

Aerospace 2022, 9, 443. https://doi.org/10.3390/aerospace9080443 www.mdpi.com/journal/aerospace

Article

System Identification of an Aerial Delivery System

with a Ram-Air Parachute Using a NARX Network

Kemal Güven * and Andaç Töre Şamiloğlu

Mechanical Engineering Department, Başkent University, Ankara 06500, Turkey

* Correspondence: kemalguven@baskent.edu.tr

Abstract: Neural networks are one of the methods used in system identification problems. In this

study, a NARX network with a serial-parallel structure was used to identify an unknown aerial

delivery system with a ram-air parachute. The dataset was created using the software-in-the-loop

method (Software in the loop). Gazebo was used as the simulator and PX4 was used as the autopilot

software. The performance of the NARX network differed according to parameters used, such as

the selected training algorithm, input and output delays, the hidden layer, and the number of neu-

rons. Within the scope of this study, each parameter was examined independently. Models were

trained using MATLAB 2020a. The results demonstrated that the model with one hidden layer and

five neurons, which was trained using the Bayesian regularization algorithm, was sufficient for this

problem.

Keywords: Bayesian regularization; Levenberg–Marquardt; NARX network; scaled conjugate

gradient; software in the loop

1. Introduction

In aircraft, system identification can be thought of as estimating aerodynamic param-

eters or defining a mathematical model of the system. Three methods have been proposed

in the literature for the estimation of aerodynamic parameters of parachute landing sys-

tems [1]. The first of these covers analytical methods based on computational fluid dy-

namics. Others are wind tunnel tests and flight tests. In this study, we focused on the

methods used in flight tests.

The purpose of system definition is to obtain a mathematical model according to the

inputs and outputs obtained from the flight tests. Hamel and Jategaonkar proposed the

4M (maneuver, measurement, method, model—see Figure 1) requirements for successful

system identification [2], arguing that:

 Control inputs should be created to cover extreme points;

 High-resolution measurements should be used;

 The possible mathematical model of the vehicle should be defined; and

 The most suitable method for the data should be chosen.

Jann and Strickert suggested separating the symmetric and asymmetric maneuvers

that need to be carried out in the formation of data to be used in the definition process [3]

(Figure 2).

The methods used in parameter estimation can be listed as the Equation-error, out-

put-error, and filter-error methods. The question of which method to choose can be de-

cided according to the measurement and the noise present in the process [2] (Figure 3). If

disruptive factors can be ignored in both, the fastest method, the equality-error method,

is preferred. If the disturbing factors are only assumed in the measurements, the output-

error method is recommended, and if both are present, the filter-error method is recom-

mended.

Citation: Güven, K.; Şamiloğlu, A.T.

System Identification of an Aerial

Delivery System with a Ram-Air

Parachute Using a NARX Network.

Aerospace 2022, 9, 443. https://

doi.org/10.3390/aerospace9080443

Academic Editor: Javaan Chahl

Received: 5 April 2022

Accepted: 9 August 2022

Published: 12 August 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Aerospace 2022, 9, 443 2 of 20

Figure 1. 4M-based system identification process.

Figure 2. Recommended control input.

Figure 3. Output-error method.

The output-error method is the most widely preferred method for parameter estima-

tion in the literature. In his study, Grauer calculated a dynamic model of an aircraft during

flight by adapting the output-error method, which is usually carried out using post-flight

data, to real-time flight data [4]. In another study using the output-error method, Jann

Control

Input
Plant

Mathematical

Model

u

��

�

Parameter

Estimation

Maneuver

Measurement

Method Model

Input
Real

System

Mathematical

Model

u

��

�

+
−

Optimization

� − ��

Aerospace 2022, 9, 443 3 of 20

estimated the state variables of a parachute landing system called ALEX via sensor inputs

(GPS, Magnetometers, Gyros, Accelerometers) [5]. On the other hand, Jaiswal, Prakash,

and Chaturvedi estimated the aerodynamic coefficients of a parachute landing system us-

ing the maximum likelihood method and the output-error method [6].

In addition to statistical methods, machine learning techniques, which are increasing

in popularity day by day, have also been successfully used in solving system identification

problems. In the literature, artificial neural networks have been used in modeling aircraft

dynamics [7–11], estimating aerodynamic forces and moments [12–15], and in controller

designs [16,17]. Both feed-forward neural networks [14,18] and recurrent neural networks

have been widely used in these studies [19]. Roudbari and Saghafi proposed a new

method for describing the dynamics of highly maneuverable aircraft. In the model they

developed, they modeled the flight dynamics with artificial neural networks. The differ-

ence between their approach and those of traditional methods is that they did not use

aerodynamic information during the training process [20]. Bagherzadeh supported a

model with flight dynamics in order to increase the performance of the artificial neural

network model [21].

