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Abstract: This paper proposes a novel fully nonlinear refined beam element for pre-twisted struc-
tures undergoing large deformation and finite untwisting. The present model is constructed in the
twisted basis to account for the effects of geometrical nonlinearity and initial twist. Cross-sectional
deformation is allowed by introducing Lagrange polynomials in the framework of a Carrera unified
formulation. The principle of virtual work is applied to obtain the Green–Lagrange strain tensor and
second Piola–Kirchhoff stress tensor. In the nonlinear governing formulation, expressions are given
for secant and tangent matrices with linear, nonlinear, and geometrically stiffening contributions. The
developed beam model could detect the coupled axial, torsional, and flexure deformations, as well as
the local deformations around the point of application of the force. The maximum difference between
the present deformation results and those of shell/solid finite element simulations is 6%. Compared
to traditional beam theories and finite element models, the proposed method significantly reduces
the computational complexity and cost by implementing constant beam elements in the twisted basis.

Keywords: refined beam theory; geometrical nonlinearity; Carrera unified formulation; local
mapping; large displacement; finite untwist

1. Introduction

The increasing application of initially twisted structures has attracted numerous
researchers due to their structural strengthening capabilities [1,2] and highly coupled me-
chanical properties [3]. However, these twisted structures may be subjected to large loads,
such as centrifugal forces, actuator forces to achieve shape morphing, and deploying forces
to achieve foldable designs. In-depth investigations usually lack computationally friendly
tools to capture their complex nonlinear behaviors—i.e., large bending–bending–torsional
deformation, cross-sectional in-plane and out-plane deformation. The development of re-
fined beam theories may provide a proper choice to consider nonlinear and coupled effects
with reasonable computational cost. The refinement of the cross-sectional displacement
field could advance the beam theories in two respects: (i) the distribution of generalized
displacements over the cross section is approximated by two-dimensional polynomials in
the cross-sectional domain, and (ii) the choice of expansion functions allows the precise
mapping of the cross section.

In the pioneering work of Giavotto et al. [4], Saint-Venant warping was used to refine
the cross-sectional field description in the three-dimensional beam formulation. This
technique was later extended to the case of large displacement formulation [5] and curved
and twisted beam formulation [6]. Exact geometrical theories further separated the beam
model to a displacement field of the reference axis and a rotational field of the cross-section
to incorporate torsional warping [7]. By characterizing the reference axis with arbitrary
cross section differently, it was possible to treat large deformation analysis of space-curved
beams with eccentric cross section [8], finite stretches and rotations [9], co-rotational beam
elements with finite 3D rotations [10], continuous translation and rotation [11], and thin-
walled beams formulated using the special Euclidean group [12]. To obtain a generalized
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cross-sectional behavior, additional deformation modes were introduced. These included
distortional and warping functions [13,14], two warping functions for bending and one
warping function for torsion [15], and a linear combination of cross-sectional deformation
functions known as “generalized beam theory” [16–18].

In the framework of the Carrera unified formulation (CUF), an arbitrary number of
cross-sectional deformation functions was used to accurately capture the structural char-
acteristics that involve coupled behavior involving bending–torsional–axial coupling [19]
and bending–bending coupling [20]. For large deformation analysis and post-buckling
response, Lagrange polynomial expansions were implemented [21,22]. More recently, CUF
theory showed good success in analyzing the nonlinear behavior of coupled field problems
involving large cross-sectional deformation using different expansion polynomials [23].

When more recent applications are considered, pre-twisted composite wings were
modeled as thin-walled beams to investigate their geometrically nonlinear aeroelastic
behavior [24]. Pre-twisted functionally graded (FG) microbeams were modeled using mod-
ified strain gradient theory and first-order shear deformation theory [25]. A fully nonlinear
stick-and-spring model for graphene was constructed to analyze the size effect [26]. An
extended Euler–Bernoulli theory was developed to study nonlinear longitudinal–bending–
twisting vibrations of a slowly rotating extensible beam [27].

In this work, we provide a robust, efficient, and accurate representation of the geomet-
rically nonlinear behavior of thin, pre-twisted structures typically used in the aerospace and
automotive industries. The present method has advantages in three aspects: (1) compared
to traditional beam theories and finite element models, the proposed method significantly
reduces the computational complexity and cost by implementing constant beam elements
in the twisted basis; (2) the same discretization could be implemented for any pre-twisted
structure as long as it has the same cross section; (3) compared to previous work by the
authors, which assumed only longitudinal geometrical nonlinearity [2,20], the present
model includes full geometrical nonlinearity of pre-twisted structures. Large deformation
analysis is allowed to capture coupled axial, torsional, and flexure deformations, as well as
the local deformations around the point of application of the force.

This paper develops a refined beam theory for geometrically nonlinear pre-twisted
structures in the CUF framework. First, through tensor calculations in the orthogonal curvi-
linear coordinate system, linear and nonlinear partial differential operators are obtained
to calculate the strain field in the twisted basis. Secondly, utilizing the high-order and
localized cross-sectional displacement field description capabilities of CUF, the nonlinear
strain–displacement and stress–strain relationships are constructed. Then, the nonlinear
governing equation for a refined beam is obtained for the pre-twisted structure. By lin-
earizing the equation, the expression of the tangent stiffness matrix is obtained from the
secant stiffness matrix. Finally, the arc length method is applied to solve the governing
equation, and the response curves and three-dimensional (3D) configurations of deformed
pre-twisted structures are obtained.

