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Abstract: In this study, the aerodynamic uncertainty analysis and optimization of a conventional
axisymmetric vehicle with an aerodynamic configuration were investigated. The prediction precision
of the typical aerodynamic performance estimating methods, namely, engineering estimation and
numerical simulation, was compared using the wind tunnel test data of the vehicle. Then, using
a modified missile data compendium (DATCOM) software, a high-efficiency and high-precision
method was developed, which was applied to analyze and characterize the aerodynamic parameters
of the axisymmetric vehicle. To enhance the robustness and reliability of aerodynamic performance,
an uncertainty-based design optimization (UDO) framework was established. The design space
was scaled by parameter sensitivity analysis, and improved computational efficiency was achieved
by developing parallel polynomial chaos expansions (PCEs). The optimized results show that the
modified method exhibits high accuracy in predicting aerodynamic performance. For the same
constraints, the results of the deterministic design optimization (DDO) showed that compared with
the initial scheme, the probability of the controllability-to-stability ratio satisfying the constraint
decreased from 98.8% to 72.4%, and this value increased to 99.9% in the case of UDO. Compared
with the results of the initial scheme and DDO, UDO achieved a considerable reduction in mean
values and standard deviation of aerodynamic performances, which can ensure a higher probability
of constraints meeting the design requirements, thereby, realizing a reliable and robust design.

Keywords: aerodynamic uncertainty analysis; uncertainty-based design optimization; polynomial
chaos expansions; computational fluid dynamics; sensitivity analysis

1. Introduction

In the coming decades, physical modeling and highly accurate predictions of aerody-
namic performance will be the focus of vehicle research. It can be seen from current research
that aerodynamic data prediction of vehicles is always based on deterministic design, which
does not consider the errors and uncertainties of physical models, accidental uncertainties
caused by natural variables, and errors or uncertainties from test data. The precision of
long-range strike weapons and the design of new axisymmetric vehicles require robust and
reliable aerodynamic data. Therefore, research should focus on potential uncertainties in
aerodynamic prediction and optimization, such as the dimensional deviations between
the physical model and the actual vehicle, errors in the numerical model, actual flight
conditions, etc.

Several studies have investigated various uncertainty factors in aerodynamic exper-
iments and numerical calculations. Burner et al. [1] supplemented uncertainty analyses
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with assessments of experimental errors, and the utilization of experimental methods with
modern designs, which helped explore the influence of various uncertainties, such as
sensors and state variables on the measurement accuracy of model pitch angle in wind
tunnel tests. Some academics [2–5] focused on the influence of shape deviation on aero-
dynamic performance. Some recent studies have shown that deterministic designs are
easily influenced by uncertainties in certain geometric variables or environmental param-
eters [6]. Moreover, there are many uncertain factors, such as the uncertainty of model
assumptions, when using a mathematical model to represent a physical process. Some
details of the source and classification of uncertainties in computational fluid dynamics
(CFD) simulations [7,8] have been discussed. Zhang et al. [9] focused on quantifying blunt
body surface thermal uncertainty, along with flow parameters, and jet geometry in the
presence of free-stream perturbations. Andrea et al. explored the impact of epistemic
uncertainties and CFD computational errors on aerodynamic performance [10]. These
studies, however, have been limited to vehicle components or two-dimensional airfoils.
More evidence is needed to determine whether local alterations considerably influence the
main aerodynamic performance of vehicles. When we compare airfoil or component design
with vehicle shape design, the number of design variables, and the discrepancy of feature
dimensions increase considerably. The changes in variables can provide crucial insights
for optimizing the acquisition of more high-fidelity data and faster prediction of data in
shape design optimization. Thus, it is crucial to analyze the uncertainty of aerodynamic
performance at the vehicle system level and provide clear answers.

In recent years, several scholars have conducted uncertainty analyses using methods
such as the sensitivity method, moment method, Monte Carlo simulation (MCS), and
polynomial chaos expansions (PCEs) [11]. The sensitivity and moment methods are suitable
for a system with minuscule parameter uncertainty and an approximately linear model. The
MCS method is a statistical method that can present an accurate analysis of the uncertainty
of a system only after drawing large numbers of samples. The PCE method has been
widely used as it can quantify and characterize uncertainty through polynomial coefficients.
However, its drawback is that the chain reaction between the calculated amounts increases
considerably, and the dimensions are overinflated, which is known as a “dimensional
disaster”. Therefore, developing a reasonable dimensionality reduction method is an
urgent problem.

The conventional (wing-tail shape) axisymmetric aerodynamic configuration is widely
adopted in air vehicles, especially for supersonic air-to-air and surface-to-air missiles. This
configuration can provide greater maneuvering ability while maintaining flight speed. In
this study, we proposed an uncertainty-based aerodynamic shape optimization framework
for a target drone—with a conventional axisymmetric aerodynamic configuration—to
investigate the aerodynamic characteristics of vehicles with such configurations. Analysis
and quantification of all uncertainties of the vehicle system were studied based on random
theory; moreover, the influences of uncertainties on the aerodynamic performance of
conventional axisymmetric aerodynamic vehicles were analyzed. The result of uncertainty-
based optimization was compared with deterministic optimization and the initial scheme.

The rest of the paper is organized as follows: In Section 2, the aerodynamic profile
parameters of the vehicle and flight conditions are introduced; in Section 3, the precision of
the two prediction methods of aerodynamic data is compared with the wind tunnel test data,
based on which a high-efficiency and high-precision method is developed, and the potential
uncertainty factors are analyzed and classified sequentially; in Section 4, the parallel
PCE is described and tested; in Section 5, a mathematical model of deterministic design
optimization (DDO) and uncertainty-based design optimization (UDO) are introduced;
in Section 6, the results of DDO and UDO are presented, followed by the comparative
analysis results.
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2. Description
2.1. Shape and Parameters

The vehicle examined in this study was a target drone (Figure 1), which has the
typical characteristics of a conventional axisymmetric aerodynamic configuration. It has
a Haack series-shaped nose cone, a cylindrical body, four trapezoidal wings, and four
trapezoidal tail surfaces. The wing profile (airfoil) is hexagonal, and the tail profile (airfoil)
is rhomboidal. Two rectangular cable covers run through both sides of the projectile body.
The main wing is installed near the mass center of the vehicle, and the tail is installed after
the main wing. There is a convex part on the belly of the vehicle, which results in the
fuselage being an imperfect rotating body. The sliders are regarded as part of the fuselage
without design optimization.
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Figure 1. Axisymmetric normal vehicle.

