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Abstract: A fixed-time nonlinear circular guidance law that satisfies the impact time constraint is
proposed. By utilizing the geometric principle that the length of a circular arc connecting the missile
and the target can be analytically calculated, the exact expression of time-to-go is obtained. Thus, the
impact time error can be shaped to zero, and the missile can intercept the target at the desired time,
which is crucial in a salvo attack. The settling time of the impact time error is proved to be bounded
by a fixed time, which does not depend on initial conditions, but is only determined by two guidance
parameters. Moreover, the criteria for choosing the guidance parameters values are established
analytically, rather than by trial-and-error or empirically, which can provide valuable guidelines
for guidance law designers. To address the look angle constraint, deviated pure pursuit (DPP) is
employed, and switching logic between guidance laws is provided. Unlike many existing impact
time control guidance laws, the formulation of the one proposed is based on nonlinear engagement
kinematics, and the implementation does not execute numerical calculations, which can improve the
guidance accuracy and reduce computation burdens on the guidance system. A series of nonlinear
simulations are implemented to verify the effectiveness of the proposed guidance law.

Keywords: impact time control; salvo attack; fixed-time convergence; look angle constraint

1. Introduction

The primary objective of a guidance law for a missile is to intercept a target with the
minimum or zero miss distance. Moreover, other objectives, such as impact angle and im-
pact time, also play an important role in realistic engagements based on different missions.
In modern warfare, many important targets have been equipped with the advanced missile
defense system, like the advanced surface-to-air missile system of surface facilities and the
advanced close-in weapon system (CIWS) on warships. These missile defense systems can
detect and destroy incoming missiles [1]. To overcome the threat of such systems, a salvo
attack in which a group of missiles can reach the target as simultaneously as possible can
be used to improve the survivability of each missile and saturate the defense system of the
target. To realize a salvo attack, one approach, called impact time control guidance (ITCG),
can be used to regulate the impact time of each missile to a common desired value.

The proportional navigation guidance (PNG) has been widely studied and extensively
used due to its easy implementation and effectiveness. Moreover, it has been shown that
guidance laws based on PNG can meet the constraint on impact time [1–6]. By utilizing
linear kinematics and optimal control theory, the authors in [1] derived a useful impact
time control law which combines the well-known PNG and the feedback of the impact time
error. The work in [1] seems to be the first attempt at addressing the impact time control
problem. As an extension of the work in [1], a guidance law was proposed to control both
impact angle and impact time in [2]. Note that the acceleration rate command instead of the
acceleration command was used as the control input in [2] to provide one additional degree
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of freedom for impact time control. Compared with the result in [1], a more generalized
impact time control guidance based on nonlinear kinematics is derived in [3] by using
the trajectory driven by PNG, with an arbitrary navigation constant as a baseline. In [4],
PNG, with a modified time-varying gain and a bias term, was presented based on the exact
solution of the time to go, which was obtained by introducing the Gaussian hypergeometric
functions. However, look angle constraints were not mentioned in [4]. Considering field-
of-view (FOV) constraint, an impact time control guidance law was presented in [5] by
combining PNG and an additional biased term of impact time error. Likewise, the research
presented in [6] derived an impact time control guidance law based on the idea of virtual
targets by adding two feedback terms about the range error on PNG. A 3D PNG-based
impact time control guidance was proposed in [7] via introducing bias term in both pitch
and yaw channels. However, most of the above PNG-based impact time control guidance
laws used the linear engagement kinematics or estimated time-to-go, which may generate
large errors when heading angle conflicts with small angle assumptions.

Additionally, Lyapunov-based guidance laws were shown effective in controlling the
impact time. A nonlinear Lyapunov-based impact time control guidance law was derived
in [8] based on the estimation of time-to-go, as used in [1,3]. In [9], the time-to-go was
obtained in terms of the incomplete beta function of the initial heading error, which can be
controlled by tuning a single parameter.

In addition, guidance laws based on the sliding mode control (SMC) method were also
used to control the impact time. Harl and Balakrishnan developed a guidance law to control
impact time and impact angle in [10] through a line-of-sight rate shaping technique and a
second order sliding mode approach. The work in [10] is one of the earlier studies to solve
the guidance terminal constraint problem using SMC. To avoid the singularity problem, a
nonsingular sliding mode guidance is proposed in [11] for the missile to intercept the target
at the desired impact time. SMC methods are also employed in [12–17] to control the impact
time. Many impact time control guidance laws based on SMC methods have complicated
structures, making it stressful to deal with the look angle constraint. Moreover, to satisfy
impact time constraint, guidance gains or parameters are often tuned by trial and error, or
by using an optimization routine, which can make on-line calculations less efficient.

Additionally, the trajectory shaping technique is also worth mentioning in controlling
the impact time. The authors in [18] suggested a guidance law in which the guidance
command was expressed as a polynomial function of downrange to go.

The look angle, meaning the angle between the missile velocity and the line of sight
(LOS), can determine the axial velocity of the missile, and thus affects the flight time.
Thus, regulating impact time by shaping the look angle profiles has attracted a lot of
attention. In [19], the impact-time control problem was solved by imposing a quadratic
polynomial shape and a cubic shape on the look-angle profile. The idea from [19] was
also investigated under varying speed cases in [20].Then, the idea of look angle shaping
was further studied in [21,22] to meet both the impact time and impact angle constraints.
Besides, the range shaping technic was also shown to be effective in controlling impact
time. The authors in [23] derived an impact time control guidance by expressing the range
as a quartic polynomial function of time, in which the coefficients of the polynomial were
determined by the boundary conditions. Later, the extension of this work was presented
in [24], wherein, the range to target was formulated as a general-order polynomial in
time, rather than a quartic polynomial, as used in [23]. In addition to look angle and
range, line-of-sight (LOS) can also be shaped to address the impact time issue. In [25], a
homing guidance law considering impact time and impact angle constraints under limited
field-of-view was proposed by employing the line-of-sight shaping approach, where the
reference LOS profiles were quartic polynomials in time. Han et.al. proposed a three-
dimensional guidance law [26] for intercepting a maneuvering target with both impact
angle and impact time constraints in which the quadratic LOS profiles in the pitch and
yaw planes were suggested, respectively. Assuming that the LOS angle could be shaped
as a polynomial function of range-to-go, an impact time constrained guidance law using
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a range-based line-of-sight shaping strategy was proposed in [27]. Unlike in this paper,
in [25–27], some parameter values can only be obtained by solving a series of nonlinear
equations numerically, instead of determined analytically, which may impose burdens on
the on-board computer.