2. Kinematic Description of Pre-Twisted Structures

Figure 1 shows the geometrical description of a pre-twisted structure defined in four
different coordinate systems. They are the Cartesian orthonormal basis (ex, ey, ez) located at
one end of the pre-twisted structure, the twisted orthonormal basis (eξ , ey, eη) translating
and rotating along the longitudinal direction to trace the structural twist, and the covariant
basis (g1, g2, g3) and contravariant basis (g1, g2, g3) describing the deformation gradient in
the twisted basis.
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Figure 1. Geometrical description of a pre-twisted structure in the reference configuration with the 
Cartesian basis (ex, ey, ez), the twisted basis (eξ, ey, eη), the covariant basis (g1, g2, g3), and the contra-
variant basis (g1, g2, g3). 

The twisted base vectors are related to the Cartesian coordinate system by the trans-
formation matrix T as follows: 
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with ϕ being the twist angle per unit length and θ as the phase angle in the y = 0 plane. 
For the sake of simplification, the notations c = cos(ϕy + θ) and s = sin(ϕy + θ) are intro-
duced in the following analysis. 
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Figure 1. Geometrical description of a pre-twisted structure in the reference configuration with
the Cartesian basis (ex, ey, ez), the twisted basis (eξ , ey, eη), the covariant basis (g1, g2, g3), and the
contravariant basis (g1, g2, g3).

The twisted base vectors are related to the Cartesian coordinate system by the trans-
formation matrix T as follows: eξ

ey
eη

 = T

ex
ey
ez

 (1)

where the transformation matrix is expressed as

T =

 cos(φy + θ) 0 sin(φy + θ)
0 1 0

− sin(φy + θ) 0 cos(φy + θ)

 (2)

with φ being the twist angle per unit length and θ as the phase angle in the y = 0 plane. For
the sake of simplification, the notations c = cos(φy + θ) and s = sin(φy + θ) are introduced in
the following analysis.

The position vector of any point of the structure in the twisted basis is defined as

X(x, y, z) = ξeξ(y) + yey + ηeη(y) (3)

To derive the differential operators in the twisted basis, the local covariant basis is
introduced as follows:

(g1, g2, g3) = (∂X/∂ξ, ∂X/∂y, ∂X/∂η) (4)

From Equations (5)–(7), the relationship between the covariant basis and the twisted
basis can be written as

g1 = eξ(y), g2 = −φηeξ(y) + ey + φξeη(y), g3 =eη(y) (5)

and in matrix form as 
g1
g2
g3

 = [J]T


eξ

ey
eη

, [J]T =

 1 0 0
−φη 1 φξ

0 0 1

 (6)

The underlined covariant basis (g1, g2, g3) is a local basis and varies with the material
point considered. This is an obvious consequence of the curvedness of the coordinate
system. This is the result of Equation (4), where the vectors of the covariant basis at a point
are tangent to the three coordinate curves passing through it.
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It is worth noting that in the covariant basis, the components of the vectors and the
tensors are defined locally. For instance, the covariant metric tensor, defined by gmn =
gm · gn, is given by

(gmn) =

 1 −φη 0
−φη φ2(η2 + ξ2)+ 1 φξ

0 φξ 1

 (7)

By introducing gm · gn = δn
m, ∀m, n = 1, 2, 3., the contravariant basis (g1, g2, g3) is

defined. The contravariant metric tensor components relate the covariant counterparts by
the following expression:

(gik)
(

gkj
)
= I (8)

Using Equations (7) and (8), the contravariant components of the metric tensor is
derived as follows:

(gmn) =

φ2η2 + 1 φη −φ2ξη
φη 1 −φξ
−φ2ξη −φξ φ2ξ2 + 1

 (9)

Then, we can define the local contravariant basis by the following:

gm = (gm·gn)gn = gmngn (10)

The components of the base vectors are specifically written as

g1 = eξ(y) + φηey, g2 = ey, g3 = −φξey + eη(y) (11)

and in the matrix form as
g1

g2

g3

 = [K]


eξ

ey
eη

, [K] = [J]−1 =

1 φη 0
0 1 0
0 −φξ 1

 (12)

The Christoffel symbols of the second kind Γk
ij, i, j, k = 1, 2, 3, associated with the

covariant and contravariant bases by Γk
ij = gi,j·gk, are given by

Γ1
nm =

0 0 0
0 −φ2ξ −φ
0 −φ 0

,Γ2
nm =

0 0 0
0 0 0
0 0 0

,Γ3
nm =

0 φ 0
φ −φ2η 0
0 0 0

 (13)

3. Nonlinear Green Lagrange Strain

The deformation components of an arbitrary point in the twisted basis can be described asuξ

uy
uη

 =

 c 0 s
0 1 0
−s 0 c

ux
uy
uz

 (14)

For the displacement vector
{

uξ , uy, uη

}
of a specific point, the covariant and con-

travariant components are specified by the following expressions:

ui = u · gi, ui = u · gi u1
u2
u3

 =

 uξ

−φηuξ + uy + φξuη

uη

,

 u1

u2

u3

 =

 uξ + φηuy
uy

−φξuy + uη

 (15)
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The 3D Green–Lagrange strain tensor is given by half the increment in the 3D metric
tensor. When written in the covariant basis of the curvilinear coordinate system, the
strain–displacement relationship is given by

