̂k+1)

T
]
= min,

(2) E
[
γk+1+jγ

T
k+1

]
= 0, k = 0, 1, · · ·, j = 1, 2, · · ·.

Condition (1) is an effectiveness indicator of the EKF. Condition (2) ensures the system
orthogonality on the residual output sequence. In engineering practice, as the target
maneuvers, due to disagreement of the dynamic model, the estimated output of the filter
will deviate from the system, resulting in a non-orthogonal residual sequence. According
to this, the strong tracking filter introduces the fading factor to adjust the filtering gain
online. As a result, the residual sequence remains orthogonal, and the effective information
in the residual sequence is employed to maximize the tracking performance of the system.
The STF is derived as,

x̂k+1|k = Fk+1|k x̂k|k, (11)

Pk+1|k = λk+1Fk+1|kPk|kFT
k+1|k + Qk, (12)

Kk+1 = Pk+1|k HT
k+1

(
Hk+1Pk+1|k HT

k+1 + Rk+1

)−1
, (13)

x̂k+1 = x̂k+1|k + Kk+1

(
yk+1 − ŷk+1|k

)
, (14)

Pk+1 = (I − Kk+1Hk+1)Pk+1|k, (15)

where λk+1 is the fading factor, it can be determined by the orthogonality principle [11],

λk+1 =

{
λ0, λ0 ≥ 1
1, λ0 < 1,

, λ0 =
tr[Nk+1]

tr[Mk+1]
, (16)

Nk+1 = Vk+1 − Hk+1Qk HT
k+1 − Rk+1, (17)

Mk+1 = Fk+1|kPk|kFT
k+1|k HT

k+1Hk+1, (18)

where tr[·] represents the trace of a matrix, Vk+1 is the covariance matrix of the actual
output residual sequence, which can be calculated by,

Vk+1 =

{
γ1γT

1 , k = 0
ρVk+γk+1γT

k+1
1+ρ , k ≥ 1

(19)
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In Equation (19), ρ is a fading factor and 0 < ρ ≤ 1. The fading factor is usually set to 0.95.

2.2.2. Deficiencies in the Strong Tracking Filter

From Equation (17), it can be derived that,

tr[Nk+1] = tr[Vk+1]− tr
[

Rk+1 − Hk+1Qk HT
k+1

]
. (20)

In Equation (20), the second term on the right-hand side of the equation is independent
of the residual sequence. It can be written as sk+1 = tr

[
Rk+1 − Hk+1Qk HT

k+1

]
, where k ≥ 1,

thus,

tr[Nk+1] = tr[Vk+1]− sk+1 =
ρ

1 + ρ
tr[Vk+1] +

1
1 + ρ

m

∑
i=1

(
γi

k+1

)2
− sk+1. (21)

From Equation (16) to (18), one can observe that the denominator in λ0 is not related
to the residual γ, the size of λ0 is mainly determined by the second term in Equation (21).
However, in reality, different measurement information has significantly different values
of γi

k+1. Assuming γi
k+1 � γ

j
k+1 , there are two conditions. First, the normal disturbance

of γ
j
k+1 leads to λk+1 > 1. Second, the γi

k+1 exceeds the threshold, but its influence on

the λk+1 is very small, thus λk+1 = 1. In other words, λk+1 is sensitive to γ
j
k+1, but not

sensitive to γi
k+1, it will reduce the speed and accuracy of the maneuvering detection. At

the same time, the Jacobi matrix Hk+1 and Fk+1|k needs to be solved in the strong tracking
system. Furthermore, there will be large deviations when the state equation is strongly
non-linear. To tackle the drawbacks, in this paper, adaptive weighted strong tracking
unscented Kalman filter is proposed to improve the strong tracking method.

