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Abstract: Highly accurate trajectory prediction models can achieve route optimisation and save
airspace resources, which is a crucial technology and research focus for the new generation of intelli-
gent air traffic control. Aiming at the problems of inadequate extraction of trajectory features and
difficulty in overcoming the short-term memory of time series in existing trajectory prediction, a trajec-
tory prediction model based on a convolutional neural network-bidirectional long short-term memory
(CNN-BiLSTM) network combined with dual attention and genetic algorithm (GA) optimisation is
proposed. First, to autonomously mine the data association between input features and trajectory
features as well as highlight the influence of important features, an attention mechanism was added
to a conventional CNN architecture to develop a feature attention module. An attention mechanism
was introduced at the output of the BiLSTM network to form a temporal attention module to enhance
the influence of important historical information, and GA was used to optimise the hyperparameters
of the model to achieve the best performance. Finally, a multifaceted comparison with other typical
time-series prediction models based on real flight data verifies that the prediction model based on
hyperparameter optimisation and a dual attention mechanism has significant advantages in terms of
prediction accuracy and applicability.

Keywords: trajectory prediction; CNN-BiLSTM; attention mechanism; genetic algorithm

1. Introduction

Problems such as air traffic congestion, flight delays, and reduced transport efficiency
considerably threaten air traffic safety. Making full use of valuable airspace resources,
managing air flow efficiently, and solving problems such as airspace conflicts, large flight
delays, and aviation safety are urgently required [1].

Countries such as European countries and the USA have researched four-dimensional
(4D) trajectory to address these issues [2], and they have proposed a trajectory-based
(TBO) operating concept. TBO is based on 4D trajectory throughout the entire flight
cycle, with real-time exchange of trajectory dynamics between airports, crews, as well
as air traffic control. There is a deep collaboration between all relevant parties to ensure
that the entire flight cycle is “controlled and accessible”. The literature published by
the International Civil Aviation Organisation (ICAO) [3,4] also adopts the TBO concept
using an engineering approach to improve four aspects: efficient flight paths, airport
operations, systems and data, as well as optimal capacity. Trajectory prediction is an
important technique for TBO [5,6], as accurate trajectory prediction directly affects the
performance of aircraft flight management, traffic management, anomalous behaviour
detection, and many other aspects.

With the constant update of civil aviation equipment and technological development,
the demand for accurate and real-time trajectory prediction has increased, and prediction
methods are constantly being updated. The main categories are as follows:

1. Kinetic models: Kinetic-based trajectory prediction models focus on the relationship
between the forces acting on an aircraft and their motion. Zhang et al. [7] reduced
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the uncertainty of trajectory prediction by analysing model construction, aircraft
intent, performance parameters, and other factors. Based on BADA data, He et al. [8]
established a model for the change in parameters such as dynamics, meteorology, and
flight path to achieve accurate trajectory prediction. Kang et al. [9] established an
aircraft mass estimation model and an altitude profile prediction model based on real-
time trajectory data. Lee et al. [10] proposed a stochastic system tracking model and
an estimated-time-of-arrival prediction algorithm to construct a nonlinear dynamic
model under multiple flight modes. Dynamical models require many parameters
owing to the consideration of information such as aircraft performance, some of which
are commercially sensitive, and others are obtained using estimates from existing
databases. The prediction accuracy of the model is significantly reduced when the
data resources are limited.

2. State estimation model: The actual flight process can be considered a state transfer.
Trajectory prediction estimates the state, such as latitude, longitude, and altitude,
generated by the model during the flight. Chen et al. [11] constructed aircraft state
equations based on known flight trajectory points, and they completed accurate
trajectory prediction using an unscented Kalman filter. Lv et al. [12] improved the
current Kalman filter (MIEKF) prediction system using multi-information theory to
predict 4D trajectory in different states accurately. Zhou et al. [13] used the Kalman
filter for track prediction, which is more suitable for single-step prediction than
other models with significant short-term predictions. Tang et al. [14] used the IMM
algorithm to track the aircraft’s trajectory using a geodetic coordinate system to
represent the aircraft’s position and build each directional sub-model separately. The
state estimation model is relatively simple, but it can lead to large errors owing to the
inability to capture aircraft manoeuvre uncertainty accurately over long periods.

