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Abstract: Neural networks are one of the methods used in system identification problems. In this 

study, a NARX network with a serial-parallel structure was used to identify an unknown aerial 

delivery system with a ram-air parachute. The dataset was created using the software-in-the-loop 

method (Software in the loop). Gazebo was used as the simulator and PX4 was used as the autopilot 

software. The performance of the NARX network differed according to parameters used, such as 

the selected training algorithm, input and output delays, the hidden layer, and the number of neu-

rons. Within the scope of this study, each parameter was examined independently. Models were 

trained using MATLAB 2020a. The results demonstrated that the model with one hidden layer and 

five neurons, which was trained using the Bayesian regularization algorithm, was sufficient for this 

problem. 

Keywords: Bayesian regularization; Levenberg–Marquardt; NARX network; scaled conjugate  

gradient; software in the loop 

 

1. Introduction 

In aircraft, system identification can be thought of as estimating aerodynamic param-

eters or defining a mathematical model of the system. Three methods have been proposed 

in the literature for the estimation of aerodynamic parameters of parachute landing sys-

tems [1]. The first of these covers analytical methods based on computational fluid dy-

namics. Others are wind tunnel tests and flight tests. In this study, we focused on the 

methods used in flight tests. 

The purpose of system definition is to obtain a mathematical model according to the 

inputs and outputs obtained from the flight tests. Hamel and Jategaonkar proposed the 

4M (maneuver, measurement, method, model—see Figure 1) requirements for successful 

system identification [2], arguing that: 

 Control inputs should be created to cover extreme points; 

 High-resolution measurements should be used; 

 The possible mathematical model of the vehicle should be defined; and 

 The most suitable method for the data should be chosen. 

Jann and Strickert suggested separating the symmetric and asymmetric maneuvers 

that need to be carried out in the formation of data to be used in the definition process [3] 

(Figure 2). 

The methods used in parameter estimation can be listed as the Equation-error, out-

put-error, and filter-error methods. The question of which method to choose can be de-

cided according to the measurement and the noise present in the process [2] (Figure 3). If 

disruptive factors can be ignored in both, the fastest method, the equality-error method, 

is preferred. If the disturbing factors are only assumed in the measurements, the output-

error method is recommended, and if both are present, the filter-error method is recom-

mended. 
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Figure 1. 4M-based system identification process. 

 

Figure 2. Recommended control input. 

 

Figure 3. Output-error method. 

The output-error method is the most widely preferred method for parameter estima-

tion in the literature. In his study, Grauer calculated a dynamic model of an aircraft during 

flight by adapting the output-error method, which is usually carried out using post-flight 

data, to real-time flight data [4]. In another study using the output-error method, Jann 
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estimated the state variables of a parachute landing system called ALEX via sensor inputs 

(GPS, Magnetometers, Gyros, Accelerometers) [5]. On the other hand, Jaiswal, Prakash, 

and Chaturvedi estimated the aerodynamic coefficients of a parachute landing system us-

ing the maximum likelihood method and the output-error method [6]. 

In addition to statistical methods, machine learning techniques, which are increasing 

in popularity day by day, have also been successfully used in solving system identification 

problems. In the literature, artificial neural networks have been used in modeling aircraft 

dynamics [7–11], estimating aerodynamic forces and moments [12–15], and in controller 

designs [16,17]. Both feed-forward neural networks [14,18] and recurrent neural networks 

have been widely used in these studies [19]. Roudbari and Saghafi proposed a new 

method for describing the dynamics of highly maneuverable aircraft. In the model they 

developed, they modeled the flight dynamics with artificial neural networks. The differ-

ence between their approach and those of traditional methods is that they did not use 

aerodynamic information during the training process [20]. Bagherzadeh supported a 

model with flight dynamics in order to increase the performance of the artificial neural 

network model [21]. 

The development of deep learning methods has enabled these methods to be used 

frequently in system identification problems. The residual neural network approach, 

which is one type of deep neural network, is one of the methods used to solve these prob-

lems. Goyal and Benner developed a special architecture for dynamic systems called 

LQResNET [22]. The method they proposed allowed for the use of observations in the 

modeling of dynamical systems. Their model was based on the principle that the rate of a 

variable depends on the linear and quadratic forms of the variable. Chen and Xiu sug-

gested the framework called gResNet. They defined the residual as the estimation error 

of the prior model. They also used a DNN to model the residual [23]. 