For a class of guidance laws involving the impact time error, it is a challenging
issue to precisely obtain an explicit formula of time-to-go. Commonly used methods to
estimate time-to-going include using range over speed, using the truncation of an infinite
series [1,3,4,7], or some other methods [9,18]. Fortunately, a closed-form solution of the
impact time in deviated pure pursuit (DPP) can be obtained explicitly [28]. In [29], an
impact time control guidance law based on DPP was proposed by shaping the dynamics of
the exact impact time error. In [30], an optimal control-based guidance law was developed
by establishing the relationships between the impact time, the desired look angle, and the
nominal commanded acceleration, based on DPP. Considering the control loop dynamics,
a decoupled approach where the desired lateral acceleration was derived using DPP was
proposed in [31] to intercept a moving, but non-maneuvering, target at a pre-specified time.
However, for stationary targets, the lateral acceleration command given by DPP becomes
unbounded at interception.

In addition to DPP, the circular guidance (CG) can also provide an analytical solution
of the impact time according to basic geometric rules. Conversely, in scenarios where
the missile moves with a constant speed, if the desired time-to-go and current range
to target are known, the corresponding desired look angle can be determined uniquely.
In [32], by tracking the desired look angle, which was approximately obtained by solving
a transcendental equation with Taylor series expansion, the trajectory could converge to
a circular arc in a finite time. However, constraints on look angle were not considered
in [32]. While in [33], Tsalik and Shima proposed two approaches to obtain the approximate
desired look angle, one using the MATLAB curve-fitting tool, and the other iteratively
using the Newton–Raphson method. Then, a PI-controller was used to eliminate look angle
errors. As can be seen, both [32,33] involved numerical algorithms in calculating desired
look angles.

Other than the ITCG methods mentioned above, the second approach to realize the
simultaneous arrival is cooperative guidance, in which the communication network is often
employed to improve the collaborative capacity between missiles [34–37]. The cooperative
guidance method is not considered here.

In this paper, inspired by [29,33], CG is chosen as the baseline of the proposed guidance
law, called fixed-time circular impact time guidance (FCITG). Unlike the work in [32,33], the
proposed FCITG can meet the impact time constraint through shaping the dynamics of the
impact time error, straightly detouring the estimation of the desired look angle or the time-
to-go. Besides, the proposed FCITG has a wide range of the desired impact time when the
limitation of the look angle is not considered. Further, the look angle constraint imposed by
the seeker can be readily taken into account by introducing DPP, when necessary. Actually,
if the seek can handle look angles greater than or equal to 90◦ during DPP phase, the upper
limit on the desired impact time still does not exist.

For a salvo attack, to guarantee that different missiles launched from different plat-
forms or different locations can hit the target simultaneously, the fixed-time stability is
employed in designing the FCITG. Note that the fixed-time stability is different from the
finite-time stability. Specifically, the settling time of fixed-time stability is globally bounded,
even when the initial error tends to infinity, whereas the settling time of finite-time stability
grows unboundedly when the initial error approaches infinity [38]. Motivated by [39], a
fixed-time controller is developed to achieve zero miss distance at the desired impact time.
More importantly, criteria for tuning the parameters in FCITG are also established in an
explicit form, which can be utilized efficiently.

Compared to the existing ITCG laws in the literature, the main contributions of this
paper can be encapsulated in the following key points.
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(1) Compared to [1,6], the proposed FCITG is derived in nonlinear frameworks, which
aids in preventing errors that arise due to linearization. Besides, the absence of small angle
approximation enables FCITG to deal with large look angles.

(2) In comparison with [14,32,33], the proposed FCITG does not involve tracking
desired look angles. Thus, numerical calculations of the desired look angle from the desired
time-to-go can be circumvented, which improves the efficiency of the on-board computer.

(3) Unlike the finite-time stability used in [14,29], the fixed-time stability is employed
in designing FCITG. Therefore, the impact time errors will converge to zero within a
predefined fixed time, despite of initial conditions. This feature will stand out in a salvo
attack, where each missile may have different initial states.

(4) Different from [15,33], the parameter values can be determined from the analytical
criterion instead of by trial and error or on-line calculation at each time instant. Moreover,
a certain combination of the values of the two parameters is applicable for many different
desired impact times.

(5) Finally, the guidance proposed is of a simple form, thus leading to an easy implementation.
The rest of this paper is organized as follows. A preliminary summary of fixed-time

stability is introduced in Section 2. In Section 3, a problem statement and the guidance
law design are offered. In Section 4, the criteria for the selection of parameter values
are established. The extension of FCITG to moving targets and the salvo attack scenario
are investigated in Section 5. Simulations are carried out in Section 6 to validate the
effectiveness of the proposed guidance law. Section 7 concludes this article.

Note that throughout this paper, for x ∈ R and r ∈ R+, the function x 7→ dxer is
defined as dxer , |x|r · sign(x), where sign(x) is the sign function.

2. Preliminary

Prior to deriving FCITG, it is necessary to introduce some basic definitions of fixed-
time stability [38]. Consider the following general nonlinear system:{ .

x = f (t, x)
x(0) = x0

(1)

where x ∈ Rn denotes the state vector and f (t, x) ∈ Rn is a nonlinear function.

Definition 1 ([40]). The origin is said to be a globally finite-time stable equilibrium point for system
(1) if it is globally asymptotically stable, and any solution of (1) reaches the origin at some finite
time moment, i.e., there exists T(x0), such that x(t, x0) = 0 for ∀t ≥ T(x0), where T(x0) is the
settling-time of the system (1).

Definition 2 ([38]). The origin of system (1) is said to be fixed-time stable if it is globally finite-time
stable, and the settling-time function T(x0) is bounded.

3. Problem Statement and Guidance Law Design

In Figure 1, the planar engagement geometry between the missile and the target is
shown. The X-O-Y is the inertial Cartesian reference frame. The missile M has a constant
speed VM, and the target T is stationary. Note that r is the instantaneous range between the
missile and the target, γM is the flight path angle of the missile, and θ is the line-of-sight
angle. Moreover, δ is the look angle, which is the angle between the missile velocity and
the line of sight. The acceleration perpendicular to the velocity vector is represented by aM.
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Figure 1. Planar engagement geometry.

