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Abstract: The air traffic control sector (ATCS) is the basic unit of the airspace system. If we can
identify the congestion of an ATCS, it will help provide decision support for planning and daily
operations. However, current methods mainly characterize congestion from the static structure
and the dynamic operational features, resulting in poor generalization and operability. To this end,
we propose a deep learning method from the perspective of complex networks. It takes aircraft
as nodes to construct an aircraft network and utilizes the complexity indices to characterize it. So,
the problem of identifying congestion becomes the complexity of the aircraft network. Inspired by
active learning methods, we construct a deep active learning (DAL) model for congestion recognition.
It adopts an iterative semi-supervised approach to reduce the number of labeled samples while
ensuring recognition performance. To make full use of a large number of unlabeled samples, the
sparse autoencoder is employed to characterize all labeled samples and unlabeled samples. The
hidden layer of the deep neural network is constructed by stacking. In the process of active learning
iteration, minimum confidence, marginal sampling, and information entropy are introduced as
measures to select samples from the unlabeled sample set with significantly different features from
the labeled sample set. The model is applied to three representative sectors in China’s airspace as
cases. Results suggest that DAL can reduce the labeled sample set’s redundancy and achieve the
desired performance with the smallest number of samples. Additionally, DAL is superior to the
existing mainstream methods in the four objective evaluation indices.

Keywords: air traffic control sector (ATCS); congestion recognition; deep active learning (DAL);
sparse self-coding; sample labeling strategy

MSC: 90B20

1. Introduction

With the rapid development of the civil aviation industry, air transport demand
continues to grow rapidly. However, limited airspace resources and the slow progress of air
traffic control technologies cannot meet the rapidly increasing demand for transportation,
resulting in increasingly crowded airspace. Airspace congestion can lead to a series of
problems, such as flow control, flight delays (increased potential flight conflicts, reduced
flight safety), and longer flight times (increase pollutant emissions). In the face of airspace
congestion, identifying air traffic congestion is the premise and foundation of air traffic
management [1].

Currently, the air traffic management mode adopts an operation mode based on the
air traffic control sector (ATCS). The airspace divides into multiple sectors with relatively

Aerospace 2022, 9, 302. https://doi.org/10.3390/aerospace9060302 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9060302
https://doi.org/10.3390/aerospace9060302
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-5266-2423
https://doi.org/10.3390/aerospace9060302
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9060302?type=check_update&version=2


Aerospace 2022, 9, 302 2 of 21

fixed boundaries. Air traffic controller management is responsible for the orderly trans-
fer of aircraft into and out of the sector and guides the aircraft to fly safely within the
controlled sector [2,3]. This paper aims to identify the degree of ATCS congestion, which
has strategic and tactical significance. Strategically, recognizing the historical congestion
of a sector can provide a basis for decision-making on sector consolidation and addition.
Tactically, real-time recognition of each sector’s congestion allows controllers to dynami-
cally grasp the congestion status of the sector and neighboring sectors, which allows them
to more effectively guide the aircraft through this sector and reasonably hand it over to
adjacent sectors.

ATCS congestion recognition is also known as complexity assessment [4,5]. Many
researchers have studied sector congestion recognition and improved methods using
two aspects: evaluation indicators and evaluation methods. In terms of the construction
of congestion evaluation indicators, current research mainly considers the reasons for
congestion, the workload of controllers, and the characteristics of congestion. To construct
indicators from the perspective of congestion causes, we mainly consider the imbalance
between traffic demand and traffic capacity. Wanke et al. [6] quantified the uncertainty of
predicted flow level and airspace capacity, and then solved the probabilistic model of traffic
demand prediction. At the same time, they obtained a monitor for predicting the probability
of a congestion alarm. Subsequently, Mulgund et al. [7] applied a genetic algorithm to
airspace structure management in 2006, easing the degree of air traffic congestion through
two solutions: reprogramming of flight tracks and flight delays on the ground. Sood et al. [8]
went a step further. They developed adaptive genetic algorithms based on weather factors
and traffic predictions to balance multiple metrics, which was different from traditional
viewing genetic algorithms, and simulated its results.

Since the controller manages each sector, the controller’s workload directly reflects the
sector’s congestion. Some studies have constructed congestion metrics from the controller’s
workload perspective. Djokic et al. [9] proposed the conjecture that there might be a
connection between the communication load and the controller’s load according to the
execution process of the controller’s work. They proved the conjecture through principal
component analysis of many parameters related to aircraft, followed by step-by-step
multiple regression analysis. Van Paassen et al. [10] established an airspace complexity
indicator system and evaluated the complexity based on the characteristic quantity in the
process of aircraft conflict relief. On the other hand, input-output flow is also an important
indicator to reflect the degree of congestion. Lee et al. [11] constructed an input-output
system framework to analyze the airspace and expressed the airspace complexity in a given
traffic situation using a complex graph. Then, on the original basis, the disturbance to
the closed system was considered, that is, the change of airspace complexity when the
system enters the aircraft, and how the air traffic controllers respond to it. Additionally,
Laudeman et al. [12] proposed the concept of spatial dynamic density. Based on the existing
assessment methods of traffic density, combined with traffic complexity, the indicator
of traffic complexity was determined, and a dynamic density equation was constructed
to measure the workload of traffic controllers. Kopardekar et al. [13], based on their
predecessors, researched the city of Cleveland and constructed a measurement matrix
of dynamic density, they then used code reduction and analysis tools to simulate the
aircraft in the sector in real-time, thereby simulating the load of the controller. In addition,
some researchers have combined the selection of evaluation indicators with machine
learning. Chatterji and Sridhar [14] divided the constructed evaluation indicators of
air traffic complexity into ten sets for neural network training to select the best set for
evaluating controller workload performance.