We used 30 geometric shape parameters and design variables to establish the axisym-
metric vehicle model. Numerical variations in the vehicle’s geometric parameters directly
affected the aerodynamic characteristics of the vehicle, as they changed the geometric shape
of the vehicle. All shape variables of this vehicle are listed and illustrated in Table 1.

2.2. Flight Conditions

The flight trajectory of the vehicle includes the take-off, climb phase, cruise phase, and
dive phase (Figure 2). The design altitude of the cruise phase in this ballistic scheme is 20 km,
and the design velocity is 2.1 Mach number. As a target drone, maximum flight time should
be designed for the aircraft. Under the condition that the propulsion system carries a fixed
mass of propellant, the time of the cruise phase can be improved by reducing propellant
consumption per unit time, which can be achieved by reducing the drag in the cruise phase.

The main optimization objective of this study was to realize the design of a mini-
mum drag in the cruise phase. There were also other implicit design conditions for this
state, including the ability to provide enough lift for retaining flight altitude, flight stabil-
ity, and controllability. The stability of a vehicle refers to its ability to resist the influence
of disturbance, which is characterized by its longitudinal static stability. Controllability
is the response characteristic of a projectile body to tail deflection, and in this study, the
controllability-to-stability ratio reflects the influence of tail deflection on attitude change.
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Considering the mutual restrictions between static stability and maneuverability, the con-
straints of longitudinal static stability and the controllability-to-stability ratio were specified.

Table 1. Parametric modeling of vehicle.

Design
Variable Unit Physical Significance Perturbation

Variable
Relative

Deviation
Optimization

Variable
Probability

Distribution

LNOSE m Nose length x1 ±0.001 no uniform
LCENTR m Fuselage length x2 ±0.001 no uniform
DNOSE m Nose diameter at base x3 ±0.001 no uniform

DCENTR m Fuselage diameter x4 ±0.001 no uniform
BNOSE m Nose bluntness radius or radius of truncation x5 ±0.001 no uniform

Xc — Mass center of vehicle x6 ±0.01 no uniform

XLE1 m Distance from missile nose to chord leading edge
at wing root chord station x7 ±0.01 yes uniform

SSPAN11 m Semi-span length of wing x8 ±0.001 yes uniform
CHORD11 m Panel chord length at wing root chord location x9 ±0.001 yes uniform
CHORD12 m Panel chord length at wing tip chord location x10 ±0.001 yes uniform

LER11 m Leading edge radius at wing root chord station x11 ±0.001 yes uniform
LER12 m Leading edge radius at wing tip chord station x12 ±0.001 yes uniform

ZUPPER11 — Thickness-to-chord ratio of upper surface at wing
root chord station x13 ±0.001 yes uniform

ZUPPER12 — Thickness-to-chord ratio of upper surface at wing
tip chord station x14 ±0.001 yes uniform

LMAXU11 — Fraction of chord from leading edge to maximum
thickness of upper surface at root chord station x15 ±0.001 yes uniform

LMAXU12 — Fraction of chord from leading edge to maximum
thickness of upper surface at tip chord station x16 ±0.001 yes uniform

LFLATU11 — Fraction of chord of constant thickness section of
upper surface at root chord station x17 ±0.001 yes uniform

LFLATU12 — Fraction of chord of constant thickness section of
upper surface at tip chord station x18 ±0.001 yes uniform

XLE21 m Distance from missile nose to chord leading edge
at tail root chord station x19 ±0.01 yes uniform

XLE22 m Distance from missile nose to chord leading edge
at tail root chord station x20 ±0.01 yes uniform

SSPAN21 m Semi-span length of tail x21 ±0.001 yes uniform
CHORD21 m Panel chord length at tail root chord location x22 ±0.001 yes uniform
CHORD22 m Panel chord length at tail tip chord location x23 ±0.001 yes uniform

LER21 m Leading edge radius at tail root chord station x24 ±0.001 yes uniform
LER22 m Leading edge radius at tail tip chord station x25 ±0.001 yes uniform

ZUPPER21 — Thickness-to-chord ratio of upper surface at tail
root chord station x26 ±0.002 yes uniform

ZUPPER22 — Thickness-to-chord ratio of upper surface at tail
tip chord station x27 ±0.002 yes uniform

THETA1 deg setting angle of wings x28 ±1 no uniform
THETA2 deg setting angle of tail x29 ±1 no uniform
Xhinge — Hinge axis position x30 ±0.01 no uniform
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3. Aerodynamic Performance Prediction Method and System Uncertainty Factors
3.1. Methods for Estimating Aerodynamic Performance Parameters

From conceptual design to detailed design, aerodynamic characteristics considerably
influence the selection of subsequent configuration parameters, such as lift force and
drag force. Three prediction methods are used for aerodynamic numerical characteristics,
namely, engineering estimation, numerical simulation, and wind tunnel tests. In this
study, the aerodynamic performance of the vehicle was examined using wind tunnel tests
under two conditions, including free-stream Mach numbers of Ma = 1.75 and 2.53. The
comparison of these two sets of aerodynamic performance helps determine the errors in
the aerodynamic data.