In this study, a NARX Network with a serial-parallel structure was used to identify 

an unknown aerial delivery system with a ram-air parachute. The dataset was created 

using the software-in-the-loop method (software in the loop). Gazebo was used as the 

simulator and PX4 was used as the autopilot software. The performance of the NARX 

network differed according to parameters used, such as the selected training algorithm, 

the input and output delays, the hidden layer, and the number of neurons. Within the 

scope of this study, each parameter was examined independently. Models were trained 

using MATLAB 2020a. 

2. Mathematical Model 

In this study, a 6-degree-of-freedom model developed for a parachute landing sys-

tem was used [24]. The Equations of motion of the vehicle can be written as: 

����� �
�̇
�̇
�̇

� = � − ��(�) �
�
�
�

�, (1)

� �
�̇
�̇
�

� = � − �(�)� �
�
�
�

�, (2)

where m is the mass, I is the inertia matrix, [u, v w] are linear velocities, [p, q r] are the 

angular velocities in the body frame, S(ω) is a skew-symmetric matrix consisting of linear 

velocity vectors, F is the force, and M is moment. 

Due to the xz-symmetry plane of the parachute landing system, the inertial matrices 

consist of 4 unique components. 

�(�) =  �

0 −� �
� 0 −�

−� � 0
� (3)
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� =  �

��� 0 ���

0 ��� 0

��� 0 ���

� (4)

The forces and moments affecting the parachute are caused by gravity and aerody-

namic forces. The gravitational force can be written according to the body (b) axis. 

�� = �� �

− sin(�)

cos(�) sin(�)

cos(�) cos(�)
� (5)

The aerodynamic forces acting on the system are written using the relevant aerody-

namic coefficients (���, ����, ����
, ���, ���, ���, ����

), according to the body axis. 

�� = �� ��
� �

��� + ������ + ����
��̅

����

��� + ���� + ����
��̅

� (6)

In this Equation, S represents the parachute surface area, ��̅ represents symmetric 

trailing edge deflection, and ( ��
� ) is the rotation matrix from the aerodynamic coordinate 

system to the body axis. 

��
� = ���� = �

cos(�) 0 − sin(�)
0 1 0

sin(�) 0 cos(�)
� �

cos(�) sin(�) 0

− sin(�) cos(�) 0
0 0 1

� (7)

��
� = ���� = �

cos(�) cos(�) cos(�) sin(�) − sin(�)

− sin(�) cos(�) 0

sin(�) cos(�) sin(�) sin(�) cos(�)
� (8)

The angle of attack and slip angle are obtained from the velocity vector in the body 

axis. 

� = tan�� �
��

��

� (9)

� = tan�� �
��

���
� + ��

�
� (10)

The velocity vector in the body axis consists of the global velocity and the wind effect. 

�� = �

��

��

��

� = �
�
�
�

� − ��
� �

��

��

��

� (11)

��
�  is the rotation matrix from the coordinate system on the North-East-Down-axis 

which has its origin in the center of mass of the parachute to the body axis. Euler angles 

(roll, pitch, yaw) are used in this notation. 

�� = �

1 0 0
0 cos(�) sin(�)

0 − sin(�) cos(�)
� (12)

�� = �
cos(�) 0 − sin(�)

0 1 0
sin(�) 0 cos(�)

� (13)

�� = �

1 0 0
0 cos(�) sin(�)

0 − sin(�) cos(�)
� (14)

��
� = ������ (15)
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Aerodynamic moments affecting the parachute can also be written using the relevant 

coefficients (���, ���, ���, ����
, ���, ���, ���, ���, ���, ���, ����

). These are roll, pitch, and 

yaw moments, respectively [2]. 

�� =
���

��

2

⎣
⎢
⎢
⎢
⎢
⎢
⎡ �(���� +

�

2��

���� +
�

2��

���� + ����
��̅)

�̅(��� + ���� +
�

2��

����)

�(���� +
�

2��

���� +
�

2��

���� + ����
��̅)

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (16)

here, ρ is air density, �̅  represents mean aerodynamic chord, ��̅ = ��/�� ���  is asym-

metric trailing-edge deflection, and S is the canopy reference area. 