2.2.3. Adaptive Weighted Strong Tracking Unscented Kalman Filter

For the contribution of different measurement information to the fading factor, the
weight coefficient can be used for control and balancing. Considering that the relative
measurement information mainly includes ranging, velocity measurement, azimuth angle
and elevation angle, the weight coefficient is defined as,

wρ =
σ

σρ
, wA =

σ

σA
, wE =

σ

σE
, wρ̇ =

σ

σρ̇
, (22)

where σρ,σA,σE,σρ̇ are the measurements for variance statistics, which can be calculated by
the variance statistics function,

σi =

√√√√√√√√
n
∑

j=1

(
γi

k+1

)2

i
χ
(

γi
k+1, 3σ

)
n
∑

j=1
χ
(

γi
k+1, 3σ

) , i = ρ, A, E, ρ̇, (23)

σ =

√
σ2

ρ + σ2
A + σ2

E + σ2
ρ̇

4
, (24)

In Equation (23), χ
(

γi
k+1, 3σ

)
is the variance control function and,

χ
(

γi
k+1, 3σ

)
=

{
1, γi

k+1 < 3σ

0, γi
k+1 > 3σ

, i = ρ, A, E, ρ̇. (25)

In the filtering process, the residual information is recorded in real-time. When the
residual exceeds the threshold, the outliers can be considered and eliminated. The amount
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of statistical data can be adjusted by simulation. The initial weight coefficient can be set as
the initial variance provided by the measurement equipment. Let γ

′
k+1 = η · γk+1, where,

η, is a diagonal matrix and η = diag
(
wρ, wA, wE, wρ̇

)
. Therefore, Equation (19) becomes,

V
′
k+1 = E

[
γ
′
k+1

(
γ
′
k+1

)T
]
= Hk+1Pk+1|k HT

k+1 + Rk+1, (26)

where V
′
k+1 = ηVk+1ηT . When the target maneuvers, the system output residual is no

longer similar to the Gaussian white noise.

ηVk+1ηT > Hk+1Pk+1|k HT
k+1 + Rk+1 (27)

By substituting Equation (10) into Equation (27), the forced output residual is analogous to
Gaussian white noise again and,

ηVk+1ηT = Hk+1

(
λk+1Fk+1|kPk|kFT

k+1|k + Qk

)
HT

k+1 + Rk+1, (28)

Equation (28) becomes,
Nk+1 = λk+1Mk+1, (29)

where Nk+1 = ηVk+1ηT − Rk+1 − Hk+1Qk HT
k+1 and Mk+1 = Hk+1Fk+1|kPkFT

k+1|k HT
k+1.

Since the Jacobian matrix Hk+1 and Fk+1|k are required to solve for the λk+1 [29], it is
not suitable for strong non-linear systems. The posterior mean and covariance of state can
be calculated by Unscented transformation [30], the adaptive weighted strong tracking
filter can also be obtained based on Unscented transformation. Before the introduction of
the fading factor, the covariance matrix of state prediction is [31],

P(l)
k+1|k =

2n

∑
i=0

ωc
i

(
Xi

k+1|k − X̂k+1|k

)(
Xi

k+1|k − X̂k+1|k

)T
+ Qk = Fk+1|kPk|kFT

k+1|k + Qk, (30)

P(l)
xy =

2n

∑
i=0

ωc
i

(
xi

k+1|k − x̂k+1|k

)(
yi

k+1|k − ŷk+1|k

)T
= P(l)

k+1|k HT
k+1. (31)

Assuming that Qk is a positive definite symmetric matrix, then the inverse matrix of
P(l)

k+1|k must exist and can be calculated as,

Hk+1 =
(

P(l)
xy

)T(
P(l)

k+1|k

)−1
. (32)

The calculation formula of the fading factor is derived, and it can be obtained as,

Nk+1 = η(Vk+1)η − Rk+1 −
(

P(l)
xy

)T(
P(l)

k+1|k

)−1
Qk

(
P(l)

k+1|k

)−1(
P(l)

xy

)
, (33)

Mk+1 =
(

P(l)
xy

)T(
P(l)

k+1|k

)−1(
P(l)

k+1|k −Qk

)(
P(l)

k+1|k

)−1(
P(l)

xy

)
. (34)

In summary, the Unscented transformation with higher approximation accuracy is
employed to calculate the posterior mean and covariance of the state, the complexity
of calculating the Jacobian matrix is reduced, and numerical stability and accuracy are
improved. In addition, the weight is calculated in real-time, the contribution of residual
information to the fading factor can be adjusted instantaneously, which enhances the
sensitivity and robustness of the maneuver detection system.