In addition to the characterization of congestion behaviors from the causes and con-
troller’s workload, researchers have also constructed congestion indicators from the char-
acteristics of congestion. Delahaye and Puechmorel [15] divided the air traffic congestion
indicator into two parts based on the complexity indicator constructed by predecessors.
One is the aircraft geometry attribute; the other uses the expression of air traffic flow as a
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dynamic system to obtain the complexity measurement index through topological entropy.
Further, Delahaye et al. [16] carried out the nonlinear expansion of the linear dynamic
system, calculated its related Lyapunov index, and obtained the complexity, which can be
used to identify the high (or low) complexity regions on the map. Lee et al. [17], based on
the nonlinear dynamic system, incorporated the uncertainty of flight trajectory into the
spatial dynamical system’s construction process and improved the original system.

Another challenging issue is assessing the level of congestion. The present research can
be divided into the threshold discrimination method, comprehensive weighting method,
cluster analysis method, and machine learning method. Early studies were mainly based
on threshold discrimination, comprehensive weighting, and cluster analysis. Bilimoria
and Lee [18] proposed an automatic cluster recognition method that uses the cluster
quality indicator obtained from the threshold distance of aircraft to identify the crowding
situation in the high-dynamic region. Surakitbanharn et al. [19] proposed a linear weighting
method to integrate congestion evaluation indicators. Because of the nonlinear relationship
between the congestion indicators, the model precision was reduced by linear weighting.
Brinton and Pledgie [20] used the collection characteristics of aircraft action trajectories
for clustering, constructed complexity indicators from the perspective of dynamic density,
calculated airspace complexity, and partitioned its airspace. Nguyen [21] segmented the
aircraft trajectory, used a deterministic annealing algorithm for linear clustering, classified
it according to time, and finally output the clustering result. Based on the complex network
theory, Wang et al. [22] divided the aviation network into 2D and 3D, established a two-layer
and multi-level dynamic network model, and divided the complexity into three categories
by using a clustering algorithm to discuss the change frequency of traffic conditions.

In recent years, machine learning methods have attracted researchers’ attention. Gi-
anazza [23] used principal component analysis to extract six key factors from 28 complexity
indicators and used BPNN (Back Propagation neural network) to evaluate the crowding
level of sectors. Xi et al. [24] proposed an integrated learning model based on the complex-
ity of air traffic in the region, considering that the cost of sample labeling is too high, which
leads to the problem that the labeled samples are insufficient for training. Jiang et al. [4]
put forward a method for identifying sector congestion based on the independent com-
ponent analysis. A sector congestion indicator system was established based on complex
network theory. The independent component analysis method was used to analyze the
main components of all discriminative indicators and extracted by detection. The main
element of the indicator is the abnormal value of the actual sector operation to determine
whether the sector’s operating status is abnormal.

The machine learning method mentioned above can achieve excellent results, but the
prerequisite is based on having enough labeled samples. However, sample marking must
be done by experienced controllers, requiring a lot of time and energy. Even if we obtain
a large number of labeled samples, mainstream recognition methods, such as support
vector machines (SVM) or shallow neural network models, cannot effectively capture
the nonlinear relationship between overall congestion level and individual congestion
evaluation indicators. Additionally, the traditional congestion indicators, such as the
distance, density, and conflict times, are the results of the regulation of controllers. They
cannot truly reflect the self-organizing behavior of aircraft. Due to the difference in the
structure for each ATCS, the congestion characteristics vary from ATCS to ATCS. Therefore,
it is necessary to construct indicators to measure congestion behavior from the mechanism
of formation, thereby guaranteeing that the same indicator behaves consistently at the
same congestion level in various ATCSs and is independent of spatial structure. So, the
congestion recognition model is more general and suitable for the current mainstream
ATCSs with fixed routes and the free route airspace partly used in Europe.

However, at present, most methods mainly use static structure and dynamic operation
characteristics to characterize congestion, which leads to poor generalization and operabil-
ity. In essence, ATCS is a complex network system composed of aircraft. The nodes in the
network are aircraft, and the connections in the network are the interrelationships between
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aircraft. Thus, this paper transforms the problem of ATCS congestion recognition into the
complexity of the aircraft state network system from the perspective of complexity theory.
We propose the deep active learning (DAL) method for ATCS congestion recognition, which
can achieve a relatively high recognition rate with the smallest labeled samples. The main
contributions of this paper are as follows: (a) An aircraft state network is built from the
perspective of complexity theory. Some complexity indicators are selected to characterize
congestion according to the relationship between the aircraft status network and the actual
operation of the control; (b) This paper adopts an iterative semi-supervised deep learning
architecture, learns features from a small number of labeled samples and a large number of
unlabeled samples through a sparse autoencoder, and builds a deep neural network model
by stacking to improve the congestion recognition rate; (c) Least confidence, marginal
sampling, and information entropy are introduced as metrics of sample selection. This
method can choose samples that are significantly different from the features of the labeled
sample set to reduce data redundancy and the cost of manually labeling.

The organization of this paper is as follows: In Section 2, the problem of ATCS
recognition is elaborated; Section 3 proposes a deep active learning method to identify the
degree of ATCS congestion, including how to use a sparse autoencoder to train hidden layer
features, how to select representative samples from unlabeled samples, and the description
of implementation steps. In Section 4, the effectiveness and superiority of the model are
verified through experiments. Finally, Section 5 concludes this paper.