(1) Engineering estimation

Engineering estimation is realized using missile data compendium (DATCOM) soft-
ware, which adopts component combination and modular methods; this enables accurate
and efficient prediction of various aerodynamic data of vehicles with traditional aero-
dynamic configurations [12]. DATCOM also has good adaptability and high estimation
accuracy for the conventional axisymmetric configuration, and it can be used to describe
various types of airframe surface projections. In DATCOM, the designer defines one vehicle
shape by describing its form and the dimensional values of each part (the parameters given
in Table 1) and sets the flight conditions such as flight height and Reynold’s number. For
a vehicle with a specific shape, all aerodynamic performance data are obtained with an
overall calculation time < 2 s, indicating the efficiency and convenience of the engineering
estimation method.

(2) Numerical simulation

Numerical simulations based on CFD are carried out using ANSYS Fluent soft-
ware [13]. The 3D compressible RANS equations are solved using the shear-stress transport
(SST) renormalization group K-ω turbulence model. The SST K-ω model is adopted as it
has been widely used in the numerical calculation of multiple flow problems, such as airfoil
boundary layer [14], supersonic vehicle design [15], supersonic flow [16], and especially in
aerodynamic shape optimization [17]. The second-order upwind scheme is used for the
discretization of the convective terms in all transport equations.

Based on the objective of this research, that is, to determine the aerodynamic values
of the vehicle and calculate its aerodynamic coefficients, it is important to simplify the
calculation model and only retain the features of the main components during parametric
modeling in CFD. A fluent mesh was used to generate an unstructured grid in the com-
puting domain. Grid independence was verified before further simulation to exclude the
influence of the grid on numerical results (Figure 3). The numerical simulation focuses on
the whole turbulent layer; therefore, there is one important relation y+ = ∆yρuτ/µ, where
∆y is the distance of the first grid point off, and ρ, uτ , µ are the density, friction velocity,
and molecular viscosity, respectively. For simulating complicated flowfields, ρ, uτ , µ have
different values in different flowfield regions; as a result, ∆y satisfying y+ < 1 will also
have different conditions [18]. ρ, uτ , µ depend on the standard atmospheric characteristics
of the flight state; when y+ is 1, the first layer grid height of the boundary layer can be
calculated as ∆y = 1.83957× 10−6 m, which will be used as the reference value for the mesh
near the vehicle surface. Grid quality directly affects the solving accuracy of numerical
solutions. To ensure better calculation accuracy of models with different grid elements,
the height of the first-layer wall grid corresponding to different grids is given in Table 2.
At the completion of the numerical simulation, the y+ of the wall surface is counted and
displayed as a percentage, in which the proportion of y+ in the interval from 0 to 1 is the
focus of attention.
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(b) normal force coefficient, (c) pitching moment coefficient.

Table 2. Aerodynamic coefficients under different grid numbers.

Aerodynamic Coefficients

Number of
Elements ∆y CA CN CM 0 < y+ ≤ 1

1,583,795 0.0003 0.6163 3.4105 2.0957 92.13%
2,334,777 0.0002 0.6037 3.4154 2.1104 99.16%
3,981,490 0.0002 0.6019 3.4237 2.1171 99.73%
4,947,050 0.0002 0.5968 3.4129 2.1036 99.82%
6,350,802 0.00008 0.5876 3.4209 2.1094 99.90%
7,123,409 0.00008 0.5793 3.4215 2.1169 99.96%
8,562,353 0.00008 0.5766 3.4212 2.1173 100%
9,690,507 0.00008 0.5767 3.4213 2.1174 100%

Models with different degrees of grid resolution were established, and the mean
pressure coefficients of the vehicle were calculated with different grid numbers. When
there were 8.56 × 106 unstructured grids in the computing domain, the numerical results
obtained using CFD were highly accurate, and all y+ were in the range of 0–1, and the
maximum y+ value was approximately 0.83. As the number of grids increased, all aero-
dynamic coefficients did not change substantially. The entire computing domain was set
as a sphere (Figure 4), and the grid model schematic diagram of the vehicle body is as
shown in Figure 5.
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(3) Wind tunnel

Aerodynamic tests of the vehicle were carried out in an FD12 wind tunnel built by
the China Academy of Aerospace Aerodynamics. The FD12 wind tunnel test equipment
had a cross-section of 1.2 m × 1.2 m and a Mach number range of Ma = 0.4–4. It belongs to
the subsonic, transonic, and supersonic wind tunnels, also known as a three-sonic wind
tunnel. A 1:6 physics scale model (Figure 6) was used in the wind tunnel tests using air as
the test medium. The aerodynamic parameters of the vehicle were measured using wind
tunnel tests at an altitude of 10 km under two conditions, i.e., free-stream Mach numbers
of Ma = 1.75 and 2.53. For these tests, the flow conditions were set as follows: angle of
attack (AOA) α = −2◦, 0◦, 2◦, 4◦, 6◦, 8◦, 11◦, 14◦, 17◦, and 20◦, and Reynolds number of
Re = 8.82 × 107 and 1.27 × 108. The wind tunnel test adopted a support sting, as shown
in Figure 7.
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Figure 7. Support sting in wind tunnel test.

(4) Comparative analysis

DATCOM, CFD simulations, and wind tunnel tests determined the axial force co-
efficient (CA), normal force coefficient (CN), and pressure core coefficient (Xp) of the
axisymmetric vehicle, as shown in Figures 8 and 9.
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All aerodynamic coefficient data are shown in Figures 8 and 9. Aerodynamic coefficient
deviations due to the utilization of two computing methods were calculated. For the
different Reynolds numbers, the accuracy of CFD was higher than that of DATCOM. In
particular, aerodynamic coefficients and their tendency with changes in AOA were close
to the wind tunnel data, based on the calculated CA and CN using CFD. The DATCOM
projections were appropriate in some (e.g., the center of pressure coefficient), but not
in all areas. The empirical database that underpins these forecasts of DATCOM is for
a conventional vehicle without a vortical flow. Related studies have shown that Euler
simulation cannot predict the flowfield correctly in similar cases, and detached eddy
simulations would be a better option [19]. Due to the limitations of the turbulence model,
vortex characteristics were not adequately captured. This is attributed to the appearance
and disappearance of coherent eddy currents near the fuselage, which disturbs the accuracy
of the pitching moment and normal force to some extent. With an increase in AOA, the
calculated values of the pressure center coefficient using CFD, and wind tunnel tests show
obvious deviations.

