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Abstract: Utilization of a heat source to regulate the shock wave–boundary layer interaction (SWBLI)
of hypersonic inlets during throttling was computationally investigated. A plug was installed at the
intake isolator’s exit, which caused throttling. The location of the heat source was established by
analysing the interaction of the shockwave from the compression ramp and the contact spot of the
shockwave with that of the inlet cowl. Shockwave interaction inside the isolator was investigated
using steady and transient cases. The present computational work was validated using previous
experimental work. The flow distortion (FD) and total pressure recovery (TPR) of the inflows were
also studied. We found that varying the size and power of the heat source influenced the shockwaves
that originated around it and affected the SWBLI within the isolator. This influenced most of the
performance measures. As a result, the TPR increased and the FD decreased when the heat source
was applied. Thus, the use of a heat source for flow control was found to influence the performance
of hypersonic intakes.

Keywords: unstart; hypersonic; flow control; heat source; shockwave–boundary layer interaction
(SWBLI); inlet isolator

1. Introduction

Hypersonic intakes receive and compress oxidizers from scramjet engines, which is
critical to hypersonic aircraft function. Depending on the captured qualities of the fluid flow
and the flow characteristics within the induction system, hypersonic intakes can function when
ignited or not ignited [1]. Inadequate air compression, for example, chokes the flow at the entry
throat, leading to the process being halted [2]. Flow changes form due to increases in the Mach
value owing to increased contact with the boundary layer. Lower Mach numbers typically
experience this shift, although it can also be caused by the existence of fuel injection [3].
Hypersonic inlets must work when ignited in order to derive the best performance, so the
captured air and compressor elements of high-speed vehicles need to be considered [1].

Fluid flow is caused by thermal choke, mass addition, backpressure rise, or the com-
bination of such effects, and can induce an intake during non-ignition [4]. According to
earlier research work, backpressure can affect flow, which develops and travels upstream.
If there is a semi-steady flow of shock trains and sufficiently “low” backpressure, these split
flows can remain at a given spot. Separations travel upstream when there is enough back-
pressure, gradually stopping the incoming flow. The oscillatory flow may then manifest
itself as a violently unstable unignited flow phase [5–7]. Tan et al. [8] intended to predict
inlet non-ignition by investigating the non-ignition operation of generic hypersonic flow at
Mach 5 with throttling ratios ranging from 0.14 to 0.85. The following year, Tan et al. [9]
demonstrated an active technique for a sequence of shock oscillations across a hypersonic
model with intricate background waves at throttling ratios of 0.75 to 0.9. Li et al. [7] evalu-
ated the unstable performance of hypersonic intakes at Mach 6 by placing a stopper around
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the outflow of the intake isolator. Cyclic unignited streams were discovered at higher
TRs with frequencies correlating to the TR, ranging from 222 to 400 Hz. In the same way,
Sun et al. [10] investigated the unstable performance of a hypersonic inlet at a TR of 0 and
0.3. The backpressure rose when the TR was increased to 0.3, and the plug-induced detach-
ment flow moved upstream. The isolator’s downstream flow field then became subsonic.
Wang et al. [11] explored an oblique shock train using a hypersonic intake and observed
that, as the degree of throttling rose, the oblique shock train moved upstream. Moreover, in
a study of unignited behaviour caused by subsonic leakages inside a hypersonic inlet at
Mach 6 with a throttling ratio of 0 to 0.69, the intake began to exceed Kantrowitz limitations
despite being less than the isentropic limits [12]. Researchers suggested that it is vital to
analyse shock train oscillations in order to prevent non-ignition intake situations [13–16].

