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Abstract: With the continuous expansion of the application field of UAV intelligent systems to GNSS-
denied environments, the existing navigation system can hardly meet low cost, high precision, and
high robustness in such conditions. Most navigation systems used in GNSS-denied environments
give up the connection between the map frame and the actual world frame, making them impossible
to apply in practice. Therefore, this paper proposes a Lidar navigation system based on global ArUco,
which is widely used in large-scale known GNSS-denied scenarios for UAVs. The system jointly
optimizes the Lidar, inertial measurement unit, and global ArUco information by factor graph and
outputs the pose in the real-world frame. The system includes a method to update the global ArUco
confidence with sampling, improving accuracy while using the pose solved from the global ArUco.
The system uses the global ArUco to maintain navigation when Lidar is degraded. The system also
has a loop closure determination part based on ArUco, which reduces the consumption of computing
resources. The navigation system has been tested in the dry coal shed of a thermal power plant using
a UAV platform. Experiments demonstrate that the system can achieve global, accurate, and robust
pose estimation in large-scale, complex GNSS-denied environments.

Keywords: UAV; GNSS-denied environments; Lidar; navigation system; factor graph optimization

1. Introduction

In the UAV system [1], the navigation system is responsible for providing carrier
location information [2], which guarantees the UAV to complete the task safely and accu-
rately [3]. Under the development trend of UAV system intelligence [4], traditional GNSS
navigation systems [5,6] have been unable to complete the application of UAV systems
in GNSS-denied environments in recent years [7,8]. The demand for a high-precision
GNSS-denied navigation system is urgent in such aspects as the mine UAV exploration
system, thermal power plant dry coal shed UAV square measurement system, Power
Plant Turbine workshop daily UAV inspection system, high-speed railway platform truss
structure anti-corrosion coating UAV inspection system, etc.

Here, I would like to mainly introduce one of the working conditions that have
been actually applied in this paper, which is also the scene used in this test the square
measurement system of UAV in a dry coal shed of the thermal power plant. The system’s
primary function is to correct the total amount of coal in and out of the thermal power
plant in about 2 to 3 days to better allocate the fuel in the future. The crucial part of
the system is measuring the coal volume in the dry coal shed. The traditional manual
operation generally scans the coal stacked in the coal shed by climbing to a few points
people can reach through the handheld laser radar. The sampling angle is limited, the blind
area is large, and the sampling personnel are exposed to the risk of falling. Therefore, an
unmanned system is required to replace manual operation. However, due to the complex
natural environment in the dry coal shed, if cameras, slide rail cameras, slide rail Lidar, or
other detection equipment are installed around the shed, the construction and installation
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cost will be very high, and the daily cleaning and maintenance of the equipment will not
be completed. Similarly, the electromagnetic environment in the coal shed is also very
complex, which challenges the use of more intelligent systems such as UAVs. For example,
the automatic flight of the UAV system in this environment requires accurate positioning.
Still, the complex electromagnetic environment will cause the deviation of the magnetic
compass in the traditional navigation system. It will also affect the positioning accuracy
of external navigation such as UWB. The thermal power plant dry coal shed UAV square
measurement system diagram is shown in Figure 1. It can be observed that a high-precision
navigation system is vital in a UAV system when GNSS is denied.

Figure 1. The thermal power plant dry coal shed UAV square measurement system.

Currently, navigation in the GNSS denial environment mainly relies on the UWB,
vision sensor, Lidar, and inertial unit. External navigation generally includes UWB and
Vicon systems. Among them, the UWB positioning preset hardware cost is high, the blind
area is large, the maintenance is complex, and the accuracy is easily affected by dust and
metals in the environment [9]. Before using the system described in this paper, the Jiangxi
Fengcheng thermal power plant installed six UWB base stations in the coal shed. The cost
of setting up one UWB only for construction, installation, and construction cooperation was
about 30 thousand CHF. However, due to blind areas and electromagnetic interference, the
UAV navigation could not be completed. Vicon system uses multiple cameras pre-installed
and calibrated with high precision to locate the target, which also has the disadvantages of a
large blind area and high cost. For example, the Vicon system of the Beijing Key Laboratory
of UAV Autonomous Control of Beijing University of technology actually occupies a range
of 9.6 m × 7.8 m × 2.8 m. However, the available high-precision area is only about 6 m ×
5 m × 1.8 m in the middle. The cost of the system is nearly 300 thousand CHF. Thus, Vicon
system is not feasible to use in large-scale production and life. Visual sensors are mainly
used with the inertial unit as a visual inertial navigation system, such as ORB-SLAM2 [10],
VINS-Mono [11], etc. This type of visual inertial navigation system is susceptible to changes
in light in the working environment and has strict requirements for the features of the
environment. It can hardly work properly when light changes or visual features are not
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obvious. Lidar is mainly combined with the inertial unit to form a Lidar inertial navigation
system, such as LOAM [12], LeGO-LOAM [13], FAST-LIO [14], LIOM [15], etc. In recent
years, some multi-sensor navigation systems have fused more sensors. Such systems
integrate visual sensors, Lidars, inertial units, GNSS sensors, etc., in different ways, such as
LIO-SAM [16], LVI-SAM [17], etc. This navigation system complements the advantages
and disadvantages of their respective sensors but occupies more computing resources.