The vehicle creates a vortex near the fuselage at a Mach number of Ma = 1.75, such as
a wing-tip vortex and a body-shedding vortex. With an increase in AOA, the circulation of
the vortex and the vorticity increase considerably. The eddy motion causes energy loss and
local pressure on the vehicle surface. This explains the differences between the values of
CA predicted by DATCOM using CFD and the wind tunnel tests. This phenomenon also
occurs in Ma = 2.53. The appearance of vortical flow is the primary distinction between the
three prediction methods; however, this aspect is not considered in DATCOM.

(5) Modified engineering prediction method

Based on the objective of this study to conduct uncertainty analyses on aerodynamic
performance, the computational efficiency of DATCOM matched the research requirements,
and the prediction accuracy of the center of pressure coefficient was satisfactory. Therefore,
DATCOM was selected to obtain the aerodynamic data of the vehicle. However, there were
some errors in the aerodynamic coefficient of DATCOM due to the vortex. In that case, the
model for the prediction of aerodynamic data should be corrected based on the DATCOM
software. In the subsequent verification of model accuracy, CFD was used as a standard to
test the predicted model.

To facilitate optimization, a numerically modified engineering prediction method for
force coefficient was developed using the wind tunnel test data. Considering the influence
of vortical flow on the aerodynamic coefficient, CA was corrected based on the relative
error between the DATCOM data and wind tunnel test data. First, a set of statistical errors
Ye can be obtained based on known test data.

Ye(Ma, α) =
CAtest(Ma, α)− CADATCOM(Ma, α)

CADATCOM(Ma, α)
(1)

where Ma = 1.75 and 2.53, α = −2◦, 0◦, 2◦, 4◦, 6◦, 8◦, 11◦, 14◦, 17◦, and 20◦. Therefore, when
Mach number and AOA are satisfied, 1.75 ≤ Ma ≤ 2.53, and −2◦ ≤ α ≤ 20◦, respectively,
the relative errors of CA ỹCA(Ma, α) in different states can be obtained by interpolation.

ỹCA(Ma, α) =

{
Ye(Ma, α1) + (Ye(Ma, α2)−Ye(Ma, α1))×(α− α1)/(α2 − α1)

Ye(Ma1, α) + (Ye(Ma2, α)−Ye(Ma1, α))×(Ma−Ma1)/(Ma2 −Ma1)
(2)

According to the relative error, the CA predicted by DATCOM can be corrected as:

CAco−DATCOM = CADATCOM × (1 + ỹCA) (3)
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However, CN is corrected using the derivative of CN based on AOA, since the deriva-
tive of the CN calculated using wind tunnel data and DATCOM differs considerably with
increase in AOA. First, the derivative of CN based on AOA was calculated, as given below:

∆CN(Ma,α) = (
dCNtest(Ma,α)

dα
− dCNDATCOM(Ma,α)

dα
)/

dCNDATCOM(Ma,α)
dα

(4)

Similarly, the relative error correction function of CN can be obtained by interpolation
through data statistics with wind tunnel data, which is written as ỹcn ≈ ∆CN(Ma,α).

CNco−DATCOM,α = CNDATCOM,α−1 × (1 +
dCNDATCOM

dα
× (1 + ỹcn)) (5)

The values of CA and CN are calculated based on the modified model, as shown
in Figure 10.

After the aerodynamic coefficients obtained using DATCOM were corrected, the
aerodynamic coefficient values obtained by three different calculations were compared
at Ma = 2.1. Experimental data were not available for this stage since the vehicle in Ma
= 2.1 did not undergo wind tunnel testing. For further comparison, CFD was selected
as the criteria as it performed well for both Mach numbers, Ma = 1.75 and 2.53. The CA
trend predicted by the corrected DATCOM considerably improved, and it was consistent
with the trend predicted by CFD. Since the CFD model also has certain errors, some value
deviations were allowed. The calculation methods of uncertainty caused by the error of
corrected DATCOM are presented in Section 3.2.
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Figure 10. Aerodynamic coefficient at Ma = 2.1. (a) CA and (b) CN.

3.2. Source of Aerodynamic Deviations

The uncertainty analysis of aerodynamic characteristics should quantitatively evaluate
the input and model uncertainties of the modified engineering prediction method. The
possible errors of the input parameters can be roughly divided into the following categories:
the errors and uncertainties of physical modeling and random aerodynamic interference
during flight conditions. The model uncertainties are mainly attributed to the errors in the
engineering prediction method.

(1) Input uncertainties

Compared with the real final product of the vehicle, there are many errors and de-
viations with the geometric shape parameters in one physical vehicle model due to the
processes of manufacturing, installation, and positioning [20]. All these uncertainties are
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characterized and represented based on design code or engineering experience as shown in
Table 1. There are also some random aerodynamic disturbances during flight conditions,
such as the disturbance caused by vehicle propulsion system, GPS positioning error, and
disturbance due to strong wind weather to vehicle trajectory. Hosder et al. [21] studied the
uncertainty analysis of aerodynamic characteristics considering the uncertainty of flight
conditions. Loeven et al. [22] conducted uncertainty analysis of subsonic aerodynamic
characteristics based on the uncertainty of free-flow velocity. Simon [23] and Chassaing [24]
analyzed the uncertainty of the airfoil aerodynamic load distribution considering the uncer-
tainty of Mach number and AOA. Resmini et al. [25] implemented subsonic aerodynamic
characteristic analysis of NACA0015 considering the uncertainty of flight conditions and
geometric shapes. Considering different parameters as uncertain variables, the results of a
robust aerodynamic design differ considerably [26]. These studies show that deviations in
flight conditions due to flight disturbances must also be considered; the uncertainty factors
are quantitatively characterized, as shown in Table 3. Here, the upper and lower boundaries
of the uncertainty range of a flight state are determined, so the uncertainty factors can be
represented by the probability theory. They are also regarded as the uniformly distributed
random variables.