2. Problem Formulation and Method Overview

ATCS congestion recognition aims to classify the overall congestion of a sector ac-
cording to multiple congestion characteristics. Suppose there are n evaluation indicators
for sector congestion. Classify sector congestion level into c category, and the category
label set is Y = {y1, y2, · · · , yc}, where yi is the label for the i-th class of congestion. Let
X(t) = {x1(t), x2(t), · · · , xn(t)} and y(t) denote a feature vector composed of n indicator
values and the congestion level at time t. Identifying the sector congestion level can be
regarded as a classification problem, that is, by training the classification model Ψ, the
feature vector X(t) is mapped to the corresponding congestion level y(t):

Ψ(X(t))→ y(t), (1)

As can be seen from (1), the problem of sector congestion recognition involves the
construction of a suitable feature vector X and a classification model Ψ. In response to this
problem, there are three main challenges:

(a) Congestion evaluation indicators should be able to indirectly reflect the workload
of the controller and have universal applicability and operability. Since sector congestion is
ultimately reflected in the controller’s workload, if the congestion evaluation index cannot
indirectly reflect the controller’s workload, the constructed index will not help improve
the ability to identify congestion. To improve the generalization and practicability of the
subsequent recognition model, the crowding index must have excellent crowding feature
characterization capabilities and be easy to obtain from the monitoring information system.

(b) The congestion recognition model has the ability to characterize a large amount
of training data. In general, the more training data, the better the model’s performance.
However, shallow learning models (such as BPNN and SVM) have limited ability to capture
features from data, and it is easy to saturate in performance. Entering more data does not
improve model performance [23,24]. In contrast, for deep learning models, the more data
involved in training, the more they can achieve their potential.

(c) The sample labeling strategy can reduce the redundancy of the labeled sample
set. Usually, training a high-precision congestion recognition classifier requires a large
number of labeled samples. The sector congestion level needs to be manually marked
by an experienced controller, which is expensive. For example, every 10 s, sector status
information will update. If one month of data is needed to train the classification model, the
total number of samples is 259,200, which is labeled by a controller, six samples per minute,
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and 8 h of work a day, then it will take three months to mark them. In addition, if the data is
not distinguished, some classes will be redundant, and some will be insufficiently labeled.

In response to the above three challenges, we transform sector congestion recognition
into the complexity evaluation of aircraft state networks. This paper proposes a new
sector congestion recognition architecture, as shown in Figure 1. We first build a network
with aircraft as nodes based on the aircraft’s dynamic trajectory and select appropriate
complexity indicators to characterize sector congestion according to the aircraft’s self-
organizing characteristics. The congestion indicators built in this way are not limited by
the sector structure and are more universal. It is worth noting that the controller’s primary
responsibility is to ensure the smooth passage of the aircraft without conflict. Therefore,
the relationship between aircraft networks is determined according to the distance between
aircraft and potential conflicts, which can ensure that the complexity index of aircraft
networks can indirectly reflect the controller’s workload.

Figure 1. The framework of the Proposed DAL for ATCS Congestion Recognition.

Based on the construction of indicators, we will establish a deep learning model to
identify congestion. The model includes two modules, a classification model based on
deep sparse auto-encoding and a sample labeling strategy. The model is trained offline
using the idea of active learning. The classification model based on deep sparse auto-
encoding is composed of hidden-layer sparse auto-encoding and output layer logistic
regression. First, all data samples (labeled and unlabeled) are used to train the hidden layer
parameters, and then the labeled sample set is used to fine-tune the model parameters.
The model in this paper belongs to a type of deep neural network model, which can better
characterize congestion features from a large amount of training data and improve the
recognition rate. Simultaneously, according to certain selection principles, samples are
selected from unlabeled samples for labeling to achieve the expected recognition rate
with the least sample labeling. During the iterative process, the classification module and
labeling strategy work together. Starting from the initial labeled training set, the model
began to train the classification model based on deep sparse self-coding. The sample
query strategy is adopted to select several samples from the unlabeled sample set. The
classification model will be trained again after the newly labeled samples marked by
controllers are added to the labeled sample set. The process is repeated until the model
reaches the required performance.

3. Methodology

In this section, we first construct the sector congestion metric from the perspective of
the aircraft state network; then we describe the deep active learning model proposed in
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this article, including the sector congestion recognition model and sample labeling strategy
based on deep sparse autoencoding; and finally, introduce the specific implementation
steps of the method in this article.

3.1. Congestion Metrics

Complex network theory is widely used in aviation networks [4,25–27]. This article
will use the existing complex network theory to build a network constructed between
aircraft within a sector from the perspective of a complex network system. In an aircraft
network system, aircraft are nodes, and the interrelationships between aircraft constitute
the edges of the network. So, what relationship should be used to build the network?

As we know, the congestion of an ATCS is ultimately reflected in the workload of
the controller. The controller’s primary responsibility is to ensure that the aircraft passes
through without conflicts and completes the handover with neighboring sectors. When a
potential conflict occurs among aircraft, the controller will resolve the conflict. The more
potentially conflicting aircraft, the higher the workload of the controller. Aircraft conflict
refers to the distance between aircraft or between aircraft and obstacles during the flight of
aircraft that is less than the specified minimum interval. This article focuses on high-altitude
ATCS. Aircraft conflict can be simplified as the distance between aircraft and aircraft is less
than the minimum separation. According to the minimum safety separation stipulated
by the Civil Aviation Administration, the distance between front and rear is 20 km, the
horizontal distance is about 10 km, and the vertical safety interval is 300 m. According to
the aircraft’s minimum safety separation, an ellipsoidal protection area centered on the
aircraft is formed (as shown in Figure 2). When the elliptical protection areas between
two aircraft overlap, there may be potential conflicts between the aircraft as a basis for the
connection between them. Furthermore, the closer the distance between aircraft, the higher
the probability of collision between them.

Figure 2. Aircraft network diagram.