3. Materials and Methods 

The dataset was created using the software-in-the-loop method (software in the 

loop). Gazebo was used as the simulator and PX4 was used as the autopilot software. A 

virtual flight was performed in the Gazebo environment (Figure 4). 

 

Figure 4. Gazebo simulation of the system. 

The parameters required for the simulation were used considering the autonomous 

landing system with a parachute model named Snowflake (Table 1) [3]. 

Table 1. Parameters of the Snowflake parachute model [3]. 

Parameter Value 

Mass (m) 1.9 kg 

Canopy reference area (S) 1 m2 

Inertia matrix (I) �
0.042 0 0.0068

0 0.027 0
0.0068 0 0.054

� 

Maximum brake deflection (�����) 0.25 m 

Aerodynamic coefficients 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

��� = 0.15 ���� = 0.90

��� = −0.05 ��� = 0.25

��� = 0.68 ��� = 0
��� = 0 ��� = −0.265

��� = −0.036 ��� = −0.355

��� = 0
��� = −0.036

��� = −0.09

����
= 0.15

��� = 0

����
= 0.003 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Gazebo compatible sensor models were used to obtain the flight data for the vehicle 

in the simulation environment. These consisted of a gyroscope, magnetometer, accelerom-

eter, barometer, and GPS. The estimation of the state variables of the vehicle was carried 

out with PX4 software, using the extended Kalman filter. 

PX4 has a state estimation module called EKF2 which uses the EKF algorithm. It uses 

IMU data in the state prediction phase. To correct these values, a GPS and barometer are 

used in the state correction phase [24]. 

Simplified models of the sensors used can be shown similarly [25]: 

�� = � + � + �, (17)

�̇ = ��, (18)

where �� is the measured value; � is the real value; and �, �, and ��  represent bias 

and Gaussian noise, respectively. The sensor parameters can also be expressed using this 

notation. The sensor parameters used in the simulation are given in Table 2. 

Table 2. Parameters used in the simulation. 

Sensors Noise Density (��) Random Walk (���
) 

Bias Correlation 

Time (��) 

Gyroscope 0.00018 0.000 1000.0 

Accelerometer 0.00186 0.006 300.0 

Magnetometer 0.00040 0.000 600.0 

The simulation was carried out in a windless environment and the air density was 

1.225 kg/m3. In the simulation, the system was released from a height of 500 m. Dropping 

occurred in 30 s. Control inputs ��̅ and ��̅ are given as full right and full left (Figure 5). 

 

Figure 5. Control inputs. 

The flight data received from the system were arranged and the input vector x and 

the output vector y were created. 

� =  [��� ��̅] (19)

� = [� � � � � �] (20)
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A total of 270 s of data were reduced to 225 s to cover the flight section, and 2250 

pieces of data were produced using a 10 Hz measurement. The position and velocity of 

the vehicle in the flight data used are shown in Figures 6–8. 

In order to improve the performance of the model, 70% of the flight was used for 

training and the remaining 30% was used in the testing process. Since the landing position 

is the most important phase, the first phase of the flight was selected as the training data. 

 

Figure 6. Position of the system. 

 

Figure 7. Euler angles. 
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Figure 8. Velocity of the system. 

3.1. NARX Network 

A nonlinear autoregressive exogenous (NARX) network is a nonlinear model repre-

sentation used in time series models. In this notation, the model’s outputs depend on the 

past output values, the inputs, and the past values of the inputs. Its mathematical expres-

sion is given as follows: 

�(�) = ���(� − 1), �(� − 2), . . . , ��� − ���; �(�), �(� − 1), . . . , �(� − ��)�, (21)

where y denotes outputs, u denotes inputs, and f represents a nonlinear function. The 

structure in which f is modeled as a neural network is named the NARX neural network 

(NARX network) [26]. This model has been used for modeling conventional fixed-wing 

[27,28] and rotary-wing [29,30] aircraft. A NARX neural network can be modeled using 

two types of models: parallel and serial-parallel (Figure 9). In the parallel model, the esti-

mated output values are fed back into the system. 

��(�) = ����(� − 1),  �� (� − 2), . . . , ���� − ���;  �(�), �(� − 1), . . . , �(� − ��)� (22)

In the serial-parallel model, only real system outputs are used: 

��(�) = ���(� − 1), �(� − 2), . . . , ��� − ���; �(�), �(� − 1), . . . , �(� − ��)� (23)

where ��(�) represents the estimated output value time t. 

