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Abstract: The traversal inspection of satellites in satellite constellations or geosynchronous orbits
has been a focus of research. A large number of variable orbit requirements in the “single-to-single”
mode severely affects the efficiency of inspections. To address this problem, this study investigated
the problem of a single-impulse flyby co-orbiting two spacecraft and proposed a derivative-free
numerical solution method that used the geometric relationship between the two intersections of the
target and transfer orbits of the flyby problem in order to transform them into a nonlinear equation
in a single variable for a given impulse time. The validity of the proposed method was verified
using numerical examples. While the Lambert problem is one of the bases for solving the variable
orbit problem, on-star intelligent control also raises the requirements for speed. To address this
problem, this study also investigated the Lambert problem in a single-impulse flyby co-orbiting
two spacecraft and determined the iterative initial value by constructing a quadratic interpolation
equation between the inverse of the transfer time and the vertical component of the eccentric vector,
the derivative-free quadratic interpolation cut-off method was proposed. Using 100,000 random tests
showed that computational efficiency was improved by more than one order of magnitude compared
with commonly used methods, with a calculation error of less than 10−6.

Keywords: numerical solution; flyby multi-target; Lambert problem

1. Introduction

Maintaining, detecting, or intercepting targets in space has become a vital area of
space technology research, providing countries with a more significant space information
edge. Meanwhile, satellite constellations, which are made up of a large number of satellites
orbiting in the same orbit [1,2], such as the GPS Navigation System [3] and the Beidou Nav-
igation System [4,5], or satellite communication systems, such as OneWeb and StarLink [6],
are playing an indispensable role in society, as well as in the field of national defense.
Therefore, detecting or maintaining the satellites in these constellations has emerged as
an essential research topic. The flyby multi-target problem [7,8], particularly the flyby
non-coplanar multi-target problem [9,10], was investigated to some extent, but most so-
lutions require numerous orbit maneuvers and are incredibly dependent on the ground
station [11]. Minimizing the number of orbital maneuvers can effectively decrease the
mission constraint, and thus, enhance the efficacy of each orbital maneuver; therefore, it is
crucial to study the single-impulse flyby co-orbital multi-target problem.

The Lambert problem, defined as the problem of finding the impulse time and
value with two given positions and the transfer time, is the fundamental problem in
the single-target flyby/interception problem. A typical way of solving the Lambert prob-
lem is to establish a connection between the transfer time and a Kepler element [12–14]. It
is also common to convert the Lambert problem into an optimization problem by adding
constraints [15–17] to achieve the optimal solution to the interception problem [18,19].
Unfortunately, these methods are sensitive to an initial value for iteration, and thus, the
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b-spline interpolation function is introduced to provide the selection strategy of the initial
value [20]. The Lancaster method is also combined to access initial values quickly [21].
Furthermore, heuristic algorithms, such as particle swarm optimization [21,22], brainstorm
optimization [23], the simulated annealing method [24], deep neural networks [25], and
deterministic artificial intelligence [26], can also be utilized to solve the Lambert problem.

The multi-target flyby/interception problem was previously investigated based on
single-target flyby/interception research. For cosmic navigation [27], there are no cases
of multiple planets in the same orbit; therefore, research is focused on the problem of
multiple planets in the flyby hetero-orbit plane. For example, Battin [28] examined the
trajectory of flybys of Venus and Mars on a single interplanetary trip and conducted
actual flight tests. In the area of artificial earth satellites, Wu [29] studied the non-coplanar
multiple-target interception problem with two or three impulses, proposed a general
solution method, and improved the NSGA-II algorithm to seek the optimal solution.
Li [30] suggested a traversing points-based method for intercepting multiple targets on
the Walker constellation, which was able to quickly determine the orbit of non-coplanar
multi-target interception. The feasibility of the method in a circular orbit was demonstrated
by Dutta [31], who utilized a random greedy adaptive search procedure to optimize a
sequence of rendezvous maneuvers by a spacecraft with multiple targets. Xia [32] explored
non-coplanar two-target interception with a single-impulse problem, establishing nonlinear
equations that are solved using the Newton iteration method, predicated on the relationship
between angular momentum and position vector between interplanar orbits. Xia [33]
simultaneously studied the problem of coplanar multi-target interception but did not
conduct further studies on co-orbital targets.

