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Abstract: The mission of spacecraft usually faces the problem of an unknown deep space environ-
ment, limited long-distance communication and complex environmental dynamics, which brings
new challenges to the intelligence level and real-time performance of spacecraft onboard trajectory
optimization algorithms. In this paper, the optimal control theory is combined with the neural
network. Then, the state–control sample pairs and the state–costate sample pairs obtained from
the high-fidelity algorithm are used to train the neural network and further drive the spacecraft to
achieve optimal control. The proposed method is used on two typical spacecraft missions to verify
the feasibility. First, the system dynamics of the hypersonic reentry problem and fuel-optimal moon
landing problem are described and then formulated as highly nonlinear optimal control problems.
Furthermore, the analytical solutions of the optimal control variables and the two-point boundary
value problem are derived based on Pontryagin’s principle. Subsequently, optimal trajectories are
solved offline using the pseudospectral method and shooting methods to form large-scale training
datasets. Additionally, the well-trained deep neural network is used to warm-start the indirect
shooting method by providing accurate initial costates, and thus the real-time performance of the
algorithm can be greatly improved. By mapping the nonlinear functional relationship between the
state and the optimal control, the control predictor is further obtained, which provides a backup
optimal control variables generation strategy in the case of shooting failure, and ensures the stability
and safety of the onboard algorithm. Numerical simulations demonstrate the real-time performance
and feasibility of the proposed method.

Keywords: trajectory optimization; real time; deep neural network; hypersonic reentry vehicle;
fuel-optimal moon landing; indirect methods; pseudospectral methods

1. Introduction

With the increase in mission complexity, new requirements are put forward for the
autonomous decision-making ability and intelligent level of the onboard trajectory op-
timization algorithm [1]. On the one hand, due to the limitation of long-distance com-
munication and the complex uncertainty of the deep space environment, an advanced
trajectory optimization algorithm is required to have stronger autonomy and adaptabil-
ity [2–4]. On the other hand, trajectory optimization algorithms are also required to be
computationally efficient to make deep space exploration tasks accurate and stable while
highly nonlinear dynamics model makes it more difficult [5–7]. Therefore, it is particularly
necessary to develop a real-time, autonomous and reliable advanced trajectory optimization
algorithm [8].

The optimal control and trajectory optimization task of spacecraft can essentially
be described as an optimal control problem (OCP) which can traditionally be solved
by two kinds of methods: direct method and indirect method [9]. The direct method
converts the OCP into a nonlinear programming problem by discretizing the state and
control trajectory, and then uses the nonlinear solver such as SNOPT [10] and IPOPT [11]
to solve it [12]. Relatively speaking, the direct method has acceptable convergence, a
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better ability to deal with path constraints and stronger applicability. However, when
high-precision solutions are required, the computational cost increases with the increase in
the number of discrete variables, and the direct method cannot guarantee the first order
necessary condition [13–18]. Based on the calculus of variations and Pontryagin’s minimum
principle, the indirect method converts the OCP into a two-point boundary value problem
(TPBVP) [19]. The shooting methods can solve this TPBVP by guessing the initial costate
and correcting it to obtain the optimal solution. The most attractive advantage of the
indirect method is that it guarantees the local optimality of the solution from the theoretical
level through the first-order necessity condition, and finally obtains a high-fidelity solution.
However, the convergence range of the indirect method is very small and it can hardly
deal with inequality constraints. Additionally, due to the lack of physical meaning, it is
difficult to provide sufficiently accurate initial costate variables for the shooting method.
An inaccurate initial costate makes the calculation time and the number of iterations greatly
increase. Therefore, the real-time performance and stability are difficult to guarantee, which
also hampers its onboard application [20–22].