Table 3. Range and category of flight condition uncertain variables.

Design Variable Unit Physical Significance Perturbation Variable Deviation Range

MACH — Mach number x31 ±0.02
ALT M Altitude x32 ±50

BETA deg Angle of Sideslip x33 ±1
DELTA deg Angle of tail reflection x34 ±1
ALPHA deg Angle of attack x35 ±0.5

(2) Model uncertainties

The errors of the aerodynamic prediction methods also cause uncertainties, which are
attributed to cognitive uncertainties. The impact of model uncertainty on data correctness
was investigated by Kim et al. [27]. Jens et al. [28] considered the modeling bias and
uncertainties in the prediction model. Thus, in this study, model uncertainty was deter-
mined according to the relative deviation between the predicted value and the standard
value. There are some new uncertainty expression methods, such as probability boxes,
Dempster–Shafer theory for representing cognitive uncertainty [29]. Herein, Tchebycheff’s
inequality [30] was used to calculate the boundary of random variable variability. The
maximum relative error U of independent aerodynamic performance was selected as the
model uncertainty, expressed as follows:

UCA =
∣∣∣CADATCOM−CASTD

CADATCOM

∣∣∣
max

UCN =
∣∣∣CNDATCOM−CNSTD

CNDATCOM

∣∣∣
max

UXcp =
∣∣∣XcpDATCOM−XcpSTD

XcpDATCOM

∣∣∣
max

(6)

where the subscripts of “DATCOM” and “STD” indicate that the aerodynamic parameters
are calculated using the modified DATCOM and wind tunnel, respectively. The error bar
of drag coefficient (Cd) is provided by the maximum value between CA and CN.

UCd = MAX
{

CA ∗ (1 + UCA) ∗ cos(alpha) + CN ∗ (1 + UCN) ∗ sin(alpha)
CA ∗ cos(alpha) + CN ∗ sin(alpha)

}
(7)
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It is challenging to calculate η using CFD, and η is highly related to Xcp and CN;
therefore, its model uncertainty is expressed as a function of UCN and UXcp, as follows:{

Uη_upper = (1 + UXcp)(1 + UCN)− 1
Uη_lower == 1− (1−UXcp)(1−UCN)

(8)

The effect of model uncertainties is utilized to adjust the upper and lower bounds of
the output response during the computation of the system response. The upper bound of
the output response is established once the mean and standard deviation of the output
response have been determined. According to Uη_upper, the numerical difference between
the upper limit of the output response and the mean value is recalculated. The distance
between the lower end of the range and the mean is changed by Uη_lower. With the same
sort of probability distribution, a new mean and standard deviation may be inferred when
the upper and lower limits are modified.

4. Uncertainty Analysis Method

Uncertainty analysis is used to calculate the output uncertainties of a system’s perfor-
mance using the input uncertainties, model uncertainties, and the system’s mathematical
model. Herein, the corrected DATCOM was selected as the system’s mathematical model
to calculate the aerodynamic performance parameters because it is faster than CFD and
more accurate than DATCOM. Both the input uncertainties and model uncertainties of
this method are illustrated as probability uncertainties in Section 3.2. There are several
commonly used probability uncertainty analysis methods, such as MCS, Taylor series
approximation, and PCEs. Compared to MCS and the Taylor series approximation, the
advantage of PCE decomposition lies in that it can obtain a system’s output uncertainties
with high precision under limited sample points. Therefore, we used PCE in this study.

4.1. Polynomial Chaos Decomposition

According to the Wiener–Askey polynomial chaotic expansion theory [31], in the
Askey scheme, each subset of the orthogonal polynomials has a different weighting func-
tion in its orthogonality polynomial. The uncertain variables of different distribution
types correspond to different PCEs, and they converge in the sense of a norm. For exam-
ple, Hermite polynomials are associated with the Gaussian distribution, while Legendre
polynomials are related to the uniform distribution.

The function Y = F(X) can be defined as a physical model under deterministic
mapping. In this study, Y = {y1, y2, . . . , ym}T ∈ Rm, m ≥ 1 is the vector of quantities of
interest provided by the model, and X = {x1, x2 . . . , xn}T ∈ Rn, n ≥ 1 is used to describe
the random vector of the input variables. To reduce the calculated amount, the random
response Y = F(X) can be orthogonally expanded in the chaotic polynomial space, and the
polynomial can be truncated. The finite-term polynomial whose order is not greater than P
is reserved as follows:

Y = F(X) ' Fp(X) = ∑
0≤|α|≤p

aαψα(X) + ε (9)

where |α| =
n
∑

i=1
αi,ε refers to the truncation error.

According to the Gameron–Martin theorem [32], the Fourier–Hermite series converges
to any L2 Function in the L2 sense. The PC coefficients [33] are estimated using the
regression approach expressed as follows:

â = Argmin
a∈Rp

N

∑
i=1

(F(x(i))− αTψ(x(i)))
2

(10)
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In this study, variance was used as a standard to evaluate the fitting degree of the
PCE model to aerodynamic characteristics. Building an aerodynamic PCE model can be
defined as a regression analysis, which is the investigation of the functional relationship
between system uncertainty variables and aerodynamic characteristics. In the PCE model,
the statistical moments of the response PC expansion can be analytically derived from their
coefficients. The mean and variance are expressed as follows: µY = a0

σ2
Y = ∑

0<|α|≤p
a2

α
(11)

4.2. Parallel PCEs

When PCE is taken as the uncertainty analysis method, the efficiency of the design
optimization based on aerodynamic uncertainty decreases substantially with the increase
in the number of design variables [34]. A properly designed program can be much more
efficient in parallel computing than in a serial one. Open multi-processing (OpenMP) [35]
is a common programming specification in high-performance computing. The shared
memory can be accessed by all OpenMP threads, and this programming approach is mainly
used in multi-core shared memory scenarios. Therefore, parallel PCE is applied herein
based on OpenMP, which is introduced into the derivation and aggregation programming
model. When a loop occurs in a program, it can derive multiple threads to form a thread
group solution. When the program loop ends, the thread group returns to the main program
thread aggregation. The parallel PCE method developed by OpenMP can effectively speed
up the uncertainty analysis under each set of design variables, and the efficiency of solving
the mean and variance of response values does not decrease when the data of sampling
points increase greatly due to system requirements.

