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Abstract: In this study, a prognostics and health management (PHM) framework is proposed for 
aero-engines, which combines a dynamic probability (DP) model and a long short-term memory 
neural network (LSTM). A DP model based on Gaussian mixture model-adaptive density peaks 
clustering algorithm, which has the advantages of an extremely short training time and high enough 
precision, is employed for modelling engine fault development from the beginning of engine ser-
vice, and principal component analysis is introduced to convert complex high-dimensional raw data 
into low-dimensional data. The model can be updated from time to time according to the accumu-
lation of engine data to capture the occurrence and evolution process of engine faults. In order to 
address the problems with the commonly used data driven methods, the DP + LSTM model is em-
ployed to estimate the remaining useful life (RUL) of the engine. Finally, the proposed PHM frame-
work is validated experimentally using NASA’s commercial modular aero-propulsion system sim-
ulation dataset, and the results indicate that the DP model has higher stability than the classical 
artificial neural network method in fault diagnosis, whereas the DP + LSTM model has higher ac-
curacy in RUL estimation than other classical deep learning methods. 

Keywords: dynamic probability (DP); prognostics and health management (PHM); long short-term 
memory (LSTM); remaining useful life (RUL) 
 

1. Introduction 
Aero-engines are core machinery systems with complex structures, high levels of in-

tegration and poor working conditions, of which the reliable and efficient operations are 
crucial to the flight safety of aircraft. Prognostics and health management (PHM) is an 
effective maintenance technique to achieve safe and reliable operations of machines and 
systems, and plays a significant role in the operations of aero-engines [1–3]. Incomplete 
statistics showed that failures of gas path components account for more than 90% of all 
engine failures, 60% of the aero-engine maintenance costs are spent on gas-path compo-
nents [4]. However, due to the unique manufacturing technologies and special materials 
of the aero-engine, it is difficult to maintain and replace the components of engines fre-
quently [5]. The PHM system is capable of determining whether a gas-path component 
has failed and deciding whether it needs to be repaired or replaced, thus can reduce rou-
tine maintenance costs and time. Fault diagnosis and remaining useful life (RUL) estima-
tion are research emphases of PHM. 

In general, PHM approaches can be categorized into model-based methods [6,7] and 
data-driven methods [8,9]. Model-based methods include physical models, structural 
analysis, contact analysis cumulative damage models, cyclic fatigue, and crack propaga-
tion models, etc., [10]. Obviously, they need a detailed mathematical model of the aero-
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engine [11]. In addition, their reliability decreases as the system nonlinearities, complex-
ity, and modeling uncertainties increase. Data-driven methods can be roughly divided 
into two categories, namely machine learning algorithms and probability models, and 
they do not require deep knowledge of the engine mechanism, and mostly depend on 
real-time or collected historical data from the engine sensors and measurements, so they 
have attracted considerable attention and have been developed rapidly. Commonly used 
data-driven methods include artificial neural network (ANN), support vector machine 
(SVM), k-means clustering algorithm, Bayesian method, Markov model, Gaussian distri-
bution, etc. [12–18]. 

The operation and external conditions of aero-engine change over time and, there-
fore, the time-varying problems, have become the main challenge. Machine learning can 
be used for fault diagnosis, but it is not flexible enough to deal with time-varying prob-
lems and is difficult to update as data accumulates. The traditional ANN is also known as 
the black box model. Its construction process does not reflect the actual operation law of 
the engine. In addition, it has the limitations of weak generalization ability and difficulty 
in dealing with time-varying problems, etc. Chen et al. [1] proposed a new deep learning 
method called deep belief network (DBN) for engine fault diagnosis. Compared with the 
traditional back propagation (BP) model, it has been greatly improved, but its essence is 
still ANN, which has the above-mentioned drawbacks. Compared with ANN, the proba-
bility model has unique advantages in dealing with time-varying problems due to its solid 
mathematical background. The Gaussian mixture model (GMM) is a typical probability 
model, which can fit the fault monitoring features (FMFs) of random distribution by a 
combination of a finite number of Gaussian components (GCs) [19]. Avendaño Valencia 
et al. [20] proposed a stochastic framework based on the Gaussian mixture random coef-
ficient model for structural health state monitoring under time-varying conditions, and 
their results showed that GMM has great flexibility in dealing with time-varying and un-
certain problems. Qiu et al. [21] proposed an enhanced dynamic Gaussian mixture model-
based damage monitoring method for aircraft structural health monitoring (SHM). Fang 
et al. [22] proposed a probability modeling-based aircraft structural health monitoring 
framework under time-varying conditions. 