3. Machine learning-based model: Machine learning has achieved great success in speech
recognition, style migration, and image classification. Therefore, machine learning
has also been applied to time-series data processing. Examples include pedestrian
and vessel trajectory and traffic flow predictions [15–17]. Trajectory clustering is a
clustering analysis of historical trajectories [18,19] that combines updated state infor-
mation to correct prediction results and improve the prediction accuracy. Yin et al. [20]
constructed a four-dimensional trajectory prediction model by analysing wind data in
GRIB format. Pang et al. [21] proposed a Convolutional LSTM (ConvLSTM) to extract
important features from weather information to solve pre-takeoff and convective
weather-related trajectory prediction problems. Chen et al. [22] proposed a trajectory
prediction model based on the attention mechanism and generative adversarial net-
work to address problems such as the inability of the LSTM network to extract key
information effectively for trajectory prediction. Shi et al. [23] proposed an online
updated LSTM short-term prediction algorithm to address the influence of different
factors in the navigation process on the current trajectory. Wang et al. [24] designed a
training model with different K values and obtained an optimal parametric model by
comparing the accuracies of different K values. Currently, LSTM neural networks are
primarily used for trajectory prediction [25–28]. Hybrid models of CNN-LSTM are
also widely used for prediction tasks [29,30]; however, these models have problems
such as insufficient extraction of important features.

To address the current problems arising in short-term trajectory prediction, we begin
with a hybrid neural network based on an attention mechanism. The innovative points are
as follows:

a. By introducing the dual attention mechanism into the convolutional-bidirectional long
short-term memory network (CNN-BiLSTM) model, the CNN was used to extract
the trajectory space features, and the feature attention module achieved the mining
of important features in the raw data and enhanced their impact by weighting the
distribution of the CNN output. The subsequent BiLSTM module mines the trajectory
temporal features, and the temporal attention module extracts important historical
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information based on the influence of each time node in the hidden layer state of
the BiLSTM on the forecasting results, enhancing the learning of interdependencies
in the time step. Thus, full integration of temporal features at the prediction points
was achieved. The problem of important high-dimensional feature extraction and
the long-term dependence of the time series was effectively solved. To the best
of our knowledge, this is the first application of the DA-CNN-BiLSTM model to
trajectory prediction.

b. The use of genetic algorithms (GA) to optimise the hyperparameters of the entire
model ensures the optimal learning capability of the model, overcoming the shortcom-
ings of manual parameter tuning, which is experience-dependent, time-consuming,
and has poor stability.

c. The performances of the different models in trajectory prediction were systematically
investigated. Three sets of comparisons were made. Specifically, the role of intro-
ducing CNN in extracting spatial features of the trajectory data was investigated.
The bi-directional temporal feature extraction capability of the BiLSTM was verified
by comparing BiLSTM to LSTM. In addition, a comparative analysis of temporal
attention (T-CNN-BiLSTM), feature attention (F-CNN-BiLSTM), and dual attention
(DA-CNN-BiLSTM) was conducted to investigate the impact of feature attention and
temporal attention mechanisms on the prediction accuracy.

The remainder of this paper is organised as follows. Section 2 analyses the Auto-
matic Dependent Surveillance-Broadcast (ADS-B) data and their preprocessing. Section 3
describes the modelling approach and framework structure of this study. The experimen-
tal simulations and comparative analysis are performed in Section 4. The final section
concludes the study and suggests possible future research directions.

2. ADS-B Data Analysis and Processing

ADS-B is an aircraft operational surveillance technology [31] that automatically trans-
mits 4D position data from airborne equipment as well as identification information to the
ground equipment station via a ground–air–data link.

2.1. ADS-B Properties

ADS-B data contain many attributes, including flight number, reception time, flight
altitude, latitude, longitude, ground speed, and heading. Among them, the trajectory char-
acteristics consist of flight altitude, latitude, longitude, and time, whereas other attributes
comprise the position information and flight status.

T = {T1, T2, . . . , Tr}, (1)

Tr = {〈t1, u1, g1〉, 〈t2, u2, g2〉, . . . , 〈tm, um, gm〉}, (2)

u = (ulon, ulat, ualt), (3)

g = (gn, gs, gd), (4)

where T indicates the historical trajectory of the flight for the past r days, and Tr indicates
the trajectory at m successive times. With 〈t, u, g〉, the position information u and other
flight status characteristics g received at time t are indicated, where u includes longitude
(ulon), latitude (ulat), and altitude (ualt), whereas g includes the flight number (gn), ground
speed (gs), and heading (gd).

2.2. Preprocessing of the ADS-B Trajectory

Owing to the high frequency of ADS-B transmissions, the large number of duplicate
data, and the uneven time intervals, the data were processed by first removing duplicate
and null values, filtering the time intervals greater than or equal to 1 s, deleting data with
intervals less than 1 s, and interpolating the data with three-spline interpolation for data
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greater than 2 s to facilitate learning and prediction. After redundant interpolation, the
time intervals were averaged as ∆t = 5 s.