The above traditional vision, laser, and inertial navigation systems can not accurately
pose in the world frame that is fixedly connected with the actual scene in the GNSS-denied
environment. It is affected by each system restart and can only provide the relative pose
based on the pose when the system is started. It cannot correct the cumulative error through
the actual pose information, so those navigation systems cannot guarantee the positioning
accuracy in practical applications, especially in large-scene applications. Moreover, in the
case of failure and degradation, the above algorithm cannot restore navigation, seriously
affecting operation safety in practical applications. Therefore, this paper proposes a global
ArUco-based Lidar navigation system suitable for UAVs in a GNSS-denial environment.

ArUco, the Augmented Reality University of Cordoba, was originally proposed by
Garrido-Jurado, S. and others in reference [18] published in 2014. Here is an example of
ArUco marks shown in Figure 2. The ArUco mark is a square with a black background.
The interior is marked with a white pattern to indicate the mark’s uniqueness. It can be
arbitrarily modified to the appropriate size according to the requirements of the application
scenario. While using, the camera is used to collect images, and the images are detected
by the onboard computer. If the image contains ArUco, the relative position relationship
between ArUco and the camera can be obtained through simple calculations.

Figure 2. The example of ArUco markers.

The global ArUco described in this paper are ArUco markers fixed to the earth. It is
placed or printed in the designated position in the coal shed. Like the building, it is fixed.
It has unique longitude, latitude, and altitude coordinates in the ECEF system. It will not
change with the position and attitude of a restart of the navigation system every time. For
the convenience of calculation, it will be converted to a metric system according to the
application scenario. Still, the nature of its fixed connection with the geodetic coordinate
system will not be changed.

In the automotive field, there have been systems that use ArUco for auxiliary naviga-
tion [19]. However, these systems need ArUco to participate in initial navigation, which
has many limitations. Moreover, these systems only place ArUcos in the places concerned
by tasks such as parking spaces. Such ArUcos are mainly used to assist in setting specific
tasks and only ensure the accuracy near specific tasks. These navigation systems cannot
perform global corrections to the pose for large-scale and multi-dimensional motion. In
contrast, the navigation system proposed in this paper also uses ArUco, and can more
flexibly correct the global pose in large-scale and multi-dimensional motion.

The main work of this paper is as follows:
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A global ArUco factor is constructed, which can update confidence accurately accord-
ing to sampling. This factor participates in the optimization as a priori of the state in
the factor graph, which ensures that the navigation system can work in the geodetic
coordinate system fixed with the actual scene and corrects the error of the navigation
system according to the actual scene. Compared with traditional vision, it improves
the accuracy of the navigation system and reduces the use of computing resources,
and enhances real-time performance.
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The navigation system described in this paper is tested using the UAV platform in the
dry coal shed of thermal power plants, one of the practical application scenarios, and
compared with other Lidar algorithms.

The main contents of this paper are as follows. The second chapter introduces the
related work of others. The third chapter introduces the algorithm framework of the
navigation system and the factors of the factor graph. The fourth chapter introduces the
calibration method of noise covariance in the global ArUco real-time measurement, the
navigation system experiment in an actual working condition and the navigation system
accuracy test. The fifth chapter is the conclusion.

2. Related Work

In recent years, the visual navigation system mainly includes the following work.
ORB-SLAM2 [10] proposed a new tight coupling vision inertial navigation system, adding
loop closure detection to correct the drift of the navigation system. VINS-Mono [11] used
nonlinear optimization to fuse pre-integrated IMU measurements and feature observations.
It used a tightly coupled formulation combination with a loop closure detection module to
save the cost of computation resources. Moreover, it performed factor graph optimization
to enforce global consistency. The navigation system described in this paper mainly uses
Lidar and only uses vision to identify ArUco. The computing resources of the visual part
are much lower than the above-mentioned visual inertial navigation system.

The main algorithms of the Lidar navigation system mainly include the following
work. LOAM [12] first proposed a straightforward point cloud compensation method and
planar feature and edge feature extraction method. It used distances from a point to a plane
and a point to a line as a cost function to match the frame and estimate the motion. It also
proposed a back-end pair optimization algorithm that simultaneously outputs the pose in
high-frequency low-precision and low-frequency high-precision. The idea of the algorithm
is widely used for reference and improved by other Lidar navigation systems. However,
the algorithm cannot deal with large-scale rotation transformation. LeGO-LOAM [13]
divides the point cloud into the ground and other point clouds. Firstly, Z, roll, and pitch
are optimized through the segmented ground point cloud, and then x, y, and yaw are
optimized through other point clouds. The six-dimensional optimization is simplified into
two three-dimensional optimizations, reducing computational complexity. The algorithm
also eliminates the dynamic point noise when extracting features and classifies the features
during matching, which further reduces the occupation of computing resources. However,
the algorithm’s advantages cannot be realized because the Lidar cannot illuminate the
ground during the operation of a UAV system. The above navigation systems all rely on
Lidar, and the navigation system will fail when the Lidar motion solution degrades. The
navigation system described in this paper enhances the robustness of the Lidar motion
solution when it degrades through global ArUco.

The multi-sensor fusion navigation system mainly includes the following work. LIO-
SAM [16] removes frame-to-frame matching in traditional Lidar point cloud matching
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and only matches keyframes, which reduces the use of computing resources. Add GNSS
sensors to the navigation system and use factor graph optimization to enhance the fusion of
individual sensor data. The algorithm can exert its advantages in the GNSS environment but
cannot make global corrections to the navigation results in the GNSS-denied environment.

3. ArUco-Based Lidar Navigation System for UAVs in GNSS-Denial Environment

For the convenience of later description, an operator of transforming the Euler angle
into a rotation matrix is defined here.

