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Abstract: In recent years, the penetration of low-cost air-launched vehicles for nano/micro satellites
has significantly increased worldwide. Conceptual design and overall parameters optimization of
the air-launched vehicle has become an exigent task. In the present research, a modified surrogate-
based sequential approximate optimization (SAO) framework with multidisciplinary simulation is
proposed for overall design and parameters optimization of a solid air-launched vehicle system. In
order to reduce the large computation costs of time-consuming simulation, a local density-based
radial basis function is applied to build the surrogate model. In addition, an improved particle swarm
algorithm with adaptive control parameters is proposed to ensure the efficiency and reliability of the
optimization method. According to the LauncherOne air-launched vehicle, the overall optimization
design problem aims to improve payload capacity with the same lift-off mass. Reasonable constraints
are imposed to ensure the orbit injection accuracy and stability of the launch vehicle. The influences of
the vehicle configuration, optimization method, and terminal guidance are considered and compared
for eight different cases. Finally, the effect on the speed of optimization convergence of employing a
terminal guidance module is investigated. The payload capability of the optimized configurations
increased by 27.52% and 23.35%, respectively. The final estimated results and analysis show the
significant efficiency of the proposed method. These results emphasize the ability of SAO to optimize
the parameters of an air-launched vehicle at a lower computation cost.

Keywords: air-launched vehicle; conceptual design; surrogate model; iterative guidance method;
sequential approximation optimization

1. Introduction

As an emerging low-cost, quick-response, high-mobility and flexible launch system
for micro/nano-satellites, air-launched vehicles are drawing worldwide attention with the
rapidly increasing need for micro/nano-satellite launches. In 1990, the American corpo-
ration “Orbital Sciences” successfully launched a solid launch vehicle named “Pegasus”
for the first time using a B-52, which was the world’s first air-launched vehicle to make
a successful orbit, and has now been successfully launched more than forty times. Cur-
rently, a Russian aerospace company is developing a two-stage air-launched vehicle named
“Polyot” and, Boeing from the United States is developing an air-launched vehicle as well.
In 2021, after a failed launch attempt, Virgin Orbit finally launched the “LauncherOne”
liquid launch vehicle, using a Boeing 747 carrier aircraft which had a 300 kg load capacity
for sun-synchronous orbit (SSO) and a 500 kg load capacity for low-earth orbit (LEO) [1].
Compared with traditional ground-launched vehicles with the same load capacity, the
total mass of air-launched vehicles can be reduced by 20%~30% and the total requirement
velocity can be reduced by 10%~15% [2]. The principal advantage of air-launched vehicles
is that there is no need to fly through the low, dense atmosphere, the drag and dynamic
pressure of which require a considerable amount of extra configuration design and mass
of propellant. In addition, air-launched vehicles can utilize the initial velocity of the air
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launch platform (such as airplane) and have no requirement for a launching site, which
directly reduces the launch cost and preparation time. On the other hand, the initial mass
of the launch vehicle is limited by the payload capability of the air launch platform, which
makes the mass of payload a significant indicator. Thus, it is necessary to optimize the
overall parameters of the launch vehicle’s configuration to obtain the maximum payload
with the limited initial mass. The overall design of air-launched vehicles is a typical mul-
tidisciplinary coupling problem. The complex coupling relationship among disciplines
makes it difficult for traditional individual disciplinary design optimization methods to
find the optimal solution. A high-efficiency and reliable optimization method for overall
design could further develop the advantages of air-launched vehicle system and potentially
shorten the iteration periods of launch missions. Existing studies have of air-launched
vehicles have mainly focused on their advantages compared to other options [3], system
composition and analysis [4,5], propulsion system design [6,7], separation analysis [8],
and multidisciplinary design and optimization studies [9–11]. Meanwhile, studies on the
overall parameter design of air-launch vehicles using modern intelligent optimization
methods are lacking.

