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Abstract: The space elevator system is a space tether system used to solve low-cost space trans-
portation. Its high efficiency, large load and other characteristics have broad application prospects
in the aerospace field. The stability analysis is the foundation of the space elevator system research.
Based on the new segment space elevator system model, in this paper, the stability of the system
at the equilibrium point is analyzed by Lyapunov stability theory; And based on the criterion that
the change rate of the system restoring torque and the anchor point tension are greater than 0, the
maximum offset angle of the system inside and outside the equatorial plane is analyzed. The results
show that the segment space elevator is stable near the equilibrium point; The maximum deflection
angle of the space elevator inside and outside the equatorial plane is related to the design stress
of the anchor point; When the space elevator is offset outside the equatorial plane, it will only lose
stability because the restoring torque reaches the maximum value; When the space elevator is offset
in the equatorial plane, and due to the design stress of the anchor point is small, it will lose stability
because the tensile force of the anchor point is reduced to 0, and when the design stress of the anchor
point is large, it will lose stability because the recovery torque reaches the maximum value; The
stability of the space elevator outside the equatorial plane is better than that in the equatorial plane.

Keywords: space elevator; stability; segment

1. Introduction

As early as 1895, Konstantin Tsiolkovsky, the father of aerospace, put forward the
concept of space elevator (SE): build a high tower from the equator and connect the ground
with the space station in geostationary orbit (GEO). When the design parameters are
appropriate, the gravity received by the space elevator and the centrifugal force rotating
with the earth offset, and the resultant force received by the space elevator on the ground
can be zero.

The advantage of the space elevator is that it can continuously transport goods to
the space station. It is estimated that hundreds of tons of goods can be transported to the
space station every week [1]. At present, the carrying capacity of the “heavy Falcon” carrier
rocket with the largest thrust in the world to reach GEO at a single time is no more than
26.7 tons, and it requires a long launch preparation time. In addition, the transportation
cost of the space elevator also has great advantages over the launch vehicle. At present,
the estimated transportation cost of space elevator can be less than $100/kg, while the
carrier rocket is much higher. For example, the cost of transporting the “heavy Falcon”
carrier rocket to GEO reaches $3370/kg, and space elevator may use solar energy to provide
energy in the future [2]. Therefore, space elevator is superior to the traditional carrier rocket
in economy and environmental protection.

Although the space elevator has many advantages, in 1979, Pearson found that the
strength of the materials used to manufacture the space elevator was much higher than that
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of conventional materials such as steel, which affected the feasibility of the space elevator
system [3]. Until 1991, people discovered carbon nanotube materials, which made the
research of space elevator return to the dawn. The tensile strength of carbon nanotubes can
reach more than 100 times that of steel, which can meet the strength required for the manu-
facture of space elevator. Moreover, China’s scientific research team can manufacture half
meter long carbon nanotubes in 2013 [4]. In the future, people will be able to manufacture
larger carbon nanotubes, making the manufacture of space elevator possible.

For the design of the space elevator system, the biggest difficulty lies in the excessive
axial force on the rope when it reaches the force balance. Through estimation, Aravind
found that when the section of the space elevator does not change with the height, that
is, under the condition of constant section space elevator, the normal stress of the rope
reaches 382 GPa, which is much higher than the tensile strength of traditional materials
such as steel [5]. Although the ideal strength of carbon nanotubes is expected to meet
the demand [6], reducing the working stress of the rope of the space elevator system is
still the most important problem in the design of the space elevator. The section of the
space elevator is set to change with the height, so that the stress does not change with the
height, that is, the variable section space elevator can effectively reduce the stress of the
rope. Cohen and Misra gave the expression of cross-sectional area of variable cross-section
space elevator under equal stress state in 2007 [7]. In this case, the stress of space elevator
can be significantly reduced. At present, most researches on the space elevator are based
on the space elevator with variable section. Inspired by biology, Dan and sun proposed
that the safety margin of the space elevator structure can be reduced, that is, the working
stress ratio can be improved in the space elevator design, and the material can repair itself
at any time. Through calculation, it is found that in this case, the space elevator made of
M5 material can meet the design requirements [8]. Shi and Luo put forward the concept
of segmented space elevator, that is, the sectional area of the space elevator is changed in
sections, and made a preliminary study on its mechanical problems [9,10]. This segmented
space elevator has less stress than the constant section space elevator and is easier to process
and manufacture than the variable section space elevator. It can be built in sections up
and down at the same time from the space station on the synchronous orbit. Compared
with the previous design schemes, it has many advantages and provides a new idea for the
future space elevator design.

There are other space elevator model designs, such as the non-equatorial space elevator
system. The ground anchor point of the equatorial space elevator can only be selected on
the equator, which limits the construction site of the space elevator system. The earth’s
non-equatorial space elevator built in the low latitude area of non-equatorial can solve
this problem, but in this case, the gravity of the rope is not in the axial direction, which
increases the difficulty of its design. Gassend gave an approximate solution of the cross-
sectional area of the earth’s non-equatorial space elevator [11]. Wang Established the static
model of the earth’s non-equatorial space elevator in 2019, found that increasing the tensile
strength of the tether material can expand the deployment range of the space elevator
system [12], established the dynamic equation and analyzed its vibration mode [13]. Okino
proposed a new type of counterweight space elevator system. The system is similar to the
ground elevator and consists of two cables: one guide cable bears the tension applied to the
structure, that is, the rope of the conventional elevator, and the other moving cable connects
the two gondolas to move up and down respectively. The performance of counterweight
space elevator is analyzed by numerical calculation [14]. Li proposed a new concept of
multi climbing rope ring tether transportation system (L-TTS) for efficient transportation
of payload. It consists of two parallel tether transportation systems or part of the space
elevator, and each tether has multiple climbers. It will reduce the overall vibration of the
system, but there is a risk of tether collision during load transportation [15]. On this basis,
the team proposed a new type of annular rope carrier transportation system (L-TTS-R).
In this new concept, in addition to the components mentioned in the L-TTS, the system
also includes several parallel rigid rings, which are evenly fixed on two tethers to keep the
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distance between the two connection points unchanged. The effects of steps on system
vibration suppression, climber collision risk avoidance, platform relative oscillation and
pitch motion and tether tension are evaluated [16].