However, the probability model is rarely used in aero-engine PHM systems, espe-
cially the GMM model. The difficulty of applying the probability model to aero-engines 
lies in the data of aero-engine contain noise, which is much more complex than those of 
other objects such as aircraft structural analysis [23]. In addition, the biggest disadvantage 
of the traditional GMM model is that the initial values have a great influence on the result, 
and manual selection is required. At present, the most common improvement is to use the 
k-means clustering algorithm [24], but it is still unable to achieve complete self-adapta-
tion. A new method called adaptive density peaks clustering algorithm (ADPC) can solve 
these problems and realize adaptive initial clustering. Another difficulty in aero-engine 
fault diagnosis lies in the difficulty of obtaining a large amount of failure data for an en-
gine. Most of the engine’s life cycle is in the non-failure state, and it is a gradual process 
for an engine from health to failure. Therefore, it is necessary to design a dynamic model 
that makes full use of the normal data and can be updated as the data accumulates. 

RUL estimation is another focus in the PHM framework. Data-driven approaches are 
typical algorithms for RUL estimation. Soualhi et al. [25] developed a data-driven ap-
proach for bearing RUL prediction using the Hilbert–Huang transform (HHT) and the 
SVM. Li et al. [26] proposed a smooth transition auto-regression model combined with 
the Bayesian model to estimate the RUL. Listou et al. [27] proposed a semi-supervised 
learning method for RUL prediction, which reduced the amount of marker training data. 
However, these methods also suffer from some deficiencies. For instance, the imperfection 
of expert knowledge may cause the handcrafted feature to fail to effectively reflect the 
engine degradation, and these methods do not propose a good solution mechanism for 
the utilization of historical data and current data. In addition, the prediction accuracy of 
these methods is not optimal. 
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In the construction of the PHM framework, Che et al. [1] proposed a framework com-
bining DBN and long short-term memory neural network (LSTM) methods. In his frame-
work, fault diagnosis and RUL estimation are not deeply linked, and health indicators are 
not fully utilized in RUL estimation, which makes it necessary to mine information from 
engine sensor data again before RUL estimation, which is not the most efficient. Li et al. 
[28] proposed a framework for deriving system requirements for PHM system develop-
ment to provide a solution for predicting RUL. Similarly, the framework does not consider 
a technical route that combines fault diagnosis with RUL estimation. 

Given the above, an aero-engine PHM framework based on GMM-ADPC algorithm 
and LSTM network is proposed in this study. In this study, a new GMM-ADPC algorithm 
is proposed to construct probability distribution space of engine data. Based on the GMM-
ADPC algorithm, a dynamic probability (DP) model is proposed for modeling engine 
fault development. This model has a solid mathematical foundation and can make full use 
of engine life cycle data. And principal component analysis (PCA) is used to convert com-
plex high-dimensional raw data into low-dimensional data. For the purpose of addressing 
the problems with the commonly used data-driven methods, the DP + LSTM model is 
introduced for RUL estimation. Here, the engine fault probability distribution data con-
structed by the DP model is used as the input of the LSTM network, which realizes the 
information transmission between the two modules, avoids sensor noise interference to a 
certain extent, and improves the stability and accuracy of the PHM framework. 

The rest of this paper proceeds as follows. Section 2 introduces the DP model and 
LSTM algorithms. Section 3 details the architecture and the realization of the framework. 
Section 4 provides the validation results of the framework in NASA’s dataset. Finally, the 
conclusion of this work is given in Section 5. 

2. PHM Basic Theory 
2.1. Probability Modeling 

The core algorithm of the probability model is the GMM-ADPC algorithm, and the 
probability difference measuring method is used to quantify the difference between two 
probability models so as to generate fault detection indexes. 

2.1.1. GMM-ADPC Algorithm 
GMM is an extension of single Gaussian probability density function. It is a weighted 

sum of a finite number of GCs. Assume [ ]1 2, , , , ,i N= ⋅⋅⋅ ⋅ ⋅ ⋅X x x x x  denote a feature sample 
set composed by N FMFs, i = 1, 2, …, N, where [ ]1 2, , ,i D= ⋅⋅⋅x x x x  represents a FMF with 
D dimensionality. Equation (1) expresses the probability density function of GMM and 
Equation (2) expresses the GC. 
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where ( ) ( ) ( ){ }1 1 1, , , , , , , , , ,k k k K K Kw w wζ µ µ µ= Σ ⋅⋅⋅ Σ ⋅⋅ ⋅ Σ  is the most important parameter set 
of GMM. The number of GCs is K and 1,2, ,k K= ⋅⋅⋅ . The parameter ζ , kw , kµ  and kΣ  
denote the mixture weight, mean, and covariance matrix of the k-th GC, respectively, ⋅  
is the determinant value, and T is the transpose. 