ε = εijgi ⊗ gj, εij =
1
2

(
ui|j + uj|i + uk|iuk

|j

)
(16)

where
ui|j = ui,j − Γk

ijuk

ui
|j = ui

,j + Γi
kju

k (17)

Substituting Equations (13) and (15) into Equation (17), the first-order covariant deriva-
tives of the covariant and contravariant displacement components are obtained as follows:

u1|1
u2|2
u3|3
u1|3
u3|1
u2|3
u3|2
u1|2
u2|1


l

=



∂ξ 0 0
φ2ξ − φη∂y ∂y φ2η + φξ∂y

0 0 ∂η

∂η 0 0
0 0 ∂ξ

−φη∂η ∂η φξ∂η

φ 0 ∂y
∂y 0 −φ
−φη∂ξ ∂ξ φξ∂ξ




uξ

uy
uη

,
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u1
|1

u2
|2

u3
|3

u1
|3

u3
|1

u2
|3

u3
|2

u1
|2

u2
|1
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l

=



∂ξ φη∂ξ 0
0 ∂y 0
0 −φξ∂η ∂η

∂η φη∂η 0
0 −φξ∂ξ ∂ξ

0 ∂η 0
φ −φξ∂y ∂y
∂y φη∂y −φ
0 ∂ξ 0




uξ

uy
uη

 (18)

From Equations (16) and (18), the Green–Lagrange strain vector can be written in the
contravariant basis as follows:

ε11
ε22
ε33

2ε13
2ε23
2ε12


l

= bcov,l


uξ

uy
uη

+ bcov,nl



u2
ξ

u2
y

u2
η

uξ uη

uηuξ


(19)

where the expressions of bcov,l and bcov,nl are given in Equations (A1) and (A2), respectively.
To derive the components of the strain vectors in the twisted basis, the relationship

between the deformation gradients in the twisted basis and the covariant basis is established
as follows:

uα,β = ui,j(K)T
αi(K)

T
βj (20)

where Greek subscripts α and β denote components ξ, y, and η in the twisted basis. Accordingly,

εαβ = εij(K)T
αi(K)

T
βj (21)

Therefore, the Green–Lagrange strain tensor can be expressed in the twisted basis as

εξξ

εyy
εηη

2εξη

2εyη

2εξy


= bl


uξ

uy
uη

+ bnl



u2
ξ

u2
y

u2
η

uξ uη

uηuξ


(22)

where the expressions of bl and bnl are given in Equations (A3) and (A4), respectively.
Here, the coefficients of the differential operators used in the twisted basis (i.e., ∂ξ,

∂η, Λ) are independent of the axial coordinate. For initially twisted helical structures, the
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translational invariance of the differential operator coefficients is essential to assume that the
beam mechanical properties do not vary along the axial direction in the twisted basis [28].

4. Constitutive Law

A constitutive law of linearly elastic material establishes a linear relationship between
the second Piola–Kirchhoff stress tensor σ and the Green–Lagrange strain tensor ε by

σ = σijgi ⊗ gj, σij = Cijklεkl (23)

Since these tensors are second order, the elasticity tensor is given in the covariant basis
by the following fourth-order tensor:

C = Cijklgi ⊗ gj ⊗ gk ⊗ gl , Cijkl = λgijgkl + G
(

gikgjl + gil gjk
)

λ = νE
(1+ν)(1−2ν)

, G = E
2(1+ν)

(24)

In the twisted basis, the elasticity tensor can be defined as

C = Cαβωγeα ⊗ eβ ⊗ eω ⊗ eγ (25)

where the Greek subscripts α, β, δ, and γ denote the components ξ, y, and η in the
twisted basis.

By introducing the Kronecker δ, the tensor components in the twisted basis are
obtained as

Cαβωγ = Cijkl Jαi Jβj Jωk Jγl =
[
λgijgkl + G

(
gikgjl + gil gjk

)]
Jαi Jβj Jωk Jγl

= λδαβδωγ + G
(
δαωδβγ + δαγδβω

) (26)

Finally, the elasticity coefficients that relate the stress vector to the strain vector in the
twisted basis can be given by

C =



λ + 2G λ λ 0 0 0
λ λ + 2G λ 0 0 0
λ λ λ + 2G 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

 (27)

The above expression coincides with the one obtained in the Cartesian basis, as the
twisted basis is orthonormal.

5. Carrera Unified Formulation

To include geometrical nonlinearity of thin structures, the displacement field is
enriched with the higher order terms in the framework of the Carrera unified formu-
lation (CUF). Herein, the displacement vector u at any point is approximated by the
following expression:

u(ξ, y, η, t) = Fs(ξ, η)Nj(y)qsj(t), s = 1, 2, · · · , Mu (28)

where qsj is the generalized displacement vector, Nj represents the shape functions along
the axial direction, and Fs denotes the expansion functions of the beam cross section, with
Mu as the order of Fs. Here, we use Einstein’s summation convention—i.e., summation
signs are not written for all indices that repeat once as a subscript and once as a superscript
in an expression. Additionally, subscripts and superscripts s and j are called dummy
indices, since they can be replaced by any other letters—i.e., τ and i.