If there is less information in the trajectory data, training may result in insufficient
retention of key information and discarding of perturbation information owing to insuffi-
cient constraints or lack of information, resulting in an insufficient generalisation capability
and prediction accuracy of the model. Therefore, the following features were fused into the
dataset through the feature construction:

d is the distance of each trajectory point from reference point R. We chose the centre of
the landing field as the reference point R(xre f , yre f , zre f ), and distance di

m was calculated
according to the following equation:

di
m =

√(
xi

m − xre f
)2

+
(
yi

m − yre f
)2

+
(
zi

m − zre f
)2 (5)

The angle θ between each trajectory point and the reference point R shows the state
of change in the trajectory relative to the reference point (steering state). θ was calculated
according to the following equation:

θm
i = arctan

(
yi

m − yre f
xi

m − xre f

)
(6)

To avoid discontinuities at ±p, the sine and cosine values of θ, sin θm
i , and cos θm

i were
used instead of θm

i . In the follow-up process, the trajectory was considered as a time series and no
timestamp information was required; therefore, the sequence of trajectories for the m trajectory
point of the i trajectory was Xi =

{(
xi

m, yi
m, ai

m, vi
m, di

m, sin θm
i , sin θm

i
)
∈ R+m = 1, 2, . . . , m

}
.

The characteristics of the trajectory points are listed in Table 1.

Table 1. Trajectory point attribute.

Feature Trajectory Point

Time 4 March 20211 3: 38: 22
Anum B5372
Forum HU7603

Longitude/(◦) 116.26586
Latitude/(◦) 39.37152
Altitude/(m) 8610.61

Velocity/(km/h) 890.81
Angle/(◦) 156

Distance/(m) 1,016,975.48
sin θ −0.333
cos θ 0.943

Normalisation: The data must be normalised to eliminate the effects of different
magnitudes.

N =
X−min

max−min
(7)

where X is the original sample, max is the maximum, min is the minimum, and N is the
normalised sample.

2.3. Sample Construction

We divided the trajectory data into training samples and labels, and a sample of the
trajectory sample construction is shown in Figure 1.
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Figure 1. Illustration of sample splitting.

The time steps are represented by rows and features X are represented by columns
in the figure, and we take a single-step prediction with a time step of 6. That is, the first
six rows of features sample1 = {lat, lon, alt, vel, h, d, sin, cos{}} are used to predict the next
point, Y1 = {lat, lon, alt}.

3. Methods
3.1. CNN Network

Currently, the CNN [32] is a popular deep learning model. It uses convolutional
operations to achieve a higher-dimensional representation of the original data, which can
effectively extract internal features from the original data. The CNN structure is shown in
Figure 2 and it consists of convolutional, pooling, and fully connected layers. The model
formulation is shown in Equations (8)–(10).

C = f (X⊗ wc + bc), (8)

P = δ(C) + bp, (9)

H = ϕ(P× ws + bs), (10)

where C and P are the outputs of the convolutional and pooling layers, respectively; H is the
feature vector of the CNN output; wc and ws are the weight matrices of the convolution and
fully connected layers, respectively; bc, bp, and bs are the bias vectors of the convolution,
pooling, and fully connected layers, respectively; ⊗ is the convolutional operation; f (·)
is the activation function of the convolution layer; δ(·) is the pooling method. This study
adopts one-dimensional convolution and maximum pooling.
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3.2. BiLSTM Network

The LSTM adds three logical gating units to the recurrent neural network (RNN):
forget, input, and output gates. The LSTM can achieve stable learning at multiple time
steps and effectively model the time-dependent manner [33]. The structure of the LSTM
network is illustrated in Figure 3.
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The input gate selects the current state to be retained, the forgetting gate selects the
previous state to be forgotten, and the output gate selects the current state to be output to
hidden state ht. The LSTM network is calculated according to Equations (11)–(15).

it = Sigmoid(wixt + uiht− 1 + bi), (11)

f t = Sigmoid(w f xt + u f ht− 1 + b f ), (12)

ot = Sigmoid(woxt + uoht− 1 + bo), (13)

St = tanh(wgxt + ught− 1 + bg)� it + St− 1� f t, (14)
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ht = tanh(St)� ot, (15)

where it, f t, ot, St, and ht are the state matrices of the ingate, forget gate,output gate,
memorial units, and output unit, respectively; wi, w f , wo, and wg are the weight matrices
corresponding to the input at the current moment; ui, u f , uo, and ug are the weight
matrices corresponding to the output at the previous moment; bi, b f , bo, and bg are the
corresponding bias vectors; � represents the multiplication of the elements of the matrix at
the corresponding positions.