This paper constructs a weighted aircraft network based on the overlap of elliptical
protection areas between aircraft and the distance between them. If there is an overlap
between the protected areas of two aircraft, we will connect them and calculate the 3D
distance between them, using the reciprocal of the distance as the weight of the connection.
At any time t, assuming there are n aircraft in the ATCS, then the aircraft is defined by a
weighted adjacency matrix A =

{
aij
}

n×n of size n× n. If there is no connection between
nodes i and j, then aij = 0, otherwise aij = 1/dij > 0, where dij represents the distance
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between nodes i and j. After the network is built, the network topology can be used to
define the complexity of the system [28]. In terms of the actual situation of operation, seven
network complexity indicators, including the number of nodes, the number of edges, the
average node degree, the number of loops, the average clustering coefficient, the average
path length, and the average node strength, are utilized as the evaluation indicators of
sector congestion. Their corresponding meanings are shown in Table 1.

Table 1. Sector congestion evaluation indicators.

Evaluation Indicator Description

Number of nodes
The number of nodes in the network reflects the total number
of aircraft in the sector. For a fixed-size sector, the larger the
number of aircraft, the more crowded the airspace.

Number of Edges
With edge-connected aircraft pairs, potential conflicts may
occur over time. The more edges there are, the higher the
number of aircraft pairs that may conflict in the future.

Average node degree
A coefficient reflects the average number of aircraft associated
with each aircraft in the sector. The higher the value, the
higher the degree of association between nodes.

Number of Loops
The number of Loops Reflects the connectivity of the entire
network. The higher the value, the greater the degree of
mutual interference between aircraft.

Average clustering coefficient
A coefficient describes the degree of clustering between
aircraft. An enormous value indicates a higher concentration
between aircraft.

Average path length
An essential indicator of the degree of aircraft dispersion in a
sector, reflecting the proximity of aircraft in the
aircraft network.

Average node strength
A coefficient takes into account the weighted structure of the
network graph. The higher the node strength, the more
aggregated the network structure is.

3.2. Deep Sparse Autoencoder for Sector Congestion Recognition
3.2.1. Sparse Autoencoder

The autoencoder belongs to a class of unsupervised learning methods, which use a
neural network for feature learning. It is widely used in disease prediction [29], traffic flow
prediction [30], and other fields. The autoencoder is a three-layer neural network, consisting
of three parts: an input layer, a hidden layer, and an output layer. When the number of
hidden layer nodes is less than the number of input layer nodes, it is called a compressive
autoencoder. Otherwise, it is called a sparse autoencoder. In general, compression encoders
are suitable for cases where the input data have relatively high dimensions. In contrast,
sparse encoders are intended for situations where the input data has a relatively small
dimension. In Section 3.1, we constructed seven indicators to represent sector congestion
from different perspectives, with lower data dimensions. Therefore, this paper uses sparse
autoencoders to learn features from a large number of unlabeled samples and expects to
learn better feature descriptions than the original data.

Suppose m training samples
{

X(1), X(2), · · · , X(q)
}

are known, where X(i) ∈ Rn. In

the encoding process, the input layer X(i) is mapped to the hidden layer by the mapping
function f to obtain the hidden layer feature vector H = [h1, h2, · · · , hm] ∈ Rm, where
m ≥ n represents the number of neurons in the hidden layer, and the calculation formula is

H = f (WeX + be), (2)

where We and be represent the encoding weight matrix and the encoding bias vector. In the
decoding process, the hidden layer feature vector H is mapped to the output layer X ∈ Rn



Aerospace 2022, 9, 302 8 of 21

by a mapping function g, where X is the reconstructed feature vector corresponding to the
original input feature vector, and the calculation formula is

X = g(Wd H + bd), (3)

where Wd and bd represent a decoding weight matrix and a decoding bias vector. In this
paper, the sigmoid function is used as the decoding mapping functions f and g.

To solve the equation to get the parameters θ = {We, Wd, be, bd}, the autoencoding
neural network minimizes the reconstructed feature vector and the original feature vector
error as the model training cost function.

E(W, b) =
1
2

q

∑
i=1

∥∥∥X(i) − X(i)
∥∥∥2

, (4)

where ‖·‖ is the 2-norm.
Unlike a compression encoder, the number of nodes in the sparse coding hidden layer

is higher than that in the input layer. If Equation (4) uses as the training target, the trained
model will approach the identity mapping. This problem can then be resolved by adding a
sparsity regularization term. Suppose aj(X) represents the activation degree of the hidden
layer neurons j of the autoencoding neural network given the input vector X. The average
neuron activity is

λj =
1
q ∑q

i=1 aj(X(i)), (5)

The sparsity constraint can be understood to minimize the average activation of
neurons. The goal is to approximate the sparse parameter λ to λj, where λ is a constant
close to zero. This article defines the sparsity positive term based on Kullback–Leibler
(KL) divergence:

Ψ(W, b) =
m

∑
j=1

[
λ log

λ

λ̂j
+ (1− λ) log

1− λ

1− λ̂j

]
, (6)

According to Equations (3) and (5), the total cost function can be expressed as

Esparse(W, b) =
1
2

q

∑
i=1

∥∥∥X(i) − X(i)
∥∥∥2

+ β
m

∑
j=1

[
λ log

λ

λ̂j
+ (1− λ) log

1− λ

1− λ̂j

]
, (7)

where β is the parameter of the balance error term and the sparse regular term. After the
optimization objective function is determined, the parameters of the sparsely encoded
neural network are solved by a gradient descent algorithm.

3.2.2. Deep Sparse Autoencoder Neural Network

A deep sparse autoencoder neural network is composed of multiple sparse autoen-
coders, which belong to a class of semi-supervised learning neural networks. Figure 3 is a
schematic structural diagram of a congestion recognition model based on a deep sparse
autoencoder. The sparse encoder is used to pre-train the hidden layer of the deep neural
network layer-by-layer, where the output of the previous layer encoder is used as the input
of the latter layer encoder, and the output of the last sparse autoencoder is used as the
input of the regression layer. Both labeled and unlabeled sample sets participate in the
training of hidden layer parameters. It should be noted that, in addition to the pre-training
of hidden layer parameters, the labeled sample set also includes training of the parameters
of the regression layer and fine-tuning of the parameters of the hidden layer.
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Figure 3. The architecture of a Deep Sparse Autoencoder Neural Network.