Several different types of polynomials could be used to construct the expansion func-
tions describing the cross-sectional geometry, including Taylor expansions (TE), Lagrange
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expansions (LE), and Hierarchical Legendre expansions (HLE). The TE expands the poly-
nomial globally over the cross section from the beam axis, while the LE beam theories
discretize the cross section physical surface into a number of local expansion sub-domains,
whose polynomial degree depends on the type of Lagrange expansion employed. Three-
node linear L3, four-node bilinear L4, nine-node quadratic L9, and sixteen-node cubic L16
polynomials have been developed in the framework of CUF. HLE models combine the main
features of the previous beam theories, including the hierarchy of the high-order terms
of TE and the geometric discretization of the beam section surface of LE. For the sake of
brevity, their expressions are not included here, but they can be found in the literature [29].

In the framework of CUF, the strain vector in the twisted basis is calculated as follows:

ε =
(

Bsj
l + Bsj

nl_1 + Bsj
nl_2

)
qsj (29)

where the expressions of Bsj
l , Bsj

nl_1, and Bsj
nl_2 are given in Equations (A5)–(A7), respectively.

The stress vector and the virtual variation of the strain vector are derived in terms of
the generalized displacement vector as

σ = C
(

Bsj
l + Bsj

nl

)
qsj

δε = δ
((

Bτi
l + Bτi

nl

)
qτi

)
=
(

Bτi
l + 2Bτi

nl

)
δqτi

(30)

6. Equations of Motion

Substituting the stress and strain vectors, the variation of the elastic potential energy
δU is given by

δU =
∫

V
δεTσdV = δqT

τi

∫
V

(
Bτi

l + 2Bτi
nl

)T
C
(

Bsj
l + Bsj

nl

)
dVqsj (31)

According to the definition, the secant stiffness matrix Kijτs
s relates to the strain energy by

δU = δqT
τiK

ijτs
s qsj, Kijτs

s = Kijτs
l + Kijτs

lnl + Kijτs
nll + Kijτs

nlnl (32)

where Kijτs
l represents the linear component, Kijτs

lnl and Kijτs
nll are the first-order nonlinear

contributions, and Kijτs
n ln l contains the second-order nonlinearities. They are expressed as

Kijτs
l =

∫
V

(
Bτi

l

)T
CBsj

l dV, Kijτs
lnl =

∫
V

(
Bτi

l

)T
CBsj

nldV

Kijτs
nll = 2

∫
V

(
Bτi

nl

)T
CBsj

l dV, Kijτs
nlnl = 2

∫
V

(
Bτi

nl

)T
CBsj

nldV
(33)

Since the secant stiffness matrix is generally not symmetrical, the numerical results
are merely with low orders of convergence. A symmetrical tangent stiffness matrix can be
derived by linearizing the virtual variation of the strain energy as follows:

δ(δU) = δ
∫

V
δεTσdV =

∫
V

δ
(

δεT
)
σ+ δεTδσdV = δqT

τiK
ijτs
T qsj (34)

From Equation (29), the linearization of the virtual variation of the strain is calculated as

δ
(

δεT
)
=


δqξτiδqξsj
δqyτiδqysj
δqητiδqηsj
δqξτiδqηsj
δqητiδqξsj


T

(B∗nl)
T =

δqξτiδqξsj
δqyτiδqysj
δqητiδqηsj

T(
B∗nl_1

)T
+

[
δqξτiδqηsj
δqητiδqξsj

]T(
B∗nl_2

)T (35)

where B∗nl_1 and B∗nl_2 are given in Equations (A9) and (A10), respectively.
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Then, the first contribution of the virtual variation of the strain energy δ(δU) is derived as

∫
V

δ
(

δεT
)
σdV =

∫
V


δqξτiδqξsj

δqyτiδqysj
δqητiδqηsj

T(
B∗nl_1

)T
+

[
δqξτiδqηsj
δqητiδqξsj

]T(
B∗nl_2

)T

σdV = δqT
τiK

ijτs
σ δqsj (36)

where the expression of Kijτs
σ is given in Equation (A11).

The second term of the virtual variation of the strain energy δ(δU) is defined as∫
V

δεTδσdV = δqT
τi

∫
V

(
Bτi

l + 2Bτi
nl

)T
C
(

Bsj
l + 2Bsj

nl

)
dVqsj = δqT

τi

(
Kijτs

l + Kijτs
T1

)
qsj (37)

where
Kijτs

T_1 = 2Kijτs
lnl + Kijτs

nll + 2Kijτs
nlnl (38)

Combining Equations (34), (36) and (37), the tangent stiffness matrix is given by

Kijτs
T = Kijτs

l + Kijτs
T1 + Kijτs

σ (39)

where Kijτs
l , Kijτs

T1 , and Kijτs
σ are the linear stiffness matrix, the nonlinear stiffness matrix, and

the geometrically stiffening stiffness matrix, respectively. Unlike Ks, all the contributions
of the tangent stiffness matrix are symmetrical.

When the pre-twist contributions are not included, the secant and tangent stiffness
matrices have the same expression as those given by [30]. If the pre-twist terms are included,
the strong coupling of nonlinear axial and cross-sectional deformations is reflected.

As for the external work, the contributions from volume forces g, surface forces p, line
forces q, and concentrated force P at point Q are considered. The variation of the external
work is written as

δLext =
∫

V δuTgdV +
∫

S δuTpdS +
∫

L δuTqdy + δuT
∣∣
QP

= δqT
τi
(∫

V Fτ NigdV + Ni
∫

S FτpdS + Fτ

∫
L qdy + Fτ NiP

) (40)

From Equation (32), the nonlinear governing equation is formulated as follows:

Kijτs
s qsj = Fτi (41)

where the generalized force vector Fτi is expressed as

Fτi =
∫

V
Fτ NigdV + Ni

∫
S

FτpdS + Fτ

∫
L

qdy + Fτ NiP (42)

7. Arc-Length Method

Using Crisfield’s arc-length method, Equation (41) is rewritten as

Rτi = λFτi −Kijτs
s qsj (43)

where Rτi represents the generalized out-of-balance force vector, and λ is the scalar
load parameter.