The nonlinear kinematic engagement equations are given by

.
r = −VM cos δ (2)

r
.
θ = VM sin δ (3)

.
γM = aM/VM (4)

δ = γM + θ (5)

Taking the derivative of (5) yields

.
δ =

.
γM +

.
θ (6)

The desired impact time is represented by Td. Then the desired time-to-go is defined as

tgo = Td − t (7)

where t denotes the time elapsed from the beginning of the guidance.
The purpose of FCITG is to hit the target at Td. If the missile keeps moving with a

constant speed along a circular arc connecting its current position and the target, the total
flight time can be obtained accurately and readily controlled to satisfy the impact-time
requirement. In [32,33], based on the desired time-to-go, an approximation to the desired
look angle can be calculated by solving a nonlinear equation. Afterwards, the look angle is
regulated to converge to the desired values to eliminate impact time errors. Nevertheless,
the longer the time-to-go, the greater the difference between the exact desired look angle
and its approximate value. To overcome this drawback, time-to-go, rather than the look
angle. is considered. For a missile guided by CG, the impact time can be obtained from
geometric rules as

t f =
r0δ0

VM sin δ0
(8)

where r0 and δ0 represent the initial range to target and the initial look angle, respectively.
By converting the initial values in (8) into current ones, the time-to-go under the

circular guidance can be obtained as

t̂go =
rδ

VM sin δ
(9)

Herein, t̂go is derived without making any small angle assumptions. Note that the
nonlinear framework circumvents the limitations due to linearization, especially for large
initial heading errors. In (9), as δ→180◦, t̂go → ∞ , meaning that the upper limit of the
intercept time is unbounded; and as δ→0◦, t̂go → r/VM , meaning that the lower limit
of time-to-go is r/VM. Thus, the feasible desired impact time is Td ∈ (Tmin,+∞), where
Tmin(= r/VM) corresponds to the impact time when the missile is on the direct collision
course with the target. It is worth noting that the aforementioned Tmin is not only the lower
limit of the impact time of the proposed FCITG, but also of any other guidance laws.
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The impact time error is defined as

ε = t̂go − tgo (10)

The main idea of FCITG is to shape the dynamics of ε so that t̂go is infinitely close to
or equal to tgo before interception occurs. On differentiating t̂go in (9), with respect to time,
we have

.
t̂go =

1
VM

(
δ

sin δ

.
r +

sin δ− δ cos δ

sin2 δ
r

.
δ

)
(11)

From (7), the time derivative of tgo is

.
tgo = −1 (12)

By combining (10)–(12) the time derivative of ε can be obtained as

.
ε =

1
VM

(
δ

sin δ

.
r +

sin δ− δ cos δ

sin2 δ
r

.
δ

)
+ 1 (13)

On substituting (2), (4), and (5) into (13), the dynamics of the interception time error
can be derived as

.
ε = 2− 2δ cot δ +

1− δ cot δ

V2
M sin δ

raM (14)

Defining {
F , 2− 2δ cot δ

B , 1−δ cot δ
V2

M sin δ
r (15)

One can rewrite (14) as
.
ε = F + BaM (16)

Based on the present analysis, a main proposition is given below.

Proposition 1. For a planar missile-target engagement, if lateral acceleration of the missile is
chosen as

aM = − F + KΞ
B

(17)

where Ξ , dεeα/(2−α) + ε + dεe(4−3α)/(2−α), K and 0 < α < 1 are two positive constants to be
tuned, then ε is guaranteed to converge to zero within a fixed time, only depending on K and α for
any arbitrary initial condition. As a result, after the impact time error becomes zero, the missile will
move along a circular arc and hit the target at the desired impact time, with zero miss distance.

Proof. Taking the following Lyapunov function candidate into account,

V = 2K
(

α
2−α + 1

)
|ε|

4−3α
2−α +1

+2K
(

4−3α
2−α + 1

)
|ε|

α
2−α +1

+K
(

α
2−α + 1

)( 4−3α
2−α + 1

)
|ε|2

(18)

The time derivative of V can be obtained as
.

V = Γ
(
dεe

4−3α
2−α + dεe

α
2−α + dεe

) .
ε (19)

where Γ is defined as Γ , 2K
(

α
2−α + 1

)( 4−3α
2−α + 1

)
.

Substituting (17) into (16) yields

.
ε = −K

(
dεeα/(2−α) + ε + dεe(4−3α)/(2−α)

)
(20)
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On substituting (20) into (19), one can get

.
V = −KΓ

(
dεe(4−3α)/(2−α) + dεeα/(2−α) + dεe

)(
dεeα/(2−α) + ε + dεe(4−3α)/(2−α)

)
(21)

On expanding (21) and rearranging,
.

V can be expressed as

.
V = −KΓ

[
|ε|2 +

(
|ε|(4−3α)/(2−α)

)2
+
(
|ε|α/(2−α)

)2
]
− KΓ

(
2|ε|(6−4α)/(2−α)

)
−KΓ

(
2|ε|2/(2−α)

)
− KΓ

(
2|ε|2

)
≤ 0

(22)

Note that when error ε approaches to zero, system (20) can be approximated by the
0-limit subsystem [39]

.
ε = −Kdεeα/(2−α) (23)

Then, to verify the asymptotic of system (23), a Lyapunov function is selected as

V0 = K|ε|
α

2−α +1 (24)

The time derivative of V0 can be calculated as

.
V0 = K

(
α

2− α
+ 1
)
dεe

α
2−α

.
ε = −K2

(
α

2− α
+ 1
)
|ε|

2α
2−α ≤ 0 (25)

While, when impact time error ε approaches to infinity, system (20) can be reduced to
the ∞-limit subsystem [39]

.
ε = −Kdεe(4−3α)/(2−α) (26)

Like the analysis in (23), a Lyapunov function candidate of system (26) and its deriva-
tive can be obtained as {

V∞ = K|ε|
4−3α
2−α +1

.
V∞ = −K2

(
4−3α
2−α + 1

)
|ε|

4−3α
2−α ≤ 0

(27)

Since Lyapunov function candidates are positive and their corresponding derivatives
are semi-negative, systems (20), (23), and (26) are all asymptotically stable. According to
Lemma 1 in [39], it can be concluded that the original system (20) is fixed-time convergent.
As a result, the impact time error can converge to zero within a fixed time, independent of
initial conditions. Finally, the missile will move along a circular arc toward the target.