Define the Euler angle as:
Ω =

(
r p y

)T

The operator is shown as:

<(Ω) =

cos y cos p cos y sin p sin r− sin y cos r cos y sin p cos r + sin y sin r
sin y cos p sin y sin p sin r + cos y cos r sin y sin p cos r− cos y sin r
− sin p cos p sin r cos p cos r


3.1. System Overview

The navigation system described in this paper uses surround Lidar, IMU, gimbal,
camera, and global ArUco markers as system information sources. The surround Lidar,
IMU, and gimbal are fixedly connected with the UAV, and their relative pose relationship
is calibrated. The calibration method is the same as that in reference [20]. The gimbal can
output the pose relationship between the camera and the UAV. The global ArUco marks
are placed in a known GNSS-denied environment scene, and its absolute pose in the scene
is known.

In order to consider the accuracy of the navigation system globally, optimization rather
than filtering is selected in the main framework of sensor observation fusion. The main body of
the navigation system designed in this paper is to solve a nonlinear optimization problem for
state estimation, use sensor observations to solve the maximum posterior probability estimation
of the state, and use factor graphs to express the relationship between them [21], and use iSAM2
to solve [22]. In the optimization, we consider the state of the UAV at time k as:

Xk =
(
pk vk Rk bak bgk

)T

where pk is the translation vector of the UAV in the world frame, vk is the velocity vector
of the UAV in the world frame, Rk ∈ SO(3) is the rotation matrix of the UAV in the world
frame, and bak and bgk are the bias of accelerometer and gyro in IMU, respectively.

The navigation system adds the global ArUco factor, IMU pre-integration factor, Lidar
factor, and global ArUco loop closure factor in the factor graph. The structure of the
factor graph is shown in Figure 3. At time k, take the global ArUco factor as the initial
optimization value. Furthermore, add the IMU pre-integration factor calculated by IMU
pre-integration between time k-1 and k and the Lidar factor calculated by Lidar motion
estimation between time k-1 and k. Moreover, determine the loopback through the global
ArUco. If the loopback occurs at time j, continue to add the loopback factors between time j
and time k to the factor graph.
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Figure 3. The structure of the factor graph. The system receives input from a camera, an IMU, and a
surround Lidar. The factor graph is constructed by four types of factors: (b) global ArUco factor, (c)
IMU pre-integration factor, (d) Lidar factor, and (e) global ArUco loop closure factor. The generation
of these factors is discussed in the following sections, respectively.

3.2. Global ArUco Factor

In order to avoid the uncorrectable error caused by the navigation system only using
the IMU and Lidar data for pose calculation for a long time, the global ArUco factor is
added to the factor graph in this navigation system. The global ArUco factor can fixedly
connect and align the map frame, used to calculate IMU and Lidar, with the world frame.
Moreover, it can also correct the position and attitude error generated by the calculation of
IMU and Lidar through the global pose. What is more, it can be used as the information
source to maintain the regular operation of the navigation system when the matching of
the Lidar point cloud is degraded.

The global ArUco factor comprises ArUco detection, global pose calculation, covari-
ance comparison, and EKF sensor fusion process.

The global ArUco is placed in the known task scenario as required in advance. When
the navigation system works, the image is captured by the camera. First, the system will
grayscale and binarize the image. Secondly, the system will detect quadrilaterals, remove
similar quadrilaterals, obtain bit assignment from the image, and obtain the coordinates of
the four corners of ArUco in the image frame and correct them. Finally, the system will
solve the rotation matrix and translation vector of the ArUco relative to the camera frame
by using the PNP method [18]. The ArUco detection and solution function library used in
this paper are shown in references [23].

The rotation vector and translation vector of the ArUco numbered i relative to the
camera frame are ri and ti, respectively. The navigation system calculates the global
pose Tlidar

worldi of the Lidar relative to the actual world frame according to the Euler angles(
ϕgi θgi φgi

)T of the gimbal, the position relationship
(
xg yg zg

)T between the Lidar

and the gimbal obtained from the calibration, and the pose
(
xi yi zi ϕi θi φi

)T of the
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ArUco numbered i in the known scene. The specific form of Tlidar
worldi is shown in Equation

(1). Below, T ∈ SE(3).

Tlidar
worldi = Tlidar

gimbleTgimble
cameraiTcamera

aruco iTaruco
worldi (1)

where Taruco
worldi is the transformation matrix of the pose of the ArUco numbered i frame

in the world frame, Tcamera
aruco i is the transformation matrix of the pose of the camera frame

in the ArUco numbered i frame, Tgimble
camerai = Tcamera

gimblei
−1, Tgimble

camerai is the inverse matrix of the
pose transformation matrix of the camera in the gimbal frame when the ArUco numbered i
is detected, Tlidar

gimble is the position transformation matrix of the Lidar in the gimbal frame
obtained from calibration.

The relationship between Taruco
worldi and

(
xi yi zi ϕi θi φi

)T is shown in Equation (2).

Taruco
worldi =

(
Raruco

worldi taruco
worldi

0 1

)
(2)

where Raruco
worldi is the rotation matrix of the ArUco numbered i to the world frame, and the

specific expression is shown in Equation (3). taruco
worldi is the translation vector of the ArUco

numbered i to the world frame, and the specific expression is shown in Equation (4).

Raruco
worldi = <

ϕi
θi
φi

 (3)

taruco
worldi =

(
xi yi zi

)
(4)

The relationship between Tcamera
aruco i, ri, and ti is shown in Equations (5) and (6).

Tcamera
aruco i = Taruco

camerai
−1 (5)

Taruco
camerai =

(
Raruco

camerai ti
0 1

)
(6)

where Raruco
camerai is the rotation matrix of the ArUco numbered i in the camera frame, as

shown in Equation (7).