Uncertainty analysis of aerodynamic characteristics was carried out using a test sample,
which revealed the relationship between the number of computer threads and each sample’s
test time, as shown in Figure 11. When the program is run serially, the time of uncertainty
analysis spent on a single point is 183.011 s. With the application of parallel execution
and an increased number of computer threads, the time decreases gradually. When the
number of computer threads is 20, the test time of a sample point is 30 s. The calculation
efficiency of the same model is improved by 86.3% with parallel computing. Statistical
timing was performed for single CFD evaluation, single DATCOM calculation, PCE model,
and parallel PCE model, and the time comparisons are shown in Table 4. All PCE models
are calculated with corrected DACTOM here. All the above calculations were performed
on the same computer, with an AMD EPYC 7742 64-Core Processor 2.25 GHz CPU.
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Table 4. Statistical time under different aerodynamic performance evaluation methods.

CFD Evaluation DATCOM Evaluation PCE Model Parallel PCE Model

Statistical time 86,605.43 s 0.352 s 183.011 s 29.474 s

4.3. Dimension Descending Method Based on Parameter Sensitivity Analysis

Sensitivity analysis [36] is defined as a method of assigning model output changes to
different input sources; it is used to study the influence of a single input variable on the
model. In this study, the Sobol exponent [37] was used for sensitivity analysis. Before using
PCE, this sensitivity analysis was introduced to reduce the dimension of global variables
by screening out the variables with a weak influence degree.

Any model can be viewed as a function Y = f (X), where X refers to a vector of d
uncertain model inputs {X1, X2, . . . , Xd}, and Y is defined as an univariate model output.
Furthermore, it is assumed that the inputs are independently and uniformly distributed
in the unit hypercube, i.e., Xi ∈ [0, 1] i = 1, 2, . . . , d. f (X) may be decomposed in the
following way:

Y = f0 +
d

∑
i=1

fi(Xi) +
d

∑
i<j

fij(Xi, Xj) + · · ·+ f1,2,...,d(X1, X2, . . . , Xd) (12)

where f0 refers to a constant, fi stands for a function of Xi, and fij represents a function of
Xi, Xj, etc.

Further, it is assumed that f (X) is square-integrable, and variance expression can be
described as:

Var(V) =
d

∑
i=1

Vi+
d

∑
i<j

Vij+ · · ·+ V12...d (13)

where partial variance is expressed as follows:{
Vi = VarXi (EX∼i (Y

∣∣Xi))

Vi,j = VarXij(EX∼ij(Y
∣∣∣Xi, Xj))−Vi −Vj

(14)

where Vi represents the influence of the corresponding single-variable on the output, X∼i
indicates the set of all variables except Xi, and Vi1,i2,...,is represents the influence of the
interactions among input variables on the output.

SXi =
Var(Y)−VarX∼i (EXi (Y

∣∣X∼i))

Var(Y)
(15)

The sensitivity index of the Sobol index method includes the main effect index and the
total effect index [38]. The total effect index reflects the influence of the main effect of the
variable and the cross-effects of other variables on the variance of the function, as shown
in Formula (15). According to the vehicle’s aerodynamic model considered herein, the
uniform sampling design method was adopted to calculate the aerodynamic performance
under the influence of different design variables.

5. Results and Discussion
5.1. Design Optimization
5.1.1. Mathematical Model of Optimized Design

The design state is supersonic flight (Ma = 2; altitude = 20 km; Re = 2.7 × 107), and
the uncertainties of system parameters, such as Ma, altitude, and shape parameters, such
as CHORD and SPAN, were considered. All variables are shown in Tables 1 and 2. Since
the total length and the cross-section diameters of the fuselage considerably influence the
propulsion system and structural system, which cannot be changed, nine related variables
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were excluded from the design optimization and set as constants. Thus, only 21 design
variables were involved in the optimization process, as shown in Table 1, and their value
ranges are shown in Table 5.

Table 5. Optimization range of design variables.

Design Variables Range Design Variables Range

XLE1 [3.2, 3.6] XLE22 [5.57, 5.8]
LER11 [0.0001, 0.001] LER21 [0.001, 0.008]
LER12 [0.001, 0.008] LER22 [0.001, 0.008]

CHORD11 [1.0, 1.5] CHORD21 [0.2, 0.4]
CHORD12 [0.1, 0.4] CHORD22 [0.05, 0.2]

SSPAN1 [0.4, 0.6] SSPAN2 [0.2, 0.4]
LMAXU11 [0.1, 0.3] ZUPPER11 [0.01, 0.04]
LMAXU12 [0.1, 0.3] ZUPPER12 [0.01, 0.04]
LFLATU11 [0.5, 0.6] ZUPPER21 [0.05, 0.1]
LFLATU12 [0.5, 0.6] ZUPPER22 [0.05, 0.1]

XLE21 [5.5, 5.7]

The optimization objective at trim AOA is to lower the drag’s mean and variance
and to turn the multi-objective optimization issue into a single-objective optimization
problem by weighting parameter k for optimization computation. As for the constraint
settings, the static stability margin was 2.5–5%, and the controllability-to-stability ratio
range was 0.5 ≤ η ≤ 1.5, where η refers to the ratio of elevator trim angle to trim AOA. In
UDO, all constraint conditions are transformed to the possibility of design value to meet
requirements, i.e., >0.95. The deterministic optimization is described by Formula (16).

minF[Cdmean(x1, x2, . . . , xn), Cdsigma(x1, x2, . . . , xn)] α = αtrim
s.t. 0.025 ≤ Xcp(x1, x2, . . . , xn) ≤ 0.05