This completes the proof. �

Remark 1. Given that 0 < α < 1, it can be derived that α
2−α < 1 and 4−3α

2−α > 1. Hence, a
noticeable feature of system (20) is that it contains one term with a fractional exponent smaller than
1, and another one term with a degree more than 1. When ε� 1, the component using the degree
larger than 1 can enable a more rapid rate of convergence. Likewise, when ε � 1, the term with
the fractional exponent smaller than 1 predominates other terms to provide faster convergence. In
summary, using different powers can ensure a faster convergence in any case.

Upon substituting F and B from (15) into (17), the lateral command acceleration can
be obtained as

aM = −
2V2

M sin δ

r︸ ︷︷ ︸
Circular guidance command

− K
V2

M sin δ

r(1− δ cot δ)
Ξ︸ ︷︷ ︸

Impact time error correction command

(28)

The first term of (28) is the circular guidance command required by the missile to stay
on a circular course. The second term is to eliminate the impact time error. If the initial
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impact time produced by CG is not equal to the desired impact time, this correction term
could bring the missile onto a circular course to achieve the guidance objectives. Assuming
Ξ = 0 in (28), the guidance command becomes that of circular guidance, which will be
shown in the following proposition.

Proposition 2. With the guidance command given by (28), once Ξ becomes zero at t = tc, the radius
of the missile’s trajectory remains constant, and retains its value at tc till the end of the engagement.

Proof. At any moment, the radius of curvature of the missile trajectory can be obtained as

R =
V2

M
|aM|

(29)

Substituting (28) into (29) yields

R =
V2

M∣∣∣∣ 2V2
M sin δ

r + K V2
M sin δ

r(1−δ cot δ)
Ξ
∣∣∣∣ (30)

At t = tc, the impact time error ε becomes 0 as well as Ξ. Hence, R can be written as

R =
r

2 sin δ
(31)

The time derivative of R can be obtained as

.
R =

−2VM cos δ sin δ− r cos δ aM
VM

2 sin2 δ
(32)

On substituting (28) with Ξ = 0 into (32), one can obtain

.
R = 0 (33)

which means that the missile will fly along a circular arc, with a constant radius, to the
target from the time t = tc on.

This completes the proof. �

To deal with look angle constraint problems, the variation of look angles will be
studied. On substituting (28) into (6),

.
δ can be obtained as

.
δ = −VM sin δ

r

(
1 + K

1
1− δ cot δ

Ξ
)

(34)

Proposition 3. The impact time error ε and Ξ always have the same sign, meaning they always
remain identical in positivity, negativity, or nullity.

Proof. If ε = 0, Ξ = 0 can be deduced from the definition of Ξ in Proposition 1. If ε > 0, Ξ
composes of three positive terms. Consequently, Ξ > 0 for ε > 0, then

Ξ = −|ε|α/(2−α) − |ε|(4−3α)/(2−α) + ε

≤ −2
√
|ε|α/(2−α)|ε|(4−3α)/(2−α) + ε

= −2|ε|+ ε < 0

(35)

This completes the proof. �
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Remark 2. According to the proof of Proposition 1, εε0 > 0 before ε becomes zero. If ε0 > 0, then
ε > 0 as well as Ξ > 0 by Proposition 3. Consequently,

.
δ < 0 holds throughout the engagement

from (34). Therefore, the look angle will decrease monotonically to zero in case of ε0 > 0. Further,
taking the partial derivative of (9) with respect to δ yields

∂t̂go

∂δ
=

r cos δ

VM

(tan δ− δ)

sin2 δ
(36)

It can be observed from (35) that ∂t̂go
∂δ > 0 holds for δ ∈ (0, π/2). Thus, when t̂go > tgo, the

look angle is expected to be smaller to reduce the impact time error.

Remark 3. Here, one of the rules for tuning K is proposed. If ε0 < 0, a larger look angle is required
for t̂go to track tgo from (35), which means that

.
δ ought to be positive in the initial phase. Known

from the proof of Proposition 3, ε < 0 produces Ξ ≤ 3ε. Hence, the inequality

1 + K
1

1− δ0 cot δ0
Ξ0 ≤ 1 + K

1
1− δ0 cot δ0

(3ε0) (37)

holds at the beginning.
If K is chosen as

K >
1− δ0 cot δ0

(−3ε0)
(38)

then
1 + K

1
1− δ0 cot δ0

Ξ0 < 0 (39)

is ensured. Accordingly,
.
δ > 0 can be achieved due to (34). Thus, δ will increase at the beginning of

the engagement.

Now, the behavior of δ for ε0 < 0 with K chosen as (36) is investigated. For the sake of
convenience, we define

∆ , 1 + K
1

1− δ cot δ
Ξ (40)

assuming that δ keeps increasing before Ξ vanishes. As a result, the value of ∆ will
always turn out to be positive because ε will approach zero according to Proposition 1,
and the value of 1/(1− δ cot δ) will decrease due to the growing value of δ under the
above assumption. Consequently, δ will decrease due to (34), which contradicts the above
assumption. In summary, if ε0 < 0 and K was chosen as stated in (36), δ will rise and then
fall rather than keep rising.

Further, to study the singularity of the guidance command later, a proposition about
the emergence of a zero look angle is suggested.

Proposition 4. Given that δ0 6= 0, δ = 0, occurs only at the end of the engagement.

Proof. It can be stated from Proposition 1 that ε
.
ε < 0 for ε 6= 0, which shows that the

magnitude of ε keeps decreasing with time till zero.
If ε0 > 0, then ε > 0, which means that

rδ

VM sin δ
− tgo > 0 (41)

holds before the impact time error becomes zero at tc. If ∃t ∈ (0, tc), such that δ→ 0 , then

lim
δ→0

(
rδ

VM sinδ
− tgo

)
=

r
VM
− tgo < 0 (42)
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So far, there is a conflict between (39) and (40). So, in cases where ε0 > 0, δ = 0 only
appears at the end of the circular trajectory at time t = Td.