Usually, the Expectation-Maximization (EM) algorithm is used to construct GMM 
[29]. However, the drawback of the EM algorithm is that the initial values of ζ  will 
greatly affect the result, which results in reduced stability of GMM. Some methods, such 
as the Bayesian non-parametric clustering approach and enhanced dynamic GMM 
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method, have been proposed to determine ζ  [21,30]. However, the ideal approach is 
adaptive and not computationally intensive. In addition, since each sample set belongs to 
a different FMF, the selected method is required to have good generalization performance. 
In fact, GMM represents the probability distribution of FMFs, with each GC representing 
a cluster. ADPC is an improved clustering algorithm based on probability density distri-
bution [31,32]. The main advantage of the ADPC algorithm is that it could effectively iden-
tify clustering centers and cut-off distances with low-dimensions or arbitrary data sets. 
The ADPC algorithm contains the following two main steps: 

Step 1: Automatic identification of the cut-off distance. 
First, define a variable H to represent the uncertainty of the system expressed as 

Equation (3) and Equations (4) and (5). If the values of H are smaller, the uncertainty of 
the system will be smaller, which is in favor of clustering. 
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where ijd  is the distance between FMF ix  and FMF jx , iρ  is the local density of FMF 

ix . Make the cd  gradually increase from 0 until H has the minimum value, in which case 

cd  is the most appropriate cut-off distance. 
For some samples, it is difficult to find the cut-off distance that meets the above re-

quirements. In this case, cd  can be set as the top 1% to 2% of the distance between all 
data points [31]. 

Step 2: Automatically identify clustering centers. 
Clustering centers should have both large iρ  and iδ  values. Define a variable γ  

expressed as Equation (6). Sample points with larger γ  values are more suitable for clus-
tering centers. 

i i iγ ρ δ=  (6) 

In addition, the number of cluster centers needs to be determined. Firstly, calculate 
the γ  value of each FMF and sort them. Let itend  be a criterion for determining the 
number of cluster centers, and itend  expressed as Equation (7). 

( ) 1

1

1 i i
i

i i

tend i
γ γ
γ γ

−

+

−
= −

−
 (7) 

Then, select the n FMFs with the largest γ  value, and calculate the itend  value for 
each FMF. If the itend  value of the m-th FMF is the largest, then the former m-1 FMFs are 
taken as the clustering center. 

After the initial clustering is completed, the mean, covariance, and weight of FMFs 
belonging to each cluster can be obtained and can be used as the initial value ζ  of the 
EM algorithm. 

2.1.2. Probability Difference Measuring Method 
In this paper, two probability models are constructed, as detailed in the following 

sections. Appropriate rules for quantifying the difference between the two models need 
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to be determined. Some methods such as Renyi divergence and Kullback-Leibler diver-
gence [33] have been proposed to measure the difference. However, these methods are 
not symmetric and normalized. Qiu et al. [21] used the Monte Carlo simulation method 
in probability similarity measuring and achieved good results [34]. Firstly, let 

{ }1 2, , ,MC R= ⋅⋅⋅X x x x  denote a large number of random samples that are generated by 
Monte Carlo sampling. Secondly, the posterior probability of MCX , is denoted as 

( ) ( ) ( ) ( ){ }1 2, , ,
T

MC RP ζ ζ ζ ζ= Φ Φ ⋅⋅⋅ ΦX x x x , which can be calculated by Equations (1) 

and (2). Finally, the difference between the two probability models can be calculated by 
Equation (8). In this paper, ( )1 2,Diff ζ ζ  actually denotes the fault detection indexes. 

( ) ( ) ( )
( ) ( )

1 2
1 2

1 2

, 1
T T

MC MC

MC MC

P P
Diff

P P

ζ ζ
ζ ζ

ζ ζ
= −

⋅

X X

X X
 (8) 

2.2. Long Short-Term Memory Networks 
LSTM model based recurrent neural network (RNN) can adaptively learn the repre-

sentative information through multiple non-linear transformations [35–37]. Compared 
with the traditional ANN, LSTM can remember all the historical information entered and 
is suitable for dealing with time-varying problems. Compared with RNN, LSTM has been 
improved in two main aspects. First, in order to solve the limitation of information forget-
ting, the cell state is split into the short-term state th  and the long-term state tc . Second, 
the cell states are regulated by three control gates, the forget gate, the input gate, and the 
output gate [38]. The architecture of LSTM can be described in Figure 1. 

 
Figure 1. Building block of long short-term memory (LSTM) network [1]. 