The BiLSTM [34] network is a two-layer LSTM network consisting of a combination
of forward and reverse LSTM layers. The network structure of the BiLSTM is shown
in Figure 4.
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3.3. Attention Mechanism

The attention mechanism addresses the features of the target that we want to detect
by assigning attention to the input weights, thereby implementing the attention mech-
anism [35]. Using the attention mechanism to achieve time-series model building can
enhance the precision of the model [36,37]. The core idea is to assign different weights to
the hidden layer states by reasonably allocating attention to different input information to
highlight the influence of important information on the results. The weight assignment
calculation of the attention mechanism can be expressed according to Equations (16)–(17).

et = uatanh(waht + ba) (16)

at =
exp(et)
∑t

j=1 ej
, (17)

where ht is the hidden layer state vector of the neural network at moment t; et is the
attention probability distribution; at is the attention score; wa is the weight vector; ba is the
bias vector.

3.4. DA-CNN-BiLSTM Model
3.4.1. Feature Attention

The feature attention module is a combination of a CNN and an attention mechanism.
The model focuses on important features by dynamically assigning attention weights
to the input features and mining the association between the input and target features.
The model is shown in Figure 5. At the t time step, a single-time input feature vector
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xt = [x1,t, x2,t, · · · , xM,t] containing M features. A single-layer neural network is used to
calculate the attention weight vector et [38]:

et = σ(Wext + be), (18)

where et = [e1,t, e2,t, · · · , eM,t] is the combination of attention weight coefficients cor-
responding to each input feature at the current moment t; We is the trainable weight
matrix; be is the bias vector for calculating the feature attention weights; σ(·) is the Tanh
activation function.

Aerospace 2022, 9, x FOR PEER REVIEW 8 of 24 
 

 

 
Figure 5. Feature attention mechanism. 

The Softmax function in Equation (19) normalises the attention weight coefficients 
[38] to obtain the attention weight of the feature 𝛼௧ = [𝛼ଵ,௧ , 𝛼ଶ,௧ , ⋯ , 𝛼௠,௧ , ⋯ , 𝛼ெ,௧], where 
𝛼௠,௧ is the attention weight value of the 𝑚 feature. 

𝛼௠,௧ =
exp(௘೘,೟)

∑ ௘೔,೟
ಾ
೔సభ

, (19)

recalculates the input feature vector 𝑥௧ as a weighted vector ℎ௧
∗: 

ℎ௧
∗ = 𝛼௧⨀𝑥௧ = [𝛼ଵ,௧𝑥ଵ,௧   𝛼ଶ,௧𝑥ଶ,௧   ⋯  𝛼ெ,௧𝑥ெ,௧], (20)

where ⨀ denotes the Hadamard product. 

3.4.2. Temporal Attention 
After the input data have been passed through the feature attention module, the key 

feature information is captured by BiLSTM two-way learning, which captures the tem-
poral variation pattern within the sequence. The attention mechanism assigns different 
weights to the hidden states of the BiLSTM output according to the degree of association 
between the historical nodes and the results. The model is shown in Figure 6. The input is 
the state ℎ௧ = [ℎଵ,௧ , ℎଶ,௧ , ⋯ , ℎ௞,௧] of the hidden layer of the BiLSTM network cell as the 
model is iterated to moment 𝑡, where 𝑘 is the length of the time window of the input 
sequence. The vector of temporal attention weights 𝑙௧ for the current moment 𝑡 corre-
sponding to each historical moment [38] is: 

𝑙௧ = ReLU(𝑊ௗℎ௧ + 𝑏ௗ), (21)

where 𝑙௧ = [𝑙ଵ,௧ , 𝑙ଶ,௧ , ⋯ , 𝑙௞,௧]; 𝑊ௗ is the trainable weight matrix; 𝑏ௗ is the bias vector for 
calculating the temporal attention weights; RelU(·) denotes the activation function to in-
crease the feature variance and make the weight assignment more focused. 

The Softmax function normalises the attention weight coefficients at each time to 
obtain the temporal attention weight 𝛽௧ = [𝛽ଵ,௧ , 𝛽ଶ,௧ , ⋯ , 𝛽ఛ,௧ , ⋯ , 𝛽௞,௧], where 𝛽ఛ,௧ is the at-
tention weight value at the 𝑡 time, and then the hidden layer states at each corresponding 
historical moment are weighted to obtain the integrated temporal information state ℎ௦

∗. 