In recent years, in the aim of solving problems such as the high computational cost and
small convergence region faced by traditional methods, researchers have proposed many
methods based on artificial intelligence and machine learning to improve the performance
of a trajectory optimization algorithm from different aspects. Izzo fitted the state and
control commands at each moment through DNN, and then generated the optimal control
model and realized the precise landing of the controlled object in real time [23,24]. Cheng
and Wang used DNN to map the initial state and the costate variables, which guarantees
the efficiency and success rate of the indirect methods and greatly improves the real-time
performance and stability of an onboard trajectory optimization algorithm for spacecraft
missions [25,26]. Biggs trained DNN using the pulse engine switching time for spacecraft,
improved the trajectory accuracy of Bang-Bang control, and ensured the validity of a depth
neural network using in discrete decision-making OCPs [27]. In [28], a deep neural network
was combined with a traditional feedback control algorithm to ensure the reliability of a
moon landing mission. Because DNN only takes limited simple vector/matrix multiplica-
tions [29], the practice of treating DNN as the optimal control predictor greatly improves
the real-time performance of onboard trajectory optimization algorithms. Additionally, to
solve optimal reconfiguration, some scholars have introduced the neural network into the
field of model predictive control and achieved good performance. In [30], in the aim of
solving the challenging problem of deep space spacecraft formation flight, the author pro-
posed a new nonlinear adaptive neural control method. In [31], Zhou incorporated neural
network into the adaptive formation reconfiguration control scheme to improve the control
accuracy while making the system robust to uncertain disturbances. For the nearly optimal
reconfiguration and maintenance of a distributed formation flying spacecraft, Silvestrini, S.
used a model-based reinforcement learning method and introduced inverse reinforcement
learning and long short-term memory network into it. The simulation results showed
that the proposed algorithm achieved good performance and solved the reconfiguration
scenario, which are challenging tasks for traditional algorithms [32,33]. However, the deep
neural network is a black box model and is not interpretable, so the safety of a trajectory
optimization algorithm cannot be demonstrated [34].

A traditional trajectory optimization algorithm is confronted with difficulties in on-
board application due to time-consuming computational requirements, while the direct
use of the neural networks as controllers may lead to a lack of reliability in a trajectory
optimization algorithm. To solve this problem, in this paper, optimal control theory was
tightly combined with a neural network to build a real-time and stable trajectory opti-
mization algorithm with a certain level of intelligence. Specifically, the contributions of
this paper are as follows: first, a neural network-based warm-started indirect trajectory
optimization method is proposed to ensure its onboard application. The initial costate vari-
ables obtained from the well-trained neural network can warm-start the indirect method’s
shooting. Second, in order to further ensure the security and stability of the algorithm,
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the neural network-based optimal action predictor is designed by mapping the nonlinear
functional relationship between the state and the optimal action. Then, a backup optimal
control variables generation strategy is provided in the case of indirect method shooting
failure. Third, two typical spacecraft flight missions are used to verify the feasibility and
versatility of the proposed algorithm.

The organization structure of this paper is as follows: Section 2 presents the formu-
lation of the hypersonic vehicle reentry (HVR) problem and fuel-optimal moon landing
(FOML) problem. Then, based on Pontryagin’s minimize principle, the formulation of
TPBVP and the optimal condition are derived in Section 3, and the generation of training
dataset is discussed. In Section 4, the DNNs are trained and the proposed trajectory opti-
mization method is presented. In Section 5, the performance of the proposed method is
verified by numerical simulations. Relevant work is summarized in Section 6.

2. Problem Formulation

In this paper, two typical space vehicles with the requirements of high autonomy and
optimality are studied, which are hypersonic reentry vehicles and lunar landing vehicles.
This section presents the formulations of system dynamics for two different OCPs. The
establishment of a physical model and formula derivation meet the following assumptions:

Assumption 1. Because the motion time of spacecraft is very short relative to a planet day, the
planet rotation and its Coriolis effect are ignored;

Assumption 2. Spacecraft can be treated as a point mass to ignore their own attitude.

2.1. Trajectory Optimization of Hypersonic Reentry

Based on Assumptions 1 and 2, the two-dimensional (2D) unpowered flight equation
of motion for a hypersonic vehicle can be expressed as:

dr
dt

= v sin γ

dv
dt

= −D
m
− µ sin γ

r2

dγ

dt
=

L
mv

+ (
v
r
− µ

vr2 ) cos γ

dθ

dt
=

v cos γ

r

(1)

where r is the radial distance from a hypersonic vehicle to the center of the Earth, v and m
represent the speed and mass of the spacecraft, respectively, γ and θ represent the flight-
path angle and downrange angle. The gravitational constant is denoted as µ. The drag and
lift D and L are defined by:

D = 0.5ρSCDv2

L = 0.5ρSCLv2
(2)

where S is the reference area, ρ is the calculation of the Earth’s atmospheric density using
Boltzmann approximation formula, CD and CL are aerodynamic lift and drag coefficients,
respectively. ρ is a function of radial distance r, while CD and CL can be defined as a
function of control variables α which are the angle of attack

CD = 1.6537α2 + 0.0612

CL = 1.5658α

ρ = ρ0 exp((r0 − r)/hS)

(3)

where r0 is the initial radial distance, ρ0 and hS are both constants.
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Constrained by the initial state and some final states, the performance index of a
hypersonic vehicle is to maximize the terminal landing speed. Then, the 2D optimal control
problem for the hypersonic vehicle can be written as

J = min
α
− v(t f )

2

s.t. ẋ = f (x, α)
r(t0) = r0, v(t0) = v0,
γ(t0) = γ0, θ(t0) = θ0

(4)

where x = [r, v, γ, θ]T denotes the state vector, and ẋ = f (x, α) denotes the system dynam-
ics equation.