The scale of the space elevator rope is large, and the operating environment is complex.
The vibration caused by various factors may have a serious impact on the operation of the
space elevator system and endanger the reliability and safety of the space elevator system.
Therefore, the dynamics of space elevator system has attracted extensive attention in recent
years. Williams studied the rope vibration characteristics caused by the movement of the
climber based on the bead model, established the dynamic and kinematic models in the rope
vibration process respectively, and carried out the modal analysis on this basis [17]. The
dynamics of the climbing rope system can be described by the Euler-Lagrange method, and
the high-frequency tether can be used to capture the position of the flexible rope system [18].
Hu studied the vibration problem of super flexible damping space structure, considered the
coupling between structural vibration, attitude dynamics and track dynamics, and studied
the vibration characteristics and wave propagation characteristics of space flexible damping
plates with four special springs [19]. Yoon established a proportional experimental model
considering the initial tension of tether in 2020, studied the band gap characteristics of meta-
materials through experiments, and measured the deformation shape of meta-materials
in the band gap [20]. Luo analyzed the dynamics of the space elevator system based on
the absolute node coordinate formula (ANCF), and found that this method can achieve the
same calculation accuracy with fewer elements, and has a faster convergence speed [21].

Previous studies have focused on the external excitation of the space elevator system,
such as the Coriolis force caused by the climber, the oscillation period and response of the
rope when impacted. The stability of the space elevator system itself has not been analyzed
and studied in detail. Compared with the previous design scheme, the segment space
elevator model has many advantages and is a possibility for the construction scheme of
the space elevator system in the future. Therefore, based on the model of segment space
elevator system, the Lyapunov stability theory is applied to study the stability of space
elevator system at the equilibrium point of the system. Then, by analyzing the maximum
deflection angle of the space elevator system inside and outside the equatorial plane, the
stability range of the space elevator system near the equilibrium point is studied. This
work provides a basis for further research of segment space elevator system, such as the
oscillation suppression in the future.

2. Stability of Equilibrium Point

According to the design in literature [10], the design of the segmented space elevator
system model is to subdivide the rope into several segments along the length direction.
Each segment of rope can be composed of several equal cross-section tethers in different
numbers and connected by a connecting platform. The model is shown in Figure 1.

GEO platform zenith anchorConnecting platform

Segment of rope

GEOanchor point

Figure 1. Schematic diagram of segmented space elevator system model reprint from [10].
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For a two-segments space elevator system, a certain amount of lateral force is applied
to the direction outside the equatorial plane at the position of the zenith anchor respectively.
The results calculated by using the ANCF method in [21] are shown in Table 1 and Figure 2.

Table 1. Calculation results of lateral loading at zenith anchor.

Lateral Force Zenith Anchor Displacement
in Z Direction Offset Angle

1× 106 N 7.31× 104 m 0.001048 rad
1× 107 N 7.31× 105 m 0.010479 rad
5× 107 N 3.66× 106 m 0.052490 rad
1× 108 N 7.31× 106 m 0.105577 rad
2× 108 N 1.46× 107 m 0.216145 rad
3× 108 N 2.19× 107 m 0.338005 rad
5× 108 N 3.61× 107 m 0.665371 rad
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(b)

Figure 2. Calculation results of lateral loading at zenith anchor. (a) Deformation of the rope by
lateral force loading. (b) Deformation of the rope near the anchor point on the ground by lateral
force loading.

It can be seen from Figure 2b that when the rope of the space elevator system is laterally
deformed, the stress at the anchor end of the ground is small, the main bending part is near
the ground anchor point. And the bending of the rope increases as the deflection angle
increases. From Figure 2a, the overall shape of the rope remains roughly straight, and is
independent of the deflection angle. Therefore, the rope of the space elevator system can be
simplified as a rigid rod, which is connected with the ground anchor point with a spherical
hinge. The schematic diagram of the model is shown in Figure 3.

The center of the Earth O is assumed to be fixed and is used as the origin of the inertial
frame. O0 is the anchor point of the tether on the earth’s equator. The X axis points from
point O to point O0 and is perpendicular to the ground. The Z axis points to the North
Pole along the rotation axis of the Earth. The Y axis is perpendicular to the X axis and Z
axis, ω is the angular velocity of the system equal to the rotation rate of the Earth. l is the
nominal (unstressed) length of the tether. mc is the mass of the counterweight at the end of
the tether. θ is the angle between the projection of the rope of the space elevator system in
the XY plane and the X axis. φ is the angle between the projection of the rope of the space
elevator system in the XY plane and itself.



Aerospace 2022, 9, 376 5 of 24

mc

O

X

Y
Z

O0
�

�

l

�

Figure 3. Schematic diagram of rigid rope model.