Along the response curve of the nonlinear deformation, the incremental expression of
the governing equation becomes

∆λFτi −Kijτs
T ∆qsj = 0 (44)

At any incremental step of the converged solution, the iteration direction is orthogonal
to the tangent of the response curve. By fixing the length of the incremental step, the
constraint equation with a constant arc length is formulated as
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∆qT
sj∆qsj + (∆λ)2 = (∆S)2 (45)

where ∆S is the finite increment of the arc length.
The generalized displacement increment at iteration m from step p to p + 1 can be

expressed as
qp,m+1

sj = qm
sj − qp

sj + ∆qR,m
sj + ∆λm∆qF,m

sj (46)

where
∆qR,m

sj =
(

Kijτs
T,m

)−1
Rm

τi

∆qF,m
sj =

(
Kijτs

T,m

)−1
Fτi

(47)

Then, the quadratic constraint equation at iteration m from step p to p + 1 is given by

a(∆λm)2 + 2b(∆λm) + c = 0 (48)

with
a =

(
∆qF,m

sj

)T
∆qF,m

sj

b = ∆qF,m
sj pm

sj

c =
(

pm
sj

)T
pm

sj − (∆S)2

pm
sj = qm

sj − qp
sj + ∆qR,m

sj

(49)

The appropriate generalized displacement increment solution can be evaluated by
imposing the least angle between qp,m

sj and qp,m+1
sj .

8. Results

The nonlinear deformation simulation of three kinds of pre-twisted structures are
presented in this section. Figures 2–4 show the simplified geometries of pre0twisted
structures with rectangular, arc profile, and airfoil profile cross sections, respectively. All
those structures are assumed to be uniformly pre-twisted and the dimensions are listed
in Table 1.
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Table 1. Physical properties of pre-twisted structures.

Properties Rectangular Cross-Sectional
Structure

Arc profile Cross-Sectional
Structures

Airfoil Profile
Cross-Sectional Structure

Length l 152.4 mm 710 mm 500 mm
Width b 25.4 mm 305 mm 100 mm

Thickness h 1.7272 mm 3.05 mm 5 mm (maximum)
Arc angle α - 30◦, 60◦, 90◦ -

Pretwist angle k 45◦ 30◦, 60◦ 45◦

The rectangular cross section is characterized by the width b1 and the height h1, and the
pre-twist center P1 coincides with the geometrical center C1. The physical properties of the
arc profile cross sections are taken from widely investigated twisted cylindrical panels [31].
These dimensions give shell configurations with the same width b2 and thickness h2, and
the pre-twist center P2 is located at the center of the middle arc chord. The arc profile
cross-sectional structures are distinguished from each other by the arc angle θ2 and the pre-
twist angle k2. As for the airfoil profile section, the same NACA-8405 geometry is selected
in accordance with the authors’ previous paper [2]. The 4 digits define the maximum
camber, its position, and the maximum thickness, and the pre-twist center P3 is located at
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the geometrical center C3 of the airfoil section. The material of these structures is assumed
to be aluminum alloy, with Young’s modulus of 70GPa and Poisson’s ratio of 0.3.

8.1. Pretwisted Cantilever with Rectangular Cross Section

A thin-walled, rectangular, cross-sectional cantilever with 45◦ pre-twist is first consid-
ered. A uniformly distributed longitudinal load (338 kN in total) is applied to the free-end
cross section, resulting in the untwisting of the structure.

In our model, depicted in Figure 5b, one L9 Lagrange element is implemented to
describe the cross-sectional displacement field. In the longitudinal direction, 5, 10, and
20 two-node (B2) beam elements are applied for discretization to study the convergence
rate. The corresponding degree of freedoms (DOFs) are 162, 297, and 567. The obtained
nonlinear deformation results are compared with those obtained by shell models from
ABAQUS, a popular commercial software. To achieve stable convergence, the shell model
consists of 988 quadrilateral elements shown in Figure 5c, with a total DOF of 6468.
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Figure 5. Geometries of a pre-twisted cantilever with rectangular cross section and remarkable
difference in discretization between the present model and ABAQUS model: (a) 3D geometries
from CAD in (ex, ey, ez), (b) 1 L9 element for cross-sectional discretization and 10 2-node beam (B2)
elements for axial discretization based on current formulations in (eξ , ey, eη), and (c) converged 988
shell elements from ABAQUS in (ex, ey, ez).

Figure 6 shows the 3D structural configurations obtained from 10 B2 + 1 L9 CUF model
and ABAQUS shell model, respectively. Results show that the nonlinear axial–torsional
coupling of the cantilever is accurately captured. The whole structure undergoes a large
untwist deformation under the applied longitudinal load. This interesting phenomenon is
attributed to the coupling of torsion and extension through pre-twist. Actually, the axial
stress component becomes inclined in the twisted basis and generates a net torque that
twists the structure in the direction opposite to its initial torsion. The rotational center
of the cross section coincides with the pre-twist center of the structure. Moreover, the
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free-end section keeps the rectangular profile, which reflects the mechanical property of the
thin-walled structure.
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(a) Present results; (b) ABAQUS results.