2.2. Trajectory Optimization of Fuel-Optimal Moon Landing

In fuel-optimal moon landing guidance, the spacecraft will descend and finally land
on a target point at near-zero speed. The Cartesian coordinate system is established with
the target point as the origin. Then, the 2-D dynamical equation of the spacecraft can be
written as 

dr
dt

= v

dv
dt

=
Tc

m
+ g

dm
dt

= − T
Ispge

(5)

where r = [x, z] denotes the spacecraft’s position, m denotes the spacecraft’s mass,
v = [vx, vz] is its two-dimensional velocity vector, Tc = [T sin θ, T cos θ] is its thrust vec-
tor, T ∈ [0, Tmax] is the magnitude of thrust, and θ ∈ [−π/2, π/2] is the thrust angle.
g = [0,−gm] represents the gravitational acceleration vector and gm = 1.6229 m/s2. The
specific impulse Isp = 311 s denotes the rocket engine efficiency. The constant ge = 9.81 m/s2

denotes the Earth’s gravitational acceleration.
Taking the boundary constraint and the performance index into consideration, the

fuel-optimal moon landing problem can be formulated as

J = min
T,θ

∫ t f
t0

T
Ispge

dt

s.t. ẋ = f (x, T, θ)
x(t0) = x0, z(t0) = z0

vx(t0) = vx0 , vz(t0) = vz0

(6)

where x = [x, z, vx, vz, m]T denotes the state vector, ẋ = f (x, T, θ) denotes the system
dynamics equation.

3. Generation of the Training Dataset
3.1. Formulation of the TPBVPs and Optimal Conditions
3.1.1. Optimal Conditions of the HVR

According to Pontryagin’s minimum principle, the Hamiltonian function associated
with the OCP can be formulated as

H = λT f = λr(v sin γ) + λv(−
D
m
− µ sin γ

r2 ) + λγ(
L

mv
+

v
r

cos γ− µ

vr2 cos γ) + λθ(
v cos γ

r
) (7)
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where λ = [λr, λv, λγ, λθ ]
T is the costate vector and λr, λv, λγ, λθ are the costate variables

for r, v, γ, θ, respectively. Then, with the necessary conditions of optimality, the optimal
control variable α∗ can be calculated from the formula ∂H

∂α = 0 as follows

α∗ =
1.5658λγ

3.3074vλv
. (8)

Additionally, from λ̇ = − ∂H
∂x , we can obtain the Euler–Lagrange equation of λr, λv, λγ, λθ

as follows:

λ̇r = −
∂H
∂r

= (
v cos γ

r2 )λθ − (
D
hS

+
2µ sin γ

r3 )λv + (
L

hSv
+

v cos γ

r2 − 2µ cos γ

vr3 )λγ

λ̇v = −∂H
∂v

= −(sin γ)λv − (
cos γ

r
)λθ + (

2D
v

)λγ − (
L
v2 +

cos γ

r
+

µ cos γ

v2r2 )λγ

λ̇γ = −∂H
∂γ

= −(v cos γ)λr + (
v sin γ

r
)λθ + (

µ cos γ

r2 )λv + (
v sin γ

r
− µ sin γ

vr2 )λγ

λ̇θ = −∂H
∂θ

= 0.

(9)

The state equation and the costate equation constitute the basic control equations of
the indirect method for trajectory optimization. Additionally, according to the transversal
conditions, because of the terminal state constraints, we can obtain the terminal costate
by formula

λ∗(t f
∗) = (

∂ϕ

∂x
+

∂NT

∂x
c)

∣∣∣∣∣
t=t f

∗
. (10)

According to the terminal cost function and the boundary conditions

ϕ = v(t f )
2

N = [r(t f )− r f , θ(t f )− θ f ].
(11)

Due to c being the unknown parameter, the nontrivial transversality condition can be
obtained as follows

λv(t f ) = −2v(t f )
λγ(t f ) = 0.