If ε0 < 0, then ε < 0. As seen in Remark 3, δ will first increase and then decrease when
K is selected properly. In the phase where δ increases, δ evidently cannot be zero. While, in
a phase where δ decreases, once ε converges to zero at tc, the trajectory will change to a
circular arc, where the look angle will decrease to zero with a constant rate, which had been
proved in [28]. That is, δ is not zero at t = tc. Hence, there does not exist t ∈ (0, tc), such
that δ = 0. Finally, δ can only be zero at the end of the engagement in cases where ε0 < 0.

This completes the proof. �

To address the look angle constraints, we define δ∗ as the allowed maximal look angle,
such as 80◦, 90◦ and 100◦, which is limited by the seeker. If the desired impact time is less
than the initial expected impact time by circular guidance, the look angle is monotonically
decreasing, according to Remark 2. If δ0 < δ∗ is provided, δ will not challenge the look
angle constraints.

If the desired impact time is greater than the initial expected impact time by circular
guidance, the look angle will first increase according to Remark 3, and then the maximum
look angle represented by δmax occurs when ∆ =0 or

.
δ = 0. If δmax ≤ δ∗, the proposed

FCITG can be used throughout the engagement. However, if δmax > δ∗, to avoid violating
the look angle constraint, as soon as δ reaches δ∗ at time denoted by t1, a deviated pure
pursuit (DPP) will be applied to keep the look angle constant. On substituting instantaneous
states of the missile generated by DPP into equations under FCITG, the virtual impact time
error can be expressed as

ε̃ =

(
1− δ∗ cos δ∗

sin δ∗

)
t +

(r1 + t1VM cos δ∗)δ∗

VM sin δ∗
− Td (43)

where t1 and r1 represent the time and the instantaneous range when DPP comes to be
applied, respectively.

If the missile keeps flying under DPP from t1 before reaching the target, the impact
time can be calculated as

tDPP
f =

r1

VM cos δ∗
+ t1 (44)

However, in most cases, tDPP
f is not equal to Td. Thus, it is important to determine the

switching time from DPP to FCITG. Then, a useful proposition is put forward.

Proposition 5. ∃t2 ∈
[
t1, tDPP

f

)
, such that ∆ = 0.

Proof. At t = t1, ∆ ≤ 0 can be guaranteed because the look angle is increasing at that
moment or has reached the relative maximal value. If ∆ = 0 at t = t1, the proposition
apparently stands. Now, the case ∆ < 0 at t = t1 is mainly investigated.

On substituting (42) into (41) and rearranging, the final virtual impact time error can
be obtained as

ε̃t f = ε̃t1 +

(
1− δ∗ cos δ∗

sin δ∗

)
r1

VM cos δ∗
(45)

In a real engagement, to meet the impact time constraint, δ∗ ≥ cos−1[r0/(VMTd)]
should hold, independent of the guidance law. The longer the desired impact time, the
greater δ∗ should be. If δ∗ is large enough, the second term of (43) could be positively
significantly large. Thus, ε̃t f > 0→ ∆t f > 0 from (38). To be more specific, when ε0 > 0,
we can obtain from the proof of Proposition 1 that

ε0 < ε̃t1 < 0 (46)
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and in stage from t = 0 to t = t1 where the look angle increases, one can get

r1 > r0 −VMts cos δ0 (47)

where ts is the settling time of the impact time error, which will be solved in Section 4.
If

ε0 +

(
1− δ∗ cos δ∗

sin δ∗

)(
r0

VM cos δ∗
− cos δ0

cos δ∗
ts

)
> 0 (48)

holds, then combining (43)–(46) yields

ε̃t f > 0→ ∆ > 0 (49)

Note that (46) is a sufficient condition for (47). During PPD, ε̃ and ∆ are both continuous
functions of time. Therefore, ∃t2 ∈

(
t1, tDPP

f

)
, such that ∆ =0.

This completes the proof. �

Once ∆ becomes positive at t2,
.
δ will be negative; as seen from (34), the proposed

FCITG will be employed again till interception. Based on the preceding analysis, when the
look angle constraint is considered, the guidance command by FCITG can be modified as

aM =

 −
2V2

M sin δ
r − K V2

M sin δ

r(1−δ cot δ)
Ξ, if δ < δ∗or ∆ ≥ 0

−V2
M sin δ

r , if δ = δ∗and ∆ < 0
(50)

Then, the singularity of the guidance command will be discussed.

Proposition 6. Given that δ0 is not equal to 0, the proposed FCITG does not suffer from
singularity problems.

Proof. From Proposition 4, if δ0 6= 0, zero look angle only occurs at the interception
moment meaning that δ cannot be zero before Ξ converges to zero. Thus, the value of
sin δ/(1− δ cot δ) in (48) is always bounded before Ξ vanishes, ensuring the boundedness
of the guidance command. After Ξ vanishes, the guidance command given by (28) or (48)
degenerates to that of circular guidance, in which the guidance command stays constant.

This completes the proof. �

Note that even if δ0 = 0 occurs, the lateral acceleration can deviate the look angle
from zero before FCITG is applied. However, when δ0 is close to zero and ε0 6= 0, the
guidance command given by (48) will grow considerably large. For example, the value of
sin δ/(1− δ cot δ) will blow up to about 300 when δ0 = 0.01 rad. To address the singularity
problem, we can saturate the magnitude of the guidance command to its maximal value
denoted by amax

M . In practice, the guidance command in (48) can be reformulated as

aM =

{
aM , if|aM | ≤ amax

M

amax
M · sign(aM), if|aM| > amax

M

(51)

4. The Criteria for Tuning Parameters

In this section, the criteria for the selection of the values of K and α will be estab-
lished. Before the establishment of the criteria, a proposition about the settling time of the
system (20) is provided.

Proposition 7. The settling time of system (20) is bounded by
√

3
9

2−α
1−α

π
K
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Proof. Although the fact that the settling time of system (20) is bounded by a fixed time
has been proved in Proposition 1, the exact value of the fixed time will be given in this
proposition. The proof will consider two cases, one ε0 > 0 and the other ε0 < 0.