Raruco
camerai = cos αiI + (1− cos αi)riri

T +
sin αi

αi

 0 −riz riy
riz 0 −rix
−riy rix 0

 (7)

where in Equation (7), rix, riy, and riz are the components of ri, as shown in Equation (8); αi
is the angle of rotation and is also the modulus of ri.

ri =
(
rx ry rz

)T (8)

When the ArUco numbered i is detected, the transformation matrix Tcamera
gimblei of the

camera frame to the gimbal frame is shown in Equation (9).

Tcamera
gimblei =


0 −1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 1

(Rgimblei 0
0 1

)
(9)
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where Rgimble is the rotation matrix corresponding to the Euler angle of the gimbal, as
shown in Equation (10)

Rgimblei = <

ϕgi
θgi
φgi

 (10)

The transformation matrix between the Lidar and the gimbal obtained by calibration
is shown in Equation (11).

Tlidar
gimble =


1 0 0 xg
0 1 0 yg
0 0 1 zg
0 0 0 1

 (11)

In this paper, a dynamic measurement noise covariance matrix of Tlidar
worldi is proposed,

which can be adjusted by observation of the ArUco numbered i in the camera frame
and image frame and shown as Ri(Ci1(ξi(ri, ti)), Ci2(di)). Where, the rotation vector ri,
the translation vector ti, and the global ArUco side length l are used to calculate the
influence factor ξi(ri, ti) of the measurement noise covariance caused by the different
measurement angles due to the pose. In addition, the distance di from the center of
gravity of the ArUco numbered i to the optical axis is used as the influence factor of
the measurement noise covariance caused by different positions of ArUco in the image
frame. Before the operation of the navigation system and after the internal and external
parameters of the camera are calibrated, the measurement noise covariance matrix needs
to be calibrated. When calibrating, respectively change the above two influencing factors
to measure the measurement noise, calculate the covariance, and then fit the functions Ci1
and Ci2 according to the results to complete the calibration.

In calculating the global ArUco factor, EKF is used to fuse IMU with the global
pose obtained by global ArUco markers. The reason for choosing EKF is that under
the conditions of use in this paper, compared with UKF and PF, EKF has similar result
accuracy, occupies less computing resources, has low computational complexity, and has
no strict initialization requirements. The UAV’s position pw =

(
x y z

)T and attitude

Φw =
(
γ θ ϕ

)T in the world frame and the velocity vb =
(
vx vy vz

)T , angular

velocity ωb =
(
vx vy vz

)T , and acceleration ab =
(
ax ay az

)T in the body frame

(Front-Left-Upper) are taken as the system state s =
(
pwT ΦwT vbT ωbT abT)T . The

transformation matrix from the body frame to the world frame is denoted as C, as shown
in Equation (12), the relationship between the angular velocity ωb and the attitude Φw is
shown in Equation (13).

C = <(Φw) (12)

ωw =
·

Φw =


·
γ
·
θ
·
ϕ

 = R

vx
vy
vz

 (13)

where R is shown as:

R =

1 sin γ sin θ
cos θ cos γ sin θ

cos θ
0 cos γ − sin γ

0 sin γ 1
cos θ cos γ 1

cos θ


The prior estimation of the position, velocity, attitude, acceleration, and angular

velocity at time k in the EKF are shown in Equations (14)–(18), where ∆t is the time
interval between two adjacent states in the EKF. The state equation of the system is shown
in Equation (19), where A is the state transition matrix, written from Equation (14) to
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Equation (18), and Wk−1 is the prior noise. The covariance estimation is shown in Equation
(20), where Q is the prior error noise covariance matrix.

p̃w
k

= pw
k−1

+Cvk−1∆t + Cak−1
∆t2

2
(14)

ṽb
k

= vb
k−1

+ak−1∆t (15)

Φ̃k = Φk−1+Rωk−1∆t (16)

ãk = ak−1 (17)

ω̃k =ωk−1 (18)

s̃k = Ask−1 + Wk−1 (19)

P̃k = Apk−1AT+Q (20)

In the EKF calculation, first, calculate the measurement noise covariance of all ArU-
cos detected at time k, sort them, select the lowest Ri(Ci1(ξi(ri, ti)), Ci2(di)), and record
the corresponding ArUco number i and global pose Tlidar

worldi simultaneously. The global
position and attitude observations are recorded as pzk and Φzak, respectively, where pzk
is the translation part of Tlidar

worldi, and the rotation matrix part of Tlidar
worldi solves Φzak. The

IMU’s acceleration, attitude, and angular velocity are recorded as aimu, Φimu, and ωimu,
respectively. The observation equation is shown in Equation (21), where Vk(i) is the mea-
surement noise, and its covariance is Σk. Σk is obtained by REuler

i and Rimu, shown as
Equation (22). Where REuler

i is Ri(Ci1(ξi(ri, ti)), Ci2(di)) transformed into Euler angle form,
and Rimu is the measurement noise covariance of IMU, obtained through IMU calibration.

Zk =


pzk

Φzak
aimu
Φimu
ωimu

= Hxk + Vk(i) (21)

Σk =

(
REuler

i 0
0 Rimu

)
(22)

The correction equation for the state is shown in Equation (23), where K is the Kalman
gain as shown in Equation (24). The correction equation for error covariance is shown in
Equation (25).

sk = s̃k + K[Zk−Hx̃k] (23)

K =
P̃kHT

HP̃kHT+∑ k
(24)

Pk = [I−KH]P̃k (25)

The global ArUco factor is taken as the initial value of the current state Xk in the factor
graph. The global ArUco factor transformed from the position pw, attitude Φw part in
the state sk corrected by the EKF at time k and the corresponding parts of pw, Φw in the
covariance matrix Pk, as shown by (b) in Figure 3. In addition, when no ArUco has been
detected within 3 s, the EKF process will be stopped and initialized, and will be restarted
while ArUco are being detected again.