𝛽ఛ,௧ =
exp(௟ഓ,೟)
∑ ௟ೕ,೟

ೖ
ೕసభ

, (22)

ℎ௦
∗ = ℎ௧ ⊗ 𝛽௧ = ∑ 𝛽ఛ,௧ℎఛ,௧

௞
ఛୀଵ , (23)

where ⊗ denotes the matrix product. 

Figure 5. Feature attention mechanism.

The Softmax function in Equation (19) normalises the attention weight coefficients [38]
to obtain the attention weight of the feature αt = [α1,t, α2,t, · · · , αm,t, · · · , αM,t], where
αm,t is the attention weight value of the m feature.

αm,t =
exp(em,t)

∑M
i=1 ei,t

, (19)

recalculates the input feature vector xt as a weighted vector h∗t :

h∗t = αt·xt = [α1,tx1,t α2,tx2,t · · · αM,txM,t], (20)

where � denotes the Hadamard product.

3.4.2. Temporal Attention

After the input data have been passed through the feature attention module, the key
feature information is captured by BiLSTM two-way learning, which captures the temporal
variation pattern within the sequence. The attention mechanism assigns different weights
to the hidden states of the BiLSTM output according to the degree of association between
the historical nodes and the results. The model is shown in Figure 6. The input is the state
ht = [h1,t, h2,t, · · · , hk,t] of the hidden layer of the BiLSTM network cell as the model is
iterated to moment t, where k is the length of the time window of the input sequence. The
vector of temporal attention weights lt for the current moment t corresponding to each
historical moment [38] is:

lt = ReLU(Wdht + bd), (21)

where lt = [l1,t, l2,t, · · · , lk,t]; Wd is the trainable weight matrix; bd is the bias vector for
calculating the temporal attention weights; RelU(·) denotes the activation function to
increase the feature variance and make the weight assignment more focused.
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The Softmax function normalises the attention weight coefficients at each time to
obtain the temporal attention weight βt = [β1,t, β2,t, · · · , βτ,t, · · · , βk,t], where βτ,t is the
attention weight value at the t time, and then the hidden layer states at each corresponding
historical moment are weighted to obtain the integrated temporal information state h∗s .

βτ,t =
exp(lτ,t)

∑k
j=1 lj,t

, (22)

h∗s = ht ⊗ βt = ∑k
τ=1 βτ,thτ,t, (23)

where ⊗ denotes the matrix product.

3.4.3. DA-CNN-BiLSTM Trajectory Prediction Model

As typical multidimensional time-series data, flight trajectory data contain mapping
relationships between historical time and future time trajectory points. To address the com-
plex mapping relationships, we proposed a DA-CNN-BiLSTM trajectory prediction model,
as shown in Figure 7, which is a combination of the CNN and an attention mechanism. The
CNN can fully exploit high-dimensional features with convolution and pooling, and the
attention mechanism trains the weights of the high-dimensional features to ensure that the
key features play an important role. The temporal attention module is a combination of a
BiLSTM network, which learns periodic and trending features from time-series data, and
an attention mechanism. The attention mechanism is trained with hidden state weights
to select important historical serial state information autonomously, overcoming the prob-
lem of information loss and gradient disappearance that BiLSTM networks are prone to
when faced with longer serial inputs, and highlighting the impact of temporal state on
prediction results.
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4. Case Analysis

Here, the model parameters were identified using GA for hyperparameter search and
validation using real data. Finally, three sets of models were set up for comparison to clarify
the role of CNNs and Bi-LSTMs as well as the importance of attention models in short-term
trajectory prediction. The model was based on TensorFlow 2.0.

4.1. Experimental Datasets

The experimental dataset used historical flight trajectory data from March 2021 to
March 2022 on a real route, and some of the flight paths are shown in Figure 8.
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4.2. Evaluation Index

The root mean square error (RMSE) and mean absolute error (MAE) are the most
commonly used evaluation indices. The RMSE is the squared difference between the model
result and the true and expected values of the square root. MAE is the difference between
the model results and the true value mean of the absolute errors. The metrics are calculated
according to Equations (24) and (25).