For a satellite constellation consisting of multiple orbital planes, a nonplanar multi-
target flyby/intercept can be important as a way to traverse all satellites. However, at the
same time, co-orbital multi-target flyby/interception, as another perspective, also has some
importance. For geostationary orbits, the study of the co-orbital multi-target flyby/intercept
problem is an important basis for traversing all satellites. Previous research mainly ad-
dresses the problem of multiple-target flyby/interception on non-coplanar surfaces, and the
majority of them use being non-coplanar as a necessary condition. Nevertheless, a singular
value phenomenon occurs when the orbits are coplanar or co-orbital, and the calculation is
unattainable. Therefore, this study provided a basic definition of the single-impulse flyby
two co-orbital target problem, analyzed the constraint relations in the problem to simplify
it, and proposed a numerical solution to solve it.

The structure of the remainder of this article is organized as follows. In Section 2,
a basic description of the problem is given, upon which a mathematical abstraction is
constructed initially. In Section 3, the constraint relations in the problem are constructed,
reducing the six-dimensional problem to a one-dimensional problem, and the problem’s
mathematical expression is stated. In Section 4, the relationship between the vertical
component of the eccentricity vector and the countdown of transfer time is presented, and
a quadratic interpolation secant method without derivatives is proposed for solving the
coplanar Lambert problem. In addition, a multi-solution secant method is proposed to solve
the co-orbital target flyby problem. In Section 5, several numerical examples demonstrate
the method’s effectiveness. Finally, the conclusions are provided in Section 6.

2. Description of the Problem

The single-impulse flyby two co-orbital spacecraft problem is described in this paper as
using a spacecraft with an orbital altitude lower than the target orbit to fly by two spacecraft
at different positions in the target orbit using a single-impulse maneuver.

There are three primary spacecraft in this problem: a chase vehicle named SC0, and
two target spacecraft named ST1 and ST2. There are four significant times: the initial time
ts, the impulse time t0, the time the chaser intercepts the first target t1, and the time the
chaser intercepts the second target t2. There are three main orbits: the chaser’s orbit O0,
the target’s orbit O1, and the chaser’s transfer orbit O2.
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All variables in this article have two subscripts. The first indicates the satellite number,
with 0 representing the chaser, 1 representing target 1, and 2 representing target 2. The sec-
ond subscript represents the time, such as ts or t1. Each spacecraft’s position at four main
times is depicted in Figure 1. The problem of the single-impulse flyby of two co-orbital
targets can be described as follows. First, at the time t0, the chaser SC0 transfers from the
orbit O0 to the orbit O2. The chaser SC0 then flies by the first target at the time t1, at which
point their positions are r0,t1 and r1,t1 , respectively. Finally, at the time t2, the chaser SC0
flies by the target ST2, whose positions are r0,t2 and r2,t2 . Note that the chaser may perform
a flyby of the target ST2 first. Therefore, the central equation between the positions in this
problem can be written as {

r0,t1 = r1,t1
r0,t2 = r2,t2

or
{

r0,t1 = r2,t1

r0,t2 = r1,t2

(1)
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Figure 1. Geometric interpretation of a single-impulse flyby two co-orbital spacecraft problem.

The problem may be further abstracted as the following mathematical problem after
describing the known conditions and unknown variables. Given the orbital elements of
three spacecraft at the initial time ts, the transfer time t0 and the velocity change vector ∆V
necessary for the chaser SC0 should be found to fly by the targets ST1 and ST2.