In this study, an overall parameter optimization design for an air-launched vehicle
system is based on the coupling of RBF surrogate-based SAO algorithms and multidisci-
plinary simulations, including aerodynamics, propulsion, trajectory, guidance, etc. The
multidisciplinary simulation of air-launched vehicles could potentially decrease the huge
computational costs. The key point in enhancing optimization efficiency is reducing the
calling times of the original multidisciplinary model as far as possible. The advanced opti-
mization technique is the main approach to solving problems in engineering design and
application, and has been wildly studied [12–17]. Sequential approximation optimization
method is known for its high efficiency, robustness [18], and generality, as it requires far
fewer original model evaluations to locate the global optimum compared with evolutionary
algorithms (EAs) such as genetic algorithms (GA) [19], simulated annealing (SA) [20], parti-
cle swarm optimization (PSO) [21], immune algorithms (IA) [22], and artificial bee colonies
(ABC) [23]. In addition, the SAO method is specifically adaptive for overall parameter
optimization based on coupling of high computational cost models including aerodynamic
analysis, internal ballistic analysis, flight trajectory, guidance simulation, etc. The key step
in the process of SAO is surrogate modeling, which is constructed and sequentially updated
by infilling new sampling points until the results meet the terminal criterion [24]. The
surrogate modeling technique is essentially a multivariate function approximation method,
different varieties of which have been widely studied [25,26], including Kriging [27–29],
Radial basis Function (RBF) [30–32], Support Vector Regression (SVR) [33–35], and Re-
sponse Surface Methodology (RSM) [36–38]. The RBF model was originally proposed
to fit the irregular topographic contours of geographical data [39], which is extensively
used in SAO algorithms for its reliability in terms of accuracy and robustness [40]. As
the parameters (centers, widths, and weights) of RBF models have conclusive impacts on
its accuracy, several methods have been proposed to optimize the parameters of RBF for
uniform samples, nonuniform samples, and sufficient samples. Recently, Han has proposed
a self-organizing RBF model using an adaptive gradient multi-objective PSO (AGMPSO)
method to balance the accuracy and complexity of RBF models [41]. Zhang has proposed
a two-stage space division-based optimization method to optimize the width parameters
of RBF models for engineering problems [42]. Li has proposed an immune algorithm
system-based RBF (IAS-RBF) method to overcome the premature convergence problem [43].
Slema has proposed a model reference adaptive controller for nonlinear systems based on
RBF using the error between the system response and the desired response [44].

In order to improve the optimization efficiency and performance while searching for
the global optimal solution, an RBF model based on the local density of sampling points is
proposed here to act as a surrogate in the time-consuming multidisciplinary model of the air-
launched vehicle. Specifically, a novel adaptive control parameter method is developed to
enhance the global search capability of PSO in solving the surrogate optimization problems.
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In addition, a multistage adaptive infilling strategy along with the penalty method is
employed to balance the exploration and exploitation of the SAO. Compared with the
conventional optimization algorithm, which calls the original model thousands of times,
the main merit of SAO is that it notably reduces computation cost. The efficiency of the
proposed method is evaluated in the present study, with a significant improvement in the
payload capability of the air-launched vehicle system being attained.

The organization of this paper is as follows: Section 2 establishes a multidisciplinary
conceptual design framework of the air-launched vehicle system. Section 3 illustrates the
optimization problem, including the design variables, objective function, and constraints.
Section 4 elaborates the procedures of the proposed SAO method, which uses a local
density-based RBF surrogate model, and the PSO method, which uses adaptive control
parameters. Section 5 analyzes the optimization results and flight performance of the
studied cases. Finally, a brief conclusion of this study is provided in Section 6.

2. Multidisciplinary Optimization Framework and Overall Parameters Modules

The LauncherOne air-launched vehicle is carried by a modified Boeing 747–400 carrier
aircraft. Considering the flight capability of the transport aircraft, the initial launch altitude
of the launch vehicle is 10.67 km, the initial launch velocity is 262 m/s, and the initial
velocity inclination is 25 degrees.

In this study, according to the launch conditions and overall parameters of
LauncherOne, the launch vehicle is designed in both three-stage and four-stage configura-
tions with solid motors; its main overall parameters are shown in Table 1.

Table 1. Overall parameters of the air-launched vehicle.

Overall Parameters Three Stage Case Four Stage Case

Specific impulse (m/s) Isp1 = 2450
Isp2 = Isp3 = 2750

Isp1 = 2450
Isp2 = Isp3 = Isp4 = 2750

Average thrust (kN)

T1 = 800
T2 = 123
T3 = 18

T1 = 800
T2 = 450
T3 = 120
T4 = 18

Propellant mass ratio
1st: 0.93 2nd: 0.92

3rd: 0.89
1st: 0.93 2nd: 0.92
3rd: 0.89 4th: 0.85

Objective orbit 500 km SSO
Launch altitude (km) 10.67
Initial velocity (m/s) 262

Launch velocity inclination (◦) 25
Takeoff mass (ton) 25.85
Payload mass (kg) 300

Total length (m) 21.34

The overall design and optimization studies of the air-lunched vehicle system are
challenging tasks. The complex interactions among the design disciplines (aerodynamics,
propulsion, structure, trajectory, etc.) make the design problem difficult to handle from the
viewpoints of optimization methods and computational cost. The optimization framework
and a brief illustration of the related multidisciplinary modules used in this study are
shown in Figure 1.