The development of deep learning methods has enabled these methods to be used

frequently in system identification problems. The residual neural network approach,

which is one type of deep neural network, is one of the methods used to solve these prob-

lems. Goyal and Benner developed a special architecture for dynamic systems called

LQResNET [22]. The method they proposed allowed for the use of observations in the

modeling of dynamical systems. Their model was based on the principle that the rate of a

variable depends on the linear and quadratic forms of the variable. Chen and Xiu sug-

gested the framework called gResNet. They defined the residual as the estimation error

of the prior model. They also used a DNN to model the residual [23].

In this study, a NARX Network with a serial-parallel structure was used to identify

an unknown aerial delivery system with a ram-air parachute. The dataset was created

using the software-in-the-loop method (software in the loop). Gazebo was used as the

simulator and PX4 was used as the autopilot software. The performance of the NARX

network differed according to parameters used, such as the selected training algorithm,

the input and output delays, the hidden layer, and the number of neurons. Within the

scope of this study, each parameter was examined independently. Models were trained

using MATLAB 2020a.

2. Mathematical Model

In this study, a 6-degree-of-freedom model developed for a parachute landing sys-

tem was used [24]. The Equations of motion of the vehicle can be written as:

����� �
�̇
�̇
�̇

� = � − ��(�) �
�
�
�

�, (1)

� �
�̇
�̇
�

� = � − �(�)� �
�
�
�

�, (2)

where m is the mass, I is the inertia matrix, [u, v w] are linear velocities, [p, q r] are the

angular velocities in the body frame, S(ω) is a skew-symmetric matrix consisting of linear

velocity vectors, F is the force, and M is moment.

Due to the xz-symmetry plane of the parachute landing system, the inertial matrices

consist of 4 unique components.

�(�) = �

0 −� �
� 0 −�

−� � 0
� (3)

Aerospace 2022, 9, 443 4 of 20

� = �

��� 0 ���

0 ��� 0

��� 0 ���

� (4)

The forces and moments affecting the parachute are caused by gravity and aerody-

namic forces. The gravitational force can be written according to the body (b) axis.

�� = �� �

− sin(�)

cos(�) sin(�)

cos(�) cos(�)
� (5)

The aerodynamic forces acting on the system are written using the relevant aerody-

namic coefficients (���, ����, ����
, ���, ���, ���, ����

), according to the body axis.

�� = �� ��
� �

��� + ������ + ����
��̅

����

��� + ���� + ����
��̅

� (6)

In this Equation, S represents the parachute surface area, ��̅ represents symmetric

trailing edge deflection, and (��
�) is the rotation matrix from the aerodynamic coordinate

system to the body axis.

��
� = ���� = �

cos(�) 0 − sin(�)
0 1 0

sin(�) 0 cos(�)
� �

cos(�) sin(�) 0

− sin(�) cos(�) 0
0 0 1

� (7)

��
� = ���� = �

cos(�) cos(�) cos(�) sin(�) − sin(�)

− sin(�) cos(�) 0

sin(�) cos(�) sin(�) sin(�) cos(�)
� (8)

The angle of attack and slip angle are obtained from the velocity vector in the body

axis.

� = tan�� �
��

��

� (9)

� = tan�� �
��

���
� + ��

�
� (10)

The velocity vector in the body axis consists of the global velocity and the wind effect.

�� = �

��

��

��

� = �
�
�
�

� − ��
� �

��

��

��

� (11)

��
� is the rotation matrix from the coordinate system on the North-East-Down-axis

which has its origin in the center of mass of the parachute to the body axis. Euler angles

(roll, pitch, yaw) are used in this notation.

�� = �

1 0 0
0 cos(�) sin(�)

0 − sin(�) cos(�)
� (12)

�� = �
cos(�) 0 − sin(�)

0 1 0
sin(�) 0 cos(�)

� (13)

�� = �

1 0 0
0 cos(�) sin(�)

0 − sin(�) cos(�)
� (14)

��
� = ������ (15)

Aerospace 2022, 9, 443 5 of 20

Aerodynamic moments affecting the parachute can also be written using the relevant

coefficients (���, ���, ���, ����
, ���, ���, ���, ���, ���, ���, ����

). These are roll, pitch, and

yaw moments, respectively [2].

�� =
���

��

2

⎣
⎢
⎢
⎢
⎢
⎢
⎡ �(���� +

�

2��

���� +
�

2��

���� + ����
��̅)

�̅(��� + ���� +
�

2��

����)

�(���� +
�

2��

���� +
�

2��

���� + ����
��̅)

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (16)

here, ρ is air density, �̅ represents mean aerodynamic chord, ��̅ = ��/�� ��� is asym-

metric trailing-edge deflection, and S is the canopy reference area.

3. Materials and Methods

The dataset was created using the software-in-the-loop method (software in the

loop). Gazebo was used as the simulator and PX4 was used as the autopilot software. A

virtual flight was performed in the Gazebo environment (Figure 4).

Figure 4. Gazebo simulation of the system.