The position vectors of zenith anchor and rope element in the O-XYZ coordinate
system are rc and rs, respectively, where s is the position of the rope element on the tether.
The position vectors of each part of the system can be expressed as

rc = (Re + l cos θ cos φ)i + (l sin θ cos φ)j + (l sin φ)k, (1)

rs = (Re + s cos θ cos φ)i + (s sin θ cos φ)j + (s sin φ)k, (2)

where Re is the radius of the Earth.
By differentiating the time through Equations (1) and (2), the velocity vectors of rope

element and zenith anchor in Cartesian coordinate system can be obtained as ṙs and ṙc
respectively. The total kinetic energy of the system consists of the kinetic energy of the
zenith anchor and the kinetic energy of the rope from the equatorial ground anchor to the
zenith anchor, which can be expressed as in Equation (3):

T =
1
2

mc ṙ>c ṙc +
1
2

∫ l

Re
ρA(r)ṙ>s ṙsdr, (3)

where ρ is the density of the rope material, A(r) is the cross-sectional area at the position s
and r is the coordinate of the rope element of the space elevator in the geocentric coordinate
system, which can be expressed as

r = Re + s. (4)

The total potential energy V of the system is expressed in Equation (5):

V = − µmc√
r>c rc

−
∫ l

Re

µρA(r)√
r>s rs

dr, (5)

where µ is the gravitational constant of the earth.
Due to the internal friction in the structure, the influence of atmospheric resistance

near the ground and other factors, the force conditions inside and outside the equatorial
plane of the space elevator system are different, the damping coefficients inside and outside
the plane are c1 and c2 respectively. The work dissipated is expressed in Equation (6):

Φ =
∫ θ̇

0
c1θ̇dθ̇ +

∫ φ̇

0
c2φ̇dφ̇

=
1
2

c1θ̇2 +
1
2

c2φ̇2.
(6)

The Lagrange equation is shown below:

d
dt

(
∂(T −V)

∂q̇i
)− ∂(T −V)

∂qi
+

∂Φ
∂q̇i

= 0. (7)
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By substituting Equations (3)–(6) into Equation (7), the dynamics equation of θ and φ
of the system can be obtained:

θ̈ =− c1

M1 cos2 φ
θ̇ + 2φ̇(θ̇ + ω) tan φ

− M2Reω2 sin θ

M1 cos φ
+

µRe M3 sin θ

M1 cos φ
,

(8a)

φ̈ =− c2

M1
φ̇− (θ̇ + ω)2 cos φ sin φ

− M2

M1
ω2Re cos θ sin φ

+
M3

M1
µRe cos θ sin φ,

(8b)

where ω is the angular velocity of the earth’s rotation and

M1 = mcl2 +
∫ l

Re
ρA(r)r2dr, (9a)

M2 = mcl +
∫ l

Re
ρA(r)rdr, (9b)

M3 =
mcl

(r>c rc)
3
2
+
∫ l

Re

ρA(r)r

(r>s rs)
3
2

dr. (9c)

According to Equations (8) and (9), the dynamics equation of the system is a second-
order nonlinear system with variable damping and stiffness.

Based on the small-angle hypothesis: cos θ ≈ 1, cos φ ≈ 1, sin θ ≈ θ and sin φ ≈ φ,
Equations (8) and (9) can be simplified as

θ̈ = − c1

M1
θ̇ + 2φ̇(θ̇ + ω)φ− M2Reω2θ

M1
+

µM3Reθ

M1
, (10a)

φ̈ = − c2

M1
φ̇− (θ̇ + ω)2φ− M2

M1
ω2Reφ +

µM3Reφ

M1
. (10b)

After Equation (10) is sorted out, the matrix form of the dynamics equation of the
system is shown: [

θ̈
φ̈

]
+ C

[
θ̇
φ̇

]
+ K

[
θ
φ

]
= Ψ, (11)

where C is the damping of the system, K is the stiffness of the system, and Ψ is the
non-linearity of the system, which are respectively expressed in Equation (12):

C =

[
c1/M1 0

0 c2/M1

]
, (12a)

K =

[
J1 0
0 J2

]
, (12b)

Ψ =

[
2φ̇(θ̇ + ω)φ
−θ̇(θ̇ + 2ω)φ

]
, (12c)

where

J1 =
M2ω2 −M3µ

M1
Re, (13a)

J2 =
M2ω2 −M3µ

M1
Re + ω2. (13b)
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Let x1 = θ, x2 = θ̇, x3 = φ and x4 = φ̇, Equation (11) can be converted into four
first-order differential equations:

ẋ1 = x2

ẋ2 = − c1

M1
x2 − J1x1 + 2x4(x2 + ω)x3

ẋ3 = x4

ẋ4 = − c2

M1
x4 − J2x3 − x2(x2 + 2ω)x3.

(14)

The system dynamics equation is as follows:[
ẋ1 ẋ2 ẋ3 ẋ4

]ᵀ
= 0. (15)

The equilibrium point of Equation (15) can be easily found:

x0 =
[
0 0 0 0

]>. (16)

According to the above formula, it can be found that under the action of earth gravity,
the equilibrium point of the system is located at zero point. According to Equation (14), it
can be found that there are nonlinear terms in the system dynamics equation, so the above
dynamics equation is a coupling nonlinear dynamics equation. In order to make it easy for
us to judge the stability of the system, we need to linearize the nonlinear system first, and
the main idea of linearization is first-order approximation. Taylor’s expansion method is
used to linearize nonlinear equations near singularities.

Equation (14) of the nonlinear equations is rewritten into matrix form, and the pertur-
bation solution x(t) = x0(t) + δx(t) near the equilibrium point is taken. After omitting the
higher-order term, the following equation can be obtained:

δẋ(t) = Aδx(t), (17)

where A is the Jacobian matrix of the system, which is shown as:

A =


0 1 0 0
−J1 −c1/M1 0 0

0 0 0 1
0 0 −J2 −c2/M1

. (18)

The eigenvalue of the matrix A can be solved by Equation (19):

det (λE−A) = 0. (19)

And the eigenvalue of A can be obtained:
λ1,2 =

−c1 ±
√

∆1

2M1

λ3,4 =
−c2 ±

√
∆2

2M1
.