RMSE = [
1
N

n

∑
j=1

(Yj− Xj)2]

1
2

(24)

MAE =
1
N

n

∑
1
|Yj− Xj|, (25)

where N is the number of samples; Yj is the predicted trajectory; Xj is the actual flight path.
The smaller the value, the closer it is to the true value, which indicates a higher prediction
accuracy of the model.
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4.3. Calibration of the Model Parameter

The basic principle of GA lies in modelling various potential solutions, where the
initial individuals in the solution are generated randomly. The GA performs selection,
crossover, and mutation operations on each individual to search for the optimal solution,
thereby continuously generating solutions that approximate the true value until a certain
number of new generations of individuals are generated, and the objective function is
recalculated, with the best-performing individuals retained for the next generation based
on their fitness. As each generation reproduces, the fitness function of the entire population
decreases until it is impossible to improve the results. The flowchart of GA optimisation is
shown in Figure 9.
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(1) Optimisation parameters: According to the DA-CNN-BiLSTM prediction model, the
neural network parameters to be optimised include the number, size, and stride of the
convolutional kernels of the two-layer CNN, the number of neurons of the two-layer
BiLSTM, as well as the dropout rate and learning rate.

(2) Objective function: The function Euclidean distance is as shown in Equation (26).

d =
1
n

√
(x1− x2)2 + (y1− y2)2 + (z1− z2)2, (26)

where d is the Euclidean distance between two waypoints; n is the sample size; x1 and x2
are the latitudes; y1 and y2 are the longitudes; z1 and z2 are the altitudes.

(3) Range of parameters: 1 ≤ c1 ≤ 60, 1 ≤ n1 ≤ 3, 1 ≤ s1 ≤ 2.99, 1 ≤ b1 ≤ 100,
1 ≤ c2 ≤ 60, 1 ≤ n2 ≤ 3, 1 ≤ s2 ≤ 2.99, 1 ≤ b2 ≤ 100, 0.1 ≤ d ≤ 0.9, 10−4 ≤ l ≤ 10−2

where c1 and c2 are the numbers of convolutional kernels; n1 and n2 are the sizes of
convolutional kernels; s1 and s2 are the strides of convolutional kernels; b1 and b2 are the
numbers of BiLSTM neurons; d is the dropout rate; l is the learning rate.

(4) GA parameters: Population size = 20, DNA length = 40, mutation rate = 0.01, max
iteration = 5.

After the GA hyperparameter search, the prediction model structure was finally es-
tablished, as shown in Table 2, and the error variation of the optimised model is shown
in Figure 10. The error plot shows that the model performs well in the training and test
datasets, and with an increase in the number of training generations, the error eventu-
ally oscillates smoothly around 0, indicating that the model has a strong generalisation
capability.

Table 2. Model parameter settings.

Model

DA-CNN-
BiLSTM

CNN Convolution
Filter = 50;

Kernel size = 3;
Stride = 1;

Epochs = 100;
Batch size = 256;

Optimiser = ‘Adam’;
Learning rate = 0.002591

Max-pooling Kernel size = 2;
Stride = 1;

Convolution
Filter = 50;

Kernel size = 2;
Stride = 1;

Max-pooling Kernel size = 2;
Stride = 1;

F-Attention-Layer

BiLSTM

Units1 Units80

Dropout 0.2493

Units2 Units90

Dropout 0.2493

T-Attention-Layer

Output Dense 3
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4.4. Experiments and Comparison

To test the prediction accuracy of the different models, their feasibility and accuracy
were verified by simulation with a real ADS-B historical trajectory dataset. The proportion
of the training and test sets impacts the modelling accuracy, as the model struggles to
adequately reflect the nonlinear fit between the trajectory features and the predicted results
when the training set is small. The proportion of the test set decreases when the training set
is large, making it difficult for the test accuracy of the model to reflect accurate prediction
accuracy. The size of the original dataset likely influences the determination of the training
test set ratio. For example, a more extensive dataset should ensure that the model achieves
high training and testing accuracy even with a more significant proportion of the training
set. In this paper, the training set is chosen from {6:4, 7:3, 7.5:2.5, 8:2, 8.5:1.5, 9:1} and the
results are shown in Figure 11. When the ratio is 8:2, prediction accuracy (RMSE) reaches
its nadir, and it begins to rise and eventually becomes stable. The experimental procedure
is illustrated in Figure 12.
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Figure 12. Experimental procedure.

First, we preprocessed the ADS-B trajectory data and trained them through a set net-
work. The simulations were then validated, and the predicted trajectories were compared
with the actual trajectories. The model was trained to reduce the error to a set range, after
which it was tested with a test set.

4.4.1. Experimental Results

To validate the performance of the models better, all models (BiLSTM, LSTM, CNN-
LSTM, CNN-BiLSTM, T-CNN-BiLSTM, F-CNN-BiLSTM, and DA-BiLSTM) were based
on the same dataset for trajectory prediction. The results are presented in Table 3 and
Figure 13. To illustrate the differences between the models more visually, two-dimensional
zoomed-in and three-dimensional comparison plots of the prediction results are shown in
Figures 13 and 14.
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Table 3. Comparative results of evaluation indicators.