The parameters required for the simulation were used considering the autonomous

landing system with a parachute model named Snowflake (Table 1) [3].

Table 1. Parameters of the Snowflake parachute model [3].

Parameter Value

Mass (m) 1.9 kg

Canopy reference area (S) 1 m2

Inertia matrix (I) �
0.042 0 0.0068

0 0.027 0
0.0068 0 0.054

�

Maximum brake deflection (�����) 0.25 m

Aerodynamic coefficients

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

��� = 0.15 ���� = 0.90

��� = −0.05 ��� = 0.25

��� = 0.68 ��� = 0
��� = 0 ��� = −0.265

��� = −0.036 ��� = −0.355

��� = 0
��� = −0.036

��� = −0.09

����
= 0.15

��� = 0

����
= 0.003 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Aerospace 2022, 9, 443 6 of 20

Gazebo compatible sensor models were used to obtain the flight data for the vehicle

in the simulation environment. These consisted of a gyroscope, magnetometer, accelerom-

eter, barometer, and GPS. The estimation of the state variables of the vehicle was carried

out with PX4 software, using the extended Kalman filter.

PX4 has a state estimation module called EKF2 which uses the EKF algorithm. It uses

IMU data in the state prediction phase. To correct these values, a GPS and barometer are

used in the state correction phase [24].

Simplified models of the sensors used can be shown similarly [25]:

�� = � + � + �, (17)

�̇ = ��, (18)

where �� is the measured value; � is the real value; and �, �, and �� represent bias

and Gaussian noise, respectively. The sensor parameters can also be expressed using this

notation. The sensor parameters used in the simulation are given in Table 2.

Table 2. Parameters used in the simulation.

Sensors Noise Density (��) Random Walk (���
)

Bias Correlation

Time (��)

Gyroscope 0.00018 0.000 1000.0

Accelerometer 0.00186 0.006 300.0

Magnetometer 0.00040 0.000 600.0

The simulation was carried out in a windless environment and the air density was

1.225 kg/m3. In the simulation, the system was released from a height of 500 m. Dropping

occurred in 30 s. Control inputs ��̅ and ��̅ are given as full right and full left (Figure 5).

Figure 5. Control inputs.

The flight data received from the system were arranged and the input vector x and

the output vector y were created.

� = [��� ��̅] (19)

� = [� � � � � �] (20)

Aerospace 2022, 9, 443 7 of 20

A total of 270 s of data were reduced to 225 s to cover the flight section, and 2250

pieces of data were produced using a 10 Hz measurement. The position and velocity of

the vehicle in the flight data used are shown in Figures 6–8.

In order to improve the performance of the model, 70% of the flight was used for

training and the remaining 30% was used in the testing process. Since the landing position

is the most important phase, the first phase of the flight was selected as the training data.

Figure 6. Position of the system.

Figure 7. Euler angles.

y[
m

]

z[
m

]

[r
a

d
]

Aerospace 2022, 9, 443 8 of 20

Figure 8. Velocity of the system.

3.1. NARX Network

A nonlinear autoregressive exogenous (NARX) network is a nonlinear model repre-

sentation used in time series models. In this notation, the model’s outputs depend on the

past output values, the inputs, and the past values of the inputs. Its mathematical expres-

sion is given as follows:

�(�) = ���(� − 1), �(� − 2), . . . , ��� − ���; �(�), �(� − 1), . . . , �(� − ��)�, (21)

where y denotes outputs, u denotes inputs, and f represents a nonlinear function. The

structure in which f is modeled as a neural network is named the NARX neural network

(NARX network) [26]. This model has been used for modeling conventional fixed-wing

[27,28] and rotary-wing [29,30] aircraft. A NARX neural network can be modeled using

two types of models: parallel and serial-parallel (Figure 9). In the parallel model, the esti-

mated output values are fed back into the system.

��(�) = ����(� − 1), �� (� − 2), . . . , ���� − ���; �(�), �(� − 1), . . . , �(� − ��)� (22)

In the serial-parallel model, only real system outputs are used:

��(�) = ���(� − 1), �(� − 2), . . . , ��� − ���; �(�), �(� − 1), . . . , �(� − ��)� (23)

where ��(�) represents the estimated output value time t.

Figure 9. Parallel (Left) and serial-parallel (Right) NARX networks.

Since the data set used in this study included real system outputs, the serial-parallel

structure was preferred. The feed-forward network block shown in Figure 9 consisted of

multilayer feedforward neural networks, which consisted of at least one hidden layer and

[m
/s

]

Aerospace 2022, 9, 443 9 of 20

neurons. Each neuron calculated the outputs with the help of the activation function, de-

termined using the inputs and their weights, as shown in Figure 10, where, ��, ��, b, and

f represent inputs, weights, bias, and the activation function, respectively. The architecture

of the NARX neural network with a serial-parallel structure is shown in Figure 11.

Figure 10. Structure of a neuron.

Figure 11. Serial-parallel NARX network architecture.