Figure 7 plots the rotation of the beam free-end section obtained by the present theory,
Euler–Bernoulli beam theory [32], Saint-Venant beam theory [33], and shell finite element
results. For the present method, equal or more than 10 B2 elements are required to obtain
results consistent with those obtained by the shell model. The maximum difference of
the torsional rotational angle between the 1 L9 + 10 B2 model and ABAQUS model is 1%,
indicating that the present method is more accurate than traditional beam theory. With a
total end load of 338 kN, the untwisted angle is approximately 0.72rad (41.25◦). Therefore,
the deformed structure is nearly straight after untwisting.
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8.2. Pretwisted Cantilever with arc Profile Cross Section

Pre-twisted structures with different cross-sectional arc angles and pre-twist angles are
studied. First, a uniformly distributed axial load (347 kN in total) is applied to the free-end
cross section.

As shown in Figure 8b, one L9 element is implemented to construct the physical
boundary and the second-order displacement field within the cross section. Since L9 set
polynomials can be seen as parabolic expansions plus cubic and quartic terms, the use of
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these polynomials allows for an accurate description of the second-order cross-sectional
field. In addition, 10 B2 elements are exploited along the longitudinal direction.
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Figure 8. Geometries of a pre-twisted cantilever with arc profile cross section and remarkable
difference in discretization between the present model and ABAQUS model: (a) 3D geometries from
CAD in (ex, ey, ez), (b) 1 L9 element for cross-sectional discretization and 10 B2 elements for axial
discretization based on current formulations in (eξ , ey, eη), and (c) converged 1008 shell elements
from ABAQUS in (ex, ey, ez).

The present method formulates the governing equation using axially invariant el-
ements with a separated structural pre-twist. Thus, we can use the same elements to
discretize pre-twisted structures with any pre-twist angle, as long as their cross-sectional
geometry remains the same. In other words, for pre-twisted structures with different
pre-twist angles, we only need to mesh the structures once. Therefore, the complexity and
cost of constructing the governing equation are greatly reduced.

The present nonlinear simulation results are compared with those obtained from
commercial shell models. As shown in Figure 8c, the shell model in ABAQUS uses the
same discretization of 1008 quadrilateral elements. This discretization with 6468 DOFs is
found to be the proper choice for achieving stable convergence.

Figure 9 provides the 3D structural configurations of a 30◦ pre-twisted cantilever with
a 90◦ arc-shaped cross section. Comparison results are given for 10 B2 + 1 L9 CUF model
and ABAQUS shell model with uniform end loads. It is shown that the present model
can accurately capture the nonlinear axial-torsional coupling of the cantilever, with the
torsional center consistent with the pre-twist center. The deformed structure is almost
straight after untwisting and the free-end section maintains the arc profile.

Then, the effect of geometric differences on the nonlinear deformation results is
investigated. Figures 10 and 11 show the end section torsional rotational angles of 30◦

and 60◦ pre-twisted shells with different arc angles, respectively. The rotation angles
calculated by the present theory are consistent with those obtained by ABAQUS. For
cantilevers with 30◦, 60◦, and 90◦ arc profile sections, the maximum differences are 3.2%, 6%,
and 2.5%, respectively.
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As shown in Figure 10, the torsional angle shows a maximum reduction of 23% as
the arc angle increases from 30◦ to 90◦. Correspondingly, this reflects a 30% increase in
the torsional stiffness, while in Figure 11, the maximum reduction in the torsional angle is
15%, and the torsional stiffness increases by 17%. In all, a pre-twisted structure with larger
cross-sectional curvature has higher stiffness and undergoes less untwisting. Therefore,
structural stiffening can be achieved by increasing the structural curvature. However, this
stiffening decreases when the initial twist increases.

Finally, the large deformation analysis of a pre-twisted cantilever with central and
edge point loads is performed. Here, 4 L9 cross-sectional elements and 10 B2 axial elements
are used to solve the problem. As shown in Figure 12, the present model can accurately
capture the local deformations around the point of application of the force. In Figure 13, the
present model can accurately capture coupled axial, torsional, and flexure deformations, as
well as the local deformations around the point of application of the force.
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8.3. Pretwisted Cantilever with Airfoil Profile Cross Section

A pre-twisted airfoil profile cantilever with NACA 8405 dimensions is investigated.
A uniformly distributed longitudinal load (636 kN in total) is applied to the free-end
cross section.

Ten B2 and 8 L9 elements are found to be proper discretization choices to simulate the
nonlinear deformation. Figure 14b plots the L9 element distribution in the cross section.
In the 0–5% section of the camber line, the curvature of the thickness distribution changes
relatively rapidly. Therefore, 3 L9 elements are implemented to construct the cross-sectional
displacement field. As for the remaining 95% section, it is appropriate to select 5 L9
elements to describe the smooth camber line and thickness distribution. In the ABAQUS
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solid model, 5900 hexahedral elements are needed to achieve convergence. Each element
contains 8 3-DOF nodes and the total number of DOFs is 26,469, as shown in Figure 14c.
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Figure 14. Geometries of a pre-twisted cantilever with airfoil profile cross section and remarkable
difference in discretization between the present model and ABAQUS model: (a) 3D geometries from
CAD in (ex, ey, ez), (b) 8 L9 elements for cross-sectional discretization and 10 2-node beam (B2)
elements for axial discretization based on current formulations in (eξ , ey, eη), and (c) converged 5900
brick elements from ABAQUS in (ex, ey, ez).