According to the problem description, there are six unknown values in this problem:
the impulse time t0, the three-dimensional velocity change vector ∆V, and the flyby times
t1 and t2. Simultaneously, the connections between these variables may be used to simplify
them. For example, there is a Lambert problem between the unknown variables t0 t1 and
∆V. The change vector ∆V and the orbital elements of the transfer orbit may be uniquely
calculated for a given t0 and t1. The intersection of the transfer and target orbit is therefore
determined, and the position of each of the two intersections is the position where the
chase performs a flyby of each of the two targets. Accordingly, given the time t0 and the
time t1, the second flyby position can likewise be predicted—hence, the time t2. In this
method, the problem of a single-impulse flyby of two co-orbital targets is reduced from
a six-dimensional problem to a two-dimensional problem and then to a one-dimensional
problem for a given t0. Therefore, in the next section, a theoretical derivation of this method
is presented, followed by its one-dimensional constraint relation equation.
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3. Mathematical Formulation of the Problem
3.1. Nonlinear Equations for Terminal Constraints

For each spacecraft in its orbital coordinate system, its position can be obtained using
the following formula:

ri,tk =
pi

1 + ei cos θi,tk

(i, j = 0, 1, 2; k = s, 0, 1, 2) (2)

where θi,tk is the true anomaly of its orbit, pi is the semi-latus rectum of the current orbit, and
ei is the eccentricity of the current orbit. All variables and their descriptions can be obtained
in Glossary. Simultaneously, since all three orbits are located in the same plane, there is a
conversion relationship between the true anomaly of the same position in various orbits.

As shown in Figure 2, the angle between the interception’s first position and the
perigee of the chaser’s orbit can therefore be found as follows:

θ0,t1 = θ1,t1 + ∆ωo2,o1 (3)

where ∆ωo0,o1 is the angle between the perigee of the target’s orbit and the perigee of the
chaser’s orbit. This can be provided by the eccentricity vector of the chaser’s orbit and
target’s orbit since

∆ωo2,o1 = arccos
(

e2 · e1

|e2| · |e1|

)
(4)

Aerospace 2022, 9, x FOR PEER REVIEW 4 of 15 
 

 

3. Mathematical Formulation of the Problem 

3.1. Nonlinear Equations for Terminal Constraints 

For each spacecraft in its orbital coordinate system, its position can be obtained using 

the following formula: 

𝑟𝑖,𝑡𝑘 =
𝑝𝑖

1 + 𝑒𝑖 cos 𝜃𝑖,𝑡𝑘
(𝑖, 𝑗 = 0,1,2; 𝑘 = 𝑠, 0,1,2) (2) 

where 𝜃𝑖,𝑡𝑘 is the true anomaly of its orbit, 𝑝𝑖 is the semi-latus rectum of the current orbit, 

and 𝑒𝑖 is the eccentricity of the current orbit. All variables and their descriptions can be 

obtained in Glossary. Simultaneously, since all three orbits are located in the same plane, 

there is a conversion relationship between the true anomaly of the same position in vari-

ous orbits. 

As shown in Figure 2, the angle between the interception’s first position and the per-

igee of the chaser’s orbit can therefore be found as follows: 

1 1 2 10, 1, ,+t t o o  =   (3) 

where Δ𝜔𝑜0,𝑜1 is the angle between the perigee of the target’s orbit and the perigee of the 

chaser’s orbit. This can be provided by the eccentricity vector of the chaser’s orbit and 

target’s orbit since 

2 1

2 1

,

2 1

arccoso o
 

 =    

e e

e e
 (4) 

 

Figure 2. Geometric interpretation of flyby positions. 

Subsequently, considering the relationship between the eccentricity vector and the 

argument of periapsis, it can also be calculated using 

2 1 1 2,o o o o   = −  (5) 

Meanwhile, Equation (2) may be used to write the two crossings of the transfer orbit 

and the target orbit. 