0.5 ≤ η(x1, x2, . . . , xn) ≤ 1.5
xL ≤ x ≤ xU

(16)

The uncertainty-based optimization model is described using Formula (17):
minF[Cdmean(x1, x2, . . . , xn), Cdsigma(x1, x2, . . . , xn)] α = αtrim

s.t. P(0.025 ≤ Xcp(x1, x2, . . . , xn) ≤ 0.05) ≥ 0.95
P(0.5 ≤ η(x1, x2, . . . , xn) ≤ 1.5) ≥ 0.95

xL ≤ x ≤ xU

(17)

In this study, corrected DATCOM was used to evaluate the aerodynamic performance
of the vehicle. During the calculation in each round of optimization, different vehicle
shapes can be described with each set of special design variable values. The influence
of uncertain factors on a system input can also be represented by numerical values, and
they are all processed into random numbers, allowing the design values to vary equally
within a small range. Simple calculations were used to determine the trim of AOA and its
corresponding aerodynamic performance. Under the condition of trim AOA, this vehicle
generates more lift than its own gravity, as depicted in Figure 12.
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5.1.2. Optimization Algorithm

Reasonable and feasible optimization algorithms should be selected for the UDO
framework; reliable convergence should be ensured, and the efficiency of the convergence
should be improved. The multi-island genetic algorithm (MIGA) [39], as a parallel genetic
algorithm, is based on the traditional genetic algorithm through the addition of sectional-
ization. In this case, the individual population was divided into several subgroups, and the
subgroups migrated to different islands, with each island executing the genetic algorithm.
Due to the screening of heredity and variation, the algorithm can be used to determine the
location of the optimal solution.

To prevent large computation costs in uncertain optimization, the number of stages of
external circulation should be minimized. The parameters related to the MIGA algorithm
are briefly tested to ensure that the optimization algorithm achieves global convergence in
both deterministic and uncertain optimization under the same number of iterations, as well
as the optimization information and global search ability in multiple populations. In the
optimization process in this study, the group size, generation, and the number of islands
were set as 10, 100, and 10, respectively. Its iteration curve is shown in Figure 13. The
MIGA method successfully considers both the convergence speed and the approximation
accuracy of the ideal solution under this parameter setting; even when the number of
cycles increases, the approximation accuracy of the optimal solution no longer improves
substantially. Consequently, the parameter selection mentioned above is thought to be
appropriate for the optimization problem stated in this study.
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5.1.3. Sensitivity Analysis of Uncertain Parameters

In this optimization problem, there are 35 uncertain parameters, indicating a consid-
erably low computation efficiency when PCE is used. It is necessary to scale the design
space of uncertain parameters for the improvement of the efficiency of PCE used in un-
certainty analysis. This strategy can considerably reduce calculation costs [40]. Therefore,
the influence of all design variables on aerodynamic performance, which is calculated by
the corrected DATCOM, is sorted by the sensitivity analysis. Therefore, the influence of
all design variables on aerodynamic performance is sorted by the sensitivity analysis. The
feasible solutions of DDO are used as samples in the sensitivity analysis. The main effect
indexes of CA, CN, Xcp, and η are shown in Figure 14, which were obtained with the Sobol
sensitivity analysis of all uncertainty parameters.

Figure 14. Total effect index of each variable.
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The total effect index shows how aerodynamic performance is influenced by the cross-
effects between a single variable and other variables. The variables with a larger total
effect index indicate that their linear effect and the interaction effect between them and
other variables are larger than others, that is, their change has a greater influence on the
change in aerodynamic performance. Specific values of the sensitivity analyses are shown
in Figure 14. For the sensitivity analysis of CN, the total effect for AOA was the largest,
followed by flight velocity Mach and nose diameter DNOSE. The semi-span length of the
wing and the thickness-to-chord ratio of the wing root also substantially influence the value
of CN. During the actual flight, pressure drag is the main reason for CA value variation,
and the impact of shape parameters, such as the leading-edge radius and the thickness-to-
chord ratio of the pressure on the surface of the vehicle. In the meantime, flight velocity
determines the dynamic pressure; therefore, it is closely related to CA and CN. The static
stability margin and operating stability ratio represent the stability and maneuverability of
the aircraft, respectively, and their values are closely related to the position of the vehicle’s
mass center. In this case, they were considerably influenced by Xc. The uncertainties from
different sources and with a considerable effect on the vehicle’s aerodynamic performance
should be considered in uncertainty characterization and design optimization. Therefore,
the aforementioned six uncertain parameters are selected in the UDO.

5.1.4. Uncertainty Analysis Method

At this point, the PCE is established by sampling in the uncertain space, which can
characterize the system’s performance by the mean and variance. In PCE, the number of
terms M raises its own polynomials with is both the total degree P and the number of input
variables N.

M = (
N + P

P
) (18)

In the meantime, the number of input variables N and the total degree in the poly-
nomial P are adjusted, and the fitting quality of PCE to the system uncertainty is judged
according to R2 and R2

adj [33]. In this study, we selected input variables N = 6 and total
degree P = 5. According to the sequencing results of the above sensitivity analysis, the six
input variables with the greatest impact on each aerodynamic performance were selected
to form the respective PCEs for CA, CN, Xcp, and η. Moreover, the test of PCE efficiency
and accuracy uses the feasible solutions of DDO as the sample.

MCS is considered a well-established tool for the determination of the impact of
parameter variations [41]. It is also considered suitable for investigating uncertainty in
complex systems, which is used as the standard in this study for comparison with PCE.
As shown in Figure 15, the convergence of the Cd mean is derived using PCE, and a
comparison with MCS with an increasing number of sampling points. N = 500 is sufficient
for the PCE model to achieve high computing accuracy. MCS is used to calculate the
dependability index based on N = 105 number of model evaluations, which is used as the
reference solution to the problem considered in this study.