Gao et al. [17] evaluated the influence of a plug on oscillatory flows at Mach 6 with
throttling ratios ranging from 0 to 0.66. According to their data, the additional detachment
shock pressure, as assessed by the average value of the centre-body pressure, was larger in
plugged situations than in unplugged ones. Chen et al. [18] detected a Dailey interruption
in the small throttle, which they attributed to mild disturbances induced by the end shock’s
interaction with the separated boundary layer on the ramp surface. Small and large throttling
might have the same source. The likelihood of small throttling decreased as the TR increased.
To raise the intake backpressure until non-ignition occurred, a throttling mechanism attached
to the intake isolator’s outlet was utilized [6]. Because of poor backpressure management,
the intake came to a halt as the phase changed [5]. As a result, each component of the
high-speed aircraft was subjected to a diverse set of flow fields and flow characteristics as
well as time–frequency aspects. As a consequence, the non-ignition operation was aided by
the shockwave–boundary layer interaction (SWBLI)-generated flow pattern [19]. When the
hypersonic intake was turned off, a huge boundary-layer detachment zone occurred at the
cowl’s sidewall edge, resulting in a powerful detachment wave that diverted the pressurized
airflow. An unignited hypersonic intake stream may be predominantly supersonic with
transient supersonic regions at the intake and isolator edges [20].

Hypersonic intakes, unlike supersonic intakes, have a supersonic area even after the
final shockwave. The reason for the hypersonic intake’s unignited behaviour change is
a result of this alteration changing the fluid flow. As a consequence, extrapolation of
study findings from supersonic intake throttling of hypersonic intakes is problematic [21].
A few studies have been carried out to better understand the unstable flow patterns
caused by the non-ignition phenomenon. Studies monitoring and categorizing non-ignition
behaviours have been performed [22,23]. In an unstable process, separating boundary
layers is crucial. To forecast and comprehend near-critical and unsteady, subcritical inlet
flow, researchers have conducted computational investigations [24–26]. The findings
indicate that the approach shows an inlet throttle-like oscillation pressure and traveling
shockwave at TR 0. Later, when the flow attained a steady condition at TR 1.42 and the
shock and viscous total pressure drop dictated a normal shock region, there were also zones
of flow separation that displayed a high frequency of instability as well as the expected
response system of the mirrored shockwaves [24,25].

Dailey buzz flow and organ–pipe flows are two methods that may be used to examine
inlet throttle flow issues. It has been discovered that the viscosity factor is crucial in
producing the throttle inconsistency in a throttled flow; thus, the acoustic frequency may
not always be solely an agitated reaction. Acoustic resonance forms might alter as a
consequence of contact resistances, which then indicates the dynamic behaviour provided
by the ambient input flow [27]. Moreover, an assessment of complicated flow appears to
be best suited to delayed detached-eddy simulations. The conventional shock’s behaviour
depicts a large divergence that arose due to the compression ramps and blocks during
intake as well as the extra pressure fluctuations that occurred when the conventional shock
came into contact with the ramp’s tip. Rather than just on the compression ramps, the
detachment developed on the corners and the sides [28]. Under Mach 2 freestream, the
inlet throttle was tested at throttling ratios of 0, 0.55, and 0.67. Once throttling occurred,
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flow patterns were dramatically altered by the detachment vortex bubbles that formed
on the external compression wall and inside the neck. Although the TR decreased, the
dominant pressure disturbance rate increased, and the disturbance trend became more
irregular, although its amplitude decreased in concentration [29].

Several active and passive flow management technologies have been presented over
recent years to solve the SWBLI issue [30]. In a 2D hypersonic inlet at Mach 4.9, the influ-
ence of the boundary layer featured in the non-ignition condition was quantified. The flow
rate inside the intake boundary layer’s characteristic, according to experts, reduced the
frequency and magnitude of the pressure oscillations. The ability to estimate the amplitude
and frequency of the pressure oscillations was influenced by boundary layer characteris-
tics [31]. The efficiency and stability of a mixed-compression inlet were evaluated based on
the effects of the SWBLI. The detachment caused by the SWBLI inside a supersonic inlet
reduces the total pressure and improves the flow nonuniformity since it has a significant im-
pact on the inlet and aircraft’s operation. The findings indicate that the stream engagement
phenomena have a range of effects on the stability and performance of the intake. When
the internal channel boundary layer and endpoint’s normal shock collide, pseudo-shock
occurs, which increases the flow distortion (FD) and decreases the total pressure recovery
(TPR) [32]. The effectiveness of the supersonic inlet, which depicted an improvement in
the overall pressure recovery coefficient of 16.5%, was also influenced by the bleed hole’s
ability to lower the minimal start Mach value [33]. Additionally, the analysis found that
retraction of the cowl helped improve the strength of the boundary layers across the walls
inside the inlet duct, which affected the SWBLI [34].