2.1. Aerodynamic Calculation Model

Although the air-launched vehicle launches at a high altitude, which provides a benefit
in terms of drag reduction (about 30% in 10 km altitude) and propellant savings, the effect
of aerodynamics remains non-negligible. In this study, the main forces, including the lift
force, L, and drag force, D, can be expressed as follows [45]:
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Figure 1. Optimization framework of the air-launched vehicle.{
L = 1

2 CLρv2SM
D = 1

2 CDρv2SM
(1)

where CL and CD represent the coefficients of drag force and lift force, ρ represents the
atmospheric density, v represents the velocity of the launch vehicle, and SM represents the
pneumatic reference area. The relationship between CL and CD can be expressed as

CL = CL0 + CLα α
CD = CD0 + KC2

L
(2)

where CL0 , CLα , and K are constants, and can be determined as follows:

CL0 = 1
20π atan(10Ma− 10)− 0.035

CLα = 0.057e−0.0654Ma + 0.014
K = 1.85(1− e−0.2356Ma)

(3)

where CD0 represents the zero-lift drag coefficient, the value of which changes with the
Mach number, Ma. The specific value can be found in the literature [46].

The first stage of the LauncherOne launch vehicle is known to have a diameter of
1.6 m, and the second stage is 1.3 m. Therefore, the reference area of the solid launch vehicle
designed in this paper is SM1 = 2.01 m2, SM2 = 1.32 m2.

2.2. Mass Estimate Module

The mass estimate module is a basic module of the multidisciplinary optimization
framework. It considers a series of equations for the air-launched vehicle, including the
mass of payload, structure, propellant, apparatus, etc. The gross mass of the air-launched
vehicle can be expressed as follows [45]:

m0 = mpd + ma f t + m f + mc +
n

∑
i=1

(mpi + mai + msi) (4)

where m0 is the gross mass of the launch vehicle, mpd is the mass of the payload, ma f t is
the mass of the afterskirt and wings of the launch vehicle, m f is the mass of the fairing, mc
is the mass of apparatus cabin, including payload adapter, orbital maneuvering system,
guidance set, etc., n is the number of the stages, mpi is the propellant mass of the ith stage
motor, msi is the structure mass of the ith stage, and mai is the apparatus mass of the
ith stage of the launch vehicle, including the mass of the inter-stage structure, raceway,
cable assembly, etc.
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The mass ratio of the ith stage motor, αi, is defined as

αi = mpi/(msi + mpi) (5)

The relationship between the gross mass of the ith sub-stage launch vehicle, m0i, and
the gross mass of the i + 1th sub-stage launch vehicle, m0(i+1), is

m0(i) = m0(i+1) + mpi + mai + msi, i = 1, 2, · · · , n (6)

2.3. Propulsion Module

Simplifying the thrust of the solid rocket motor (SRM) in each stage to average the
thrust is a simple and reliable method of thrust characteristic calculation that can be
used effectively during the overall design optimization phase. The average thrust can be
determined by the working time of the motor, the specific impulse, and the propellant mass
of the SRM:

Piti = Ispgmpi (7)

where Pi represents the average thrust of the ith stage SRM, ti represents the working
time of the ith stage SRM, and Isp represents the specific impulse of the ith stage SRM.
Therein, the average thrust of the first stage SRM is set as the 10 km altitude average thrust,
and the average thrust of the second and subsequent stage SRMs is set as the vacuum
average thrust.

2.4. Trajectory Module

A three-degrees-of-freedom (3-DOF) trajectory simulation using the direct orbital
injection method is implemented and tested in the trajectory module. In this module, the
state parameters, including velocity, flight angle, position, forces, and mass, are computed
by integrating the equations of motion in the launch coordinate [45]. The basic 3-DOF
trajectory equations of the launch vehicle are as follows:

m dV
dt = P cos α cos β− X−mg sin θ cos σ

mV dθ
dt = P(sin α cos υ + cos α sin β sin υ) + Y cos υ− Z sin υ−mg cos θ

−mV cos θ dσ
dt = P(sin α sin υ− cos α sin β cos υ) + Y sin υ + Z cos υ

dx
dt = V cos θ cos σ
dy
dt = V sin θ
dz
dt = −V cos θ sin σ

(8)

where α is the angle of attack, β is the angle of sideslip, θ is the flight path angle, σ is
the heading angle, υ is the bank angle, p is the motor thrust, X is the drag force, Y is
the lift force, Z is the yaw force, and x, y, z are the positional coordinates in the launch
coordinate system.

The flight process of the air-launched vehicle system is shown in Figure 2 (a three-stage
configuration is shown in this example), which can include several phases: take-off, sepa-
ration and ignition, powered flight and unpowered glide phases in each stage, terminal
guidance, and payload injection.