Suppose a deep neural network has L hidden layers. Let h(l) denote the output of the
l-th encoder, W(l)

e and W(l)
d represent the encoding and decoding weight matrices of the

l-th encoder, b(l)e and b(l)d denote the encoding and decoding bias. The feedforward transfer
of encoder and decoder is performed according to the following formula:

h(l+1) = f (W(l+1)
e h(l) + b(l+1)

e ), (8)

h
(l+1)

= g(W(l+1)
e h(l+1) + b(l+1)

e ), (9)

where h
(l)

is the decoded reconstruction output of the (l + 1)-th layer.
To realize sector congestion recognition, a regression layer needs to be added at the

outermost layer. In this paper, we use the softmax layer as the output layer to achieve
congestion recognition. For the outermost regression layer, take the hidden layer h(L) of
the L− th encoder as input, and pass the softmax function to get the congestion probability
output of each level:

p(Y| X) = p(Y| h(L)) = softmax
(

WOh(L)
)
=

exp(WOh(L))

∑m(L)

i=1 exp((WOh(L))i)
, (10)

where m(L) represents the number of neurons in the hidden layer L, WO represents the
weight matrix of the regression layer, and (WOh(L))i represents the i-th component of
the vector.

From the above discussion, it can be seen that the deep autoencoder adopts unsu-
pervised learning, while the output softmax layer is trained by supervised learning. The
deep sparse autoencoder model combines the advantages of unsupervised and supervised
approaches. This can improve the recognition rate of the sector’s congestion level.

3.3. Active Sample Labeling Strategy

In Section 3.2, we will introduce sparse autoencoders to pre-train the hidden layers of
deep neural networks from unlabeled samples and describe how to use labeled samples to
train the outermost regression classification layer and adjust the hidden layers. Judging
from the model pre-training process, the proposed congestion recognition model based on
deep sparse autoencoders belongs to a class of semi-supervised learning techniques. For a
semi-supervised deep neural network model, a large number of labeled samples are needed
to obtain a relatively high recognition rate. In the problem of congestion recognition, we
need air traffic controllers to help us mark samples. If samples are labeled indiscriminately,
there may be sample redundancy, and a labeled sample set obtained with much workforce
may not necessarily achieve the desired recognition performance.
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To make the model achieve the best recognition performance with the least labeled
samples, this paper introduces the idea of active learning to train a congestion recognition
model [31]. The model training process is shown in Figure 1. Suppose b is a set of all
data, including labeled samples and unlabeled data. Denote A and U to represent the
set D consisting of labeled data and unlabeled data in the data set. First, the model is
initially trained on a sample set A. A particular labeling strategy is adopted to select a
representative sample from a set for labeling, add it to the labeled sample set, and then
train the model’s parameters through a supervised learning mechanism. This process
continues until the expected performance of the model is reached. The most critical step
in the entire iterative supervised learning process is the selection of a certain number of
samples from the remaining unlabeled sample set. If we randomly select samples from
the unmarked sample set, it will lead to data redundancy. For active learning methods,
samples are usually selected based on uncertainty and difference criteria. The uncertainty
criterion is to find samples with high uncertainty because they contain rich information,
which helps improve the model’s recognition rate. The difference criterion is that each
selected sample has a big difference in characteristics from the labeled sample. In the
iterative process, the labeled set’s information is made more comprehensive while reducing
data redundancy. According to these two criteria, this paper uses the least confidence (LC),
marginal sampling (MS), and information entropy (IE) to select samples with uncertainty
and substantial differences [32].

Least confidence: Select the smallest sample in the most massive activation, as
shown below:

X(i)
LC = argmin

X(i)
max

j
(p(yj|X(i))), (11)

where Xi is the i-th sample in the unlabeled sample set, and hN
j is the activation of a unit j

in top N layers.
The process is executed sample by a sample in a greedy manner to select multiple

samples. The basic idea is that if the probability of the most likely label of the sample is
low, then the sample classification is uncertain, so it does not consider the label probability
distribution of other types of labels.

Marginal sampling: select the sample with the smallest predicted separation in the
first two layers:

X(i)
MS = argmin

Xi

(p(y(1)| X(i))− p(y(2)| X(i))), (12)

where y(1) and y(2) denote the first and second probability values identified by the deep
learning model. Intuitively, if the probability of classifying the sample into its most probable
class is too close to the second most probable class, it is uncertain about the sample.

Information entropy: The larger the information entropy, the higher the uncertainty of
the sample, and the more information it contains. The information entropy of any sample
X(i) is:

X(i)
Entroy = −∑

j
p(yj

∣∣∣X(i)) log p(yj

∣∣∣X(i)) , (13)

According to Equation (13), we can calculate the information entropy of all samples in
the unlabeled sample set, and then select the first K samples with the largest information
entropy for labeling.

3.4. Model Implementation

The specific implementation of the sector congestion recognition method based on
deep active learning divides into an offline training phase and online recognition. In the
offline training phase, the model is trained using active learning. In the online recognition
phase, the flight information of all aircraft in the sector uses as the model input trained
in the offline phase, and the sector congestion level is output. The algorithm flow of this
method is shown in Algorithm 1.
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Algorithm 1. Implementation of offline training and online recognition of the proposed method.

Inputs:

• Labeled sample set A = {(X(1)
A , y(1)), (X(2)

A , y(2)), · · ·};
• Unlabeled sample set U = {X(1)

U , X(2)
U , · · ·}.