The impact of modifying the attack SWBLI and airflow Mach number and their effects
on efficiency were studied. The study discovered that altering the angle of attack influenced
the flow behaviour formed inside the isolator [35]. The features of the flow behaviour
within the supersonic intake were examined experimentally and numerically for AoA = 2◦

and AoA = 4◦. Due to the shifting direction of the flow, the researchers noticed that when
the intake operated at a restricted attack angle, it caught more air on the windward side
than on the leeward side. Furthermore, despite the separated shock, the static pressure on
the leeward side was higher than the static pressure on the windward side [36].

Macheret et al. [37] were among the earliest to explore the impact of putting a source
of heat in a fast-moving vehicle inlet. As the heated zone forced the stream to streamline
through the hypersonic inlet, the authors invented the phrase “virtual cowl”. According to
their findings, when the Mach number was below the intended amount, the air velocity of
the fluid in the scramjet inlet increased. The researchers subsequently determined the ideal
location for the source of heat to reduce air leakage. Kremeyer et al. [38] discovered a strategy
to increase high-speed vehicle intake efficiencies by positioning a source of energy upstream
on the inlet. Similarly, Russell et al. [39] demonstrated that sources of heat might be used
to reduce dispersion and increase the performance of an internal combustion engine in a
high-speed vehicle.

The current study builds on previous studies by attempting to manage the SWBLI at
hypersonic inlets during throttling. This study investigates how the compression ramp’s
shockwave interacts with the presence of a heat source. At Mach 5, the simulation was run
in a free-stream mode on a two-dimensional double-ramp inlet. A numerical technique was
evaluated using experimental data from previous studies, and the SWBLI was explored.
The findings of this work are critical for enhancing our understanding of hypersonic inlet
flow patterns and performance.

2. Numerical Work

Figure 1 indicates the two-dimensional numerical domain used in the present study.
The inlet was set as a pressure inlet and the outlet as a pressure outlet.

ANSYS Fluent was utilized in this study. It was hypothesized that boundary layer
detachment would occur at the compression corner, and it has previously been proven that
reattachment might cause turbulence [40]. An appropriate turbulence model for the numer-
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ical solver was required to simulate the turbulent flow. As a viscous model of turbulence,
SST k–ω was adopted in this work due to the lower computational cost. The suitability of
the SST k–ω turbulence model was based on previous studies that demonstrated that the
results were close to the Reynolds Stress Model (RSM) [41–44].
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Figure 1. Mesh for the baseline case.

The Navier–Stokes equation consists of mass conservation, momentum conservation,
and energy conservation and is solved using the finite volume approach. The compressible
and unsteady N–S equations are given by:

Mass conservation,
∂ρ

∂t
+

∂ρui
∂xi

= 0 (1)

Momentum conservation,

∂ρui
∂t

+
∂ρuiuj

∂xj
= − ∂p

∂xi
+

∂τij

∂xj
(2)