The selection of the activation functions plays an important role in the model design.

The functions used in the hidden layers and the functions used in the output layer vary.

Differentiable functions are preferred in hidden layers. These functions, which are pre-

ferred over linear functions during training, enable the models to perform successfully

with more complex problems. In the literature, functions that are frequently used in hid-

den layers are ReLU (Rectified Linear Activation), sigmoid (logistic), and Tanh (hyper-

bolic tangent) functions. The function used in the output layer differs according to the

type of problem. Linear functions are used in regression problems, whereas softmax or

sigmoid functions are used in classification problems. This concept is illustrated in detail

in Table 3.

Table 3. Activation functions.

Function Plot

ReLU �(�) = �
�, � > 0
0, � ≤ 0

Aerospace 2022, 9, 443 10 of 20

Sigmoid �(�) =
1

1 + ���

Hyperbolic tangent �(�) = tanh (�)

Lineer �(�) = x

Softmax �(��) =
���

∑ ����
���

The process of calculating and updating the weights is called training. The aim here

is to minimize the targeted error function for model performance. In the neural network

model, this function can be written as the sum of the squares of the errors:

� = � ��
�

�

���

, (24)

where e is the error and n is the number of data.

The training algorithm used in feed-forward neural network methods is known as

the back-propagation algorithm [31]. Since the convergence rate of the steepest descent

method, which is used as a standard in the back-propagation algorithm, is slow, many

learning algorithms have been developed for neural network training. The main ones are

the Levenberg–Marquardt algorithm [32], the Bayesian regularization algorithm [33], and

the scaled conjugate gradient algorithm [34].

3.2. Levenberg–Marquardt

The Levenberg–Marquardt algorithm is a second-order training algorithm used in

solving nonlinear optimization problems. According to the weight values that need to be

updated, the Jacobian of the error function shown in Equation (23) can be calculated as

follows:

f(
x
)

f(
x)

f(
x)

f(
x
)

Aerospace 2022, 9, 443 11 of 20

� =

⎣
⎢
⎢
⎢
⎡

���

���

⋯
���

���

⋮ ⋱ ⋮
���

���

⋯
���

���⎦
⎥
⎥
⎥
⎤

, (25)

where m is the number of weights in the network. After finding the Jacobian matrix, the

gradient vector (g) and the Hessian matrix (H) can also be calculated.

� = ��� (26)

� = ��� (27)

The weights are updated based on the Jacobian matrix.

���� = �� − (��
��� + ���)��(2 ��

���)� = ���, (28)

where �� is the learning coefficient and � is the unit matrix. A theoretical analysis can be

found in [35].

3.3. Bayesian Regularization

The error function is rearranged using the regularization method to generalize the

neural network [36]:

� = ��� + ��, (29)

where μ and ν are the regularization parameters and �� is the sum of the squared

weights. The Bayesian regularization method is used for the optimization of the editing

parameters. Considering the weight values as random variables, it aims to calculate the

weight values that will maximize the posterior probability distribution of the weights in

the given data set. The posterior distribution can be expressed according to the Bayes rule:

�(�|�, �, �, �) =
�(�|�, �, �) �(�|�, �)

�(�|�, �, �)
, (30)

where D represents the dataset and N represents the neural network model. �(�|�, �, �)

expresses the likelihood function, �(�|�, �) is the prior density, and �(�|�, �, �) is the

normalization factor. It can be said that the noise in the dataset and in the weights has a

Gaussian distribution. Thus, the likelihood function and antecedent intensity values can

be calculated.

�(�|�, �, �) =
�� ��

�(�)
 (31)

�(�|�, �) =
�� ���

��(�)
 (32)

Here, � = �
�

�
�

�/�

 and �� = �
�

�
�

�/�

. By rearranging these equations, the posterior

distribution to the weights can be rewritten.

�(�|�, �, �, �) =
�� (���� ��)

��(�)�(�)
 (33)

Regularization parameters are effective in the N model. The Bayes rule can be applied

for the optimization of these parameters.

�(�, �|�, �) =
�(�|�, �, �) �(�, �|�)

�(�|�)
 (34)

Aerospace 2022, 9, 443 12 of 20

As can be seen in Equation (34), the function �(�|�, �, �) is directly proportional to

�(�, �|�, �). Therefore, the maximum value of the function �(�|�, �, �) must be calcu-

lated. Adjustment parameters can be calculated using the Taylor expansion of Equation

(29). A theoretical analysis can be found in [37].

� =
�

2��

 (35)

� =
� − �

2�
 (36)

� = � − � ��(���) (37)

3.4. Scaled Conjugate Gradient

In the steepest descent algorithm implemented in the standard back-propagation al-

gorithm, a search is made in the opposite direction of the gradient vector while updating

the weights. Although the error function decreases rapidly in this direction, the same can-

not be said for the convergence rate. Conjugate gradient algorithms search using the di-

rection with the fastest convergence. This direction is called the conjugate direction. In

this method, the search first starts in the reverse of the gradient vector, similarly to the

steepest descent algorithm. It differs from the second iteration as follows.