Parameters:

• Number of hidden layers L;
• Number of neurons in each hidden layer {N1, N2, · · · , NL}, where Nl is the number of

neurons in the l-th hidden layer;
• Sparse regular parameter β;
• The number of samples k choosing from the unlabeled sample set U during the iteration;
• The maximum number of active learning iterations T.

Outputs:

A sector congestion recognition model.

Off-line training:

Step 1: The labeled sample set A divides into a training set A1 and validation set A2 according to
a certain proportion;

Step 2: Using all samples in A1 and U as the input of the first sparse autoencoder, by minimizing

the objective function (7), the encoding parameter {W(1)
e , b(1)e } is obtained as the network

parameter between the input layer and the first hidden layer initial value. Repeat this
process to get the initial values of all hidden layer network parameters;

Step 3: Randomly initialize the regression layer network parameters {W(L+1)
e , b(L+1)

e };
Step 4: A labeled training set A1 and stochastic gradient descent (SGD) are used to modify

network parameters;
Step 5: Apply the sample labeling strategy U to select k samples from the unlabeled sample set

for labeling;
Step 6: Add the latest labeled k samples to A1, and fine-tune the network parameters in the same

way as in Step 4;
Step 7: Repeat steps 4–6 until reaching the maximum iteration T or the optimal performance in

the validation dataset A2.

Inputs:

• The dynamic trajectory information of the aircraft in the ATCS at time t.

Outputs:

• Sector congestion level at time t.

On-line recognition:

Step 1: Determine whether there are overlapping areas between any two aircraft protection areas
and build an aircraft network;

Step 2: Calculate the values of seven congestion indicators X(t) = {x1(t), x2(t), · · · , x7(t)} of the
sector according to Equations (2)–(7), and obtain the feature vector of the sector
congestion degree at time t;

Step 3: The max-min normalization method is used to normalize X(t), get
X̂(t) = {x̂1(t), x̂2(t), · · · , x̂7(t)}, and input it to the trained model, and output the sector
congestion level.

4. Experimental Results and Analysis

This section verifies the validity and superiority of the method in this paper. First, the
data used in the experiments and the model’s performance evaluation index are briefly in-
troduced. Secondly, the optimal parameters select through experiments, and the sensitivity
of the parameters is analyzed. Thirdly, the validity of the sample labeling strategy proposed
in the model is verified. Finally, the effectiveness and superiority of our proposed model
are confirmed by testing in multiple sectors and comparing it with mainstream methods.
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4.1. Data

In the subsequent experiments of this paper, we selected three representative sectors
for case analysis and marked them as “S1”, “S2”, and “S3” (as shown in Figure 4). The ex-
perimental data selection period is from 1 September 2016 to 28 September 2016 6:00–24:00.
Take 1 min as the time step to sample data. The total data collected by each sector are
30,240. Each piece of data contains attribute information such as flight number, longitude,
latitude, and altitude. According to the calculation formula of the congestion evaluation
indicators in Section 2, we will obtain a sample set of experimental data. Each sample is
represented by a 7-dimensional vector composed of the values of congestion indicators.
After constructing the feature vectors of each sample, it is necessary to calibrate the samples’
congestion level. In the following experiments, we divide the congestion levels into three
categories, which are represented by “1”, “2”, and “3”, which correspond to the three
congestion levels of low, normal, and high, respectively. “1” and “2” are calibrated by
air traffic controllers. To reduce the workload of the label and reduce the redundancy of
labeled data, we use the process of active learning and use the sample selection method of
basic information entropy. Each time, 300 samples are selected from the unlabeled sample
set to mark the congestion level for 30 consecutive times. Each sector received 9000 labeled
samples. Figure 4 shows the proportion of each level. Further, from the labeled sample set,
7000 are randomly selected as the training set, and the remaining 2000 samples are used
as the test set. Unlike mainstream supervised learning methods, this article belongs to a
class of active learning methods. The training set includes 7000 labeled samples and 21,240
unlabeled samples.

Figure 4. Percentage of samples of three congestion levels in three representative sectors.

4.2. Evaluation Metric

The proposed DAL method belongs to a class of iterative supervised learning classifi-
cation methods. To this end, we use four evaluation measures: accuracy, precision, recall,
and F-measure to evaluate the performance of the model. Accuracy is the percentage of
correctly classified samples. Precision is the percentage of correctly classified samples in
each class. The recall rate is the percentage of correctly classified samples in each category.
The F-measure combines accuracy and recall into one evaluation index. Let CMi,i denote
the number of samples with the congestion degree of a class i being labeled as i, and CMi,j
denote the number of samples with the congestion degree of a class i being labeled as i,
where i, j = 1, 2, 3. Each metric is defined as:

Accuracy =
∑3

i=1 CMi,i

∑3
i=1 ∑3

j=1 CMi,j
× 100%, (14)
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Precision(k) =
CMk,k

∑3
i=1 CMi,k

× 100%, (15)

Recall(k) =
CMk,k

∑3
j=1 CMk,j

× 100%, (16)

F-measure(k) =
2× Precision(k)× Recall(k)

Precision(k) + Recall(k)
, (17)

where Precision(k), Recall(k) and F-measure(k) denote the precision, recall, and F-measure
of the k-th class, respectively.

The four indices mentioned above reflect the performance of the model from different
aspects. The accuracy rate reflects the overall situation of model performance. The evalua-
tion is most effective when the number of samples is relatively uniform. It can be seen from
Figure 4 that the samples with “high” and “low” congestion levels account for a relatively
small proportion. Precision and recall rate measurement can reflect each category’s local
situation and make up for the lack of accuracy to a certain extent. The precision and recall
rate tend to show the opposite trend. It can be regarded as the harmonic average of accuracy
and recall, further reflecting the overall situation of the model’s performance.