(12)

Since the Hamiltonian function, terminal cost function and boundary conditions do
not explicitly contain t f and the terminal time is free, the terminal time t f can be obtained
by the following formula

H(x∗, α∗, t f ) = 0. (13)

Finally, the OCP is transformed into TPBVP containing system dynamics as Equation (1),
the Euler–Lagrange equation as Equation (9), boundary conditions as Equation (4) and the
transversality condition as Equation (11). By integrating an appropriate initial value and
correcting it with residuals, the numerical solution of TPBVP can be solved by shooting
method [35]. The corresponding shooting function for the unpowered flight of a hypersonic
vehicle is

Φ(Z) = [r(t f )− r f , θ(t f )− θ f , λv(t f ) + 2v(t f ), λγ(t f ), H(t f )] = 0. (14)

where the shooting vector is Z = [λr(t0), λv(t0), λγ(t0), λθ(t0), t f ], see the Table 1 for
relevant parameters, initial state and final state.
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Table 1. The parameters for the unpowered flight of the hypersonic vehicle.

Parameter Value Unit

m 100 kg
S 0.3 m2

ρ0 1.29 -
hS 8.7388 ×103 -
r f 6.371 ×103 m
θ f 0.8983 deg

3.1.2. Optimal Conditions of FOML

For the fuel-optimal moon landing problem formulated in Equation (6), the Hamilto-
nian function associated with the OCP can be written as

H = λT f +
T

Ispge
= λrv + λv(

Tc

m
+ g)− λm(

T
Ispge

) +
T

Ispge
(15)

where λ = [λx, λz, λvx , λvz , λm] is the costate vector and λx, λz, λvx , λvz , λm are the costate
variables for x, z, vx, vz, m, respectively. Then, from the necessary conditions of optimality
∂H
∂θ = 0 and ∂H

∂T = 0, the optimal control variable θ∗ and T∗ can be derived as follows:

[sin θ∗, cos θ∗] = − λv

‖λv‖2
T = 0, ρ > 0

T = Tmax, ρ < 0

T = [0, Tmax], ρ = 0

(16)

in which the switching function can be formulated as

ρ = 1−
Ispge‖λv‖2

m
− λm. (17)

Meanwhile, according to the necessary conditions of costate variables λ̇ = − ∂H
∂x , the

Euler–Lagrange equation can be written as

λ̇r = −
∂H
∂r

= 0

λ̇v = −∂H
∂v

= −λr

λ̇m = −∂H
∂m

= −T‖λv‖2
m2 .

(18)

Since terminal mass m f is not constrained, then we can obtain the transversality
condition as follows

λm(t f ) = 0. (19)

In this fuel-optimal landing problem, the t f was free, so the terminal time is deter-
mined by

H(x∗, T∗, θ∗, t f ) = 0. (20)

Eventually, the system dynamics in Equation (5), the Euler–Lagrange Equation (9),
boundary conditions Equation (6) and the transversality condition Equation (19) constitute
this TPBVP of the fuel-optimal moon landing problem. The corresponding shooting
function of the problem can be formulated as

Φ(Z) = [x(t f ), z(t f ), vx(t f ), vz(t f ), λm(t f ), H(t f )] = 0 (21)
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where the shooting vector is Z = [λx(t0), λz(t0), λvx (t0), λvz(t0), t f ], and the relevant pa-
rameters are listed in Table 2.

Table 2. The parameters for moon landing.

Parameter Value Unit

Tmax 44,000 N
Isp 311 s
ge 9.81 m/s2

gm 1.6229 m/s2

3.2. Dataset Generation Strategy

As we know, the indirect method can generate solutions with high fidelity, but the
difficulty of guessing a relatively accurate initial costate makes the TPBVPs hard to solve or
even use shooting methods. According to the costate mapping theory [36], the Lagrange
multipliers obtained from the pseudospectral method can be used to approximate the
costate in the indirect method. For the shooting equation in the indirect method, there are
very ideal initial guesses [37]. To solve the initial value sensitivity problem of the indirect
method, the pseudospectral method is used in this paper to accelerate the convergence
of the indirect method’s shooting process. The OCP solver GPOPS-II [16] is based on the
principle of a pseudospectral method, which is used in this paper to provide the warm-
started initial value for indirect method’s shooting. Additionally, based on Bellman’s
principle of optimality, regardless of its initial state and initial action, its subsequent actions
must constitute an optimal strategy for the process taking the state formed by the first
decision as the initial state [38]. Consequently, the optimal trajectories can be discretized to
state–costate sample pairs and state–action sample pairs for DNNs to learn the nonlinear
functional relation.