�� = −�� (38)

���� = �� + ���� (39)

�� = −�� + ������ (40)

Different algorithms have been developed according to the way in which the �� co-

efficient is calculated. Moller, on the other hand, combined the LM algorithm and the con-

jugate gradient algorithm for the calculation of the number of steps in the algorithm he

developed. This algorithm is called the scaled conjugate gradient algorithm [35]. In this

algorithm, which is based on calculating the approximate value of the Hessian matrix, the

design parameters change in each iteration and are independent of the user. This is the

most important factor affecting the success of the algorithm.

�� =
��(�� + ����) − ��(��)

��

+ ���� (41)

�� =
(|����|� − ����

� ��)

��
���

 (42)

���� = −���� + ���� (43)

4. Results and Discussion

The performance of the NARX network differs according to parameters used, such

as the selected training algorithm, the input and output delays, the hidden layer, and the

number of neurons. Within the scope of this study, each parameter was examined inde-

pendently. Models were trained using MATLAB 2020a. The root-mean-square error

(RMSE) and mean absolute error (MAE) values were used to evaluate model performance.

The metrics used are presented in Table 4.

Aerospace 2022, 9, 443 13 of 20

Table 4. Metrics used in the evaluation of models.

Measures Equation Description

Root-mean-square error ���� = �
∑ ��

��
���

�
 Low values indicate that the

model was successful.
Mean absolute error ��� =

∑ |��|�
���

�

First, the performance of the training algorithms (Bayes arrangement, Levenberg–

Marquardt, scaled conjugate gradient) in a model consisting of a single hidden layer and

15 neurons was compared. The input and output delay vectors were determined as in [12].

A hyperbolic tangent was used as the activation function in the hidden layer and a linear

function was used in the output layer. The errors according to the training algorithms are

shown in Table 5.

Table 5. Performance based on the training algorithms.

Algorithm RMSE MAE RMSE MAE RMSE MAE

LM 0.0007 0.0005 0.0026 0.0023 0.0016 0.0011

BR 0.0007 0.0005 0.0025 0.0021 0.0015 0.0011

SCG 0.0260 0.0081 0.0101 0.0018 0.0218 0.0037

Despite the fast training time, SCG performed worse than LM and BR. At this stage,

the hidden layer and the number of neurons within it were changed and the results were

examined and shown in Table 6. BR was used as the training algorithm.

Table 6. Performance based on the number of hidden layers and neurons.

No
Hidden Layer Train Test Total

1 2 3 4 RMSE MAE RMSE MAE RMSE MAE

1 10 - - - 0.0007 0.0005 0.0025 0.0021 0.0015 0.0011

2 3 - - - 0.1538 0.0051 0.0018 0.0016 0.1256 0.0039

3 5 2 - - 0.0208 0.0072 0.0318 0.0312 0.0250 0.0152

4 5 - - - 0.0008 0.0006 0.0012 0.0010 0.0010 0.0007

5 10 5 - - 0.0007 0.0005 0.0056 0.0044 0.0033 0.0018

6 25 - - - 0.0006 0.0005 0.0018 0.0015 0.0012 0.0008

7 50 - - - 0.0006 0.0005 0.0023 0.0019 0.0014 0.0010

8 15 12 - - 0.0007 0.0005 0.0027 0.0020 0.0017 0.0010

9 15 12 12 - 0.0009 0.0005 0.0015 0.0013 0.0012 0.0008

10 15 12 12 6 0.0009 0.0005 0.0016 0.0014 0.0012 0.0008

According to the angle of attack and the slip angle, it can be seen that model 4, which

consisted of a single hidden layer and five neurons, showed the best performance. A com-

parison of the model results with the real system is shown in Figure 12.

Aerospace 2022, 9, 443 14 of 20

Figure 12. Estimation errors.

In order to observe the performance of the models with the same aerodynamic char-

acteristics and different weights, the system weight was increased to 10 kg and a flight

was carried out from an altitude of 1000 m. Control inputs produced during the flight are

shown in Figure 13.

Figure 13. Control inputs for the 10 kg system.

The model performances for a 120 s flight were compared using error metrics and

computational costs measures. As can be seen in Table 7, increasing the number of hidden

layers and neurons increased the computation time. Considering the model performances,

model number 4 exhibited the best performance.

Aerospace 2022, 9, 443 15 of 20

Table 7. Model performances for increased weight.

Model No RMSE MAE
Computational

Cost (ms)

1 0.2379 0.1782 42.274

2 0.2235 0.1523 40.971

3 0.2965 0.2206 49.747

4 0.1363 0.0973 43.325

5 0.3029 0.2376 43.777

6 0.2963 0.2071 43.872

7 0.2616 0.1802 44.537

8 0.3100 0.2182 66.263

9 0.3137 0.2219 66.851

10 0.3004 0.2244 66.961

The estimation errors for increased weight are shown in Figure 14. The increase in

the number of hidden layers increased the overshoot values, although it did not result in

any significant changes in model performance. Finally, the performance of the developed

models was examined in a system with different aerodynamic properties. An aerial deliv-

ery system called ALEX was used to determine the necessary parameters (Table 8) [3].