3.3. IMU Pre-Integration Factor

The process of IMU information processing and construction of the pre-integration
factor used in this paper is the same as that in reference [24].
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The measurement equations of the gyroscope and the accelerometer are shown in
Equations (26) and (27), respectively.

ωb =ωb+bg+ng (26)

ab = Rbw(a
w+gw)+ba+na (27)

where ωb and ab are the measured values of the gyroscope and accelerometer, ωb and
aw are the truths of angular velocity and acceleration, bg and ng are the bias and noise of
gyroscope, ba and na are the bias and noise of accelerometer, and Rbw is the transformation
matrix from the world frame to body frame.

Assuming time i ≤ k < k + 1 ≤ j, the average values of angular velocity and
acceleration in adjacent times k and k + 1 are calculated using the median method, denoted
as ω and a, respectively, as shown in Equations (28) and (30), respectively. The time interval
between time k and k + 1 is ∆t. The attitude, position, speed, accelerometer deviation,
and gyroscope deviation of the pre-integration from the time i to time k + 1 are shown in
Equations (29) and (31) to (34), respectively. When time k + 1 = j, it is the pre-integration
from the time i to time j.

ω =
1
2

[(
ωbk−bg

k

)
−
(
ωbk+1−bg

k

)]
(28)

q
bibk+i

= q
bibk
⊗
(

1
1
2ω∆t

)
(29)

a =
1
2

[
Rbibk

(
abk−ba

k

)
+Rbibk+1

(
abk+1−ba

k

)]
(30)

pbibk+1
= pbibk

+vbibk
∆t+

1
2

a∆t (31)

vbibk+1
= vbibk

+a∆t (32)

ba
k+1 = ba

k+na
bk

∆t (33)

bg
k+1 = bg

k+ng
bk

∆t (34)

The pre-integration factor is transformed from Equation (35) added to the factor graph
as the measurement between two adjacent states, Xi and Xj, as shown by (c) in Figure 3.
The specific derivation process of error and covariance can refer to reference [11] and
reference [23].


rp
rv
rq
rba

rbg


15×1

=



Rbiw

(
pwbj

− pwbi
− vi∆t + 1

2 gw∆t2
)
− pbibj

2
[
qbjbi

⊗
(

qbiw ⊗ qwbj

)]
xyz

Rbiw

(
vw

j − vw
i + gw∆t

)
− vbibj

ba
j − ba

i
bg

j − bg
i


(35)

3.4. Lidar Factor

When collecting the laser point cloud, first perform motion compensation on each
point, align the timestamp, and project a period of the point cloud onto a frame of the point
cloud image, which is recorded as the frame n [25]. Then, perform feature extraction on
the frame point cloud image. Calculate the average distance kk from five points before
and after a point pk on each scan line to this point, as shown in Equation (36). ‖pk‖ is

the distance from the point pk on the line to the center of the Lidar, and
∥∥∥pk−pj

∥∥∥ is the
distance between the point pk and the nearby points pj. If kk of point pk is close to the
average distance of points around pk, the curvature near point pk is slight, and the terrain
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probability is relatively smooth. The point pk is generally on the plane and is recorded as
Fmn as a planar feature. Conversely, if kk of point pk differs significantly from the average
distance of points around pk, the curvature near the point pk is large, and the terrain
probability changes abruptly. The point pk is generally a corner point, recorded as Fbn as
an edge feature [12].

kk =
1

10 · ‖pk‖
∑

j∈[k−5,k+5],j 6=k

∥∥∥pk − pj

∥∥∥ (36)

For the key frames selection, the first frame is used as the keyframe. For the rest, when
determining whether frame n is a keyframe, compare the covisibility relationship between
the feature point set {Fmn, Fbn} of frame n and the feature points in the previous keyframe
km. If the change of the covisibility relationship is greater than the set threshold, set frame
n as a keyframe and record it as km+1.

There are mainly the following steps when matching the features of two keyframes.
Calculate the distance dmkm+1 from the planar feature point Fmn in the latest keyframe km+1
(the frame n) to the plane formed by the corresponding three adjacent planar feature points
in the first five keyframes km to km−5. Calculate the distance dbkm+1 from the edge feature
point Fbn in the latest keyframe km+1 to the straight line formed by the corresponding
adjacent edge feature points in the first five keyframes km to km−5. Motion estimation is
performed using

(
dmkm+1 dbkm+1

)T as a cost function to optimize the rotation translational
changes in two keyframes. If there is no degradation [26] in the optimization solution,
add state Xm+1 to the factor graph, project km+1 into the map, and take the optimization
result as the measurement between state Xm and Xm+1 in the factor graph. If the solution
optimization process degenerates and the global ArUco is continuously detected, the
keyframe km+1 is projected into the map according to the pose solved by the global ArUco,
but the optimization result is not added as the measurement between state Xm and Xm+1 in
the factor graph, as shown by (d) in Figure 3.

In addition, if the system reads the frame n of Lidar and detects an ArUco numbered i
at the same time, even if the covisibility relationship is not lower than the threshold, this
frame will be added as a keyframe kai. In the subsequent continuous detection of the
ArUco numbered i, if the covariance of the global ArUco factor is less than the covariance
corresponding to the time when kai is detected, the keyframe kai will be updated. After the
continuous detection of the ArUco numbered i is completed, firstly, find the keyframe km,
which is generated by the covisibility relationship with the closest time of the keyframe
kai. Then, match kai with km and the adjacent keyframe km−2 to km+2 before and after
km. Finally, add kai to the map. In this paper, the discontinuity threshold for an ArUco
detection is set to 3 s.