The generation process of the training dataset is shown in Figure 1. First, the trajectory
optimization problem is solved by the pseudospectral method. Then, TPBVP will be
derived from OCP. Based on the costate mapping theory, the Lagrange multipliers obtained
from the pseudospectral method are considered as initial costate variables λ(t0) to work
out the TPBVP and generate the single optimal trajectory. Finally, the optimal trajectories
will be discretized and divided into two datasets to train two DNN models for each optimal
control problem, respectively. For each problem, the symbols in Figure 1 have different
meanings. See Table 3 for details.

The Pseudospectral 
Methods

TPBVP

Direct Methods

Indirect Methods Shooting

Training Data Set

Discretize

Generate
0( )t

* *,   x c * *,   x 

Figure 1. Training dataset generation framework.
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Table 3. Symbolic meaning of two OCPs.

Optimal Control Problem Symbol Meaning

Hypersonic Vehicle Reentry

λ(t0) [λr(t0), λv(t0), λγ(t0), λθ(t0)]
x∗ [r∗, v∗, γ∗, θ∗]
c∗ α∗

λ∗ [λr
∗, λv

∗, λγ
∗, λθ

∗]

Fuel-Optimal Moon Landing

λ(t0) [λx(t0), λz(t0), λvx (t0), λvZ (t0), λm(t0)]
x∗ [x∗, z∗, vx

∗, vZ
∗, m∗]

c∗ [T∗, θ∗]
λ∗ [λx

∗, λz
∗, λvx

∗, λvz
∗, λm

∗]

Traditional trajectory optimization methods usually assume that the initial state of the
spacecraft is known, and the time-consuming process of solving an optimal trajectory is
required to be calculated offline. In this paper, however, we aimed to propose an intelligent
controller that can guide spacecraft from any state to a fixed point. To reach achieve
this goal, the trajectory should cover as much state space as possible to ensure that the
DNNs fully learn the dynamics system of a spacecraft in different states and improve the
autonomous decision-making ability of intelligent controllers.

The initial state spaces of trajectory generation for two different OCPs are shown in
Table 4. In this state space, 1000 initial states are randomly generated and used to obtain
the optimal trajectories. Then, each trajectory will be discretized into 10,000 points by
equal time steps, and finally divided into two datasets according to the training purposes.
Additionally, the 10,000,000 optimal sample pairs will be randomly divided into three
subsets, a training set, a testing set and a validation set in a ratio of 8:1:1. Figures 2 and 3
show the partial optimal trajectories of the two problems, respectively.

Table 4. The initial state spaces of the trajectory.

Optimal Control Problem Parameter Value Range Unit

Hypersonic Vehicle Reentry

r0 [6.4185 × 106, 6.4235 × 105] m
θ0 [−0.02, 0.02] deg
v0 [3800, 4200] m/s
γ0 [−95, −85] deg

Fuel-Optimal Moon Landing

x0 [−200,200] m
z0 [500,2000] m

vx0 [−10,10] m/s
vz0 [−30,10] m/s
m0 [8000, 12,000] kg
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Figure 2. Training dataset of HVR problem.

Figure 3. Training dataset of FOML problem.

4. Online Trajectory Optimization Method

For each OCP, two neural networks will be trained to ensure the trajectory optimization
method’s real-time performance and stability. Using the state–costate samples obtained
from the dataset generation strategy, DNN can learn the highly nonlinear relationship
between the state vector and the costate vector of the spacecraft optimal control process.
Then, the DNN-based costate approximator will be used to warm-start the shooting method
and ensure its onboard application. The other DNN-based control predictor will map the
relationship between the spacecraft state and optimal control. As an alternative, this model
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will calculate the optimal control in the case in which the TPBVP shooting fails. The design
and training of the neural networks will be discussed after.

4.1. Overall Framework of Proposed Approach

As shown in Figure 4, the overall framework of the proposed neural network warm-
started indirect trajectory optimization method (NWITO) mainly includes two stages: the
offline training stage and online control stage. Due to the large differences in the values of
the state, costate and control variables, the samples obtained will be normalized to obtain
a faster convergence speed of the neural network. Then, through offline training, DNN
models can approximate costate and predict the optimal control. Shooting for TPBVP
is the core of the onboard algorithm frame, while the costate approximator provides the
initial costate to ensure the real-time performance of shooting and the control predictor
can generate optimal control to guarantee the stability of the overall algorithm. Benefiting
from advanced DNN techniques, this approach has a strong capability to overcome the
difficulties of initial costate sensitivity and guarantee the security of the onboard trajectory
optimization method.

Indirect Trajectory 
Optimization Algorithm

Training Data Set

Costate 
Approximator

Control 
Predictor

TPBVP

Optimal Control

Dynamic System

Initial state State

State Costate State Control
Train Train

*

Convergence

Non-
convergence

*x

Offline Networks Training

Online Trajectory Optimization

Figure 4. The proposed neural network-based warm-started indirect trajectory optimization method.