3. Results

In order to examine the proposed method, simulations were conducted. The sim-
ulations were carried out in the following conditions. For the orbital parameters, the
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space-based platform has an orbital height of 800 km, and it has a circular orbit with an
orbital inclination of 98 degrees. The space-based observer is equipped with a lidar sensor
and a visual camera. The accuracy of the distance measurement is 10 m, the accuracy of the
velocity measurement is 0.1 m/s, and the accuracy of the angle measurement is 0.02 degrees.
High-precision models are employed for both space-based platforms and non-cooperative
targets for analysis. The initial relative state is, X0 = [200, 200,000, 300,−1,−10, 0.1]T .

The tracking begins on 26 March 2022 at 12:00:00, and it lasts for 500 s. The measure-
ment sampling interval is 0.1 s. The initial state estimate errors are set as 200 m and 1 m/s.
To demonstrate the effectiveness and benefits of the proposed method, the filtering results
are compared with the class UKF method, the STUKF method and AWSTUKF in two cases.

In case 1, for the target spacecraft, the magnitude of the pulse maneuver is 5 m/s, the
maneuver occurs at 300 s, and the maneuver is in the direction of its velocity. The AWSTUKF,
the UKF and the STUKF methods are employed. Position estimation errors from the three
methods are plotted in Figure 3, and velocity estimation errors are plotted in Figure 4.
Before the pulse maneuver, the position estimation errors and the velocity estimation errors
from the three methods are identical. After the maneuver, the AWSTUKF method has the
fastest convergence performance, followed by the STUKF method, and the UKF method
is the worst. This is because the three algorithms have different maneuvering detection
delays. Due to the adaptive method, the AWSTUKF can quickly detect a maneuvering, and
the fading factor is used to amplify the covariance matrix for a fast convergence of the filter.
Because the STUKF does not adopt the adaptive method, the maneuvering detection delay
is longer than the AWSTUKF, and the convergence also takes a longer time. The UKF does
not detect pulse maneuvering, so the convergence speed is the slowest.
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Figure 3. Position estimate errors of different methods.

In case 2, for the target spacecraft, the magnitude of the pulse maneuver is 0.5 m/s,
which is smaller than in case 1. The purpose of this setting is to test the performance
of the methods regarding a small pulse maneuver. The maneuver occurs at 300 s, and
the pulse maneuver is along the direction of the velocity. The position estimation errors
and the velocity estimation errors of the three methods are provided in Figures 5 and 6,
respectively. It can be observed that the position and velocity estimation errors of the three
methods are basically the same before the maneuver. After the small maneuver, the state
estimate error in the proposed AWSTUKF method is reduced faster than in the other two
methods. When a small pulse maneuver occurs, the STUKF fails to detect the maneuver
due to the residual orthogonality is not consistent with the actual measurement, which
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results in the fading factor always equal to 1 The STUKF method degenerates into the UKF
method. The AWSTUKF method uses the adaptive method to calculate the weight of the
measurement information to improve the sensitivity of the system. At tk = 303 s, the small
pulse maneuver was detected successfully, the fading factor rapidly enlarges the covariance
matrix, therefore the filter converges quickly.