Energy conservation,

∂ρE
∂t

+
∂(ρE + p)uj

∂xj
= −

∂qj

∂xj
+

∂
(
uiτij

)
∂xj

(3)

where ρ is the density, p is the static pressure, ui is the velocity vector, τij is the compressible
viscous stress tensor, E is the total energy per unit mass, and qj is the heat flux. The ratio
of viscosity to turbulent flow was fixed at 1. The Courant–Friedrichs–Levy (CFL) value
was first set at 0.5 but was increased by an equivalent amount every 1000 iterations to
preserve stability. As shown in Figure 1, the computational domain was established by a
pressure input, a pressure far-field, two pressure exits, fixed heat walls, and the associated
symmetry. Because of the symmetry zone between both the pressure inlet border and the
main compression ramp barrier, the iterations remained constant. The parameters of the
two pressure outputs were estimated with steady flow and the consideration that the flow
will exit at the isolator and expand under free-flow circumstances. The baseline model
(AoA = 0◦) and the models with AoA = 4◦, 6◦, 8◦, and 10◦ utilized a quadrilateral mesh cell
that was placed on a dense grid that was structured across a major flow-shifting zone. The
parameters employed in the current investigation are provided in Table 1.

Using five different grid refinement levels, the sensitivity of the results to the grid
density was investigated. To lower the computational cost, mesh size optimizations were
implemented and the results are shown in Figure 2a–c. Figure 2a shows that a mesh of
64,097 elements fits the pressure data quite well with 141,054 elements compared to 57,010
and 55,133 elements. Therefore, a mesh of 64,097 elements was adopted for all cases in the
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present numerical analysis to reduce computation time. In the present study, the first cell
height for the body-fitted mesh satisfied the criterion of y+ ≤ 1, (Figure 2b). The simulation
was performed using an Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40 GHz and 2.39 GHz
(two processors) with 128 GB of RAM.

Table 1. Simulation parameters.

Properties Value

Mach number 5
Stagnation pressure (MPa) 0.65

Stagnation inlet temperature (K) 375
Reynolds number (m−1) 13.2 × 106

Angle of attack (◦) 0–10
Throttling ratio 0, 0.4, 0.5, 0.6

Diameter of the laser (mm) 0.25, 0.5, 1
Laser energy (Wm−3) 1 × 1013, 2 × 1013, 5 × 1013
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2.1. Position of the Heat Source

The main factor to consider was the position of the heat source. The heat source used
in the present study modelled laser energy deposition, which has been used as an actual
active flow control system. Knight [45] pointed out that the flow time of high-speed flow is
in micro-seconds, and the duration of the laser energy’s deposition emission is roughly in
nanoseconds. Consequently, emission generation would be 100 times quicker than fluid
velocity; thus, steady heat generation was justified. The position of the heat source is crucial
because it affects how the bow shock from the heat source and oblique shockwaves interact,
thereby maintaining the shock train inside the isolator and preventing non-ignition and off-
design operation. Figure 3 displays these positions. It should be noted that more locations
were predicted in this analysis than are shown in this picture. The interpretations of the
findings, on the other hand, match the location’s outcomes. Previously, Sepahi-Younsi and
Esmaeili [46] investigated the placement of the source of the heat. However, due to the
dimensionless radius ratio, determining the best placement of the source of heat is difficult.
In all positions, the source of heat has a spherical cross-section. The heat generation rate is
q = (1 × 1013, 2 × 1013, 5 × 1013) Wm−3 across all locations, of which q is described as the
energy source’s heat input value across the area of the cross-section.
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TR 0.3. Beyond TR 0.3, the oscillatory flow accelerated, and the flow properties changed. 

TR ranges from 0.4 to 0.6 were employed in the study. Several fluid properties were found 

based on the TR fluctuations.  

The total pressure recovery (TPR) and flow distortion (FD) were used as performance 

indicators in this investigation. The TPR is defined as the ratio between the total pressure 

at the inlet exit plane to the total pressure in the airflow [46]: 

𝑇𝑃𝑅 =
𝑃𝑡,𝑓
𝑃𝑡,∞

 (5) 

This is an important indicator, as it has significant influence on the vehicle’s thrust 

force. As a result, the highest value of this variable was used. Flow separation causes pres-

sure to decrease within the intake. The extent of this pressure reduction concerns the in-

tended constant flow and is determined using the flow distortion; it is estimated as follows 

[46]: 

𝐹𝐷 =
𝑃𝑡,𝑚𝑎𝑥 − 𝑃𝑡,𝑚𝑖𝑛

𝑃𝑡,𝑎𝑣𝑔
 (6) 

where the highest and lowest total pressures at the inlet’s exit lip are known as 𝑃𝑡,𝑚𝑎𝑥 and 

𝑃𝑡,𝑚𝑖𝑛, correspondingly, and 𝑃𝑡,𝑎𝑣𝑔 = mean total pressure throughout the inlet’s exit lip. 