(20)

where
∆1 = c2

1 − 4J1M2
1

∆2 = c2
2 − 4J2M2

1
(21)

According to Lyapunov stability theory, the stability of the system near the equilibrium
point is judged by the positive and negative of discriminant ∆1 and ∆2 of eigenvalues in
Equation (20).
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3. Stability Range near the Equilibrium Point

The stability range of the system near the equilibrium point is also a very important
problem. There are two reasons for the instability of the system caused by the lateral
displacement of the space elevator system:

First, the lateral displacement of the space elevator system will cause the direction of
universal gravitation and centrifugal force to no longer follow the direction of the rope,
but will produce the torque to rotate the whole space elevator system. When the torque
to restore the space elevator system Mr to a stable position is reduced, the space elevator
system will become unstable;

Second, the lateral displacement of the space elevator system will change the magni-
tude of the universal gravitation and centrifugal force of the system, which will lead to
the change of the tensile force of the ground anchor point with the least stress. When the
tensile force of the ground anchor point T0 is reduced to 0, the space elevator system will
become unstable.

Since the centrifugal force direction of the system is always perpendicular to the
rotation axis of the earth, the force of the system offset in and out of the equatorial plane is
different, which needs to be analyzed separately.

3.1. Offset Outside the Equatorial Plane of the Earth

As shown in Figure 4, φ is the deflection angle of the system outside the equatorial
plane, s is the coordinate of a micro element on the system rope in the length direction
of the rope, r is the distance from the rope element to the center of the earth, Fg is the
universal gravitation of the micro element by the earth, and Fc is the centrifugal force of the
micro element.

Fg
Fc

r

s

mc

O O0 �
X

Z
�

Figure 4. Analysis diagram of offset outside equatorial plane.

Assuming that the anchor point O0 of the rope is hinged, the rope is rigid, and the
counterclockwise torque is positive. The distance from any point on the rope to the center
of the earth can be expressed as

ro =
√
(s sin φ)2 + (Re + s cos φ)2. (22)

The moments of gravity and centrifugal force on the rope element at the position ro to
the ground anchor point are dMgo and dMco respectively, which can be expressed as

dMgo =
µA(s)ρds

r2
o

∗ Res sin φ

ro
, (23a)

dMco =
µA(s)ρds(Re + s cos φ)

R3
g

∗ s sin φ, (23b)
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where Rg is the radius of the geosynchronous orbit.
In order to simplify the calculation, it is assumed that the segmented space elevator

system has 2 segments, and the cross-sectional area of each segment is designed according
to the segment function of Equation (24).

A(s) =

{
a0, 0 <= s <= ps ∗ Re;
pa ∗ a0, ps ∗ Re < s <= pl ∗ Re,

(24)

where a0 is the initial cross-sectional area of the rope, pa is the growth rate of rope cross-
sectional area, ps is the ratio of the coordinate of the segment point to the length of the
earth’s radius and pl is the ratio of the total length of the space elevator system to the length
of the earth’s radius.

The torque of the zenith anchor is expressed as

Mtgo =
µplmcR2

e

r3
lo

sin φ, (25a)

Mtco =
µplmcR2

e

R3
g

sin φ(pl cos φ + 1), (25b)

where
rlo = Re

√
p2

l + 2pl cos φ + 1. (26)

The restoring torque can be expressed as

Mro = Mgo + Mtgo −Mco −Mtco

=
∫ pl∗Re

0
dMgo + Mtgo −

∫ pl∗Re

0
dMco −Mtco.

(27)

For the force in X direction, it can be deduced that the force of rope micro element are

dFgo =
µA(s)ρds

r2
o

∗ Re + s cos φ

ro
, (28a)

dFco =
µA(s)ρds(Re + s cos φ)

R3
g

. (28b)

The force of the zenith anchor is expressed as

Ftgo =
µmcRe

r3
lo

(pl cos φ + 1), (29a)

Ftco =
µmcRe

R3
g

(pl cos φ + 1). (29b)

The force in the X direction of the anchor point can be expressed as

To =
∫ pl∗Re

0
dFco + Ftco −

∫ pl∗Re

0
dFgo − Ftgo

= Fco + Ftco − Fgo − Ftgo.
(30)

The detailed calculation formula can be found in Appendix A.1. Through the restoring
torque of the system and the tension of the anchor point, the stability range of the space
elevator system when it is offset outside the equatorial plane can be obtained.
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3.2. Offset in the Equatorial Plane of the Earth

The stress of the space elevator system when it is offset in the equatorial plane is
shown in Figure 5, θ is the deflection angle of the system outside the equatorial plane and
other parameters are the same as those outside the equatorial plane.

Fg Fcr

s

mc

�O O0

X

Y

�

Figure 5. Analysis diagram of offset in equatorial plane.

It can be found that when the system is offset in the equatorial plane, the only change
is the centrifugal force, and the distance from any point on the rope to the center of the
earth can be expressed as

ri =
√
(s sin θ)2 + (Re + s cos θ)2. (31)

The torque dMgi and dMci of the rope element are expressed as

dMgi =
µA(s)ρds

r2
i

∗ Res sin θ

ri
, (32a)

dMci =
µA(s)ρds(Re + s cos θ)

R3
g

∗ Res sin θ

ri
. (32b)

The torque of the zenith anchor is expressed as:

Mtgi =
µmc

r2
li
∗ Rel sin θ

rli
, (33a)

Mtci = µmc
(Re + l cos θ)

R3
g

∗ Rel sin θ

rli
, (33b)

where
rli = Re

√
p2

l + 2pl cos θ + 1. (34)

The restoring torque can be expressed as

Mri = Mgi + Mtgi −Mci −Mtci

=
∫ pl∗Re

0
dMgi + Mtgi −

∫ pl∗Re

0
dMci −Mtci.