4.3. Parameter Settings

The parameters of DAL can divide into network structure parameters and model
training parameters. The network structure parameters include the number of hidden
layers and the number of hidden neurons. Model training parameters consist of the
learning rate, the maximum number of iterations, the training stop threshold, and the
number of samples each time in active learning. Among these two types of parameters,
network structure parameters depend on specific application scenarios and training data
sets, which have the most significant impact on model performance. In contrast, model
training parameters have less dependence on specific application scenarios and training
data sets. Some general settings are used for parameter setting. In this experiment, the
initial learning rate sets to 0.01, the number of active learning iterations sets to 50, and the
number of samples per acquisition parameter sets to 300.

Like all other deep learning models, this paper uses a large number of experiments to
select network structure parameters. Considering the dimensionality of the sample and
the total number of participating samples, the range of the number of hidden layers is
{1, 2, 3, 4, 5, 6, 7}, and the number of hidden layer neurons is {16, 32, 64, 128, 256}. Within
the value range, 500 groups select randomly from all possible network structure configura-
tions for experiments. The parameter configuration corresponding to the smallest error is
selected as the optimal parameter setting. The network structure’s optimal parameters are:
the number of hidden layers is 3, and the number of neurons corresponding to each layer is
256, 128, and 64.

After obtaining the optimal parameters of the model, the network structure parameters’
sensitivity will be analyzed below, that is, investigating a specific parameter, with all other
fixed parameters, and the impact of parameter changes on the accuracy of the model will
be examined. Figure 5 is a graph of model accuracy as a function of the number of hidden
layers. When using a hidden layer, the precision of the model is about 80%. The main reason
for the lower accuracy is that there are too few weight parameters in the neural network.
There is insufficient ability to represent the sample’s statistical feature information. When
the number of hidden layers is 3, the accuracy of the current sample labeling model has
reached the maximum. Continuously increasing the number of layers leads to over-fitting
the model, which affects the model’s generalization ability, and the accuracy rate in the test
set shows a downward trend.
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Figure 5. Impact of the number of hidden layers on model performance.

Finally, we fix the number of hidden layers and analyze the influence of the number of
neurons on the performance of the model. Due to a large number of neuron combinations,
it is not possible to display all of them. The neurons of each hidden layer are analyzed
separately. We fix neurons in other hidden layers and examine the impact of model
performance when the hidden layer changes. Figure 6 shows the experimental results of
the number of neurons on the model’s performance. When the number of neurons in two
layers is fixed, the farther the number of neurons in the other layer is from the optimal
value, the worse the model performance. It is further found that the number of neurons in
each layer decreased from the first layer to the third hidden layer. For the first hidden layer,
the accuracy rate increases with the number of neurons. This result is mainly due to the
effect of the sparse encoder. Because the input data dimensions are small, to characterize
the coupling relationship between the attributes of the input data better, the first hidden
layer needs more neurons to participate in the representation. For the third hidden layer,
the number of neurons is small, closely related to the congestion level’s classification into
three categories. Since the output layer has only three neurons, it is obtained by applying
the softmax function to the third layer’s hidden layer. If the number of neurons in the
hidden layer is too large, softmax classification becomes difficult.

Figure 6. Effect of the number of neurons on model performance.

4.4. Performance Analysis

In this section, we first analyze the impact of sample collection strategy and initial
sample size on model performance. We then compare it with mainstream methods to verify
the effectiveness and superiority of the model.
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4.4.1. Effect of Sample Label Strategy on Model Performance

This paper uses active learning to train the congestion recognition model based on
a deep sparse autoencoder. During the model training process, each iteration needs to
use a sample label strategy to select samples from the unlabeled sample set for labeling.
The following experiments verify the impact of different labeling strategies on model
performance. S3 was chosen as an experimental case. Each time, 300 samples were selected
from the unlabeled sample set for labeling. Different sample label strategies are utilized for
training the models and comparing their performance during the iteration process.

Figure 7 shows the experimental results of four label strategies, where the horizontal
ordinate indicates the iteration number of the active learning process. This figure suggests
that each of the four label strategies has an increasing trend with the increase of itera-
tions. Random sampling has the worst performance. The performance of least confidence,
marginal sampling, and information entropy is not much different. The main reason for
this result is that the samples selected by minimum confidence, marginal sampling, and
information entropy are more representative than random sampling. Thus, the labeled
sample set has less data redundancy.

Figure 7. Performance comparison of four active label strategies.

It is further found that when the number of iterations reached 26, the curve of the
label strategy based on random sampling started to flatten, and the model performance
reached its peak. In contrast, the other three label strategies slowed down but still showed
an upward trend. The optimal value is reached when the number of iterations is 33.
After 26 iterations, the unlabeled sample set itself has much redundancy by analyzing
the remaining unlabeled samples. Because samples selected by the random sampling
method are highly similar to the labeled sample set, it will not help improve the recognition
rate even if one continues to increase the labeled training set. Consequently, the other
three label strategies can still find samples that differ from the features of the labeled
set from the remaining unlabeled samples. In general, the sample labeling strategies of
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minimum confidence, marginal sampling, and information entropy are better than random
sampling. Information entropy is slightly better than minimum confidence and marginal
sampling. Given this, in the following experiments, the information entropy is utilized to
label samples.

4.4.2. Effect of the Number of Initial Labeled Samples on Model Performance

The method proposed in this paper is inherently iterative semi-supervised learning.
Before the iteration, the hidden layer features of the deep learning model are constructed by
initial training of the model, that is, the sparse autoencoding method is used to extract the
features of labeled and unlabeled samples. Further, the initial labeled samples are utilized
for training the parameters of the regression layer. The purpose of the active learning
method is to train a model that meets the required performance using as few labeled
samples as possible. The number of initial labeled samples on the performance of the model
is analyzed experimentally to provide a basis for selecting the initial labeled samples.