A typical LSTM is illustrated in Figure 1, and the hidden layer contains three gates: 
forget gate, input gate, and output gate. The functions of these three gates are: information 
forgetting, long-term state updating, and short-term state updating. 
1. Information forgetting. The states removed from the previous long-term state 1t−c  

are controlled by the forget gate tf . The tf  can be described by Equation (9). 
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[ ]( )1,t f t t fσ −= ⋅ +f w h x b  (9) 

where σ  is the sigmoid function, tx  is the previous current time, fw  is the weight vec-
tors, fb  is the bias term of the forget gate, and “ ⋅ ” means matrix multiplication. 

2. Long-term state updating. The input gate layer determines what values will be up-
dated. The input gate ti  and candidate value vector '

tc  are expressed by Equations 
(10) and (11). 

[ ]( )1,t i t t iσ −= ⋅ +i w h x b  (10) 

[ ]( )'
1Tanh ,t c t t cc −= ⋅ +w h x b  (11) 

where ( ),i cw w  are the weight vectors, and ( ),i cb b  are bias terms. 
Then, the new long-term cell state tc  can be obtained by Equation (12). 

'
1t t t t tc−= ⊗ ⊕ ⊗c f c i  (12) 

where ( )⊗ ⊕，  are element-wise multiplication and addition. 

3. Short-term state updating. The function of the output gate is to change the long-term 
state to the short-term state. Equation (13) describes the output gate to . 

[ ]( )1,t o t t oσ −= ⋅ +o w h x b  (13) 

Finally, the short-term state of the cell unit at time t can be described as Equation (14). 

( )Tanht t t= ⊗h o c  (14) 

In this study, LSTM implements the prediction of sequential to point, the dimension 
of the input sequence is 10. The loss function is mean squared error (MSE), and the opti-
mizer is the ADAM algorithm, which is an extension of the gradient descent algorithm. 

3. Design of the Aero-Engine PHM Framework 
3.1. DP Model for Fault Monitoring 

Data collected by aero-engine sensors vary over time and contain noise [39]. Further-
more, aero-engines are designed based on failure-tolerance, which means that the engine 
will keep a healthy state in the early stage of the engine, and the influence of fault is min-
imal and even far lower than the time-varying influence. As time goes on, the influence of 
the fault becomes greater and greater until the engine is unable to function properly. 
Therefore, it is necessary to find a method that can not only eliminate the influence of 
noise but also capture the accumulation of engine fault. Generally, the operating state of 
the engine cannot be directly reflected by sensor data at a certain moment. Deriving the 
engine state from the physical meaning of the data itself is difficult and complex. There-
fore, the core idea of the proposed framework is to construct the probability distribution 
of engine life cycle data, which is dynamically updated. Different health states necessarily 
correspond to different probability distributions. Double probability models are con-
structed to represent the engine health state and the health monitoring state, respectively, 
and the monitoring probability model must be updatable so as to reveal the progressive 
variation trend. Once the double probability models are constructed, the engine fault can 
be quantified by comparing the difference between the two probability models. It should 
be noted that this method is proposed on the assumption that the time-varying influences 
of the two states are the same. 

In addition, the DP model is designed as standardized architecture. In the PHM field, 
some model-driven methods such as Kalman Filtering, particle filter [40], and so on are 
all aimed at fixed objects. When the engine model is different, the PHM model needs to 
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be modified. Some data-driven methods such as ANN, SVM, and so on also have limited 
generalization capability [14,15]. In contrast to these methods, the DP model can be de-
signed as standardized architecture that is suitable for different engine models, because 
the DP model is updated dynamically with the accumulation of engine data, so it does not 
require much prior knowledge or complex model parameter adjustment, and considering 
the inevitability of data transfer in the framework, the proposed PHM framework in this 
paper will use a generalized data interface between the parts. In addition, the input and 
output data of the framework are normalized. Another significant advantage of the DP 
model is that it does not need training as ANN does, so this method is more efficient than 
ANN. 

3.2. Combining the DP Model and LSTM for the PHM Framework 
The modular hierarchical structure is a prominent feature of the proposed PHM 