Figure 14. Estimation errors for increased weight.

Aerospace 2022, 9, 443 16 of 20

Table 8. Parameters of ALEX [3].

Parameter Value

Mass (m) 97.6 kg

Canopy reference area (S) 19.72 m2

Aerodynamic coefficients

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

��� = 0.084 ���� = 0.90

��� = −0.216 ��� = 0.25

��� = 2.36 ��� = 0
��� = 0 ��� = −0.174

��� = 0.104 ��� = −0.149

��� = 0.096
��� = 0.019

��� = 0.084

����
= −0.048

��� = −0.027

����
= 0.039 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

The control inputs used in this flight, starting from a 200 m altitude, are shown in

Figure 15.

The performances of the models are shown in Table 9 and Figure 16. Model 1, which

was found to have the best performance, consisted of a single hidden layer and 10 neu-

rons.

Figure 15. Control inputs for ALEX.

Table 9. Model performances for ALEX.

Model No RMSE MAE

1 0.0296 0.0225

2 0.0491 0.0457

3 0.0781 0.0721

4 0.1251 0.1195

5 0.0413 0.0308

6 0.0562 0.0471

7 0.0388 0.0273

8 0.0734 0.0375

9 0.0510 0.0462

10 0.1024 0.0435

Aerospace 2022, 9, 443 17 of 20

In order to determine the limits of the developed models, the effects of weight and

aerodynamic coefficients on the models were observed. The aerodynamic coefficients that

determined the effects of control inputs on force and moment were chosen. Error rates

were observed by changing the selected parameters by ±10%. RMSE was used as the error

metric. As can be seen in Table 10, model 4, which consisted of a single hidden layer and

five neurons, demonstrated the best performance.

Considering the maximum error of five degrees, the limits of the models could be

determined approximately, according to the parameters, via interpolation. The results are

shown in Table 11.

Figure 16. Estimation errors for ALEX.

Table 10. Model performances according to changes of 10%.

No
m ����

 ����
 ����

 ����

+10% −10% +10% +10% −10% +10% −10% −10% −10% −10%

1 0.0035 0.0042 0.0036 0.0034 0.0033 0.0032 0.0030 0.0029 0.1345 0.0039

2 0.0070 0.0072 0.0063 0.0045 0.0057 0.0055 0.0052 0.0056 0.0397 0.0065

3 0.0156 0.0157 0.0129 0.0284 0.0166 0.0182 0.0179 0.0183 0.0591 0.0182

4 0.0032 0.0041 0.0032 0.0023 0.0031 0.0031 0.0027 0.0031 0.0739 0.0028

5 0.0055 0.0094 0.0072 0.0054 0.0064 0.0061 0.0053 0.0058 0.2064 0.0063

6 0.0123 0.0116 0.0111 0.0073 0.0099 0.0104 0.0081 0.0086 0.1334 0.0093

7 0.0119 0.0114 0.0122 0.0064 0.0086 0.0087 0.0073 0.0078 0.0623 0.0089

8 0.0123 0.0161 0.0027 0.0084 0.0121 0.0112 0.0098 0.0020 0.2058 0.0110

9 0.0120 0.0104 0.0099 0.0057 0.0110 0.0094 0.0076 0.0113 0.0578 0.0089

10 0.0121 0.0131 0.0102 0.0077 0.0112 0.0102 0.0090 0.0100 0.0950 0.0091

t[s]

t[s]

Model No:3 Model No:4 Model No:9 Model No:10

Aerospace 2022, 9, 443 18 of 20

Table 11. Limits of models.

No
m ����

 ����
 ����

 ����

Max Min Max Min Max Min Max Min Max Min

1 6.623 0.000 0.342 −0.156 0.545 −0.258 0.390 −0.200 0.0032 −0.0037

2 4.261 0.000 0.238 −0.093 0.379 −0.087 0.267 −0.055 0.0037 −0.0010

3 2.960 0.847 0.167 0.069 0.229 0.078 0.149 0.052 0.0034 0.0016

4 7.066 0.000 0.372 −0.278 0.571 −0.271 0.422 −0.181 0.0034 −0.0063

5 4.905 0.141 0.221 −0.061 0.354 −0.064 0.264 −0.050 0.0031 −0.0011

6 3.244 0.475 0.178 −0.019 0.282 0.025 0.207 −0.001 0.0032 0.0002

7 3.289 0.450 0.171 −0.036 0.302 0.000 0.219 −0.012 0.0034 0.0001

8 3.244 0.873 0.422 −0.004 0.258 0.033 0.189 −0.335 0.0031 0.0006

9 3.278 0.311 0.188 −0.053 0.269 0.011 0.214 0.023 0.0035 0.0001

10 3.266 0.638 0.185 −0.013 0.267 0.022 0.197 0.013 0.0033 0.0001

5. Conclusions

In this study, a simulation environment was designed for a parachute landing system

in the Gazebo/ROS environment. By implementing an aerial delivery system in PX4 auto-

pilot software, the necessary infrastructure for a software-in-the-loop system was created.