RMSE

Hybrid Model Single
Model

DA-CNN-
BiLSTM

T-CNN-
BiLSTM

F-CNN-
BiLSTM

CNN-
BiLSTM CNN-LSTM BiLSTM LSTM

Alt/(m) 50.68 60.05 127.17 78.07 310.13 189.64 446.52

Lat/(◦) 0.029 0.036 0.069 0.043 0.189 0.092 0.196

Lon/(◦) 0.018 0.031 0.038 0.053 0.098 0.053 0.084

MAE

Hybrid Model Single
Model

DA-CNN-
BiLSTM

T-CNN-
BiLSTM

F-CNN-
BiLSTM

CNN-
BiLSTM CNN-LSTM BiLSTM LSTM

Alt/(m) 32.37 38.35 116.06 60.27 219.16 151.13 329.12

Lat/(◦) 0.022 0.027 0.063 0.033 0.158 0.081 0.128

Lon/(◦) 0.014 0.025 0.033 0.048 0.08 0.045 0.059
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Figure 14. Prediction comparison with 2D.

The results confirm that the DA-CNN-BiLSTM has the best performance in trajectory
prediction, with the lowest RMSE of 50.68 m and MAE of 32.37 m for altitude, the lowest
RMSE of 0.029◦ and MAE of 0.022◦ for latitude, and the lowest RMSE of 0.018◦ and MAE
of 0.014◦ for longitude. It can also be observed from Figures 14 and 15 that the predicted
trajectory of the DA-CNN-BiLSTM model best matches the actual trajectory, with a lower
prediction error than the other models, specifically for large altitude changes and turning
trajectory points.
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Figure 15. Prediction comparison with 3D.

4.4.2. Comparative Analysis

Three sets of comparisons were made to further analyse the predicted results. The
improvement ratios for the different models were introduced in Equation (27) to quan-
tify the differences. First, a first set of comparisons was performed to account for the
different effects of feature attention and temporal attention on the hybrid model. Second,
to understand the importance of convolutional neural networks in extracting trajectory
features better, a second set of comparisons was performed. Finally, to better analyse the
significance of the BiLSTM model for extracting bidirectional temporal features, a third set
of comparisons was performed. The three sets of comparisons are presented in Table 4.

IR(i) = |B(i)− A(i)|/A(i), (27)

where IR(i) is the rate of improvement of B compared with A using i as an indicator. A(i)
and B(i) are the values of models A and B on indicator i, respectively. We used RMSE
and MAE as indicators, where the smaller the predictive performance of the IR(i) model,
the better.
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Table 4. Multi-model comparison.

Details

1st set
comparison

DA-CNN-
BiLSTM vs.

T-CNN-BiLSTM

DA-CNN-
BiLSTM vs.

F-CNN-BiLSTM

DA-CNN-BiLSTM vs.
CNN-BiLSTM

2nd set
comparison

CNN-LSTM vs.
LSTM

CNN-BiLSTM vs.
BiLSTM

3rd set
comparison

BiLSTM vs.
LSTM

CNN-BiLSTM vs.
CNN-BiLSTM

To compare the different effects of feature attention and temporal attention on the
hybrid models in trajectory prediction, the following model comparison groups were
introduced: DA-CNN-BiLSTM vs. T-CNN-BiLSTM, DA-CNN-BiLSTM vs. F-CNN-BiLSTM,
and DA-CNN-BiLSTM vs. CNN-BiLSTM. The results are presented in Figure 16. We can
observe that among the three sets of models, DA-CNN-BiLSTM had the best prediction
performance and the lowest RMSE with a height of 50.68 m, longitude of 0.018◦, and
latitude of 0.029◦.
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Compared with F-CNN-BiLSTM, the RMSE improvement rates for DA-CNN-BiLSTM
were 50.95%, 57.93%, and 60.15% for longitude, latitude, and altitude. Compared with
T-CNN-BiLSTM, the RMSE improvement rates for DA-CNN-BiLSTM were 41.42%, 19.01%,
and 15.60% for longitude, latitude, and altitude. The RMSE improvement rates for DA-
CNN-BiLSTM were 56.83%, 45.27%, and 35.08% for longitude, latitude, and altitude, as
compared to that of the CNN-BiLSTM without the attention model. We can conclude that
DA-CNN-BiLSTM models have higher accuracy than the single attentional model and
they have a lower operational error than the unattended model. In summary, the ability
of the DA-CNN-BiLSTM to extract trajectory characteristics from the data and extract
temporal features more effectively is important for improving the accuracy of short-term
trajectory prediction.