framework, and the framework contains four blocks, as shown in Figure 2. The first step 
of the framework is to obtain sensors data for the entire life cycle and RUL information of 
the engine, which is large and contains noise. Therefore, in this step, it is necessary to clean 
these sensors’ data and reduce their dimensions through the PCA technique [41]. Then, 
the data after dimension reduction should be standardized. The preprocessed data is di-
vided into baseline data and monitoring data, which are passed into Block 1 and Block 2, 
respectively. These two blocks constitute the double probability models. Block 1 con-
structs the baseline probability model based on the baseline data; that is, the data under 
the engine health state. For the same engine, the baseline probability model remains un-
changed and is updated for different engines. Block 2 constructs the monitoring probabil-
ity model based on real-time monitoring data, which needs to be updated in real-time. 
After the construction of the double probability models, the difference ( ( ),B ODiff ζ ζ , 
where Bζ  and Oζ  are the parameters of baseline and monitoring probability models, 
respectively) between the two models can be used to evaluate the degree of engine failure, 
and that is what Block 3 does. In this paper, the normalized ( ),B ODiff ζ ζ  are used as fault 
detection indexes. Block 4 is the second part of the PHM framework-RUL estimation. The 
large amount of fault detection index data generated by the fault diagnosis module is 
taken as the training sample of the LSTM network. In this way, the interference of sensor 
data noise can be avoided. In addition, since the probability model contains the infor-
mation of the entire data set, it is difficult for the fault detection indexes to be disturbed 
by a very small number of abnormal data. Therefore, the framework combining the two 
models has better stability. RUL prediction can be started from any time of different en-
gines. A threshold value can be selected to conduct RUL evaluation according to the fault 
detection index curve.  
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Figure 2. DP-LSTM modeling-based aero-engine PHM Framework. 

4. Results and Discussions 
In order to further evaluate the PHM model, a turbofan engine performance degra-

dation dataset, which is generated by commercial modular aero-propulsion system simu-
lation (C-MAPSS) [42], is utilized. Each example within the turbofan dataset is a time se-
ries signal of various sensor data and operating conditions data which is measured peri-
odically over the life-cycle of the turbofans [43]. 

4.1. Data Sets Characterization 
As shown in Figure 3, a turbofan engine normally includes a fan, low pressure com-

pressor (LPC), low pressure turbine (LPT), high pressure compressor (HPC), high pres-
sure turbine (HPT), combustor, and a nozzle. The C-MAPSS data sets are multiple multi-
variate time series. Each dataset has been partitioned into training and test sample sets. 
Each dataset (i.e., a 24-element vector) includes 21 characteristic sensors for engine health 
data recording. With the preprocessing method, 14 sensors that are currently available 
onboard for many commercial turbofan engines are selected for PHM in this study [44]. 
Table 1 shows the description of selected sensors. 
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Figure 3. Diagram of engine in C-MAPSS. 

Table 1. Fourteen selected sensors in C-MAPSS. 

No. Sensor Abbreviation Description Units 
1 T24 Total temperature at low pressure compressor outlet R   
2 T30 Total temperature at high pressure compressor outlet R  
3 T50 Total temperature at low pressure turbine outlet R  
4 P30 Total pressure at high pressure compressor outlet psia 
5 Nf Physical fan speed rpm 
6 Nc Physical core speed rpm 
7 Ps30 Static pressure at high pressure compressor outlet (Ps30) psia 
8 Phi Ratio of fuel flow to Ps30 pps/psi 
9 NRf Corrected fan speed rpm 
10 NRc Corrected core speed rpm 
11 BPR Bypass ratio - 
12 Ht Bleed Burner fuel–air ratio - 
13 W31 High pressure turbine coolant bleed lbm/s 
14 W32 Low pressure turbine coolant bleed lbm/s 

After the raw data is selected, the Z-score method is used to standardize the 14 sensor 
parameters. The Z-score actually reflects the relative standard distance from an element 
to the mean. It can be calculated as: 

( ) /z x µ σ= −  (15) 

where z is the z-score, x is the value of the element, μ is the population mean, and σ is the 
standard deviation. 

In this paper, four datasets (Engine #1-#4) are selected to validate the DP model, and 
80 datasets (60 datasets as training samples and 20 datasets as testing samples) are selected 
to validate the LSTM model. 

4.2. Fault Diagnosis 
This section corresponds to Block 1, Block2, and Block3 in the PHM framework dia-

gram. In Section 4.1, a high dimensional dataset containing 14 sensor parameters was ob-
tained. Because of the limitation of DP model in processing high-dimensional data, PCA 
is used to construct a two-dimensional FMF. The data of the four engines processed by 
PCA is shown in Figure 4. 
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Figure 4. Two-dimensional PCA plot of the four engines. 

As can be seen in the figure, the red dots represent the data of the top 25% cycles, 
which are very concentrated, and there is little difference in the first principal component 
among the data points. Based on experience, we can assume that the engine is in a healthy 
state for the top 25% cycles, and the data of top 25% cycles is considered to be baseline 
data. Here, 25% is a conservative estimate and does not mean that the engine will fail after 
25%. Figure 4 also tells us that the data for the after 75% cycles of the engine is heavily 
dispersed, which means that the operating data of the engine during this period has grad-
ually deviated from the data of the health state. 