 

Figure 9. Parallel (Left) and serial-parallel (Right) NARX networks. 

Since the data set used in this study included real system outputs, the serial-parallel 

structure was preferred. The feed-forward network block shown in Figure 9 consisted of 

multilayer feedforward neural networks, which consisted of at least one hidden layer and 

[m
/s

]
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neurons. Each neuron calculated the outputs with the help of the activation function, de-

termined using the inputs and their weights, as shown in Figure 10, where, ��, ��, b, and 

f represent inputs, weights, bias, and the activation function, respectively. The architecture 

of the NARX neural network with a serial-parallel structure is shown in Figure 11. 

 

Figure 10. Structure of a neuron. 

 

Figure 11. Serial-parallel NARX network architecture. 

The selection of the activation functions plays an important role in the model design. 

The functions used in the hidden layers and the functions used in the output layer vary. 

Differentiable functions are preferred in hidden layers. These functions, which are pre-

ferred over linear functions during training, enable the models to perform successfully 

with more complex problems. In the literature, functions that are frequently used in hid-

den layers are ReLU (Rectified Linear Activation), sigmoid (logistic), and Tanh (hyper-

bolic tangent) functions. The function used in the output layer differs according to the 

type of problem. Linear functions are used in regression problems, whereas softmax or 

sigmoid functions are used in classification problems. This concept is illustrated in detail 

in Table 3. 

Table 3. Activation functions. 

Function Plot 

ReLU �(�) =  �
�, � > 0
0, � ≤ 0
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Sigmoid �(�) =  
1

1 + ���
 

 

Hyperbolic tangent �(�) =  tanh (�) 

 

Lineer �(�) =  x 

 

Softmax �(��) =  
���

∑ ����
���

 

  

The process of calculating and updating the weights is called training. The aim here 

is to minimize the targeted error function for model performance. In the neural network 

model, this function can be written as the sum of the squares of the errors: 

� =  � ��
�

�

���

, (24)

where e is the error and n is the number of data. 

The training algorithm used in feed-forward neural network methods is known as 

the back-propagation algorithm [31]. Since the convergence rate of the steepest descent 

method, which is used as a standard in the back-propagation algorithm, is slow, many 

learning algorithms have been developed for neural network training. The main ones are 

the Levenberg–Marquardt algorithm [32], the Bayesian regularization algorithm [33], and 

the scaled conjugate gradient algorithm [34]. 

3.2. Levenberg–Marquardt 

The Levenberg–Marquardt algorithm is a second-order training algorithm used in 

solving nonlinear optimization problems. According to the weight values that need to be 

updated, the Jacobian of the error function shown in Equation (23) can be calculated as 

follows: 

f(
x
)

f(
x)

f(
x)

f(
x
)
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� =

⎣
⎢
⎢
⎢
⎡

���

���

⋯
���

���

⋮ ⋱ ⋮
���

���

⋯
���

���⎦
⎥
⎥
⎥
⎤

, (25)

where m is the number of weights in the network. After finding the Jacobian matrix, the 

gradient vector (g) and the Hessian matrix (H) can also be calculated. 

� =  ��� (26)

� =  ��� (27)

The weights are updated based on the Jacobian matrix. 

���� = �� − ( ��
��� +  ���)��(2 ��

���)� =  ���, (28)

where �� is the learning coefficient and � is the unit matrix. A theoretical analysis can be 

found in [35]. 

3.3. Bayesian Regularization 

The error function is rearranged using the regularization method to generalize the 

neural network [36]: 

� =  ��� +  ��, (29)

where μ and ν are the regularization parameters and ��  is the sum of the squared 

weights. The Bayesian regularization method is used for the optimization of the editing 

parameters. Considering the weight values as random variables, it aims to calculate the 

weight values that will maximize the posterior probability distribution of the weights in 

the given data set. The posterior distribution can be expressed according to the Bayes rule: 

�(�|�, �, �, �) =
�(�|�, �, �) �(�|�, �)

�(�|�, �, �)
, (30)

where D represents the dataset and N represents the neural network model. �(�|�, �, �) 

expresses the likelihood function, �(�|�, �)  is the prior density, and �(�|�, �, �)  is the 

normalization factor. It can be said that the noise in the dataset and in the weights has a 

Gaussian distribution. Thus, the likelihood function and antecedent intensity values can 

be calculated. 