Figure 8 is the experimental result of the initial labeled sample number in the range of
100 to 2000. When the number of initial samples is 100, the accuracy, precision, recall, and
F-measure values are 90.30%, 87.44%, 90.41%, and 88.90%, respectively. The performance
of the model is relatively good. The main reason is that there are continually new labeled
samples to modify the model during the active learning iteration process. Due to too few
initial marking samples, the initial model’s performance is weak, which is far from the
ideal requirement. As the number of initial samples increases, the performance of the
initial model improves, and the final model also adjusts accordingly. When the initial
sample size sets to 1000, the model performance reaches the optimal state. If the number of
initial labeled samples increases, the performance improvement is minimal. By considering
the relationship between model performance and the initial labeling sample, it is more
appropriate to select 1000 labeled samples when training the model.

Figure 8. Impact of the number of initial labeled samples on model performance.
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4.4.3. Comparative Analysis of Different Methods

To verify the superiority of our proposed method, the deep active learning method
(referred to as DAL in this experiment) is compared with PCA-BPNN [23] and GFSS-
SVM [24]. Table 2 and Figure 9 show the experimental results. According to the results
presented in Table 2, as a whole, DAL maintained above 97% in the four indices. In
contrast, although the accuracy, precision, recall, and measurement values of PCA-BPNN
and GFSS-SVM are all over 90%, PCA-BPNN and GFSS-SVM are lower than DAL by about
4.5% and 2.5%, respectively. It is because PCA-BPNN belongs to shallow feed-forward
neural networks with limited ability to characterize input features, resulting in lower
model performance. Similarly, the essence of GFSS-SVM is to use the SVM method for
classification. SVM only supports two classifications. Multi-classification must combine
multiple support vector machines. For large sample classification problems, training is
time-consuming, and performance is relatively poor.

Table 2. Experimental results of different methods in three representative sectors.

Sector Metric GFSS-SVM BPNN DAL

S1

Accuracy 93.40% 95.60% 97.90%
Precision 91.14% 93.63% 97.19%

Recall 93.28% 95.47% 97.82%
F-measure 92.20% 94.55% 97.50%

S2

Accuracy 93.30% 95.10% 97.80%
Precision 91.51% 93.92% 97.02%

Recall 93.09% 94.80% 97.94%
F-measure 92.29% 94.36% 97.47%

S3

Accuracy 93.50% 95.40% 98.00%
Precision 91.65% 94.14% 97.16%

Recall 93.50% 95.44% 98.02%
F-measure 92.57% 94.78% 97.59%

Figure 9 shows the recognition results of three representative sectors using different
methods. For S2, the accuracy of GFSS-SVM and BPNN is less than 90%, and the accuracy
of DAL is about 94%. The main reason for this result is the class imbalance of the sample set.
Compared with congestion categories 1 and 2, congestion category 3 is heavily congested
and belongs to a few extreme cases in daily operation. The proportion of samples available
for model learning is less than 10%, so the trained model has a relatively low accuracy for
the congestion category of 3. S3 belongs to a class of busy sectors, and the congestion is
moderately severe. The proportion of samples with category three participating in training
exceeds 25%. Therefore, in S3, the effect on the congestion category of 3 is better than that
of S1 and S2.

In general, DAL is superior to the mainstream GFSS-SVM and BPNN in both the
overall performance and each type of congestion level. Additionally, for sectors with
different busy levels, DAL can still achieve a relatively high recognition rate due to the
imbalance of samples, proving that our approach has a good generalization ability.
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Figure 9. Radar charts of experimental results of different methods in three representative sectors.
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5. Conclusions

In order to improve the generalization ability of the model and overcome the high cost
of sample labeling, this paper proposes an ATCS congestion recognition method based on
deep active learning, which obtains a high recognition rate with the least labeled samples.
This method has strategic and tactical significance. It can not only provide a basis for the
merging and addition of sectors, but also identify the congestion of sectors in real-time,
and provide a more intuitive reference for controllers to provide control services. The
proposed method consists of two modules, the congestion recognition model based on
deep sparse autoencoding and the sample labeling strategy, which adopts an iterative
semi-supervised manner.

The network structure of the congestion recognition model based on deep sparse
autoencoding consists of a feature input layer, multiple hidden layers, and a regression
output layer. Before iterative training of the model, we employed a sparse autoencoder
to perform feature learning on all labeled and unlabeled samples, constructed a hidden
layer in a stacked manner, and used labeled samples to determine the regression layer.
Because the model uses only a few labeled samples in the initial training stage, the trained
model has relatively poor performance. It needs to select a certain number of samples
from the unlabeled sample set for labeling. To this end, we introduced three sample
labeling strategies: minimum confidence, marginal sampling, and information entropy.
Samples with substantial feature differences from the labeled sample set are chosen from
the unlabeled sample set. This can reduce the data redundancy in the labeled sample set,
thereby achieving the desired model performance with smaller label samples.

Finally, this paper used three representative sectors with different airspace structures
and flight flows. The experimental results demonstrated that the number of initial labeled
samples affects the performance of the model. For the three types of congestion levels, it is
appropriate to choose 1000 initial label samples. At the same time, we verified the three
sample label strategies. The results showed that the three sampling strategies are almost
equivalent and better than the commonly used random sampling method. The informa-
tion entropy is slightly better than the minimum confidence and marginal sampling. To
verify the superiority of our proposed method, we compared it with two mainstream meth-
ods. The experimental results suggested that our approach is superior to the mainstream
approaches in accuracy, precision, recall rate, and F-measure.
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