(35)



Aerospace 2022, 9, 376 11 of 24

For the force in X direction, it can be deduced that the force of rope micro element are

dFgi =
µA(s)ρds

r2
i

∗ Re + s cos θ

ri
, (36a)

dFci =
µA(s)ρds(Re + s cos θ)

R3
g

∗ Re + s cos θ

ri
. (36b)

The force of the zenith anchor is expressed as

Ftgi =
µmcRe

r3
li

(pl cos θ + 1), (37a)

Ftci =
µmcR2

e

R3
grli

(pl cos θ + 1)2. (37b)

The force in the X direction of the anchor point can be expressed as

Ti =
∫ pl∗Re

0
dFci + Ftci −

∫ pl∗Re

0
dFgi − Ftgi

= Fci + Ftci − Fgi − Ftgi.
(38)

The detailed calculation formula can be found in Appendix A.2. Through the restoring
torque of the system and the tension of the anchor point, the stability range of the space
elevator system when it is offset outside the equatorial plane can be obtained.

4. Results
4.1. Stability of Equilibrium Point

The segment parameters of a 4-segments space elevator system are shown in Table 2
and the structural parameters are shown in Table 3.

Table 2. Segment parameters of the segment space elevator system.

Segments Segment Length Cross-Sectional Area

Segment 1 10.779× 103 km 1.000× 10−2 m2

Segment 2 7.186× 103 km 1.123× 10−2 m2

Segment 3 17.965× 103 km 1.190× 10−2 m2

Segment 4 24.070× 103 km 2.000× 10−2 m2

Table 3. System parameters of the segment space elevator system.

Parameters Value

Total length 6.00× 104 km
Rope density 1.30× 103 kg m−3

Mass of connecting platform 1.00× 104 kg
Mass of zenith anchor 2.55× 109 kg

Through calculation, the stability analysis of the four segments space elevator system
swinging in and out of the equatorial plane near the equilibrium point x0 can be obtained
as follows:

When ∆1 > 0 and ∆2 > 0, Equation (19) has four different negative real roots. It can
be seen from Figure 6 that the nearby state vector fields all point to this equilibrium point
and are finally stabilized at this equilibrium point. Therefore, the equilibrium point x0 is a
stable node, and the original nonlinear system is asymptotically stable near the equilibrium
point x0.
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Figure 6. Phase diagram of system near x0 (∆1 > 0, ∆2 > 0). (a) In-plane swing θ; (b) Out-plane
swing φ.

When ∆1 < 0 and ∆2 < 0, Equation (19) has two pairs of different conjugated virtual
roots with negative real parts. It can also be seen from Figure 7 that the nearby state vector
field is oriented to the equilibrium point and finally stabilized at the equilibrium point.
Therefore, the equilibrium point x0 is the stable focus, and the original nonlinear system is
asymptotically stable near the equilibrium point x0.
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Figure 7. Phase diagram of system near x0 (∆1 < 0, ∆2 < 0). (a) In-plane swing θ; (b) Out-plane
swing φ.

When ∆1 = 0 and ∆2 = 0, Equation (19) has four negative real roots that are equal
in pairs. It can be seen from Figure 8 that the nearby state vector fields basically point to
the equilibrium point in the same direction and finally stabilize at the equilibrium point.
Therefore, the equilibrium point x0 is a stable degenerate node, and the original nonlinear
system is asymptotically stable near the equilibrium point x0.

When ∆1 > 0, ∆2 < 0 or ∆1 < 0, ∆2 > 0, Equation (19) has a pair of negative real
roots and a pair of conjugated imaginary roots with negative real parts. When the roots are
negative real, the phase diagram are similar with Figure 6; when the roots are conjugated
imaginary, the phase diagram are similar with Figure 7. The nearby state vector fields all
point to this equilibrium point and eventually stabilize at this equilibrium point. Therefore,
the linear system is strictly stable at x0, and the original nonlinear system is asymptotically
stable near the equilibrium point x0.
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Figure 8. Phase diagram of system near x0 (∆1 = 0, ∆2 = 0). (a) In-plane swing θ; (b) Out-plane
swing φ.

When c1 = 0 and c2 = 0, Equation (19) has two pairs of distinct conjugated pure
imaginary roots. It can be seen from Figure 9 that the nearby state vector field is a circle of
elliptic state vector fields, forming periodic orbits related to the initial state, and the system
will eventually run in the orbit. Therefore, the equilibrium point x0 is the center, and the
system is a system without damp. The original nonlinear system will oscillate constant
amplitude after being disturbed.
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Figure 9. Phase diagram of system near x0 (c1 = 0, c2 = 0). (a) In-plane swing θ; (b) Out-plane swing φ.

According to the above results, it can be found that the characteristic roots of the
linearized space elevator system have negative real parts due to the existence of damping
such as atmospheric damping and rope damping, so the linearized system is strictly stable.
And according to Lyapunov linearization stability determination method, the original
nonlinear system is asymptotically stable near the equilibrium point, that is, the segmented
space elevator system is asymptotically stable near the equilibrium point.

4.2. Stability Range Offset Outside the Equatorial Plane of the Earth

It can be seen from Equations (27) and (30) that the influencing parameters affecting
the restoring torque Mro and the tensile force of the anchor point To are:

• a0, cross-sectional area of anchor point;
• mc, mass of zenith anchor;
• pl , total length of the space elevator system;
• pa, ratio of the cross-sectional area of the second segment to the first segment;
• ps, location of rope segment.

Through parameter analysis, pa and ps have little influence on the restoring torque
curve and the anchor point tension curve. The total length of the space elevator rope
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and the mass of the zenith anchor are parameters representing the external tension of the
synchronous track of the space elevator system, which can be converted to each other.
Therefore, a0 and mc are used to analyze the maximum deflection angle of the lateral
displacement of the space elevator system. The basic parameters of the model are shown in
Table 4.