�(�|�, �, �) =
�� ��

�(�)
 (31)

�(�|�, �) =
�� ���

��(�)
 (32)

Here, � =  �
�

�
�

�/�

 and �� =  �
�

�
�

�/�

. By rearranging these equations, the posterior 

distribution to the weights can be rewritten. 

�(�|�, �, �, �) =
�� (���� ��)

��(�)�(�)
 (33)

Regularization parameters are effective in the N model. The Bayes rule can be applied 

for the optimization of these parameters. 

�(�, �|�, �) =
�(�|�, �, �) �(�, �|�)

�(�|�)
 (34)



Aerospace 2022, 9, 443 12 of 20 
 

 

As can be seen in Equation (34), the function �(�|�, �, �) is directly proportional to 

�(�, �|�, �). Therefore, the maximum value of the function �(�|�, �, �)  must be calcu-

lated. Adjustment parameters can be calculated using the Taylor expansion of Equation 

(29). A theoretical analysis can be found in [37]. 

� =
�

2��

 (35)

� =
� −  �

2�
 (36)

� = � −  � ��(���) (37)

3.4. Scaled Conjugate Gradient 

In the steepest descent algorithm implemented in the standard back-propagation al-

gorithm, a search is made in the opposite direction of the gradient vector while updating 

the weights. Although the error function decreases rapidly in this direction, the same can-

not be said for the convergence rate. Conjugate gradient algorithms search using the di-

rection with the fastest convergence. This direction is called the conjugate direction. In 

this method, the search first starts in the reverse of the gradient vector, similarly to the 

steepest descent algorithm. It differs from the second iteration as follows. 

�� = −�� (38)

���� = �� + ���� (39)

�� = −�� + ������ (40)

Different algorithms have been developed according to the way in which the ��  co-

efficient is calculated. Moller, on the other hand, combined the LM algorithm and the con-

jugate gradient algorithm for the calculation of the number of steps in the algorithm he 

developed. This algorithm is called the scaled conjugate gradient algorithm [35]. In this 

algorithm, which is based on calculating the approximate value of the Hessian matrix, the 

design parameters change in each iteration and are independent of the user. This is the 

most important factor affecting the success of the algorithm. 

�� =
��(�� + ����) − ��(��)

��

+ ���� (41)

�� =
(|����|� − ����

� ��)

��
���

 (42)

���� = −���� + ���� (43)

4. Results and Discussion 

The performance of the NARX network differs according to parameters used, such 

as the selected training algorithm, the input and output delays, the hidden layer, and the 

number of neurons. Within the scope of this study, each parameter was examined inde-

pendently. Models were trained using MATLAB 2020a. The root-mean-square error 

(RMSE) and mean absolute error (MAE) values were used to evaluate model performance. 

The metrics used are presented in Table 4. 
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Table 4. Metrics used in the evaluation of models. 

Measures Equation Description 

Root-mean-square error ���� = �
∑ ��

��
���

�
 Low values indicate that the 

model was successful. 
Mean absolute error ��� =

∑ |��|�
���

�
 

First, the performance of the training algorithms (Bayes arrangement, Levenberg–

Marquardt, scaled conjugate gradient) in a model consisting of a single hidden layer and 

15 neurons was compared. The input and output delay vectors were determined as in [12]. 

A hyperbolic tangent was used as the activation function in the hidden layer and a linear 

function was used in the output layer. The errors according to the training algorithms are 

shown in Table 5. 

Table 5. Performance based on the training algorithms. 

Algorithm RMSE MAE RMSE MAE RMSE MAE 

LM 0.0007 0.0005 0.0026 0.0023 0.0016 0.0011 

BR 0.0007 0.0005 0.0025 0.0021 0.0015 0.0011 

SCG 0.0260 0.0081 0.0101 0.0018 0.0218 0.0037 

Despite the fast training time, SCG performed worse than LM and BR. At this stage, 

the hidden layer and the number of neurons within it were changed and the results were 

examined and shown in Table 6. BR was used as the training algorithm. 

Table 6. Performance based on the number of hidden layers and neurons. 