4.2. Design and Training of DNN

In this subsection, the DNNs will be developed in detail. Because of the limited space,
we only discuss the network structure and the related parameter selection of the costate
approximator for the HVR problem. The other neural network parameter selection is
also the same as what will be discussed. Since the outputs are dependent on the current
state, the neural networks mentioned in this paper are all feedforward fully connected
neural networks.

A good section of the activation function (AF) for a hidden layer and output layer
can improve the nonlinear approximate ability of a DNN model. The commonly used AFs
are Linear (−∞,+∞), ReLU [0, +∞), Sigmoid (0, 1), Tanh (−1, 1), Softplus (0, +∞), etc.
Because ReLU can accelerate the training of the model, it is adopted in the hidden layer.
Considering that the value of costate has no fixed value range, Linear can be selected as
the AF of the output layer. The loss functions are often used as learning criteria for model
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optimization problems, that is, the model is solved and evaluated by minimizing the loss
function. Here, the mean squared error (MSE) and mean absolute error (MAE) are selected
as the loss functions for different DNN models which is defined as

MSE : L(ω) =
1
N

N

∑
i=1

(Net( xi|ω)− yi)
2

MAE : L(ω) =
1
N

N

∑
i=1
|Net( xi|ω)− yi|.

(22)

The structure of a neural network also has a great influence on its nonlinear approx-
imation effect. Excessively complex networks tend to perform well on training sets, but
not on testing sets. This is because the network learns non-critical features in the dataset,
which is called over-fitting. However, excessively simple neural network models cannot
learn the general rules in the dataset due to their insufficient learning ability, which results
in weak generalization ability, called under-fitting. Thus, aiming at different datasets, the
network structure should be adjusted and find a balance. As we can see in Figure 5, the
neural network with three hidden layers is not enough to learn the dynamics relationship
of the OCP for the hypersonic vehicle, so its performance in the training set and testing set
is not satisfactory. Too many layers and neural units will make the model more complex
and fall into the situation of over-fitting. Considering the performance of a neural network
in a training set and testing set, the network scale was chosen as 4 layers/64 units.

0 50 100 150 200 250 300

Unit number

3

3.1

3.2

3.3

3.4

3.5

3.6

M
S

E

10
-4 MSE on training data

3 Layers

4 Layers

5 Layers

6 Layers

0 50 100 150 200 250 300

Unit number

5.5

6

6.5

7

7.5

M
S

E

10
-3 MSE on validation data

3 Layers

4 Layers

5 Layers

6 Layers

Figure 5. Loss comparisons of DNN with different sizes.

As shown in Figure 6, loss values were compared by ten-fold cross-validation under
different parameters of batch size and learning rate. Then, the batch size is determined as
128 and the learning rate is 0.00001. Additionally, the Adam algorithm [39] is found to be
competent for minimizing the loss function as the optimizer in this study. Table 5 displays
the relevant parameter settings of other neural networks about two OCPs.

Table 5. Network structure of the DNNs for two OCPs.

Optimal Control
Problem Neural Network Activation Function Size Loss Function

Hypersonic Vehicle Reentry Netc ReLU 4 Layers / 64 Units MAE
Netλ ReLU 4 Layers / 128 Units MSE

Fuel-Optimal Moon Landing
Netu1 ReLU 2 Layers / 14 Units MAE
Netθ tanh 3 Layers / 14 Units MSE
Netλ ReLU 5 Layers / 128 Units MSE



Aerospace 2022, 9, 435 12 of 19

0 200 400 600 800 1000 1200 1400 1600
Epoch 

10−3

10−2

10−1

Tr
ai
ni
ng

 L
os
s (

M
SE

)
batch size = 64
batch size = 128
batch size = 256
batch size = 512

0 200 400 600 800 1000 1200 1400 1600
Epoch 

10−3

10−2

10−1

100

 a
lid

at
io
n 
Lo
ss
 (M

SE
)

batch size = 64
batch size = 128
batch size = 256
batch size = 512

0 200 400 600 800 1000 1200 1400 1600
Epoch 

10 3

10 2

10 1

100

Tr
ai
ni
ng
 L
os
s (
M
SE
)

learning rate = 0.01
learning rate = 0.001
learning rate = 0.0001
learning rate = 0.00001

0 200 400 600 800 1000 1200 1400 1600
Epoch 

10 3

10 2

10 1

100

va
lid
at
io
n 
Lo
ss
 (M
SE
)

learning rate = 0.01
learning rate = 0.001
learning rate = 0.0001
learning rate = 0.00001

Figure 6. Loss comparison of DNN with different sizes.