Table 4. System parameters of the segment space elevator system.

Parameters Value

a0 1.00× 10−2 m2

mc 3.48× 109 kg
ρ 1.30× 103 kg m−3

pl 9.42
pa 2.50
ps 1.75

The relationship of the restoring torque of the space elevator system with the offset
angle is shown in Figure 10.
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Figure 10. The graph of restoring torque with offset angle under the condition of different parameters.
(a) With different zenith anchor masses mc. (b) With different initial cross-sectional areas a0.

It can be seen from the Figure 10 that the restoring torque of the system first increases
and then decreases with the increase of the offset angle. Therefore, when the restoring
torque reaches the maximum, the corresponding offset angle is defined as the maximum
deflection angle of the system. As can be seen from Figure 10a, with the increase of zenith
anchor mass, the value of restoring torque increases, and the maximum deflection angle of
the system also increases. From Figure 10b, with the increase of the cross-sectional area
of the anchor point, the value of the restoring torque increases slightly, but the maximum
deflection angle of the system decreases.

Considering the mass of the zenith anchor and the cross-sectional area of the anchor
point, the tension of the anchor point is used as a parameter to analyze the maximum
deflection angle outside the equatorial plane of the system. The zenith anchor mass is in
the range of 3.50× 109 kg to 10.00× 109 kg and the cross-sectional area of the anchor point
is in the range of 0.001 m2 to 0.02 m2. The anchor point tension of each model is calculated
by using the method in [21], and the relationship between the anchor point tension and the
system maximum deflection angle is obtained, as shown in Figure 11.

It can be seen from the figure that under the condition of the same anchor point tension,
the greater the zenith anchor mass and the smaller the cross section of the anchor point, the
greater the maximum deflection angle of the system. Under the same cross-sectional area
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of anchor point, the maximum deflection angle of the system and the tension of anchor
point will increase with the increase of zenith anchor mass.

By changing the parameters of the horizontal axis in Figure 11 to the stress of the
anchor point, Figure 12 can be obtained.
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Figure 11. Variation diagram of system maximum deflection angle and anchor point tension.
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Figure 12. Variation diagram of system maximum deflection angle caused by the restoring torque
and anchor point stress.

It can be found that the maximum deflection angle of the system is basically the same
for the models with different parameters under the same anchor point stress. With the
increase of anchor point stress, the maximum deflection angle of the system also increases,
but the degree of increase decreases with the increase of anchor point stress. The minimum
stable deflection angle of the system is about 0.785 radians, and the maximum deflection
angle is about 0.802 radians.

The change of the tensile force at the anchor point of the space elevator system with
the offset angle is shown in Figure 13.

With the increase of the offset angle, the tensile force of the anchor point of the system
decreases gradually. However, the tensile force of the anchor point of the system will not
be reduced to 0, so the offset outside the equatorial plane will not cause the instability of
the system caused by the reduction of the tensile force of the anchor point to 0.
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When the system is offset out the equatorial plane, the maximum deflection angle is
about 0.785 radian to 0.792 radian within a reasonable anchor point stress range (<100 GPa).
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Figure 13. The graph of tensile force at the anchor point with offset angle under the condition of
different parameters. (a) With different zenith anchor masses mc. (b) With different initial cross-
sectional areas a0.

4.3. Stability Range Offset in the Equatorial Plane of the Earth

The same parameters in Table 4 as the out of equatorial offset are used to analyze the
offset in the equatorial plane. The relationship of the restoring torque of the space elevator
system with the offset angle is shown in Figure 14.
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Figure 14. The graph of restoring torque with offset angle under the condition of different parameters.
(a) With different zenith anchor masses mc. (b) With different initial cross-sectional areas a0.

It is the same as the case of offset outside the equatorial plane that the restoring torque
of the system first increases and then decreases with the increase of the offset angle. With the
increase of zenith anchor mass, the value of restoring torque increases, and the maximum
deflection angle of the system also increases. With the increase of the cross-sectional area
of the anchor point, the value of the restoring torque increases, but the maximum deflection
angle of the system decreases. Different from case of offset outside the equatorial plane,
the magnitude of the restoring force and the position of the maximum deflection angle
vary greatly with the zenith anchor mass and the cross-sectional area of the anchor point.

Similarly, by synthesizing the parameters into the stress of the anchor point, the
relationship between the maximum deflection angle and the stress of the anchor point
when offset in the equatorial plane can be obtained, as shown in Figure 15.
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Figure 15. Variation diagram of system maximum deflection angle caused by the restoring torque
and anchor point stress.

As the case of offset outside the equatorial plane, the maximum deflection angle of
the system is basically the same for the models with different parameters under the same
anchor point stress. With the increase of anchor point stress, the maximum deflection angle
of the system also increases, but the degree of increase decreases with the increase of anchor
point stress. However, in the case of offset in the equatorial plane, the minimum maxi-
mum deflection angle of the system is about 0.460 radians, and the maximum maximum
deflection angle is about 0.640 radians.

The change of the tensile force at the anchor point of the space elevator system with
the offset angle is shown in Figure 16.

Max angle: 0.431

Max angle: 0.654
Max angle: 0.918

mc (×10
9 kg)

3.48

5.00

10.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-5.0×108

0

5.0×108

1.0×109

1.5×109

2.0×109

Deflection angle (rad)

F
or
ce
at
an
ch
or
po
in
t(
N
)

(a)

Max angle: 1.006

Max angle: 0.797
Max angle: 0.431

a0 (×10
-2 m2)

0.25 0.50 1.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-5×108

0

5×108

Deflection angle (rad)

F
or
ce
at
an
ch
or
po
in
t(
N
)

(b)

Figure 16. The graph of tensile force at the anchor point with offset angle under the condition of
different parameters. (a) With different zenith anchor masses mc. (b) With different initial cross-
sectional areas a0.