Flights were performed in the simulation environment and flight data were collected. Us-

ing these data for the description of the system, an NARX network model was trained,

and a dynamic model was used to estimate the system. During the training process, dif-

ferent training algorithms were used (LM, BR, and SCG) and the effects of the numbers of

hidden layers and neurons were observed. The effects of weight and aerodynamic coeffi-

cients on the models were also examined and the model limits were determined. As a

result of the examinations, the model consisting of a single hidden layer and five neurons

outperformed the other models evaluated. As the rates of different model parameters in-

crease, the model which has the best performance may change. Therefore, errors in mod-

els can be improved by means of online training methods.

In future studies, pre-trained models will be updated using online training methods.

Furthermore, the trained model will be tested using real flight data. After the model is

verified, controller studies will be carried out and autonomous landing of the landing

system will be carried out at the desired target location.

Author Contributions: Conceptualization, K.G. and A.T.Ş.; methodology, K.G.; software, K.G.; val-

idation, K.G. and A.T.Ş.; investigation, K.G.; writing—original draft preparation, K.G.; writing—

review and editing, A.T.Ş. All authors have read and agreed to the published version of the manu-

script.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yakimenko, O.A. Precision Aerial Delivery Systems: Modeling, Dynamics, and Control; American Institute of Aeronautics and As-

tronautics: Monterey, CA, USA, 2015.

2. Hamel, P.G.; Jategaonkar, R.V. Evolution of flight vehicle system identification. J. Aircr. 1996, 33, 9–28.

https://doi.org/10.2514/3.46898.

3. Jann, T.; Strickert, G. System Identification of a Parafoil-Load Vehicle-Lessons Learned. In Proceedings of the 18th AIAA Aero-

dynamic Decelerator Systems Technology Conference and Seminar, Munich, Germany, 23–26 May 2005.

4. Grauer, J.A. Real-Time Parameter Estimation using Output Error. In Proceedings of the AIAA Atmospheric Flight Mechanics

Conference, National Harbor, Maryland, 13–17 January 2014.

Aerospace 2022, 9, 443 19 of 20

5. Jann, T. Aerodynamic model identification and GNC design for the parafoil-load system ALEX. In Proceedings of the 16th

AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Boston, MA, USA, 21–24 May 2001.

6. Jaiswal, R.; Prakash, O.; Chaturvedi, S.K. A Preliminary Study of Parameter Estimation for Fixed Wing Aircraft and High En-

durability Parafoil Aerial Vehicle. INCAS Bull. 2020, 12, 95–109. https://doi.org/10.13111/2066-8201.2020.12.4.9.

7. Heimes, F.; Zalesski, G.; Land, W.; Oshima, M. Traditional and evolved dynamic neural networks for aircraft simulation. In

Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and

Simulation, Orlando, FL, USA, 12–15 October 1997.

8. Saghafi, F.; Heravi, B.M. Identification of Aircraft Dynamics Using Neural Network Simultaneous Optimization Algorithm. In

Proceedings of the 2005 European Modeling and Simulation Conference (ESM), Porto, Portugal, 24–26 October 2005

9. Harris, J.; Arthurs, F.; Henrickson, J.V.; Valasek, J. Aircraft system identification using artificial neural networks with flight test

data. In Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10

June 2016; pp. 679–688.

10. Narendra, K.; Parthasarathy, K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw.

1990, 1, 4–27. https://doi.org/10.1109/72.80202.

11. Phan, M.Q.; Juang, J.N.; Hyland, D.C. On Neural Networks in Identification and Control of Dynamic Systems. In Wave Motion,

Intelligent Structures and Nonlinear Mechanics; National Aeronautics and Space Administration: Washington, DC, USA, 1995; pp.

194–225. https://doi.org/10.1142/9789812796455_0007.

12. Valmorbida, G.; Wen-Chi, L.; Mora-Camino, F. A neural approach for fast simulation of flight mechanics. In Proceedings of the

38th Annual Simulation Symposium (ANSS’05), San Diego, CA, USA, 4–6 April 2005.

13. Hu, Z.; Balakrishnan, S.N. Parameter Estimation in Nonlinear Systems Using Hopfield Neural Networks. J. Aircr. 2005, 42, 41–

53. https://doi.org/10.2514/1.3210.

14. Linse, D.J.; Stengel, R.F. Identification of aerodynamic coefficients using computational neural networks. J. Guid. Control. Dyn.

1993, 16, 1018–1025. https://doi.org/10.2514/3.21122.