Case 1: ε0 > 0
From the proof of Proposition 1, εε0 > 0 holds when ε 6= 0. Thus, in case of ε0 > 0, ε

stays positive before reaching zero. Then, (20) can be rewritten as

.
ε = −K

(
εα/(2−α) + ε + ε(4−3α)/(2−α)

)
(52)

By separating ε and t, we have

1
εα/(2−α) + ε + ε(4−3α)/(2−α)

dε = −Kdt (53)

On defining {
µ = εα/(2−α)

µ0 = ε
α/(2−α)

0
(54)

One can rewrite (51) as

2− α

2− 2α

1

(µ + 1/2)2 + 3/4
dµ = −Kdt (55)

Integrating (53) yields

2− α

1− α

1√
3

tan−1
(

2µ + 1√
3

)
− 2− α

1− α

1√
3

tan−1
(

2µ0 + 1√
3

)
= −Kt (56)

Therefore, when ε0 > 0, the solution of system (20) can be obtained as

t = ρ

[
tan−1

(
1 + 2ε0

(2−2α)/(2−α)

√
3

)
− tan−1

(
1 + 2ε(2−2α)/(2−α)

√
3

)]
(57)

where ρ , 1√
3K

2−α
1−α .

Case 2: ε0 < 0
Utilizing the similar process as in case 1, when ε0 < 0, the solution of system (20) can

be obtained as

t = ρ

[
tan−1

(
1 + 2(−ε0)

(2−2α)/(2−α)

√
3

)
− tan−1

(
1 + 2(−ε)(2−2α)/(2−α)

√
3

)]
(58)

Combining (55) and (56) gives

t = ρ

[
tan−1

(
1 + 2|ε0|(2−2α)/(2−α)

√
3

)
− tan−1

(
1 + 2|ε|(2−2α)/(2−α)

√
3

)]
(59)

Substituting ε = 0 into (57) the settling time represented by ts can be obtained as

ts = ρ

[
tan−1

(
1 + 2|ε0|(2−2α)/(2−α)

√
3

)
− π

6

]
(60)

From (58) it is clear that

ε0 → ±∞, ts →
√

3
9

2− α

1− α

π

K
(61)
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This completes the proof. �

Evidently, (59) agrees with the property of the fixed-time stability. If K was chosen as

K >

√
3

9
2− α

1− α

π

Td
(62)

such that the upper limit of ts is smaller than Td, ε will always converge to zero within a
fixed time before interception, despite the initial error. Thus, with the recalling of (36), in
case of ε0 < 0, the criterion for the selection of K is as follows

K > max

{
1− δ0 cot δ0

3|ε0|
,

√
3

9
2− α

1− α

π

Td

}
(63)

Nevertheless, when ε0 > 0, only (60) is responsible for K. As Remark 1 has stated,α
was chosen as 0 < α < 1 for faster convergence of the impact time error. Hence, the criteria
for the selection of values of α and K are summarized in Table 1.

Table 1. Criteria for the selection of values of α and K.

Case Parameter Value

ε0 > 0
α 0 < α < 1

K K >
√

3
9

2−α
1−α

π
Td

ε0 < 0
α 0 < α < 1

K K > max
{

1−δ0 cot δ0
3|ε0| ,

√
3

9
2−α
1−α

π
Td

}
5. Extension of FCITG
5.1. Non-Maneuvering Moving Target

Figure 2 shows the guidance geometry for a moving target. Herein, without loss of
generality, the path angle of the target can be set to 0 degree. For a slowly moving target,
such as a surface ship, it is not difficult to measure its speed. In this paper, the target was
assumed to move with a constant speed VT .
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Figure 2. Guidance geometry for a moving target.

Similar to the method in [12], the proposed guidance law can be extended to moving
targets by aiming for the predicted impact point (PIP) rather than the current position of
the target. The PIP can be calculated from the known target speed and the flight-path angle.

For a moving target, by replacing the current states with corresponding states with
PIP in (48), the guidance command can be obtained as

aM =


− 2V2

M sin δPIP
rPIP

− K V2
M sin δPIP

rPIP(1−δPIP cot δPIP)
Ξ, if δ < δ∗or ∆ ≥ 0

−V2
M sin δPIP

rPIP
, if δ = δ∗and ∆ < 0

(64)
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5.2. Salvo Attack Scenario

A salvo attack by anti-ship missiles, in which several missiles hit the target as simulta-
neously as possible, have been developed as one of the countermeasures against the threat
of CIWS. Although each missile has a different missile-to-target range and an initial look
angle, their common aim is to reach the target simultaneously. In the proposed FCITG,
there exists a lower limit to the desired impact time but, no an upper limit. Therefore,
to enable each missile to reach the target at Td, the desired impact time of a salvo attack
should be chosen as

Td > max
{

Tmin
i

}
for any i ∈ {1, 2, . . . , n} (65)

where n is the number of missiles involved in the salvo attack and Tmin
i (= r0i/VMi) repre-

sents the initial range over the speed of the i-th missile.
By sharing Td and using FCITG, missiles can hit the target simultaneously. Compared

with [1], firstly, the proposed FCITG does not require missiles to be launched from similar
ranges, and secondly, the salvo attack desired impact time could be less than the impact
time predicted by PNG for each missile. These features make the guidance law more
flexible and more practical.

6. Numerical Simulation

In this section, to investigate the characteristics of the proposed law, several nonlinear
simulations are performed.

6.1. Non-Maneuvering Moving Target

In this subsection, nonlinear simulations, with initial conditions shown in Table 2, are
performed. From Table 2, Tmin = 33.33 s, so the desired impact times 35 s, 50 s, and 90 s
are all available. From Table 3, α = 0.8 is selected to eliminate errors within a fixed time.
Further, based on the information provided in Table 3, K is chosen as K = 0.2. Figure 3
shows the trajectories of the missile and the profiles of distance-to-go. It is evident from
Figure 3 that in each case, the missile can reach the target at different desired impact times.
Moreover, it is clearly shown in Figure 4a that the larger the initial impact time error, the
greater the initial commanded acceleration will be.

Table 2. Parameter values used in simulation.

Parameters Values

Initial Missile Position (0, 0) m
Missile Velocity 300 m/s
The Bound on |aM| 50 m/s2

Target Position (10,000, 0) m
Initial Look Angle 60◦

Desired Impact Time 35 s, 50 s, 90 s

Table 3. Some useful values.

Td ε0
√

3
9

2−α
1−α

π
Td

1−δ0cotδ0
3|ε0|

35 s 5.3 s 0.1036 -
50 s −9.7 s 0.0726 0.0136
90 s −49.7 s 0.0403 0.0027
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Figure 4. The results without look angle constraint. (a) Lateral acceleration; (b) Look angle.