Based on the selected parameters, including the activation function, the number of
hidden layers, the number of hidden layer units, batch size, learning rate, etc., the neural
network can converge to the optimal value, mapping the highly nonlinear relationship
of the OCP for spacecraft. Algorithm 1 is the pseudocode implementation to train the
neural network.

Algorithm 1 Supervised training algorithm of the DNNs

Input: x∗

Output: λ∗, c∗

1: Normalize training dataset including [x∗, λ∗], [x∗, c∗], [x∗, t∗].
2: From uniform distribution, randomly initialize Netλ(x|ωλ), Netc(x|ωc) and Nett(x|ωt)

with weights and bias.
3: for each epoch ∈ [1, N] do
4: Randomly select a minibatch of sample from normalized training dataset.
5: Minimize the loss function and update Net with Adam algorithm.
6: end for

5. Simulation and Results

In this section, numerical simulations are implemented to evaluate the performance
of the proposed NWITO algorithm. All the simulations are accomplished on a desktop
computer with an Intel Core-i7-11700@2.50GHz CPU, a NVIDIA GeForce GTX 1650 SUPER
GPU and 16.0 GB RAM. The training of a neural network and the proposed NWITO
algorithm programs are coded based on Python 3.6.3 and Tensorflow 2.1.0, and the data-
generated strategy programs are coded based on MATLAB 2020b and GPOPS-II.

5.1. Network Approximation Accuracy

Through the selection of neural network parameters and then training with the state–
costate pairs and state–control pairs obtained in the previous section, neural networks are
designed as a costate approximator and a control predictor for different OCPs. Three initial
states shown in Table 6 are randomly selected to compare the results of a well-trained
costate approximator and the control predictor with the nominal trajectory obtained by the
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indirect method, and the approximation accuracy is evaluated. As shown in Figures 7 and 8,
the black dashed lines are the standard trajectories produced by the indirect method. Based
on the corresponding optimal state profiles, DNNs generate costate and control profiles to
compare with standard trajectories. Experiments show that the costate approximator and
control predictor can learn the highly nonlinear characteristics of the dynamics system and
achieve a good fit.
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Figure 7. Approximate effect of neural network for HVR.
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Table 6. Initial state vectors of three simulation cases.

Optimal Control
Problem Parameter Case 1 Case 2 Case 3 Unit

Hypersonic Vehicle
Reentry

r0 6, 421, 884 6, 419, 455 6, 421, 203 m
θ0 −0.0160 −0.0157 0.0113 deg
v0 3871.48 3837.22 3855.18 m/s
γ0 −87.42 −92.53 −85.77 deg

Fuel-Optimal
Moon Landing

x0 49.61 −191.60 −195.53 m
z0 538.18 803.42 935.13 m

vx0 −8.65 3.34 −2.66 m/s
vz0 −21.68 −14.33 −9.19 m/s
m0 11, 221.17 11, 765.67 11, 954.65 kg

Pearson’s correlation coefficient is a commonly used linear correlation coefficient with
values between −1 and 1, which is calculated as follows and is widely used to measure the
degree of correlation between two variables [40]. Here, the correlation coefficient is used to
conduct the regression analysis of neural networks to qualitatively estimate the approximate
accuracy of the network. Figures 9 and 10 show the regression analysis results between the
predicted neural network and the target for the two OCPs, respectively. Regression results
show that the prediction and target are highly correlated, and the obtained network has a
high approximate accuracy for costate and control variables.

ρX,Y =
cov(X, Y)

σX , σY
=

∑n
i=1 (Xi − X̄)(Yi − Ȳ)√

∑n
i=1 (Xi − X̄)2

√
∑n

i=1 (Yi − Ȳ)2
(23)
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Figure 9. The regression analysis results between the predicted and the standard for HVR.
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Figure 10. The regression analysis results between the predicted and the standard for FOML.