Different from the offset outside the equatorial plane, with the increase of the offset
angle, the tension of the anchor point decreases very rapidly, and becomes 0 after offsetting
a certain angle. When the anchor point tension drops to 0, the offset angle at this time is the
maximum deflection angle of the system due to the anchor point tension. Similar to the
change of restoring torque, the maximum deflection angle caused by the tension of anchor
point also changes greatly with the mass of zenith anchor and the cross-sectional area of
anchor point.
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by synthesizing the parameters into the stress of the anchor point, the relationship
between the maximum deflection angle caused by the tension of anchor point and the
stress of the anchor point when offset in the equatorial plane can be obtained, as shown in
Figure 17.
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Figure 17. Variation diagram of system maximum deflection angle caused by the tension of anchor
point and anchor point stress.

The maximum deflection angle caused by the tension of anchor point of the system is
basically the same for the models with different parameters under the same anchor point
stress. With the increase of anchor point stress, the maximum deflection angle of the
system also increases, but the degree of increase decreases with the increase of anchor point
stress. The minimum stable deflection angle of the system is about 0.380 radians, and the
maximum deflection angle is about 0.990 radians.

Combining the maximum deflection angle of restoring torque and anchor point
tension, and limiting the stress of anchor point to a reasonable range (<100 GPa), Figure 18
can be obtained.
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Figure 18. Variation diagram of system maximum deflection angle at the case in the and anchor
point stress.
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It can be seen from the figure that when the design stress of the anchor point is less
than 20 GPa, the main instability of the space elevator system is due to the reduction of
the force of the anchor point to 0; When the design stress of the anchor point is greater
than 20 GPa, the main instability of the space elevator system is due to the maximum
restoring torque. When the system is offset in the equatorial plane, the maximum deflection
angle is about 0.36 radian to 0.56 radian within a reasonable anchorage point stress range
(<100 GPa).

5. Discussion

The rigid rope model is used in this paper. However, when the actual space elevator
rope is deformed laterally, it can be seen from [21] that the shape of the rope should be
the “s” type. This will lead to the angle deflection of the space elevator rope and a certain
horizontal translation, and the decrease of the rope stress will lead to the decrease of the
elongation of the rope, which will lead to the increase of the overall gravitation and the
decrease of the centrifugal force. This effect has little influence on the restoring torque in
the stability of the space elevator system, but has a great influence on the tension of the
anchor point. Therefore, the next work is applying the more accurate ANCF rope model to
analyze the stability of the space elevator system.

6. Conclusions

The segment space elevator system model has the characteristics of easier construction,
more practical functions and easier maintenance. Based on the model, in this paper, the
stability of the system at the equilibrium point is analyzed by Lyapunov stability theory;
And with the criterion that the change rate of the system restoring torque and the anchor
point tension are greater than 0, the maximum offset angle of the system inside and outside
the equatorial plane is analyzed.

The main conclusions are as follows:

• The segment space elevator is stable near the equilibrium point.
• The maximum deflection angle of the space elevator inside and outside the equatorial

plane is related to the design stress of the anchor point.
• When the space elevator is offset outside the equatorial plane, it will only lose stability

because the restoring torque reaches the maximum value.
• When the space elevator is offset in the equatorial plane, when the design stress of

the anchor point is small, it will lose stability because the tensile force of the anchor
point is reduced to 0, and when the design stress of the anchor point is large, it will
lose stability because the recovery torque reaches the maximum value.

• The stability of the space elevator outside the equatorial plane is better than that in
the equatorial plane.

Stability analysis is a part of the dynamic analysis basis of the space elevator system.
This research provides a basis for the dynamic analysis and safety research of the space
elevator system, and provides a basis for the future research, such as oscillation suppression,
structural design and so on.
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Appendix A

Appendix A.1. Detail Equations of Offset Outside the Equatorial Plane of the Earth

The gravity and centrifugal force on the rope of space elevator system can be obtained
by integrating Equation (23):

Mgo =
∫ pl∗Re

0
dMgo

= a0µρ csc φ

(
1− pa pl cos φ + pa

Nlo
+

(pa − 1)(ps cos φ + 1)
Nso

)
,

(A1a)

Mco =
∫ pl∗Re

0
dMco

=
µρa0R3

e sin φ

6R3
g

(
2 cos φ

(
pa

(
p3

l − p3
s

)
+ p3

s

)
+ 3pa p2

l − 3(pa − 1)p2
s

)
,

(A1b)

where:

Nlo =
√

p2
l + 1 + 2pl cos φ, (A2a)

Nso =
√

p2
s + 1 + 2ps cos φ. (A2b)

Combining Equations (25) and (A1), the simplified recovery torque Mro can be
expressed as

Mro = Mgo + Mtgo −Mco −Mtco

=
µρa0R3

e sin φ

6R3
g

(
2 cos φ

(
pa p3

l − pa p3
s + p3

s

)
+ 3pa p2

l − 3(pa − 1)p2
s

)
+ a0µρ csc φ

(
pa pl cos φ + pa

Nlo
− (pa − 1)(ps cos φ + 1)

Nso
− 1
)

+
plmcµ sin φ

R2
e

(
(pl cos φ + 1)

R4
e

R3
g
− Re

N3
lo

)
.

(A3)

Similarly, for the force in X direction, overall force can be obtained by integrating
Equation (28):

Fgo =
∫ pl∗Re

0
dFgo

=
a0µρ

Re

(
pa pl
Nlo
− (pa − 1)ps

Nso

)
,

(A4a)

Fco =
∫ pl∗Re

0
dFco

=
a0µρ

2Re

(
cos φ

(
pa(p2

l − p2
s ) + p2

s

)
+ 2(pa(pl − ps) + ps)

)
.