After the preprocessing of the original data is completed, the initial classification of 
these data can be achieved by the ADPC algorithm, so as to obtain the initial values of ζ  
required by the GMM. Although the ADPC algorithm can adaptively identify clustering 
centers and cut-off distance, the research in this paper finds that the method has limita-
tions when dealing the sample sets with small sizes. Therefore, in the early stage of engine 
operation, the sample size is still small, and a limiter is added to the ADPC algorithm to 
keep the number of clustering centers and cut-off distance unchanged. Therefore, a fixed 
number of cluster centers and cut-off distance are used for the top 50% of the engine full 
life cycles. In addition, the number of cluster centers is set between the interval [2,6], and 
the difference between the number of cluster centers of two adjacent samples cannot be 
more than two. The idea is to prevent violent oscillations in rare cases. The above 
measures can ensure the accuracy and stability of the established model. The variation of 
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the number of clustering centers in the full life cycles is shown in Figure 5. This figure 
reflects that the number of GCs recognized by the ADPC is changing adaptively to the 
changing monitoring feature space along with the engine life cycle. 

0 2 4 6 8 100 150 200 250 300

2

3

4

5

6

Monitoring
Probability Model

Th
e 

nu
m

be
r o

f G
Cs

Cycles

Baseline
Probability Model

 
0 2 4 6 8 100 150 200 250 300

2

3

4

5

6

Monitoring
Probability Model

Baseline
Probability Model

Th
e 

nu
m

be
r o

f G
Cs

Cycles  
(a) Engine #1 (b) Engine #2 

0 2 4 6 8 50 100 150 200 250 300

2

3

4

5

6

Monitoring
Probability Model

Baseline
Probability Model

Th
e 

nu
m

be
r o

f G
Cs

Cycles  
0 2 4 6 8 100 150 200 250 300

2

3

4

5

6

Monitoring
Probability Model

Baseline
Probability Model

Th
e 

nu
m

be
r o

f G
Cs

Cylces  
(c) Engine #3 (d) Engine #4 

Figure 5. The number of GCs along with the engine life cycle. 

After the initial clustering of the original data using the ADPC algorithm is com-
pleted. The initial values ζ  can be determined, and the EM algorithm is used to build 
the GMM. The implementation process is shown in Figure 6. 

The GMM model for the health state and monitoring state need to be constructed. 
This kind of DP model is also called the dynamic double probability model. Among them, 
data from the top 25% of the engine life cycles is used to construct the baseline probability 
model, and this model remains unchanged in the process of engine fault diagnosis. Data 
from after 75% of the engine life cycles is used to construct the monitoring probability 
model, which is continuously updated with the increase of the engine life cycles. In the 
fault diagnosis stage, the most important thing is to get the engine fault detection indexes, 
as is shown in Figure 7. In the probability difference measuring method, the number of 
Monte Carlo samples is R = 10,000. Table 2 shows the relevant parameters of the four en-
gines and the fault detection indexes in case of engine failure. It can be seen from the figure 
that the fault detection indexes of the top 25% cycles are zero. This is because the engine 
is in a healthy state at this stage and failure monitoring is not carried out. In the fault 
monitoring stage, the fault detection index’s variation trend of the four engines is basically 
the same. Since the initial value and total life cycles of each engine are slightly different 
(this is a characteristic of the C-MAPSS data set itself), the four curves do not completely 
coincide in the early stage, but they tend to coincide very well in the later stage. And all 
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four engines have almost the same fault detection index at the end of the cycle. These 
results are quite consistent with the real failure evolution law of engine. 

 
Figure 6. Steps of E-M algorithm. 
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Figure 7. Failure monitoring results in C-MAPSS data. 

Table 2. Parameters related to the four engines. 

Engine No. Full Life Cycle Fault Detection Index at the End of the Cycle 
Engine #1 287 0.5768 
Engine #2 269 0.5814 
Engine #3 276 0.5885 
Engine #4 283 0.5747 

In order to verify the superiority of the proposed model, BP and DBN models are 
used as comparison, among which the BP model is a classic algorithm, whereas the DBN 
model is a new and effective method used for engine fault diagnosis in recent years. Fig-
ure 8 indicates the analysis results of five samples, which are also from the C-MAPSS data 
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(The relevant data of BP and DBN models are from reference [1]). The results show that 
the fault detection indexes obtained by BP or DBN models oscillate violently. 
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Figure 8. Comparison of BP and DBN for fault diagnosis of several samples [1]. 

In order to compare the effect of the model more specifically, the first-order differ-
ence of the predicted fault detection indexes and the corresponding variance value are 
obtained, as shown in Figure 9. The variance of the proposed DP model is 0.015, whereas 
the variance of the BP and DBN models are 0.035 and 0.024, respectively, as shown in 
Table 3. Obviously, the proposed DP model has lower difference variances and better fault 
diagnosis results compared with the BP model and DBN model. Unlike the DBN and other 
ANN methods, the key to the DP model is to construct the probability distribution of en-
gine data set in a specific space, which is the statistical result of a large number of data. 
Therefore, the DP model has the ability to integrate historical data and current data, and 
its stability is bound to be better. 
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Figure 9. First difference value of the fault detection indexes. 
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Table 3. Comparison results of variance values of three models. 