Comparison results are given for the torsional rotation of the end section and the 3D
deformed configuration of the whole structure. The results presented in Figures 15 and 16
show good agreement. The maximum difference in the torsional rotational angle is about
4% with the same applied load. Therefore, the present model shows good accuracy in
capturing the nonlinear axial–torsional coupling. The rotational center of the cross section
is consistent with the pre-twist center of the structure.
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9. Discussion

This paper presents a new refined beam formulation for geometrically nonlinear
pre-twisted structures to accurately predict their large deformations and finite rotations.
Strain–displacement and stress–strain relationships are constructed in the twisted basis
to account for the effects of geometrical nonlinearity and initial twist. The secant and
tangent stiffness matrices of the beam element with geometrical nonlinearities are derived
in a unified way owing to the scalable characteristics of CUF. Three kinds of pre-twisted
structures with different cross sections are investigated to study their large deflection
responses. The specific conclusions are summarized as follows:

1. L9 elements have advanced local mapping capabilities to describe pre-twisted struc-
tures with different cross-sectional geometries. One L9 element is suitable for con-
structing the cross-sectional displacement field of pre-twisted structures with arc
profile sections, while only eight L9 elements can describe the sharp curvature change
and the displacement field within the cross sections of airfoil profile pre-twisted
structures. The maximum difference between the present deformation results and
those from commercial simulations is 6%.

2. The stiffness of a pre-twisted structure can be enhanced by increasing its cross-
sectional curvature. For pre-twisted structures with arc profile cross sections, the
structural stiffness can be increased by up to 30% as the arc angle increases from 30◦

to 90◦. However, this enhancement is reduced for structures with larger pretwist.
3. The untwisted center of the pre-twisted structure coincides with its pre-twisted center.

Moreover, the free-end cross section of a thin-walled, pre-twisted structure keeps its
original profile.

Compared with traditional beam theories and finite element models, the proposed
method significantly reduces computational complexity and cost by constructing axially
invariant elements with separated structural pre-twist. The same discretization can be
used to solve large deformation analysis of pre-twisted structures with different pre-twist
angles. In addition, the developed refined beam model can describe shell-like properties
of pre-twisted, thin-walled structures, including coupled axial, torsional, and flexure
deformations, as well as the local deformations around the point of application of the force.
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Appendix A

Linear operator matrix of the Green-Lagrange strain vector in the contravariant basis

bcov,l =



∂ξ 0 0
φ2ξ − φη∂y ∂y φ2η + φξ∂y

0 0 ∂η

∂η 0 ∂ξ

φ− φη∂η ∂η φξ∂η + ∂y
∂y − φη∂ξ ∂ξ −φ + φξ∂ξ

 (A1)

Nonlinear operator matrix of the Green-Lagrange strain vector in the contravariant basis

bcov,nl =
1
2



∂2
ξ ∂2

ξ ∂2
ξ 0 0

φ2 + ∂2
y ∂2

y φ2 + ∂2
y −∂yφ + φ∂y ∂yφ− φ∂y

∂2
η ∂2

η ∂2
η 0 0

∂ξ ∂η + ∂η∂ξ ∂ξ ∂η + ∂η∂ξ ∂ξ ∂η + ∂η∂ξ 0 0
∂y∂η + ∂η∂y ∂y∂η + ∂η∂y ∂y∂η + ∂η∂y φ∂η − ∂ηφ −φ∂η + ∂ηφ
∂ξ ∂y + ∂y∂ξ ∂ξ ∂y + ∂y∂ξ ∂ξ ∂y + ∂y∂ξ −∂ξ φ + φ∂ξ ∂ξ φ− φ∂ξ


(A2)

Linear operator matrix of the Green-Lagrange strain vector in the twisted basis

bl =



∂ξ 0 0
0 Λ 0
0 0 ∂η

∂η 0 ∂ξ

φ ∂η Λ
Λ ∂ξ −φ

 (A3)

Nonlinear operator matrix of the Green-Lagrange strain vector in the twisted basis

bnl =
1
2



∂2
ξ ∂2

ξ ∂2
ξ 0 0

φ2 + Λ2 Λ2 φ2 + Λ2 −Λφ + φΛ Λφ− φΛ
∂2

η ∂2
η ∂2

η 0 0
∂ξ ∂η + ∂η∂ξ ∂ξ∂η + ∂η∂ξ ∂ξ ∂η + ∂η∂ξ 0 0
Λ∂η + ∂ηΛ Λ∂η + ∂ηΛ Λ∂η + ∂ηΛ φ∂η − ∂ηφ −φ∂η + ∂ηφ
∂ξ Λ + Λ∂ξ ∂ξΛ + Λ∂ξ ∂ξ Λ + Λ∂ξ −∂ξ φ + φ∂ξ ∂ξφ− φ∂ξ


(A4)

where, Λ = ∂y + φη∂ξ − φξ∂η .
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In the framework of CUF, linear operator matrix of the strain vector in the twisted basis

Bsj
l = bl

(
FsNj

)
=



Fs,ξ Nj 0 0
0 Λ

(
FsNj

)
0

0 0 Fs,η Nj
Fs,η Nj 0 Fs,ξ Nj
φFsNj Fs,η Nj Λ

(
FsNj

)
Λ
(

FsNj
)