2.3. Validation 

The mean wall-pressure oscillations throughout the inlet-isolator’s floor surface are 

depicted in Figure 4. The data were gathered from the leading edge of the compression 

ramp to the outlet of the isolator.  
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Figure 3. Location of the heat source effects.

2.2. Performance Parameters and Operating Conditions

A stream stopper with a slant angle of 20 degrees and an 8 mm long surface was
positioned immediately at the isolator’s exit before each test to imitate the significant
backpressure created during combustion (Figure 1). The intake control settings may be
changed from one cycle to the next by adjusting the plug’s level, which is connected to the
throttling ratio (TR) [7]:

TR = 1 − At,plug/Aisolator (4)

where At,plug denotes the plug’s geometrical neck size, and Aisolator is the isolator’s cross-
sectional area. According to Li et al. [7], there was no fluctuation between TR 0 and TR
0.3. Beyond TR 0.3, the oscillatory flow accelerated, and the flow properties changed. TR
ranges from 0.4 to 0.6 were employed in the study. Several fluid properties were found
based on the TR fluctuations.

The total pressure recovery (TPR) and flow distortion (FD) were used as performance
indicators in this investigation. The TPR is defined as the ratio between the total pressure
at the inlet exit plane to the total pressure in the airflow [46]:

TPR =
Pt, f

Pt,∞
(5)

This is an important indicator, as it has significant influence on the vehicle’s thrust
force. As a result, the highest value of this variable was used. Flow separation causes
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pressure to decrease within the intake. The extent of this pressure reduction concerns
the intended constant flow and is determined using the flow distortion; it is estimated as
follows [46]:

FD =
Pt,max − Pt,min

Pt,avg
(6)

where the highest and lowest total pressures at the inlet’s exit lip are known as Pt,max and
Pt,min, correspondingly, and Pt,avg = mean total pressure throughout the inlet’s exit lip.

2.3. Validation

The mean wall-pressure oscillations throughout the inlet-isolator’s floor surface are
depicted in Figure 4. The data were gathered from the leading edge of the compression
ramp to the outlet of the isolator.
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Figure 4. Validation of present simulation work with published experimental results [47].

The computational findings produced here are quite similar to the experimental data
in [47], although a discrepancy was observed at the compression ramp. The error in
the experiment was εin−situ = 0.023 and the value from all pressure transducers was
εtransducer = 0.004 [47]. The compression ramp in the front of the isolator had an unstruc-
tured mesh, and this could affect the numerical results. The numerical results were slightly
underpredicted compared to the experiments owing to the boundary layer effects at the
compression ramp. However, the numerical results inside the isolator are well-predicted.
This study is primarily focused on the isolator. Therefore, sufficient data can be obtained
from the current numerical analysis.

3. Results and Discussion
Internal Shock Structures

The flow parameters in the isolator without and with a heat source of 5 × 1013 Wm−3