3.5. Global ArUco Loop Closure Factor

The global ArUco loop closure is used to correct the global pose. It adds the matching
results with historical keyframes to the factor graph when the navigation system repeatedly
runs to a similar position.

When the navigation system recognizes the continuous detection signal of the ArUco
numbered i for the lth time, it can be determined as a loop closure. The keyframes kai,1, kai,2 to
kai,l−1 and the collection of keyframes

{
kq−2,kq−1,kq,kq+1,kq+2

}
, {kw−2,kw−1,kw,kw+1,kw+2}

to {ke−2,ke−1,ke,ke+1,ke+2} are marched with kr, and the optimization is used for motion
estimation, respectively, where kai,l means the keyframe added by the loop closure detected
of the ArUco numbered i for the lth time. kq, kw to ke, and kr are the keyframes obtained
from the covisibility relationship, with times that are closest to the keyframes kai,1, kai,2 to
kai,l−1, and kai,l, respectively. If the optimizations have solutions and do not degenerate,
the optimization solutions will be added to the factor graph as loop closure factors and as
measurements between state Xr and states Xq, Xw to Xe, as shown by (e) in Figure 3.
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4. Experiment

The navigation system test uses Velodyne-16 surround Lidar, MTI-300 inertial mea-
surement unit, Intel NUC8 onboard computer, ZENMUSE X5S gimbal camera, and DJI
Matrice200 RTK unmanned flight platform. The hardware and the test platform of the
navigation system are shown in Figure 4. The Velodyne-16 surround Lidar has a vertical
resolution of 2◦, a horizontal resolution of 0.2◦, a field angle of view of 30◦ vertical and
360◦ horizontal, a maximum detection distance of 100 m, a detection accuracy of 3 cm,
and a set speed of 600 rpm during the test. The gyroscope of Mti-300 has a maximum
range of 450◦/s, an initial deviation of 0.2◦/s, and an operation deviation of 10◦/h. The ac-
celerometer of Mti-300 has a maximum range of 200 m/s2, an initial deviation of 0.05 m/s2,
and an operation deviation of 15 µg. The camera of ZENMUSE X5S uses a 4/3′′CMOS
sensor, with a field angle of view of 72◦, maximum image resolution of 5280× 3956, and
real-time image resolution of 1280× 960. The Gimbal of ZENMUSE X5S has an angle jitter
of ±0.01◦. The dictionary DICT_6 × 6_50 is selected for global ArUcos. The length of the
side of the ArUco markers is 0.8 m. The area size of the flight test environment is 200 m ×
43 m × 18 m, and the flight speed is set around 1 m/s. The algorithm of the navigation
system is implemented in C++ and runs on an Ubuntu 18.04 operating system based on
ROS architecture.

Figure 4. The hardware and the UAV platform.

After the navigation system is installed on a new carrying platform each time, the IMU
shall be calibrated under the operation condition of the whole carrying system. After the
MTI-300 is installed on the UAV platform, turn on all equipment and keep it still for 2 h. After
the calibration, the average bias of the accelerometer and gyroscope measured is added to the
factor graph as the initial value, and the measured noise covariance is added to EKF.

This chapter mainly introduces the calibration experiment before the fitting of the
global ArUco dynamic measurement noise covariance matrix, the tests of the navigation
system in the working condition, and the experiment on the navigation system accuracy.
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4.1. The Calibration of Global ArUco Dynamic Measurement Noise Covariance

The global ArUco measurement noise includes the noise caused by different positions
of ArUco in the image frame. Therefore, before calibration of the measurement noise
covariance of global ArUco, it is necessary to calibrate the internal and external parameters
of the camera.

During the calibration process, the working conditions are scaled proportionally. The
5 m × 5 m × 1.8 m Vicon system is used to measure the pose of the ArUco, the platform,
and the sensors on it, and the measurement noise of the global ArUco system can be
calibrated. In the test, Vicon markers are pasted on the Lidar, camera, and the flat plate
where the ArUco marker is located so that the system can measure the real pose of the
frames corresponding to the above devices. The schematic layout of the test equipment and
the pasting position of Vicon markers are shown in Figure 5. Under working conditions,
the average vertical distance between the camera and ArUco is about 16 m. Limited to the
experimental conditions, the distance between the ArUco and camera imaging plane is
1 m during calibration to simulate the situation near the working condition of 16 m, and
the ArUco side length is proportionally scaled to 0.05 m. The pixel plane is divided into
15 sampling areas. The schematic diagram of the projection of the sampling area in the pixel
frame and image frame is shown in Figure 6. Due to symmetry, only 6 sampling areas in
the first quadrant of the image frame are selected for calibration. Three conditions of 0.75 m,
1 m, and 1.25 m are selected as the distance from ArUco to the camera, and 25 combinations
of roll angle and pitch angle ±40◦, ±20◦, and 0◦ are selected as the conditions of the ArUco
attitude. In the calibration experiment, the global ArUco measurement noise is calibrated
using a combination of the above different conditions in each sampling area. The ArUco
pose in each sampling area is shown in Figure 7, and the detection of ARCUO in two
experiments is shown in Figure 8. There are 450 states in the calibration experiment. After
the experiment, the covariance matrix Ri(Ci1(ξi(ri, ti)), Ci2(di)) is fitted according to the
results of each state ri, ti, di, and measurement noise. In each sampling area of the first
quadrant, when the pitch angle and roll angle of ArUco are 0 degrees and the distance from
the camera is 0.75 m, the covariance calculated by calibration is shown in Table 1. It can
be observed that the noise of different pose components obtained with different sampling
positions has a large difference between the value and the changing trend. If the same
covariance is used to replace all samples, the accuracy of the whole navigation system will
be reduced.