Figure 2. Geometric interpretation of flyby positions.

Subsequently, considering the relationship between the eccentricity vector and the
argument of periapsis, it can also be calculated using

∆ωo2,o1 = ωo1 −ωo2 (5)

Meanwhile, Equation (2) may be used to write the two crossings of the transfer orbit
and the target orbit. {

r0,t1 = p2
1+e2 cos θ0,t1

r1,t1 = p1
1+e1 cos θ1,t1

(6)

Substituting Equation (3) into the first equation of Equation (6) and combining it with
Equation (1) gives

p1

1 + e1 cos θ1,t1

=
p2

1 + e2 cos(θ1,t1 + ∆ωo2,o1)
(7)

Organizing this gives
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(e1 p2 − e2 p1 cos ∆ωo2,o1) cos θ1,t1 + e2 p1 sin ∆ωo2,o1 sin θ1,t1 = p1 − p2 (8)

Simplifying this expression using trigonometric functions, when e2 6= 0 and ∆ωo2,o1 6=
kπ(k = 0, 1), the equation is obtained as follows:

A cos θ1,t1 + B sin θ1,t1 = C
A = e1 p2 − e2 p1 cos ∆ωo2,o1

B = e2 p1 sin ∆ωo2,o1

C = p1 − p2

(9)

Then, two solutions of Equation (9), which represent the true anomaly of the two
interception positions in the target’s orbit, can be obtained for the intersecting ellipse
equations. Then, considering the laws of trigonometric functions, the logic between those
two solutions can be expressed more concisely as follows:

θ1,t1 + θ2,t2 = π A = 0, B · C > 0
θ1,t1 + θ2,t2 = 3π A = 0, B · C < 0
θ1,t1 + θ2,t2 = 2π B = 0
θ1,t1 + θ2,t2 = π − 2d A · B 6= 0, C > 0
θ1,t1 + θ2,t2 = 3π − 2d A · B 6= 0, C < 0

(10)

where
d = arctan

A
B

, d ∈
[
−π

2
,

π

2

]
(11)

The relationship between θ2,t2 and θ1,t1 is the same as the relationship shown in
Equation (12). Thus, once the true anomaly of the first flyby target in the target orbit is
determined, the true anomaly of the second flyby target is also obtained. Therefore, the
mean anomaly can be calculated using{

tan E
2 =

√
1−e
1+e tan θ

2
M = E− e sin E

(12)

Thereby, the time t2 is given by the expression

t2 =
M2,t2 −M2,t0

n1
+ t0 (13)

It can also be written as

t2 =
M1,t2 −M1,t1

n2
+ t1 (14)

Subtracting Equation (16) using Equation (15) gives

f (t0, t1) ,
M2,t2 −M2,t0

n1
−

M1,t2 −M1,t1

n2
+ t0 − t1 = 0 (15)

Finally, Equation (17) establishes nonlinear equations with only two independent
variables—the impulse time t0 and the first flyby time t1.

However, Equation (10) demands the use of the eccentricity vector e2 and the semi-
latus rectum p2 of the transfer orbit during the computation, which necessitates first solving
the Lambert problem constituted by the corresponding positions of t0 and t1. This problem
is investigated further in the following subsection.

3.2. Nonlinear Equations for Coplanar Lambert Problem

For a given Lambert problem, the eccentricity vector e can be divided into a component
eT perpendicular to the transfer chord and a component eF parallel to the transfer chord.
Then, the eccentricity of the orbit becomes

e =
√

eT2 + eF2 (16)
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As shown in Figure 3, the length of the chord can be calculated using

c = ‖r1,t1 − r0,t0‖ (17)
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Additionally, the component parallel to the transfer chord can be obtained using

eF =

∣∣r1,t1 − r0,t0

∣∣
c

(18)