and at 5 Mach, AoA 6◦, and TR 0.5 are shown in Figure 5a,b, respectively. These figures
indicates that the shockwave produced by the heat source influenced the SWBLI within the
isolator. As a result, the flow behaviour depicted in Figure 5b was affected. It can be seen
that the series without a heat source (Figure 5a) was somewhat different than the image
next to it, as there is a tiny difference between them.
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The intake flow rate increased, and the detachment shock impacted the cowl tip at
t = 10.40 ms. The separation flow at the intake decreased at t = 13.90 ms. The space at
the throat was at its narrowest at t = 45.20 ms, at which point the detachment shock had
fully reached the intake. Near the shoulder, the separating bubble on the ramp and its
isolator floor intersected. After the addition of a source of heat, the shockwave was reflected
within the isolator, as seen in Figure 5b, but outside the isolator without a source of heat
(Figure 5a), the flow behaviour was affected, and hence, the function of the intake was
distorted. Furthermore, as the detachment shock on the shoulder travelled upstream at
t = 59.20 ms, a huge barrier formed at the inlet’s opening (Figure 5b). At t = 62.60 ms, the
detachment shock was released from the internal compression component, and the whole
flow through the intake became practically subsonic. This did not happen in Figure 5b
due to shockwaves originating from the heat source, which helped to keep the shockwave
inside the isolator. The inlet fluid flow increased at t = 66.10 ms, and a subsequent upstream-
moving shock arose in the inlet’s back area. When the separation shock hit the cowl’s
edge, a second oscillatory stage occurred. Within the inlet, the separated flow returned.
During t = 69.60 ms, the flow patterns were nearly identical to those at t = 10.40 ms. The
generation and development of the upstream-moving shock throughout the inlet had a
substantial impact throughout the cycle according to a previous study [48]. The density
contour appeared to behave similarly to the Schlieren imaging approach described by [7].

Figure 6 shows the pressure contour of 5 × 1013 Wm−3 at 5 Mach, AoA = 6◦, and
TR = 0.5. It is seen that for the case without heat, at t = 24.40 ms, the pressure inside the
isolator was reduced dramatically. This behaviour leads to a non-ignition condition. For
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the case with heat, the reduction in the pressure was not seen at all and helped to eliminate
the non-ignition condition of the scramjet engine.
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Figure 6. Static pressure of AoA 6◦ and TR 0.5 (a) without and (b) with heat of 1 mm 5 × 1013 W/m3.

The pattern in the density contour was readily visible, as is the trend in the FD and
TPR data. Figure 7 shows the changes in the FD for varying AoAs across varying heat
source diameters and power at a steady state. When the heat source is introduced, the
value of FD dropped. As the boundary separation at the isolator entry was controlled, the
flow distortion was minimized significantly, which contrasted with the existence of a heat
source scenario.
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The FD value was the highest when the heat source was not employed at the intake.
This study replicated various AoAs from AoA = 4◦ to 10◦. This suggests that the current
intake will experience flow turbulence or substantial flow distortions for these ranges of
angles of attack. It was observed that at AoA = 4◦ and AoA = 6◦, the FD was enhanced by
18.8% and 15.2%, respectively, with a 1.0 mm diameter, 1 × 1013 Wm−3 heat source. At
AoA = 8◦, the FD improved by 15.1% with a 1.0 mm diameter, 2 × 1013 Wm−3 heat source,
whereas at AoA = 10◦, the FD showed an improvement of 21.55% with a 1.0 mm diameter,
1 × 1013 Wm−3 heat source. Thus, the FD in the steady-state conditions was influenced by
the heat source energy.

Figure 8 illustrates a comparison of the throttling ratio of the FD under transient-state
circumstances with varying heat source powers and diameters.
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At TR = 0.4, the FD was enhanced by 58.0% for the 0.25 mm diameter, 5 × 1013 Wm−3

heat source. At TR = 0.5, the FD improved by 59.3% for the 1.0 mm diameter, 1 × 1013 Wm−3

heat source. At, TR = 0.6 the FD improved by 60% for the 0.5 mm diameter, 5 × 1013 Wm−3

heat source; this was the highest pressure drop of FD in this simulation. Thus, the FD in
transient-state conditions was influenced by the heat source size. Once the heat source
was introduced, the flow distortion increased slightly with large backpressures. The usual
shock train within the isolator gradually rose towards the intake exit plane where the
FD was determined when a heat source was present, as clearly illustrated in Figure 8.
Throughout the influence of the source of heat, the FD decreased, as seen in Figures 7 and 8.
The freestream and isolator entry Mach numbers remained constant and were extremely
powerful background waves that reduced the flow distortion and boosted the TPR at the
isolator entrance. As a result, the SWBLI intake was stronger.