No 
Hidden Layer Train Test Total 

1 2 3 4 RMSE MAE RMSE MAE RMSE MAE 

1 10 - - - 0.0007 0.0005 0.0025 0.0021 0.0015 0.0011 

2 3 - - - 0.1538 0.0051 0.0018 0.0016 0.1256 0.0039 

3 5 2 - - 0.0208 0.0072 0.0318 0.0312 0.0250 0.0152 

4 5 - - - 0.0008 0.0006 0.0012 0.0010 0.0010 0.0007 

5 10 5 - - 0.0007 0.0005 0.0056 0.0044 0.0033 0.0018 

6 25 - - - 0.0006 0.0005 0.0018 0.0015 0.0012 0.0008 

7 50 - - - 0.0006 0.0005 0.0023 0.0019 0.0014 0.0010 

8 15 12 - - 0.0007 0.0005 0.0027 0.0020 0.0017 0.0010 

9 15 12 12 - 0.0009 0.0005 0.0015 0.0013 0.0012 0.0008 

10 15 12 12 6 0.0009 0.0005 0.0016 0.0014 0.0012 0.0008 

According to the angle of attack and the slip angle, it can be seen that model 4, which 

consisted of a single hidden layer and five neurons, showed the best performance. A com-

parison of the model results with the real system is shown in Figure 12. 
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Figure 12. Estimation errors. 

In order to observe the performance of the models with the same aerodynamic char-

acteristics and different weights, the system weight was increased to 10 kg and a flight 

was carried out from an altitude of 1000 m. Control inputs produced during the flight are 

shown in Figure 13. 

 

Figure 13. Control inputs for the 10 kg system. 

The model performances for a 120 s flight were compared using error metrics and 

computational costs measures. As can be seen in Table 7, increasing the number of hidden 

layers and neurons increased the computation time. Considering the model performances, 

model number 4 exhibited the best performance. 
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Table 7. Model performances for increased weight. 

Model No RMSE MAE 
Computational  

Cost (ms) 

1 0.2379 0.1782 42.274 

2 0.2235 0.1523 40.971 

3 0.2965 0.2206 49.747 

4 0.1363 0.0973 43.325 

5 0.3029 0.2376 43.777 

6 0.2963 0.2071 43.872 

7 0.2616 0.1802 44.537 

8 0.3100 0.2182 66.263 

9 0.3137 0.2219 66.851 

10 0.3004 0.2244 66.961 

The estimation errors for increased weight are shown in Figure 14. The increase in 

the number of hidden layers increased the overshoot values, although it did not result in 

any significant changes in model performance. Finally, the performance of the developed 

models was examined in a system with different aerodynamic properties. An aerial deliv-

ery system called ALEX was used to determine the necessary parameters (Table 8) [3]. 

 

Figure 14. Estimation errors for increased weight. 
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Table 8. Parameters of ALEX [3]. 

Parameter Value 

Mass (m) 97.6 kg 

Canopy reference area (S) 19.72 m2 

Aerodynamic coefficients 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

��� = 0.084 ���� = 0.90

��� = −0.216 ��� = 0.25

��� = 2.36 ��� = 0
��� = 0 ��� = −0.174

��� = 0.104 ��� = −0.149

��� = 0.096
��� = 0.019

��� = 0.084

����
= −0.048

��� = −0.027

����
= 0.039 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The control inputs used in this flight, starting from a 200 m altitude, are shown in 

Figure 15. 

The performances of the models are shown in Table 9 and Figure 16. Model 1, which 

was found to have the best performance, consisted of a single hidden layer and 10 neu-

rons. 

 

Figure 15. Control inputs for ALEX. 

Table 9. Model performances for ALEX. 

Model No RMSE MAE 

1 0.0296 0.0225 

2 0.0491 0.0457 

3 0.0781 0.0721 

4 0.1251 0.1195 

5 0.0413 0.0308 

6 0.0562 0.0471 

7 0.0388 0.0273 

8 0.0734 0.0375 

9 0.0510 0.0462 

10 0.1024 0.0435 
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In order to determine the limits of the developed models, the effects of weight and 

aerodynamic coefficients on the models were observed. The aerodynamic coefficients that 

determined the effects of control inputs on force and moment were chosen. Error rates 

were observed by changing the selected parameters by ±10%. RMSE was used as the error 

metric. As can be seen in Table 10, model 4, which consisted of a single hidden layer and 

five neurons, demonstrated the best performance. 