Aerospace 2022, 9, 456 14 of 24

Figure 5. The schematic layout of test equipment and the pasting position of Vicon markers. (a) shows
the test equipment, including the Lidar-IMU part, camera part on the UAV, and the installation of the
ArUco marker on the ground. (b,c,e) are the pasting position of the Vicon mark near the Lidar-IMU part,
the camera part, and the ArUco marker, respectively. (d) is the ball joint support of the ArUco marker.

Figure 6. The projection of the sampling area in the pixel frame and image frame. The x-axis, y-axis
constitute the image frame, and the u-axis and v-axis constitute the pixel frame.
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Figure 7. The schematic of ArUco pose in each sampling area.

Figure 8. The detection of ARCUO in two experiments.

Table 1. The covariance in each sampling area of the first quadrant when roll and pitch angle of ArUco
are both 0 degrees. X, Y represents the number of x-axis, and y-axis sampling areas, respectively.

y
x

1 2 3

1

4.8
×

10−8

1.8
×

10−7

1.7
×

10−6

2.3
×

10−7

4.9
×

10−8

5.9
×

10−8

3.9
×

10−5

5.7
×

10−6

1.3
×

10−5

5.5
×

10−3

6.4
×

10−4

1.6
×

10−3

7.7
×

10−3

2.5
×

10−3

2.7
×

10−3

5.2
×

10−5

3.3
×

10−5

5.8
×

10−5
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Table 1. Cont.

y
x

1 2 3

2

7.8
×

10−8

7.4
×

10−7

5.2
×

10−6

1.0
×

10−6

9.3
×

10−7

1.6
×

10−6

2.9
×

10−5

2.4
×

10−5

4.6
×

10−5

1.8
×

10−3

8.8
×

10−4

2.6
×

10−4

2.5
×

10−2

2.6
×

10−2

2.6
×

10−2

9.3
×

10−4

1.1
×

10−3

1.8
×

10−3

4.2. The Tests of the Navigation System in the Working Condition

The navigation system introduced in this paper is used to navigate UAVs in the GNSS-
denied environment of known large scenes. Therefore, this paper selects the actual working
conditions that meet the above conditions to test the system described in this paper and
compare it with common navigation algorithms. The test site is the dry coal shed of the
first phase of Fengcheng Thermal Power Plant in Fengcheng City, Jiangxi Province. The site
environment and test flight photo are shown in Figure 9. This working condition requires
the UAV to complete the indoor zigzag reciprocating survey and mapping line in the dry
coal shed and accurately know the absolute position of the UAV in the dry coal shed scene,
so as to facilitate the flight and subsequent visual measurement. In this paper, half of the
dry coal shed is used as the test area.

In this test, the X-direction refers to the north, the Y-direction refers to the west, and
the Z-direction refers to the sky. The origin is located at the plane of the coal storage site of
the coal shed.

This paper records the original point cloud scanned by Lidar, the image taken by the
camera, and the data measured by other sensors during two uninterrupted operations
of UAV under working conditions. Use LOAM [12], LIO-SAM [16], and ArUco_LIO, the
navigation system described in this paper, to solve the above types of information and
compare them. The test flight used the manual flight mode, set the cruise altitude of
16.5 m, and had the flight path range of 90 m × 30 m. The trajectory of two uninterrupted
operations calculated by ArUco_LIO is shown in Figure 10. The horizontal projection of
the trajectory calculated by each navigation system is shown in Figure 11. The frame in
Figure 11 is the world frame drawn according to the known environment. In Figure 11a,
“range” represents the ground range of the dry coal shed in the real scene. “ArUco” means
the global ArUco markers with different numbers in the scene in advance. Except for
the take-off point and the two nearby ArUcos, all of them are arranged on the sidewalk
1.5 m high from the take-off point. The y-axis coordinate is −14.8 m, the distance between
adjacent markers is 10 m, and no marker is placed at x = 70 m due to fixed equipment.
“LOAM,” “LIO-SAM,” and “ArUco_LIO”, respectively, represent the horizontal projection
of the trajectory calculated by the three methods. “rotate” represents the result of manually
rotating the solution of ArUco_LIO to a state similar to the other two algorithms. In
Figure 11b, “LOAM,” “LIO-SAM,” and “ArUco_LIO”, respectively, represent the projection
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of the three algorithm trajectories in the x-z plane. The z-axis variation curve of each
algorithm with time is shown in Figure 12.

Figure 9. The test environment and test flight photo. (a) is the schedule drawing of dry coal shed roof.
(b) is the site environment photo. (c) is the photo during the test flight. (d) is the satellite image of the
dry coal shed. Although the square part is in the open air in the satellite image, the roof was built
during the flight test. (e) is the three-dimensional map of the flight test site obtained by the visual
three-dimensional mapping method irrelevant to this paper. The part circled in red is the global
ArUco. Four markers near the takeoff point and on the sidewalk are not shown in the figure due to
the scope of the drawing.
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Figure 10. The trajectory of two uninterrupted operations calculated by ArUco_LIO.

Figure 11. The trajectory calculated by each navigation system. (a) is the horizontal projection of the
trajectory; (b) is the x-z projection of the trajectory.
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Figure 12. The z-axis variation curve with time.