Figure 9 shows that AoA = 4◦ and AoA = 6◦ both helped raise the TPR by more
than 14.5% and 12.8%, respectively, for a 1.0 mm diameter, 2 × 1013 Wm−3 heat source.
At AoA = 8◦, the 0.5 mm diameter, 5 × 1013 Wm−3 heat source had a maximum TPR
of 31.4%, whereas AoA = 10◦ showed a 29.1% improvement with a 1.0 mm diameter,
5 × 1013 Wm−3 heat source. Figure 9 shows the fluctuation of the TPR on AoAs with
varying heat source energies and diameters under steady-state conditions, for which the
heat source energy was more significant.
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Figure 9. Total pressure recovery in steady-state condition at various diameters and powers of
heat source.

Figure 10 reveals that, during transient-state circumstances, TR = 0.4 and TR = 0.5
improved by 22.3% and 22.8%, respectively, for a diameter of 0.5 mm and heat source of
5 × 1013 Wm−3. At TR = 0.6, the greatest TPR transient-state conditions were 24.6% for a
0.25 mm diameter, 5 × 1013 Wm−3 heat source. According to the observation results of
Figure 10, the TPR during the transient-state settings was influenced by the size of the
heat source.
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Figure 9 shows the differences in the TPR before and after introducing a heat source
under steady-state settings, whereas Figure 10 shows the variations at transient-state
settings. The magnitude of the split area reaching the isolator is assumed to be related to
the enhancement of the TPR in the diffuser. The TPR rose when a heat source was added
because the quantity of the oblique shockwaves just before the intake rose and there was
the creation of a minor normal wave at the entry, causing the flow to become subsonic.
Therefore, the static pressure at the inlet entry rose above the heat source condition. The
required static pressure variation inside the intake decreased when the static pressure
variance outside the intake increased. Therefore, the internal normal shock, which is a
principal source of total pressure reduction, dropped.

Figures 7–10 show that the source of heat seems to have a significant impact on the
intake performance. The FD and TPR were majorly impacted when the heat-source energy
changed. The TPR improved as an outcome, while the FD declined dramatically. The
findings demonstrate that changing the size and power of the heat source has a significant
impact on the FD and TPR. The lower the FD, the stronger the hypersonic inlet performance.
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Because of the compressor’s magnifying impact, the TPR should be maintained as high
as possible; otherwise, the separated flow turns fundamentally unstable and needs to
be more consistent as it approaches the compressor, thereby reducing its efficiency and
operational precision.

4. Conclusions

This study used a constant heat source on the SWBLI to investigate the shockwave
characteristics inside the isolator and to improve the overall operation of a hypersonic inlet
propulsion system. The outcomes of the flow behaviour agreed well with the findings from
previous studies. The analysis showed that a shockwave developed near the heat source
and affected the SWBLI within the isolator, altering most of the performance indicators. The
source of heat and the throttling device had a substantial impact upon the inlet’s operation.
The TPR should be maintained as high as possible, while the FD should be kept as low
as possible. We found that in steady-state conditions, the heat source energy was more
significant, while in transient conditions, the heat source size was more significant. Lastly,
to thoroughly investigate this research, it may be prudent to perform the test at different
Mach numbers to establish the optimal heat source energy for improved FDs and TPRs.
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Nomenclature

M Mach number
P∞ Stagnation pressure (Pa)
PO Pressure at Station 0 (Pa)
Pt3 Pressure at Station 3 (Pa)
FD Flow distortion
TPR Total pressure recovery
TR Throttling ratio
At,plug Plug area (m3)
Aisolator Cross-sectional isolator area (m3)
Pt, f Total pressure at the inlet’s exit (Pa)
Pt,∞ Stagnation pressure at the inlet’s exit (Pa)
Pt,max Maximum total pressure at the inlet’s exit (Pa)
Pt,min Minimum total pressure at the inlet’s exit (Pa)
Pt,avg Average total pressure at the inlet’s exit (Pa)
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