It is clearly shown that eF is a constant for a given Lambert problem.
For the transfer orbit with the eccentricity vector e2:

e2 = e2F îF + e2T îT (19)

where {
îF =

r1,t1−r0,t0
‖r1,t1−r0,t0‖

îT = îh × îF
(20)

Furthermore, îh is the unitized angular momentum vector. Then, the true anomaly of
the impulse position and interception position 1 in the transfer orbit can be obtained using

θ0,t1 =

arccos
(

e2·r1,t1
|e2|·|r1,t1 |

)
(e2 · r1,t1 6= 0)

π
2 + kπ(k = 0, 1) (e2 · r1,t1 = 0)

(21)

Meanwhile, the true anomaly of the transfer orbit at the time t0 can be obtained using
a transformation relation analogous to Equation (3).

θ0,t0,o2 = θ0,t0,o0 + ∆ωo2,o0

∆ωo2,o0 = arccos
(

e2·e0
|e2|·|e0|

)
(e2 · r1,t1 6= 0)

∆ωo2,o0 = π
2 + kπ(k = 0, 1)(e2 · r1,t1 = 0)

(22)

Then, the mean anomaly of the transfer orbit at the time t0 and the time t1 can be
obtained using Equation (14). The semi-latus rectum of the transfer orbit can also be
calculated using

p2 = r1,t1 + e2 cos θ1,t1 (23)
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Then, defining the semimajor axis with a = p/1− e2, the orbital angular velocity can

be calculated using n =
√

µ

a3 . Finally, the orbital transfer time yields

∆t =
M1,t1 −M0,t0,o2

n2
= f

(
r0,t0 , r1,t1 , e0; eT

)
(24)

where the transverse eccentricity component eT is the only unknown, considering that only

when 0 ≤ e2 < 1 is meaningful can the value e2T be a constraint in
(
−
√

1− e2
2F,
√

1− e2
2F

)
.

4. Numerical Method without Derivation for the Two Equations
4.1. Solution of Lambert Problem without Derivation

Newton’s iteration method is typically used to solve the above problems. However, the
Newton iteration method is susceptible to the initial value. If the initial value is not suitable,
the solution cannot converge. At the same time, when using the Newton iteration method,
the above implicit function needs to be derived, which further increases the complexity of
solving this problem. Since the transfer time ∆t is a monotonically increasing function of
the vertical component eT in the interval of the domain of the definition [34], a quadratic
interpolation secant method was proposed in this study. The basic process is shown in
Figure 4.
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𝑓(𝐑0,𝑜0,𝑡0 , 𝐑1,𝑜1,𝑡1; 𝑒𝑇,𝑘)(𝑒𝑇,𝑘 − 𝑒𝑇,𝑘−1)

𝑓(𝐑0,𝑜0,𝑡0 , 𝐑1,𝑜1,𝑡1; 𝑒𝑇,𝑘) − 𝑓(𝐑0,𝑜0,𝑡0 , 𝐑1,𝑜1,𝑡1; 𝑒𝑇,𝑘−1)

𝑓(𝐑0,𝑜0,𝑡0 , 𝐑1,𝑜1,𝑡1; 𝑒𝑇) =
𝑀1,𝑜1,𝑡1 −𝑀0,𝑜0,𝑡0

𝑛2
− Δ𝑡

 (27) 

Figure 4. Flowchart of the quadratic interpolation chord cut algorithm.
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The quadratic interpolation function stated in the flowchart is

eT =
a

∆t2 +
b

∆t
+ c (25)

where the parameters are calculated using

a
b
c

 =


1

∆t2
f irst

1
∆t f irst

1
1

∆t2
mid

1
∆tmid

1
1

∆t2
last

1
∆tlast

1


−1eT, f irst

eT,mid
eT,last

 (26)