When the impact time error ε converges to zero within a finite time, the guidance
command is only used to maintain a certain circular course, as is evident from Figure 4a. A
striking feature of Figure 5 is that impact time errors always converge to zero within about
18 s, independent of the initial values, which is in accordance with the result provided by
(59) As shown in Figure 4b, look angles for Td =35 s decrease with time owing to ε0 > 0;
but for cases where Td =50 s and Td =90 s, the curves show a trend of increasing and
then decreasing due to ε0 < 0. In the latter segment of the engagement, the missile will
move along a circular course, causing the look angle to decrease to zero linearly, as shown
in Figure 4b.
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In an overall sense, as described in Figure 6a, there is no significant difference between
the two trajectories for K = 0.2 and K = 0.4 with α = 0.8. However, the initial guidance
command for K = 0.4 is greater than that for K = 0.2, according to (48). As a result, the
profiles of the lateral accelerations with saturation show slight discrepancies, as seen in
Figure 6b. As shown in Figure 7a, the value of K has a very substantial effect on the settling
time by revealing that a larger value of K will expedite the convergence of impact time
errors. Further, the settling time for K = 0.4 is approximately half of that for K = 0.2, which
is parallel to (48). It is shown in Figure 6a that at the beginning of the engagement, the
trajectory in the case K = 0.4 will have a greater curvature, which leads to a larger extrema
value of the look angle, as seen in Figure 7b.
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6.2. Constrained Look Angle

It is necessary to choose a greater desired impact time to make the look angle reach
the allowable values. As a result, Td = 90 s is selected in this subsection. Other information
is the same as that in Table 2. The allowed maximal look angles of the seeker are selected as
80◦, 90◦, and 100◦, respectively. Note that the allowed maximal look angle of 360◦ means
there is no constraint on the look angles.

As shown in Figure 8a, when the look angle is considered, trajectories are quite
different from the trajectories without limit on the look angle. Further, a smaller allowable
maximal look angle will result in a trajectory with a lower altitude, but a greater scope in
the downrange, which also occurs in [33].
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For δ∗ = 80◦, as can be seen from Figure 8b, the distance to target deceases in the whole
engagement based on (2). Because the initial look angle is 60◦, the look angle will increase
to 80◦ due to ε0 > 0 and then stay constant during DPP before decreasing with time in
a linear pattern, as observed from Figure 9b. Note that, in case of δ∗ = 80◦, the missile
will hit the ground about 2 km away from the target, from which we can suggest that the
combination of a longer impact time and a large look angle constraint is more reasonable.
For δ∗ = 90◦, the distance to target deceases at the beginning of the engagement before
the look angle reaches 90◦. Once the look angle reaches 90◦, the guidance law is switched
into DPP, where the distance to target and the look angle remain constant, as shown in
Figures 8b and 9b. When ∆, which is defined in (38), becomes positive, the guidance law is
switched to FCITG, again leading to a decrease in look angles. For δ∗ = 100◦, the behavior
of the look angles is similar to the case δ∗ = 90◦ as shown in Figure 9b. Meanwhile, the
distance to target during DPP stage will increase due to look angles greater than 90◦, as
presented in Figure 8b.
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In this subsection, the guidance can be divided into three stages: FCITG, DPP, and
FCITG. Consequently, as depicted in Figure 9a, the lateral acceleration is piecewise in all
three cases due to the switches between different guidance laws. Note that a jump of the
guidance command only occurs at the first switch moment.

Now, different initial look angles will be investigated. The desired impact time
Td = 50 s is selected. The initial look angles are 1◦, 30◦, 60◦, and 80◦, respectively. The
allowed maximal look angle is set to be δ∗ = 80◦. Other information required is provided
in Table 2. As shown in Figure 10a, different initial look angles can result in significant
disparities in trajectories during the initial phase. In the later stages of the engagements,
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these trajectories will show a similar pattern by following circular arcs after the impact time
errors become zero, as seen in Figure 10a. The distance to target in each case decreases to
zero monotonically, due to look angles no more than 80◦, as shown in Figure 10b.
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Figure 10. The results with different initial look angles under δ∗ = 80◦. (a) Trajectories; (b) Distance
to target.

In case of δ0 = 1◦, Figure 11a shows that the profile of the lateral accelerations is
piecewise with a jump because the look angle will reach the allowed maximal value leading
to a switch between FCITG and DPP, while the profiles of the lateral accelerations in the
other three cases do not suffer from a sudden change. In summary, FCITG is insensitive to
the values of the initial look angles.
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6.3. Salvo Attack Scenario

In this subsection, a simulation of a salvo attack in which three missiles engage a
stationary target is performed. The target position is set as (10,000, 0) m. Missiles, which are
denoted by M1, M2, and M3, are launched from different locations with different initial look
angles and different speeds. To better verify the effectiveness of the algorithm, the upper
limit of the command acceleration is also set to different values. The detailed information
for the salvo attack is summarized in Table 4. To be more realistic, constraints on look
angles are also considered by using 80◦ as the allowed value in the simulation.
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Table 4. Engagement conditions.

Missiles Initial Missile Position Initial Look Angle Missile Speed The Bound on |aM|

M1 (0, 0) m 60◦ 300 m/s 50 m/s2

M2 (4000, 0) m 40◦ 250 m/s 40 m/s2

M3 (−4000, 0) m 20◦ 350 m/s 60 m/s2

As seen from Figure 12a, even if the missiles are launched with initial ranges of great
discrepancy, from 6000 m to 14,000 m, each of missiles can hit the target at Td = 50 s, while
in [1], one prerequisite to achieve a simultaneous attack is that missiles should be launched
with similar ranges from the target. Moreover, as shown in Figure 12b, the three curves
have different gradients in the region just before interception at Td = 50 s due to a different
closing speed of each missile.
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As can be seen from Figure 13, when the maximal look angle is less than the allowable
maximal value for M1 and M3, DPP is not employed. While for M2, when the look angle
reaches 80◦, DPP is then applied. Accordingly, only the guidance command for M2 shows
a jump, as can be seen in Figure 14a. Most importantly, impact time errors all converge to
zero within about 25 s, regardless of initial impact errors, as observed in Figure 13b.
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6.4. Extension to a Moving Target

For a moving target, the parameter values are provided in Table 5. As can be seen
from Figure 15, the missile can intercept the target at different desired moments under
different initial conditions by aiming for PIP. As seen from Figure 16b, this simulation is
only to verify the effectiveness of the proposed algorithm, so the look angle constraint is
not considered. As a result, the guidance command is continuous as shown in Figure 16a.
In fact, the look angle constraint can be achieved by switching the guidance law.