Fs,ξ Nj −φFsNj


(A5)

In the framework of CUF, nonlinear operator matrices of the strain vector in the
twisted basis

Bsj
nl_1 =

1
2



uξ,ξ Fs,ξ Nj uy,ξ Fs,ξ Nj uη,ξ Fs,ξ Nj
φ2uξ FsNj + Λuξ Λ

(
FsNj

)
ΛuyΛ

(
FsNj

)
φ2uη FsNj + ΛuηΛ

(
FsNj

)
uξ,η Fs,η Nj uy,η Fs,η Nj uη,η Fs,η Nj

uξ,ξ Fs,η Nj + uξ,η Fs,ξ Nj uy,ξ Fs,η Nj + uy,η Fs,ξ Nj uη,ξ Fs,η Nj + uη,η Fs,ξ Nj
Λuξ Fs,η Nj + uξ,ηΛ

(
FsNj

)
ΛuyFs,η Nj + uy,ηΛ

(
FsNj

)
Λuη Fs,η Nj + uη,ηΛ

(
FsNj

)
uξ,ξΛ

(
FsNj

)
+ Λuξ Fs,ξ Nj uy,ξ Λ

(
FsNj

)
+ ΛuyFs,ξ Nj uη,ξ Λ

(
FsNj

)
+ Λuη Fs,ξ Nj


(A6)

and

Bsj
nl_2 =

1
2

φ



0 0 0
Λuη FsNj − uηΛ

(
FsNj

)
0 −Λuξ FsNj + uξ Λ

(
FsNj

)
0 0 0
0 0 0

−uη Fs,η Nj + uη,η FsNj 0 uξ Fs,η Nj − uξ,η FsNj
−uη Fs,ξ Nj + uη,ξ FsNj 0 uξ Fs,ξ Nj − uξ,ξ FsNj

 (A7)

with
Λ
(

FsNj
)
= FsNj,y − φξFs,η Nj + φηFs,ξ Nj (A8)

Operator matrices of the linearization for the virtual variation of the strain:

B∗nl_1 =



Fτ,ξ Fs,ξ Ni Nj Fτ,ξ Fs,ξ Ni Nj Fτ,ξ Fs,ξ Ni Nj(
φ2 + Λ2

)
Fτ NiFsNj Λ2Fτ NiFsNj

(
φ2 + Λ2

)
Fτ NiFsNj

Fτ,η Fs,η Ni Nj Fτ,η Fs,η Ni Nj Fτ,η Fs,η Ni Nj
Fτ,ξ Fs,η Ni Nj + Fτ,η Fs,ξ Ni Nj Fτ,ξ Fs,η Ni Nj + Fτ,η Fs,ξ Ni Nj Fτ,ξ Fs,η Ni Nj + Fτ,η Fs,ξ Ni Nj

Λ(Fτ Ni)Fs,η Nj + Fτ,η NiΛ
(

FsNj
)

Λ(Fτ Ni)Fs,η Nj + Fτ,η NiΛ
(

FsNj
)

Λ(Fτ Ni)Fs,η Nj + Fτ,η NiΛ
(

FsNj
)

Fτ,ξ NiΛ
(

FsNj
)
+ Λ(Fτ Ni)Fs,ξ Nj Fτ,ξ NiΛ

(
FsNj

)
+ Λ(Fτ Ni)Fs,ξ Nj Fτ,ξ NiΛ

(
FsNj

)
+ Λ(Fτ Ni)Fs,ξ Nj


(A9)

and

B∗nl_2 = φ



0 0
−Λ(Fτ Ni)FsNj + Fτ NiΛ

(
FsNj

)
−Λ(Fτ Ni)FsNj + Fτ NiΛ

(
FsNj

)
0 0
0 0

Fτ NiFs,η Nj − Fτ,η NiFsNj Fτ NiFs,η Nj − Fτ,η NiFsNj
−Fτ,ξ NiFsNj + Fτ NiFs,ξ Nj −Fτ,ξ NiFsNj + Fτ NiFs,ξ Nj

 (A10)
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Coefficients of the geometrically stiffening stiffness matrix

Kijτs
σ =

 Kσ1 0 Kσ3
0 Kσ2 0

Kσ3 0 Kσ1


Kσ1 =

∫
V

[
Fτ,ξ Fs,ξ Ni Njσξξ +

(
φ2 + Λ2

)
(Fτ Ni)

(
FsNj

)
σyy + Fτ,η Fs,η Ni Njσηη

+Fτ,ξ Fs,η Ni Njσξη + Fτ,η Fs,ξ Ni Njσηξ + Λ(Fτ Ni)Fs,η Njσyη

+Fτ,η NiΛ
(

FsNj
)
σηy + Fτ,ξ NiΛ

(
FsNj

)
σξy + Λ(Fτ Ni)Fs,ξ Njσyξ

]
dV

Kσ2 = Kσ1 −
∫

V φ2(Fτ Ni)
(

FsNj
)
σyydV

Kσ3 = φ
∫

V
[
−Λ(Fτ Ni)FsNjσyy + Fτ NiΛ

(
FsNj

)
σyy + Fτ NiFs,η Njσyη

−Fτ,η NiFsNjσηy − Fτ,ξ NiFsNjσξy +i Fs,ξ Njσyξ

]
dV

(A11)
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