The final iterative formula is as follows:eT,k+1 = eT,k −
f (R0,o0,t0 ,R1,o1,t1 ;eT,k)(eT,k−eT,k−1)

f (R0,o0,t0 ,R1,o1,t1 ;eT,k)− f (R0,o0,t0 ,R1,o1,t1 ;eT,k−1)

f
(
R0,o0,t0 , R1,o1,t1 ; eT

)
=

M1,o1,t1−M0,o0,t0
n2

− ∆t
(27)

Several points need to be clarified here. It is necessary to find the initial points instead
of selecting the first and last points as the initial points because the primary motivation
is that the interpolation between the time ∆t corresponding to the first and last points is
too large, typically surpassing 10−6, preventing the iterations from proceeding correctly.
Simultaneously, the initial value-finding algorithm can significantly reduce the number
of iterations. The second point that must be addressed is why quadratic functions are
employed. Using quadratic functions reduces the amount of computing required, while
quadratic functions fit the curve better than linear interpolation, with the mean degree-of-
freedom-adjusted coefficient of the determination being 0.998 for 100,000 random tests.

4.2. Solution of Single-Impulse Flyby Two Co-Orbital Spacecraft Problem without Derivation

Equation (17) gives the functional relationship between the time t0 and the time t1;
therefore, for any given t0, t1 can be found using Equation (17). Since Equation (17) is a
transcendental equation and cannot be solved directly, it can generally be solved using
an iterative method. Because Equation (17) is difficult to derivate, this study adopted a
multi-solution secant method to solve it. The multi-solution secant method was to find all
the initial points for which a solution may exist and iteratively solve them using the secant
method. The flowchart of the method is shown in Figure 5:
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The iterative formula is t1,k+1 = t1,k −
f (t0,t1,k)(t1,k−t1,k−1)
f (t0,t1,k)− f (t0,t1,k−1)

f (t0, t1) =
M2,o1,t2−M2,o1,t0

n1
− M1,o2,t2−M1,o2,t1

n2
+ t0 − t1

(28)

5. Numerical Examples

In this section, several numerical examples are provided for the single-impulse flyby
co-orbital spacecraft problem under the two-body models and the Lambert problem under
this problem. All tests were performed on an Intel® Core™ i7-9750H CPU at 2.60 GHz with
Windows 10 and run on MATLAB R2018b.

5.1. The Lambert Problem

The algorithm was tested on a series of 100,000 randomly generated sample problems,
with values of ∆θ between 0 and 2π, r ranging from 7000 to 36,000, and the desired
nondimensional transfer time varying between 0.01 and 10,000. The result is shown in
Figure 6.
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As Table 1 shows, compared with the universal variable method, the efficiency was
sharply improved by 92.09%. It also improved by 45.69% compared with the traversal
search method. In terms of the number of iterations, the number of times was reduced from
58.95 to 3.26—a dramatic decline of 94.47%. Figure 7 shows that the calculation results of
both algorithms were almost identical, with an average error in the order of 10−7 as shown
in Figure 7.

Table 1. Results for the computation time of the simulation.

Average Computation Time (ms) 1000 Times 10,000 Times 50,000 Times 100,000 Times Efficiency Improvement

Universal variable method [35] 1.3581 1.3593 1.3547 1.3543 92.09%
Traversal search method 0.2120 0.2039 0.1977 0.1972 45.69%

Our method 0.1118 0.1114 0.1075 0.1071
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5.2. The Single-Impulse Flyby Co-Orbital Spacecraft Problem

There may be two solutions for each specific orbital element: case 1—fly by target 1
first and then target 2, and case 2—fly by target 2 and then target 1. Figures 8 and 9
show the two solutions to the specific orbit elements of the problem. Table 2 shows the
orbit elements.
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Table 2. Initial orbital elements of the problem.

Spacecraft rp (km) ra (km) i (◦) Ω (◦) ω (◦) f (◦)

SC0 7134 7861

23 11

38 17

ST1
9871 10,306 40

81

ST2 82

Random Initial Orbital Elements

The experiment consisted of 1000 cases with randomly generated orbital elements.
For each case, simulations were performed at 10,000 time points within one period of the
chaser’s orbit. The ranges of the orbital elements are shown in Table 3.