The computational costs of the three methods were estimated by 50 simulations.
A window size of 20 s for the variance statistics function was set for each simulation. For
the proposed method, the average run time was 4.12 s. The run time for the STUKF method
and the UKF method was 3.93 and 3.22 s, respectively.
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Figure 4. Velocity estimate errors of different methods.
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Figure 5. Position estimate errors of different methods.
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Figure 6. Velocity estimate errors of different methods.

The residual variation of the proposed AWSTUKF method and the STUKF in case 2
are presented in Figures 7 and 8. It can be observed that the residuals of ranging and angle
measurement of the two methods have no large changes before and after the maneuver.
The range rate increases rapidly when the maneuver occurs and it begins to converge after
the maneuver. This showed that the residual orthogonality of the two methods changes
after the maneuver, and the filtering gain needs to be changed by adjusting the fading
factor. The orthogonality of the residual sequence also needs to be ensured. Compared
with the STUKF method, because the weight is calculated in real-time, the convergence is
achieved faster in the AWSTUKF method.
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Figure 7. Measurement Residuals of the STUKF.
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Figure 8. Measurement Residuals of the AWSTUKF.

The fading factors of the two methods in case 2 are shown in Figures 9 and 10. When
the fading factor is greater than 1, the filter detects unknown maneuvering. the covariance
matrix is amplified by the fading factor. It can be observed that in the TSTUKF method, the
fading factor does not change significantly for a small pulse maneuver. For the proposed
method, the fading factor exceeds the maneuvering detection threshold at 303 s and the
detection delay is 3 s. This comparison shows that the proposed AWSTUKF method can
detect the occurrence of unknown maneuvers quicker and more accurately.
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Figure 9. Fading Factors of the STUKF.
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Figure 10. Fading Factors of the AWSTUKF.

Different magnitudes of impulsive maneuvers are used in a series of Monte Carlo
simulations to demonstrate the superiorities of the AWSTUKF method over the STF method,
the STUKF method, and the AWSTF method. The impulsive maneuvers are set at 0.5, 2.0,
and 5.0 m/s in three groups of Monte Carlo simulations, and the other conditions are
the same as in the previous case. Table 1 shows the root mean square errors (RMSES) of
the estimations for the position and velocity after the impulsive maneuver (tk ≥ 300 s),
and the detection delay of different methods. It can be seen that the AWSTUKF method
outperforms the other three methods in terms of the position and the velocity estimation
errors, and the detection delay. Both the the AWSTUKF and the AWSTF methods can
successfully detect an impulsive maneuver when its magnitude is 0.5 m/s.

Table 1. Tracking performance of different methods in different situations.

Parameters STF STUKF AWSTF AWSTUKF

0.5 m/s
Position RMSE, m 13.15 12.09 6.19 5.39

Velocity RMSE, m/s 0.21 0.18 0.09 0.06
Detection delay, s none none 4.2 3.1

2.0 m/s
Position RMSE 38.23 37.18 6.96 6.56

Velocity RMSE, m/s 0.56 0.51 0.18 0.13
Detection delay, s 34.5 33.8 1.1 0.5

5.0 m/s
Position RMSE, m 41.46 40.24 8.14 7.44

Velocity RMSE, m/s 0.71 0.66 0.37 0.27
Detection delay, s 29.3 27.8 0.5 0.3

4. Conclusions

For relative navigation along long-range non-cooperative maneuvering targets, an
adaptive weighted strong tracking unscented Kalman filter method was proposed. High-
precision relative motion equation was employed for the target that is in medium and long
distance. The adaptive variance function was designed to adjust the weight of the residual
component in real-time, which enhances the sensitivity and robustness of fading factor to
small pulse maneuvers. Simulations were carried out and the results showed that under
different small pulse maneuvers, the AWSTUKF method has higher tracking accuracies
and shorter maneuver detection delays compared with the STF, the AWSTF, and the STUKF
methods. In future, the proposed method can be introduced into a space-borne platform
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for detecting unknown maneuvers of a target spacecraft. Because of the sensitivity and
robustness of the method, the platform would have a better tracking performance.
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