To better verify the importance of CNN in extracting trajectory features for prediction,
we set up two sets of models for comparison: CNN-BiLSTM vs. BiLSTM and CNN-LSTM



Aerospace 2022, 9, 464 19 of 23

vs. LSTM. The results are presented in Figure 17. In the two model comparison groups,
CNN-BiLSTM had the best performance and the lowest RMSE, with a height of 87.96
m, longitude of 0.043◦, and latitude of 0.078◦. The combined CNN model has a higher
prediction accuracy than the BiLSTM and LSTM single models.
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Compared with the single-model BiLSTM, the RMSE improvement rates for CNN-
BiLSTM were 42.55%, 19.71%, and 58.83% for longitude, latitude, and altitude. Compared
to the single-model LSTM, the RMSE improvement rates for CNN-LSTM were 3.6%, 16.14%,
and 30.54% for longitude, latitude, and altitude. We can observe that the model with the
CNN has higher accuracy. In summary, the CNN’s ability to extract spatial features from
different trajectory points is particularly effective and important for improving the accuracy
of short-term trajectory prediction.

To verify the importance of the BiLSTM bidirectional extraction of temporal features
of the trajectory in prediction, we set up two sets of models for comparison: BiLSTM vs.
LSTM and CNN-BiLSTM vs. CNN-LSTM. The results are presented in Figure 18.

In contrast to the LSTM model, there were RMSE improvements of 53.08%, 37.04%,
and 57.53% for longitude, latitude, and altitude for BiLSTM. Compared to the CNN-LSTM
model, the RMSE improvement rates for CNN-BiLSTM were 72.04%, 56.47%, and 74.83%
for longitude, latitude, and altitude. We can observe that the BiLSTM and its hybrid models
can play a better role in trajectory prediction than ordinary LSTM models because BiLSTM
can mine the trajectory temporal features from front to back and from back to front.
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4.5. Further Research

To analyse and validate the robustness and generality of the DA-CNN-BiLSTM model
based on the dual attention mechanism under different data conditions, a dataset of another
flight on the same route was selected for testing, with data ranging from May 2021 to May
2022. The entire dataset was used for 80% of the training set and 20% of the test set for
training optimisation and testing, respectively. The proposed prediction model, DA-CNN-
BiLSTM, as well as other models (DA-CNN-BiLSTM, F-CNN-BiLSTM, T-CNN-BiLSTM,
CNN-BiLSTM, CNN-LSTM, BiLSTM, and LSTM) were optimised using GA to determine
the model hyperparameter, and they were trained using this dataset; the prediction results
and evaluation index are shown in Figures 19 and 20.
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As shown in Figures 18 and 19, the prediction curves of the proposed DA-CNN-
BiLSTM model were generally consistent with the actual routes. Compared to the other
comparative models, the RMSE and MAE were the lowest. The DA-CNN-BiLSTM model
performed better in terms of prediction accuracy. The DA-CNN-BiLSTM based on the
dual attention mechanism can achieve higher accuracy and robustness in the trajectory
prediction problem.

5. Conclusions and Discussion

In this study, DA-CNN-BiLSTM was proposed for trajectory prediction. Specifically,
a hybrid network of convolutional neural networks and feature attention modules was
constructed which can effectively learn spatial structural features in the trajectory without
requiring information about aircraft-specific parameters. Additionally, a BiLSTM neural
network with temporal attention module network, which fully exploits the aircraft his-
torical time-series information, was constructed, followed by optimisation of the model
hyperparameter by GA to predict the trajectory information effectively. We demonstrated
that the DA-CNN-BiLSTM model with the addition of feature attention and temporal
attention mechanisms could improve the longitude, latitude, and height prediction perfor-
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mance by 56.83%, 45.27%, and 35.08%. In summary, the DA-CNN-BiLSTM model offers
higher accuracy and adaptability in the trajectory prediction process than conventional
models. The prediction process only uses the ADS-B historical trajectory, which requires
less information. At the same time, the key element of the TBO operation consists of the
controller’s situational awareness of the aircraft, which in turn depends on how well the
controller can predict aircraft operations, specifically, the future position of all aircraft.
Therefore, accurate and reliable aircraft trajectory forecasting is valuable for conflict detec-
tion relief, traffic management, flight sequencing, and arrival management. The framework
will be improved in the future by selecting additional evaluation metrics and implementing
long-term forecasts.
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