Table 5. Parameter values for a moving target.

Parameters Values

Initial Missile Position (0, 0) m
Missile Speed 300 m/s
The Bound on guidance command 50 m/s2

Initial Target Position (10,000, 0) m
Initial Look Angle 30◦, 45◦, 60◦

Desired Impact Time 50 s, 70 s, 90 s
Target Speed 50 m/s
Target Path Angle 0◦
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6.5. Comparative Study

Based on the parameter values in Table 2 with δ∗ = 80◦, each desired impact time
between 35 s and 90 s, with a 1-second interval, is simulated to verify the effectiveness of
the FCITG. Figure 17a shows that Td ∈ [35, 90] s can be achievable by FCITG.
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Linearization and small angle assumptions are not involved in the derivation of
the proposed guidance law, so the value of Td has almost no influence on the final im-
pact time error. By introducing DPP during the middle phase of the guidance in cases
where Td is great than about 50 s, constraints on look angles can be satisfied, as observed
from Figure 17b.

From the parameter values in Table 2, the flight time governed by PNG can be ob-
tained as tPNG

f = 37.36 s, with navigation constant being 3, by simulations or numerical
computations. This is also one of the reasons why the lower bound of the desired impact
time is chosen as 35 s in this subsection. It is clearly observed from Figure 17a that only
the desired impact time between about 38 s and 50 s can be achievable using the ITCG
presented in [1]. The longer the desired impact time, the greater the maximal look angle.
When the desired impact time is greater than 50 s, the small angle approximation, which
was a precondition for the estimation of time-to-go in [1], can produce large errors. Besides,
the constraint on the look angle ITCG in [1] was not considered. As a result, when the
desired impact time becomes large enough, there will be a dramatic increase in both the
final impact time error and the maximal look angle, as can be seen from Figure 17. This
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means that the proposed FCITG can be applied to a much wider range of the achievable
desired impact time.

To measure the energy cost during the guidance, an energy-related index is defined as
J =

∫ Td
0 |aM|dt. The comprehensive performance of the proposed FCITG will be evaluated

from four aspects, including energy cost, miss distance, final impact time error, and the
maximal look angle. In fairness, as in [1], the navigation constant is chosen as N = 3, and
the PI controller gains are chosen as KP = −150, and KI = −15, according to [33]. As seen
in Table 6, both the proposed FCITG and CITG in [33] can reach the target at Td = 35 s, with
look angles no more than 60◦ throughout the whole engagement, while the ITCG in [1]
can generate a final impact time error up to 2.36 s. Besides, compared with the other two
guidance laws, the energy cost is the least for the proposed FCITG.

Table 6. Characteristics for Td = 35 s.

Guidance Law Energy Cost Final Impact Time Error Max Look Angle

Proposed 425.7 m/s 0.0001 s 60◦

ITCG in Ref. [1] 471.3 m/s 2.36 s 60◦

CITG in Ref. [33] 433.4 m/s 0.0008 s 60◦

For Td = 50 s, both the proposed FCITG and ITCG in [1] can hit the target at the
desired impact time without violating the constraint on the look angle, as shown in Table 7.
Since ITCG in [1] is an energy-optimal based guidance law, its energy cost is less than that
in the proposed FCITG. Although Td = 50 s is also achievable by utilizing the CITG in [33],
the maximal look angle contradicts with the constraint on the look angle because of the
use of a PI controller, which can make the seeker fail to detect the target. It is well known
that a PID controller can produce oscillations, or an overshoot, by employing improper
gains. However, finding proper gains for a PID controller may be time-consuming and
experience-dependent, while the parameter values in FCITG can be determined by rules
given by Table 1. The final impact time error is a particularly large, as seen in Figure 17,
results yielded by the ITCG in [1] are no longer displayed in Table 8, and because the
trajectory using the ITCG in [1] is strange, as shown in Figure 18a. An overshoot in look
angles arises again by using the CITG in [33] when it comes to the case of d Td = 90 s, as
observed in Figure 19a and Table 8.

Table 7. Characteristics for Td = 50 s.

Guidance Law Energy Cost Final Impact Time Error Max Look Angle

Proposed 917.1 m/s 0.0001 s 78.64◦

ITCG in Ref. [1] 710.3 m/s 0.04 s 76.79◦

CITG in Ref. [33] 931.8 m/s 0.0009 s 81.33◦

Table 8. Characteristics for Td = 90 s.

Guidance Law Energy Cost Final Impact Time Error Max Look Angle

Proposed 1521.7 m/s 0.0001 s 80◦

ITCG in Ref. [1] - - -
CITG in Ref. [33] 1463.2 m/s 0.0009 s 84.6◦
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In general, simulations have shown that the proposed FCITG in this paper can hit
a stationary or a moving, but non-maneuvering, target at a desired impact time, with
zero miss distance. Further, the energy consumption is appropriate under different initial
conditions, without violating the look angle constraint.

7. Conclusions

This paper proposes a new approach, called FCITG, to control impact time based
on circular guidance and the fixed-time stability theory. Compared with the previous
representative guidance laws, the proposed guidance law was derived based on exact
time-to-go computation, instead of the estimation of time-to-go. Moreover, the criteria for
the selection of parameter values, which can be used to determine the upper limit on the
settling time, are established by rigorous derivations and justified by numerical simulations.
The nonlinear framework used for the proposed guidance law makes it applicable, even
for engagements with large heading errors. The derived guidance law is shown to satisfy
a wide range of desired impact times. Furthermore, the desired impact time can be even
less than the initial time-to-go estimate, which may be not feasible using many existing
guidance laws. Next, the look angle constraint is addressed through introducing DPP,
when necessary. By employing the FCITG proposed and sharing information on the desired
impact time, a group of missiles can realize a salvo attack for a moving target, as well as a
stationary target. The reliability of the salvo attack strategy can be guaranteed by the fixed-
time convergence of the impact time errors. Simulations have shown that the proposed
guidance law was not sensitive to heading errors, initial positions, and the expected initial
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flight time. Future work will focus on the constraints on both impact time and impact angle,
as well as 3-D scenarios.
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