5.2. The Performance of the Real-Time Trajectory Optimization Algorithm

In order to verify the optimization of the algorithm, Monte Carlo sampling was used to
extract the initial state vector from the state space for the spacecraft’s closed-loop guidance.
The state variables of the spacecraft are randomly initialized. Then, the real-time closed-
loop guidance is performed using the well-trained intelligent controller described above.
For two OCPs, the comparison of the closed-loop guidance trajectory generated by the pro-
posed algorithm with that generated by the indirect method is shown in Figures 11 and 12,
respectively. In both cases, the trajectories generated by the proposed algorithm basically
overlap the nominal trajectories obtained by the indirect method. Therefore, the designed
intelligent controller can learn the nonlinear dynamics characteristics of different space-
craft on the one hand, and on the other hand, it can generate optimal control decisions at
each time to drive the spacecraft to achieve the optimal flight satisfying the performance
index. In addition, the traditional integration process may eventually result in the non-
convergence of flight trajectories due to accumulated errors, while the decision generation
by the proposed NWITO method mainly depends on the state variables at the current time.
Thus, the trajectory can be corrected in subsequent decisions to drive the spacecraft to
achieve a high-precision landing when a low-precision decision occurs at some time.

In order to further analyze the closed-loop guidance effect and generalization ability of
the intelligence controller, the Monte Carlo method is used to verify the proposed method.
In the numerical simulation, the 1000 initial state vector are randomly generated within the
state space range and then the proposed NWITO method is used for closed-loop guidance
to the end point, and its maximum terminal error with the nominal trajectory solved by
indirect method is calculated and shown in Table 7. The simulation results show that
the NWITO method can drive the controlled object to achieve optimal control with high
accuracy, and the controller has certain universality and generalization performance.
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Figure 11. The comparison of the closed-loop guidance trajectory for HVR.
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Figure 12. The comparison of the closed-loop guidance trajectory for FOML.

Table 7. Terminal errors of two OCPs.

Optimal Control Problem Parameter Error Range Unit

Hypersonic Vehicle Reentry v [−0.56, 0.35] m/s
r [−139, 53] m

Fuel-Optimal Moon Landing

x [−0.2, 0.2] m
z [−0.16, 0.14] m

vx [−0.18, 0.18] m/s
vz [−0.15, 0.16] m/s
m [−29,−15] kg

Because the indirect method has the requirement of integrating several times and
shooting to iteratively correct the initial costate estimation, the solving process takes a lot



Aerospace 2022, 9, 435 17 of 19

of time and becomes a key factor to limit the online application of a trajectory optimization
algorithm. This paper provides a high-precision initial costate mapping model to warm-
start TPBVP shooting based on the well-trained neural network. Because the DNN only
involves limited simple vector/matrix multiplications, the mapping speed of the network is
fast enough to guarantee its online applications. Figure 13 shows the cpu time distribution
to solve 1000 trajectories using the indirect method and the proposed method for two
OCPs, respectively. The results show that the optimal trajectory generation efficiency of the
proposed method is nearly 20 times higher than that of the indirect method. In the HVR
problem, the trajectory of 105 s can be solved in only 5 s by the proposed method. In the
moon landing problem, the trajectory of 35 s can be obtained in approximately 2 s. It can be
concluded that the proposed method can completely meet the requirement of the real-time
trajectory generation of spacecraft. The update frequency of the trajectory is adjusted
by the time consumed to solve the optimal trajectory, and the simulation results show
that the update frequency meets the accuracy requirements. Additionally, the proposed
method is based on the TensorFlow framework with Python. Since C is more efficient than
Python, it is predicted that if the neural network model under Python is rewritten in C
language, the calculation speed of the intelligent trajectory optimization method will be
further improved.
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Figure 13. Comparison of the solving efficiency between the proposed method and the indi-
rect method.

6. Conclusions

To improve the autonomous decision-making ability and intelligence level of the
onboard trajectory optimization algorithm, this paper combines optimal control theory
with deep learning method and develops a neural network warm-started indirect trajectory
optimization method. First, two typical complex spacecraft flight missions are formulated
as OCPs and the corresponding TPBVPs are derived. The pseudospectral method and
the shooting method are combined to obtain a high fidelity solution for DNN training.
Based on the well-trained DNN model, the proposed method achieves fast solutions to
the trajectory optimization problems. Numerical simulations demonstrate that the neural
network can learn the highly nonlinear relationship among the variables, and the proposed
method has the advantages of good real-time performance, excellent convergence and
generalization ability.

In the proposed method, the main strategy can approximate the costate, warm-start
the indirect method’s shooting and then drive the spacecraft to achieve optimal control
in real time. Furthermore, a backup strategy can further improve the security of onboard
algorithms. The method of integrating advanced artificial intelligence algorithms into
the traditional optimal control theory provides a novel idea for solving the OCP. Future
research considers introducing more complex constraints to the dynamics model to verify
the effectiveness of the proposed method. In addition, a nondimensionalized method
and backward integration method can be used to accelerate the generation of a training
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dataset, and more elaborate network structures can be adopted to enhance the accuracy of
the algorithm.
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