Table 3. Random initial orbital elements of the problem.

Spacecraft rp (km) ra (km) i (◦) Ω (◦) ω (◦) f (◦)

SC0 [7000, 7500] [7500, 9000]

[0, 45] [0, 90]

[0, 45] [0, 45]

ST1
[9000, 10, 000] [10, 000, 12, 000] [0, 180]

[0, 90]

ST2 [0, 270]

For the initial time ts = 0, the impulse time t0 was restricted to 0 ≤ t0 < T0, and the
time t1 was limited to t0 < t1 ≤ t0 + 10000 s.

As can be seen in Figure 10, the simulation findings revealed that justifiable solutions
existed in 91.32% of cases. Moreover, the eccentricity of the transfer orbit in these solutions
was predominantly concentrated between [0.4, 0.6) and [0.9, 1), with the average ∆v
increasing as the eccentricity increased from 0.6713 m/s to 8.7171 m/s. Only 8.68% of the
cases had no solutions, where these Lambert problems were formed by t0 and t1 values
that had no solution with an eccentricity of less than 1.
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6. Conclusions

In this study, the single-impulse flyby co-orbital spacecraft problem and the Lam-
bert problem were studied, and a derivative-free method was provided. Focusing on the
Lambert problem, the vertical component eT of a single variable was selected, the rela-
tionship between eT and the reciprocal of the transfer time ∆t−1 was used to propose an
initial value calculation method based on quadratic function fitting, and then this was
combined with the secant method. This generated a non-derivative method to solve the
problem. For the single-impulse flyby co-orbital spacecraft problem, using the relationship
between the two intersection points of the target orbit and the transfer orbit, the problem
was transformed into a nonlinear equation of the time t1 for a given impulse time t0, and
the iterative formulas of the linear interpolation search method for initial value selection
and the iterative formula of the chord secant method were given. The simulation results
showed that the proposed method could effectively improve the solution efficiency of the
Lambert problem and demonstrate the effectiveness of the transfer orbit calculation results
for a given impulse time. In addition, the general conditions for the existence of a solution
were presented based on simulation data, providing a foundation for future research on
this problem.

Of course, this research needs to be continued in further depth and focused on the
following aspects. First, the details of the model should be further optimized. In this study,
only a solution for the two-body condition was considered, and the next step could be to
continue exploring the solution to this problem under orbital uptake. The second aspect is
to analyze the access efficiency of a single pulse for the same orbit multi-target problem,
and further investigate how to optimally use fuel by studying the access of a single target to
the satellite constellation using different pulses to achieve it. Third, an engineering-based
implementation of the Lambert algorithm is possible. In this study, we only used the
MATLAB environment to compare the computational efficiency of different algorithms. In
engineering, low-level languages are typically used; therefore, it will be more meaningful
to engineer the algorithm using C language or Fortran. At this stage, vehicle trajectory
optimization is becoming more and more intelligent, but compared with other intelligent
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fields, whether it is stochastic AI or deterministic AI, the crucial prerequisite for intelligent
vehicle trajectory is its mathematical and physical basis. Therefore, the next step in our
research is determining how to make intelligent spacecraft learn to use these formulas.
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Glossary

c Length of the transfer chord
ei Eccentricity vector of orbit i
ei Eccentricity of orbit i
e2T Perpendicular component of the transfer chord
e2F Parallel component of the transfer chord
Mi,tj Mean anomaly of spacecraft i at time tj
ni Mean motion of orbit i
pi Semi-latus rectum of orbit i
ri,tj Position of spacecraft i at time tj
ri,tj Distance between spacecraft i and earth center at time tj
θi,tj Anomaly of spacecraft i at time tj
ωoi Perigee of orbit i
∆ωoi ,oj Angle between perigees of two orbits (from i to j)
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