Model Difference Variance (10−2) 
BP 3.5 
DBN 2.4 
DP 1.5 

It is expected that the dynamic double probability model is able to capture the man-
ifold of the healthy state and map differences between degradation trajectories into dif-
ferent regions of 2D FMF space. This visualization is given in Figure 10 using the first two 
principal components combined with the fault detection indexes. As can be seen from the 
figure, blue data points representing engine health status are mainly concentrated around 
PCA-1 = −3. As PCA-1 increases, the value of fault detection indexes also increases. The 
fault monitoring index reaches the maximum at about PCA-1 = 10 for all four engines, 
which means engine failure. It is clear that the DP model can well identify the evolution 
process of engine failure. 

 
(a) Engine #1 

 
(b) Engine #2 

 
(c) Engine #3 

 
(d) Engine #4 

Figure 10. Two-dimensional PCA plot of the fault detection index. 

4.3. RUL Estimation 
The DP + LSTM model is applied for RUL estimation. It is necessary to select appro-

priate parameters for LSTM models to avoid local optimum and fitting errors. As a matter 
of experience, the optimal parameter combinations of the LSTM model are shown in Table 
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4. The 80 representative engines in the C-MAPSS dataset are used to verify the reliability 
of the LSTM model, in which the training and test subsets are divided into a ratio of 3:1. 
The training data of LSTM is the fault detection indexes for each engine. 

Table 4. Designs based for LSTM networks. 

Model Parameters Value 
Layer 3 
Hidden units [128, 64, 64] 
Dropout [0.3, 0.3, 0] 
Batch size 100 
Epoch 100 
Input shape [10, 1] 
Output shape [1, 1] 

To verify the superiority of the proposed method, the RNN and gated recurrent unit 
(GRU) network, which is a variant of LSTM, are implemented as comparisons [1], Mean 
absolute error (MAE) is used as a training loss function, and the MAE values of the three 
models are shown in Figure 11. The results show that the training loss of these three mod-
els decreases gradually with the increasing epoch. When the epoch reaches 100, the train-
ing loss of LSTM is lower than that of RNN but higher than that of GRU. During the last 
20 epochs, the mean loss is 0.028. 
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Figure 11. The loss contrast among LSTM, GRU, and RNN. 

Figure 12 plots the prediction result of four testing sets from 60% and 70% of the 
monitoring cycles. As can be seen from the figure, the predicted results are in good agree-
ment with the actual results. Especially near the cycle of engine failure, the actual value is 
highly coincident with the predicted value. High precision prediction can be achieved 
whether the prediction starts from 60% or 70% of the monitoring period. LSTM is a time 
series prediction model, and the prediction ability it has learned does not include the pre-
diction after engine failure. Therefore, when the prediction curve tends to be stable, it 
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means that the engine is about to fail. In addition, the prediction curve flattens out after 
the failure point and shows little growth. These prove the reliability and accuracy of the 
DP model and LSTM model proposed in this paper. The threshold needs to be set for RUL 
estimation since the initial state of each engine in the C-MAPSS data set is different, and 
the threshold value will vary slightly. The threshold value of the four engines selected in 
Figure 12 can be set to about 0.55. 
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Figure 12. RUL prediction of 4 engines. 

The engine cycles corresponding to the threshold can be determined according to the 
prediction curve; that is, the cycle when the failure is predicted. To get a more detailed 
understanding of the model’s accuracy, we calculated the relative error of prediction for 
20 testing sets, as shown in Figures 13 and 14. When predicted from 60% cycles, the mean 
relative error of the testing is 0.024%. When predicted from 70% cycles, the mean relative 
error of the testing is 0.019%. Obviously, the prediction accuracy is slightly higher when 
starting from 70% cycles, because time series prediction models generally have a certain 
degree of cumulative error. In general, the relative errors of both of them remain below 
6%, which proves the high accuracy of the proposed model. 
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(a) Prediction from 60% cycles 
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(b) Prediction from 70% cycles 

Figure 13. The residuals of the actual RUL and estimated RUL on 20 testing sets. 
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Figure 14. The relative error of RUL prediction on 20 testing sets. 