5.2. Comparison and Validation of Different Results

All optimization results are presented in Table 6. The comparison between the deter-
ministic optimization results and the original design configuration is shown in Figure 16.
In the deterministic optimization scheme, the position of the vehicle’s main wing moves
forward, the span length increases, the sweep angle of the tail increases considerably, and
the ratio of the tail root increases slightly; these findings are different from those of the
original design scheme. In the uncertain optimization result scheme, the position of the
main wing moves forward, the three variables of the root chord tip and length of the chord
increase, and the position of the tail moves forward; these findings are different from those
of the original design scheme.

According to the calculation results shown in Table 7, the error between the aerody-
namic coefficient of optimization results and CFD simulation results is small, indicating
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that the improved DATCOM method has high calculation accuracy. Compared with MCS,
the error in PCE results is small, indicating that PCE is also characterized by high precision.
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Table 6. Deterministic optimization and uncertainty-based optimization results of vehicle.

Variables Range Initial Deterministic
Optimization

Uncertainty-Based
Optimization

XLE1 [3.2, 3.7] 3.37 3.311 3.302
SSPAN1 [0.4, 0.7] 0.45 0.543 0.569

CHORD11 [1.0, 1.5] 1.2 1.109 1.076
CHORD12 [0.1, 0.4] 0.2 0.262 0.235

LER11 [0.001, 0.008] 0.001 0.001 0.001
LER12 [0.001, 0.008] 0.001 0.001 0.001

ZUPPER11 [0.01, 0.04] 0.02 0.01 0.011
ZUPPER12 [0.01, 0.04] 0.025 0.01 0.011

XLE21 [5.5, 5.7] 5.679 5.507 5.514
XLE22 [5.57, 5.8] 5.754 5.745 5.787

SSPAN2 [0.2, 0.4] 0.25 0.253 0.217
CHORD21 [0.2, 0.4] 0.25 0.203 0.213
CHORD22 [0.05, 0.2] 0.1 0.054 0.063

LER21 [0.001, 0.008] 0.001 0.001 0.001
LER22 [0.001, 0.008] 0.001 0.001 0.001

ZUPPER21 [0.05, 0.1] 0.064 0.051 0.052
ZUPPER22 [0.05, 0.1] 0.07 0.051 0.054
LMAXU11 [0.1, 0.3] 0.2 0.261 0.117
LMAXU12 [0.1, 0.3] 0.2 0.205 0.146
LFLATU11 [0.5, 0.6] 0.6 0.518 0.534
LFLATU12 [0.5, 0.6] 0.6 0.501 0.537
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Table 7. PCE and MCS of different optimization.

Uncertainties Calculated by PCE Uncertainties Recalculated by MCS
Initial

Scheme
DDO
Result

UDO
Result

Initial
Scheme

DDO
Result

UDO
Result

αtrim 10 8 8 10 8 8
CdCFD 1.325 1.1821 1.1889 1.325 1.1821 1.1889
Cdmean 1.32026 1.1905 1.1943 1.3341 1.1703 1.1716
Cdsigma 0.0554 0.0625 0.0613 0.0453 0.0705 0.0621

staticmean 0.0451 0.0396 0.0339 0.0444 0.0398 0.0345
staticsigma 0.0015 0.0017 0.0017 0.0014 0.0019 0.0016

ηmean 0.6941 0.5193 0.5181 0.7043 0.5149 0.4981
ηsigma 0.0248 0.0242 0.0338 0.0211 0.0271 0.0319
pstatic 0.982 0.976 0.999 0.992 0.999 0.999

pη 0.988 0.724 0.999 0.996 0.872 0.998

Compared with the original scheme, both optimization results reduce the drag coeffi-
cient in horizontal flight by decreasing AOA, indicating that the lift-to-drag ratio of the air-
craft in the benchmark scheme is not optimal, and that the lift-to-drag ratio and drag reduc-
tion can be achieved by increasing the wingspan to a certain extent through optimization.

The standard deviation of Cd of the uncertain optimization results is smaller than
that of the deterministic scheme, and the probability of constraint satisfaction is greater
than 99%. The uncertainty optimization improved the Pstatic = 87.2% to 99.8% of the
deterministic scheme, showing that uncertainty-based optimization can effectively improve
the robustness and reliability of the scheme.

The main difference between the two configurations and the original scheme lies in
trim AOA, and the flowfield in the head cone region of the CFD calculation results has
changed, as shown in Figure 17. The deterministic optimization scheme shows large areas
with low pressure at the tail of the main wing and waist. This phenomenon does not
exist in uncertainty-based optimization, which may mainly account for the fact that the
controllability-to-stability ratio does not satisfy the constraint.
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Figure 17. Comparison between flowfield cloud images and the three schemes considered herein.
(a) Initial configuration design (α = 10◦), (b) deterministic optimization (α = 8◦), (c) and uncertainty-
based optimization (α = 8◦).
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6. Conclusions

In this study, a system-level uncertainty analysis was conducted, and an optimization
method based on the parallel PCE method was developed. The aerodynamic performance
of a target drone in a typical conventional axisymmetric aerodynamic configuration was
optimized and analyzed. The main conclusions were drawn as follows:

(1) The corrected DATCOM showed high accuracy in aerodynamic prediction of conven-
tional axisymmetric aerodynamic configuration. Compared with traditional MCS,
PCE also has the characteristics of high precision based on the selection of partial
variables, showing the effectiveness of the dimensionality reduction method.

(2) The parallel PCE uncertainty analysis method can be used to effectively character-
ize the uncertainty of the system. Compared with the general PCE, the cost time
is shortened from 183.011 s to 29.287 s, thereby, effectively reducing the cost of
uncertainty analysis.

(3) With the same optimizer, uncertainty-based optimization can reduce a vehicle’s drag
coefficient in the cruise phase, and it can effectively improve the robustness and
reliability of the system’s performance.

(4) The results of sensitivity analysis showed that the uncertainties of AOA and ve-
hicle mass center have considerable influence on the aerodynamic performance of
conventional axisymmetric vehicles.
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