15. Puttige, V.R.; Anavatti, S.G. Real-Time Neural Network Based Online Identification Technique for a UAV Platform. In Proceed-

ings of the 2006 International Conference on Computation Intelligence for Modelling Control and Automation and International

Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA’06), Washington, DC, USA, 28

November–1 December 2006; pp. 92–92. http://doi.org/10.1109/CIMCA.2006.170.

16. Kamasaldan, S.; Ghandakly, A. A neural network parallel adaptive controller for fighter aircraft pitch-rate tracking. IEEE Trans.

Instrum. Meas. 2011, 60, 258–267.

17. Savran, A.; Tasaltin, R.; Becerikli, Y. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural

networks. ISA Trans. 2006, 45, 225–247. https://doi.org/10.1016/s0019-0578(07)60192-x.

18. Hess, R. On the use of back propagation with feed-forward neural networks for the aerodynamic estimation problem. In

Proceedings of the Flight Simulation and Technologies, Guidance, Navigation, and Control and Co-Located Conferences,

Monterey, CA, USA, 9–11 August 1993.

19. Raol, J.; Jategaonkar, R. Aircraft parameter estimation using recurrent neural networks: A critical appraisal. In Proceedings of

the 20th Atmospheric Flight Mechanics Conference, Guidance, Navigation, and Control and Co-located Conferences, Baltimore,

MD, USA, 7–10 August 1995.

20. Roudbari, A.; Saghafi, F. Intelligent modeling and identification of aircraft nonlinear flight dynamics. Chin. J. Aeronaut. 2014, 27,

759–771. https://doi.org/10.1016/j.cja.2014.03.017.

21. Bagherzadeh, S.A. Nonlinear aircraft system identification using artificial neural networks enhanced by empirical mode

decomposition. Aerosp. Sci. Technol. 2018, 75, 155–171.

22. Goyal, P.; Benner, P. LQResNet: A Deep Neural Network Architecture for Learning Dynamic Processes. arXiv 2021,

arXiv:2103.02249.

23. Chen, Z.; Xiu, D. On Generalized Residual Network for Deep Learning of Unknown Dynamical Systems. J. Comput. Phys. 2021,

438, 110362. 10.1016/j.jcp.2021.110362.

24. Available online: https://docs.px4.io/master/en/development/development.html (accessed on 1 April 2022).

25. Xiao, K.; Tan, S.; Wang, G.; An, X.; Wang, X.; Wang, X. XTDrone: A Custom-izable Multi-Rotor UAVs Simulation Platform. In

Proceedings of the 4th International Conference on Robotics and Automation Sciences (ICRAS), Chengdu, China, 12–14 June

2020.

26. Menezes, J.M.P., Jr.; Barreto, G.A. Long-term time series prediction with the NARX network: An empirical evaluation. Neuro-

computing 2008, 71, 3335–3343.

27. Sezginer, K.; Kasnakoğlu, C. Autonomous navigation of an aircraft using a narx recurrent neural network. In Proceedings of

the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November

2019.

28. Puttige, V.R. Neural Network Based Adaptive Control for Autonomous Flight of Fixed Wing Unmanned Aerial Vehicles. Ph.D.

Thesis, University of New South Wales, Sydney, NSW, Australia, 2008.

29. Tooba, H.; Kadri, M.B. Comparison of different techniques for experimental modeling of a Quadcopter. In Proceedings of the

2019 Second International Conference on Latest Trends in Electrical Engineering and Computing Technologies (INTELLECT),

Karachi, Pakistan, 13–14 November 2019.

Aerospace 2022, 9, 443 20 of 20

30. Avdeev, A.; Assaleh, K.; Jaradat, M.A. Quadrotor Attitude Dynamics Identification Based on Nonlinear Autoregressive Neural

Network with Exogenous Inputs. Appl. Artif. Intell. 2021, 35, 265–289.

31. Werbos, P.J. Beyond Regression: New Tools for Prediction and Analysis in The Behavioral Sciences. Ph.D. Thesis, Harvard

University, Boston, MA, USA, 1974.

32. Lera, G.; Pinzolas, M. Neighborhood based Levenberg-Marquardt algorithm for neural network training. IEEE Trans. Neural

Netw. 2002, 13, 1200–1203.

33. Foresee, F.D.; Hagan, M.T. Gauss-Newton approximation to Bayesian learning. In Proceedings of the International Joint Con-

ference on Neural Networks, Lausanne, Switzerland, 8–10 June 1997.

34. Saipraneeth, G.; Jyotindra, N.; Roger, S.; Sachin, G. A Bayesian regularization-backpropagation neural network model for peel-

ing computations. J. Adhes. 2020.

35. Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. Numer. Anal. Lect. Notes Math. 1978, 630, 105–116

36. MacKay, D.J.C. A practical Bayesian framework for backpropagation networks. Neural Comput. 1992, 4, 448–472.

37. Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533.