Several classical RUL estimation methods are compared to verify the superiority of 
the proposed method, and the RUL prediction errors of the five models are listed in Table 
5 (relevant data of the model used for comparison come from the reference [1]). Compared 
with DBN + LSTM, LSTM, RNN, and GRU, the average RUL estimation error of DP + 
LSTM model is 4.4, which decreases by 21%, 41%, 51%, and 48% (the data of these five 
models are all from the C-MAPSS dataset). The result shows that proposed DP + LSTM 
model has higher accuracy than those classical time series prediction models. In fact, sev-
eral other methods belong to the ANN model, which can also be called a black box model. 
In essence, they achieve prediction by learning the inherent laws of a large amount of data. 
These methods are sensitive to data, and the hyper-parameters have a great impact on the 
model effect, and the adjustment of hyper-parameters is a complex process. The DP + 
LSTM method proposed in this study is the combination of probability model and ANN 
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model. Solid mathematical basis is the advantage of probability model, which is an im-
portant factor for the DP + LSTM model to be more superior. 

Table 5. RUL estimation error of different models. 

Model Point 1 (Cycles) Point 2 (Cycles) Average (Cycles) 
DP + LSTM 5.1 3.7 4.4 
DBN + LSTM 6.9 4.4 5.6 
LSTM 8.2 6.8 7.5 
RNN 10.2 7.9 9.0 
GRU 10.0 7.0 8.5 

4.4. PHM Application Example 
Standardizing the data processing flow of the PHM framework is one of the aims of 

this study. Algorithm 1 summarizes the function realization process of the PHM frame-
work. 

An engine data set in the C-MAPSS data set is selected to show the processing results 
of the proposed PHM framework, as shown in Figure 15a, which shows 7 of the 14 sets of 
raw sensor data for the engine. It can be seen that noise greatly interferes with sensor data, 
and the change trends of sensors are inconsistent in the whole life cycle of the engine. 
Figure 15b shows the data after dimension reduction. Figure 15c,d, respectively, show the 
results of fault diagnosis and RUL estimation respectively. The proposed framework re-
alizes data analysis and mining from the original data of the engine to monitor engine 
health and realize the estimation of RUL. 

Algorithm 1. PHM framework process. 
Input: Aero-engine raw sensor data. 
Process 1: Data preprocessing 

(1) Data collation and standardization (z-score). 
(2) Data dimension reduction based on PCA method. 

Process 2: DP model construction 
(1) The preprocessed data are fed to the double probability models. 
(2) Construct the baseline probability model. 
(3) Construct the dynamic monitoring probability model. 
(4) Difference measures for double probability models. 
(5) Output fault detection indexes. 

Process 3: RUL Estimation 
(1) Training LSTM network based on fault detection indexes. 
(2) The prediction of engine RUL at the current time is realized from any 

cycle point in the engine life cycle. 
(3) Output engine RUL. 

Output: Fault detection indexes and RUL. 
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Figure 15. Example of PHM framework data processing flow. 

5. Conclusions 
In this study, a PHM framework combining the DP model and LSTM model is pro-

posed for fault diagnosis and RUL estimation of aero-engine. Firstly, the DP model con-
sisting of a baseline probability model and a monitoring probability model is constructed, 
in which the baseline probability model reflects the operating characteristics of the en-
gine’s healthy state, and the monitoring probability model reflects the failure occurrence 
and evolution process of the engine. A GMM-ADPC algorithm is employed for modeling 
engine fault development, and the PCA method is adopted to reduce the dimension of the 
input data. Secondly, the probability difference measuring method is used to quantify the 
difference between the two probability models so as to obtain the fault detection indexes. 
Thirdly, the DP + LSTM model is introduced for a time series prediction of fault detection 
indexes, so as to estimate the RUL of the engine. Finally, the PHM framework is estab-
lished by integrating the aforementioned models. The experimental results on the degra-
dation datasets obtained by the C-MAPSS indicated that the proposed DP model can cap-
ture the process of engine failure well, and the DP + LSTM model can perform RUL esti-
mation well. By comparing the results of the proposed method with some classical meth-
ods, it is shown that the proposed method has better stability and accuracy. 

To sum up, the PHM framework proposed in this study can adequately realize the 
functions of fault diagnosis and RUL estimation. 
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Nomenclature 

ADPC adaptive density peaks clustering HPT high pressure turbine 
ANN artificial neural network LPC low pressure compressor 
BP back propagation LPT low pressure turbine 

C-MAPSS commercial modular aero-propulsion 
system simulation 

LSTM long short-term memory neu-
ral network 

DBN deep belief network MAE mean absolute error 
DP dynamic probability MSE mean squared error 

EM expectation-maximization PHM prognostics and health man-
agement 

FMF fault monitoring feature PCA principal component analysis 
GRU gated recurrent unit RNN recurrent neural network 
GC Gaussian component RUL remaining useful life 
GMM Gaussian mixture model SHM structural health monitoring 
HHT Hilbert-Huang transform SVM support vector machine 
HPC high pressure compressor   
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