As can be observed from Figure 11a, the trajectory obtained by the LOAM and
LIO_SAM algorithms is affected by the UAV initial pose and the deviation of the in-
stallation angle of the Lidar. Because the algorithm does not have the function of correcting
the trajectory rotation deviation, the calculated trajectory is far from the actual flight trajec-
tory. Those navigation systems greatly increase the risk of UAV collision in the application,
cannot meet the subsequent tasks such as visual measurement, and do not meet the needs
of working conditions. By comparing the trajectory of “rotate” with other algorithms, it is
found that LOAM degenerates soon after takeoff; it can be observed from the routes near
the takeoff point and x = 90 m that LIO_SAM drifted near the takeoff point and was not
repaired in the subsequent navigation. In contrast, the ArUco_LIO described in this paper
completes the global optimization of navigation through global ArUco, which significantly
corrects the direction of the route and corrects the accumulated error.

It can be observed from Figure 11b that after the degradation of the LOAM, it has a
considerable drift in the Z direction. LIO_SAM algorithm also impacts the direction of the
frame after drifting near takeoff, resulting in the overall route bow down and inaccurate
altitude. The ArUco_LIO described in this paper is corrected through the global ArUco,
and the navigation system maintains a relatively stable and accurate output. It can be more
clearly observed from Figure 12 that when the UAV is cruising at 16.5 m altitude, the output
of the navigation system is stable without a large offset. Moreover, its response speed is
higher than the other two navigation algorithms.

4.3. The Experiment on the Navigation System Accuracy

Since the navigation system is suitable for a large-scale denial environment, there
is no way to set up such a large Vicon system to provide a true value. Therefore, this
paper chooses the outdoor GNSS environment and uses the results of GNSS-RTK+VIO
of the DJI flight platform as the true value to test the accuracy of the navigation system.
The GNSS-RTK+VIO positioning accuracy given by DJI is horizontal 1 cm + 1 ppm (RMS)
and vertical 2 cm + 1 ppm (RMS). (1 ppm: for every 1 km increase, the accuracy will
become 1 mm worse.) Due to the outdoor influence on the Lidar field of view, the UAV
platform carried the navigation system flow several times at a height of only about 3 m
and a range of 20 × 5 m2 during the test. We also reduced the size of the ArUco markers
to a 0.16 m side length with the decrease in flight altitude. The satellite map of the test
site and the approximate range of the flight are shown in Figure 13a. The photos of the
original environment of the site are shown in Figure 13b. The trajectory of a flight is shown
in Figure 13c.
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Figure 13. The photos of the test area. Where (a) is satellite map of the test site, the red circle is the
approximate test area. (b) is the original environment of the test site. (c) is the flight path of a test in
the point cloud map.

This paper converts several flights’ GNSS-RTK+VIO longitude and latitude data into
a metric system. The conversion is from west to x, south to y, and up to Z in this test.
The converted results are arranged in the time sequence of the test and compared with
ArUco_LIO. The horizontal projection of the track is shown in Figure 14, and the changes
in X, y, and Z directions of the path with time are shown in Figure 15a–c, where red is the
trajectory of ArUco_LIO, and light green is the true value. It can be observed from the
image that the trajectory of ArUco_LIO is in good agreement with the true trajectory.
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Figure 14. The horizontal projection of the track.

Figure 15. Cont.
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Figure 15. The changes in X, y, and Z directions of the path with time. Where (a) is the x-axis variation
curve with time. (b) is the y-axis variation curve with time. (c) is the z-axis variation curve with time.

The scatter diagram of the navigation system positioning error is shown in Figure 16.
The red scatters “error” and “error-XY” are the distance error between the ArUco_LIO and
the true value of the three-dimensional position and the horizontal projection position, with
DRMS of 0.04802 m and 0.03407 m, respectively. The blue scatters, “error-x,” “error-y,” and
“error-z” are, respectively, the absolute errors in the X, y, and Z directions of ArUco_LIO
in the test, with an RMS of 0.02876 m, 0.01826 m, and 0.03385 m. Therefore, under this
working condition, the horizontal accuracy of ArUco_LIO is 0.03407 m, and the vertical
accuracy is 0.03385 m.
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Figure 16. The Scatter diagram of the positioning error of ArUco_LIO.

5. Conclusions

This paper designs a Lidar navigation system based on global ArUco. The system can
be widely used for high-precision navigation of UAVs in large indoor places with known
GNSS-denied environments, such as factories, workshops, and dry coal sheds. Adding the
global ArUco factor, whose confidence varies with sampling in the back-end, solves the
problem of accurate positioning in the GNSS-denied environment, as well as efficiently
solves the stability of the loopback detection. Furthermore, it also ensures the sustainable
and stable operation of the system in the case of failure of the Lidar motion solution.

In this paper, the UAV platform is used to collect the data set under the working
condition of the dry coal shed of the power plant, which is one of the suitable ranges of the
system. The data set is used to thoroughly evaluate the system and the other two Lidar
algorithms and compared with other algorithms in terms of a navigation effect according to
the actual operation requirements. The results demonstrate that compared with LOAM and
LIO-SAM, ArUco-LIO can work more accurately and stably in large-scale known GNSS-
denied environments and can be used as a reliable navigation system for UAV in these
scenes. This paper also tests the accuracy of the navigation system with GNSS-RTK+VIO
as the true value in the GNSS environment and counts the errors. The results demonstrate
that ArUco-LIO has high precision and can reliably provide navigation data for UAVs in
the known GNSS-denied environment.
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