Considering the maximum error of five degrees, the limits of the models could be 

determined approximately, according to the parameters, via interpolation. The results are 

shown in Table 11. 

 

Figure 16. Estimation errors for ALEX. 

Table 10. Model performances according to changes of 10%. 

No 
m ����

 ����
 ����

 ����
 

+10% −10% +10% +10% −10% +10% −10% −10% −10% −10% 

1 0.0035 0.0042 0.0036 0.0034 0.0033 0.0032 0.0030 0.0029 0.1345 0.0039 

2 0.0070 0.0072 0.0063 0.0045 0.0057 0.0055 0.0052 0.0056 0.0397 0.0065 

3 0.0156 0.0157 0.0129 0.0284 0.0166 0.0182 0.0179 0.0183 0.0591 0.0182 

4 0.0032 0.0041 0.0032 0.0023 0.0031 0.0031 0.0027 0.0031 0.0739 0.0028 

5 0.0055 0.0094 0.0072 0.0054 0.0064 0.0061 0.0053 0.0058 0.2064 0.0063 

6 0.0123 0.0116 0.0111 0.0073 0.0099 0.0104 0.0081 0.0086 0.1334 0.0093 

7 0.0119 0.0114 0.0122 0.0064 0.0086 0.0087 0.0073 0.0078 0.0623 0.0089 

8 0.0123 0.0161 0.0027 0.0084 0.0121 0.0112 0.0098 0.0020 0.2058 0.0110 

9 0.0120 0.0104 0.0099 0.0057 0.0110 0.0094 0.0076 0.0113 0.0578 0.0089 

10 0.0121 0.0131 0.0102 0.0077 0.0112 0.0102 0.0090 0.0100 0.0950 0.0091 

  

t[s]

t[s]

Model No:3 Model No:4 Model No:9 Model No:10
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Table 11. Limits of models. 

No 
m ����

 ����
 ����

 ����
 

Max Min Max Min Max Min Max Min Max Min 

1 6.623 0.000 0.342 −0.156 0.545 −0.258 0.390 −0.200 0.0032 −0.0037 

2 4.261 0.000 0.238 −0.093 0.379 −0.087 0.267 −0.055 0.0037 −0.0010 

3 2.960 0.847 0.167 0.069 0.229 0.078 0.149 0.052 0.0034 0.0016 

4 7.066 0.000 0.372 −0.278 0.571 −0.271 0.422 −0.181 0.0034 −0.0063 

5 4.905 0.141 0.221 −0.061 0.354 −0.064 0.264 −0.050 0.0031 −0.0011 

6 3.244 0.475 0.178 −0.019 0.282 0.025 0.207 −0.001 0.0032 0.0002 

7 3.289 0.450 0.171 −0.036 0.302 0.000 0.219 −0.012 0.0034 0.0001 

8 3.244 0.873 0.422 −0.004 0.258 0.033 0.189 −0.335 0.0031 0.0006 

9 3.278 0.311 0.188 −0.053 0.269 0.011 0.214 0.023 0.0035 0.0001 

10 3.266 0.638 0.185 −0.013 0.267 0.022 0.197 0.013 0.0033 0.0001 

5. Conclusions 

In this study, a simulation environment was designed for a parachute landing system 

in the Gazebo/ROS environment. By implementing an aerial delivery system in PX4 auto-

pilot software, the necessary infrastructure for a software-in-the-loop system was created. 

Flights were performed in the simulation environment and flight data were collected. Us-

ing these data for the description of the system, an NARX network model was trained, 

and a dynamic model was used to estimate the system. During the training process, dif-

ferent training algorithms were used (LM, BR, and SCG) and the effects of the numbers of 

hidden layers and neurons were observed. The effects of weight and aerodynamic coeffi-

cients on the models were also examined and the model limits were determined. As a 

result of the examinations, the model consisting of a single hidden layer and five neurons 

outperformed the other models evaluated. As the rates of different model parameters in-

crease, the model which has the best performance may change. Therefore, errors in mod-

els can be improved by means of online training methods. 

In future studies, pre-trained models will be updated using online training methods. 

Furthermore, the trained model will be tested using real flight data. After the model is 

verified, controller studies will be carried out and autonomous landing of the landing 

system will be carried out at the desired target location. 
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