(A4b)
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Combining Equations (29) and (A4), the simplified force in the X direction To can be
expressed as

To = Fco + Ftco − Fgo − Ftgo

=
µmc

R2
e
(pl cos φ + 1)

(
R3

e

R3
g
− 1

N3
lo

)

+
a0µρ cos φ

2Re

(
pa(pl − ps)(pl + ps) + p2

s

)
+

a0µρ

ReNso
((pa pl − pa ps + ps) cos φ + (pa − 1)ps)

− a0µρ

ReNlo
pa pl .

(A5)

Appendix A.2. Detail Equations of Offset in the Equatorial Plane of the Earth

The gravity and centrifugal force on the rope of space elevator system can be obtained
by integrating Equation (32):

Mgi =
∫ pl∗Re

0
dMgi

= µρa0 csc θ cos θ

[
(pa − 1)ps

Nsi
− pa pl

Nli

]
+ µρa0 csc θ

[
(pa − 1)

Nsi
− pa

Nli
+ 1
]

,

(A6a)

Mci =
∫ pl∗Re

0
dMci

=
a0µρR3

e sin θ cos θ

2R3
g

(pa pl Nli − (pa − 1)psNsi)

− a0µρR3
e sin θ

4R3
g

(3 cos 2θ − 1)(paNli − (pa − 1)Nsi − 1)

− 3a0µρR3
e

2R3
g

pa sin3 θ cos θ tanh−1
(

pl + cos θ

Nli

)
+

3a0µρR3
e

2R3
g

(pa − 1) sin3 θ cos θ tanh−1
(

ps + cos θ

Nsi

)
+

3a0µρR3
e

4R3
g

sin3 θ cos θ

[
log
(

cos2 θ

2

)
− log

(
sin2 θ

2

)]
,

(A6b)

where:

Nli =
√

p2
l + 1 + 2pl cos θ, (A7a)

Nsi =
√

p2
s + 1 + 2ps cos θ. (A7b)

Combining Equations (33) and (A6), the simplified recovery torque Mri can be
expressed as



Aerospace 2022, 9, 376 22 of 24

Mri = Mgi + Mtgi −Mci −Mtci

=
µplmc sin θ

ReR3
gN3

li

(
R3

e

(
p2

l cos 2θ +
(

p2
l + 3

)
pl cos θ + 2p2

l + 1
)
− R3

g

)
+

1
4

a0µρ sin θ

(
pa pl cos θ + pa

Nli
− (pa − 1)(ps cos θ + 1)

Nsi
− 1
)

+
a0µρpaNli sin θ

4R3
g

(2pl cos θ − 3 cos 2θ + 1)

+
a0µρ(pa − 1)Nsi sin θ

4R3
g

(−2ps cos θ + 3 cos 2θ − 1)

+
a0µρR3

e

4R3
g

sin θ(3 cos 2θ − 1)

+
a0µρR3

e sin θ

4R3
g

[
log
(

sin2 θ

2

)
− log

(
cos2 θ

2

)]
+

3a0µρR3
e sin3 θ cos θ

2R3
g

[
pa tanh−1

(
pl + cos θ

Nli

)
− (pa − 1) tanh−1

(
ps + cos θ

Nsi

)]
.

(A8)

Similarly, for the force in X direction, overall force can be obtained by integrating
Equation (28):

Fgi =
∫ pl∗Re

0
dFgi

=
a0µρ

Re

[
pa pl
Nli
− (pa − 1)ps

Nsi

]
,

(A9a)

Fci =
∫ pl∗Re

0
dFci

=
a0µρR2

e

8R3
g

(3 cos 3θ − 7 cos θ)

+
a0µpaρR2

e Nli cos θ

4R3
g

(2pl cos θ − 3 cos 2θ + 5)

+
a0µ(pa − 1)ρR2

e Nsi

8R3
g

(−2ps cos θ + 3 cos 2θ − 5)

+
a0µρR2

e sin2 θ(3 cos 2θ − 1)
8R3

g

[
2(pa − 1) tanh−1

(
ps + cos θ

Nsi

)
− 2pa tanh−1

(
pl + cos θ

Nli

)]
+

a0µρR2
e sin2 θ(3 cos 2θ − 1)

8R3
g

[
log
(

cos2 θ

2

)
− log

(
sin2 θ

2

)]
.

(A9b)

Combining Equations (37) and (A9), the simplified force in the X direction Ti can be
expressed as
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Ti = Fci + Ftci − Fgi − Ftgi

=
a0µρRe

R2
e

(
(pa − 1)ps

Nsi
− pa pl

Nli

)
+

µmc(pl cos θ + 1)
R2

e N3
li

[
R3

e

R3
g

N2
li(pl cos θ + 1)− 1

]

+
a0µρR2

e cos θpaNli

4R3
g

(2pl cos θ − 3 cos 2θ + 5)

+
a0µρR2

e cos θ(pa − 1)Nsi

4R3
g

(−2ps cos θ + 3 cos 2θ − 5)

+
a0µρR2

e

8R3
g

(3 cos 3θ − 7 cos θ)

+
a0µρR2

e sin2 θ(3 cos 2θ − 1)
8R3

g

[
log
(

cos2 θ

2

)
− log

(
sin2 θ

2

)]
+

a0µρR2
e sin2 θ(3 cos 2θ − 1)

8R3
g

[
2(pa − 1) tanh−1

(
ps + cos θ

Nsi

)
− 2pa tanh−1

(
pl + cos θ

Nli

)]
.

(A10)
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