2.5. Terminal Guidance Module

As the altitude of the objective orbit is above 80 km, an autonomous terminal guidance
method for direct orbit injection outside the atmosphere is proposed in order to meet the
for accuracy and reliability requirements of the launch mission and as well as to accelerate
the convergence of the objective function in the optimization process. The guidance process
of the air-launched vehicle system is shown below.
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Figure 2. The flight process of a three-stage launch vehicle.

Step 1—Launch Initialization: The velocity (V∗A f ), geocentric distance (r∗A f ), flight
path angle (γ∗), and orbit inclination (i∗) of the objective orbit injection point should be
calculated as the terminal constraints. In addition, the initial parameters include the average
vacuum thrust (Tvac), second consumption (dm), geographic latitude of the launch point
(B0), launch azimuth (A0), initial estimate time of the terminal guidance phase (t f ), and

initial estimate valve of the costate variable (
→
λ0).

As for the orbital injection problem, the main constraints are the injection point
constraints, which include the position vector and velocity vector of the injection point.
According to the optimal control theory, the optimal control problem is an unsolvable
movable end-point problem, and the position vector and the velocity vector of the injection
point are taken as the constraints. As there is no requirement for the right ascension of
the ascending node of the objective orbit, a four-constraint problem is proposed here; the
constraints are shown below:

1
2
→
r

T
A f
→
r A f − 1

2

(
r∗A f
r0

)2
= 0

1
2

→
V

T

A f
→
V A f − 1

2

(
V∗A f√
r0gr0

)2
= 0

→
I

T

NA(
→
r A f ×

→
V A f )− |

→
r A f ×

→
V A f | cos i∗ = 0

→
r

T
A f
→
V A f − |

→
r A f ||

→
V A f | sin γ∗ = 0

(9)

where
→
r A f is the dimensionless terminal position vector of the launch vehicle relative to

the geocenter,
→
V A f is the dimensionless terminal velocity vector of the launch vehicle in

the launch inertial coordinate system, r∗A f is the geocentric distance of the injection point,
V∗A f is the velocity of the injection point in the launch inertial coordinate system, i∗ is the
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orbital inclination angle of the objective orbit, γ∗ is the flight path angle of the injection

point, and
→
I NA is the unit vector of the north pole, which can be expressed in the launch

inertial coordinate system as

→
I NA =

 cos B0 cos A0
sin B0

− cos B0 sin A0

 (10)

Step 2—Iteration of State Parameters: In each period of the terminal guidance phase,

the current velocity vector,
→
V A0, and geocentric position vector,

→
r A0, of the launch vehicle

are updated and nondimensionalized in the launch inertial coordinate system. The satisfied

costate variables,
→
λ0, and nondimensional initial time, τf , can be obtained by iteration

using the Newton down-hill method:{ →
r A(τ) = cos(τ)

→
r A0 + sin(τ)

→
V A0 + sin(τ)

→
I c − cos(τ)

→
I s

→
V A(τ) = − sin(τ)

→
r A0 + cos(τ)

→
V A0 + cos(τ)

→
I c + sin(τ)

→
I s

(11)

where
→
λ r0 is the initial value of the costate variable,

→
λ r,

→
λV0 is the initial value of the

costate variable,
→
λV ,

→
r A0 is the initial value of the geocentric position vector,

→
r A,

→
V A0 is

the initial value of the velocity vector,
→
V A, in the launch inertial system, and

→
I c =

∫ τ
0

→
I bTvac

m(ζ)gr0
cos(ζ)dζ =

∫ τ
0

.
→
I c(ζ)dζ

→
I s =

∫ τ
0

→
I bTvac

m(ζ)gr0
sin(ζ)dζ =

∫ τ
0

.
→
I s(ζ)dζ

(12)

where
→
I b is the unit vector of the body axis and gr0 = µ/r2

0, where µ is the gravitational constant.

Following iteration, the optimal body axis,
⇀
I∗b (t), in the launch inertial system can be

obtained and resolved in order to obtain the command attitude angles.
Step 3—Termination Criterion: The guidance process is terminated when the remain-

ing flight time to the predetermined injection point obtained by iteration in the previous
step is less than or equal to 5 s. The launch vehicle maintains the current attitude angle for
the remaining flight time and then shuts down. On the contrary, if the remaining flight
time is more than 5 s, the guidance process continues, then proceeds to Step 4.

Step 4—Next Guidance Period: The costate variables,
→
λ0, and dimensionless time,

τf , obtained during iteration can be regarded as the initial values of the next guidance
period; then, Steps 2–3 are repeated for the next guidance period when it reaches the next
guidance point.

3. Optimization Design for Overall Parameters of Air-Launched Vehicle
3.1. Design Variables

According to the multidisciplinary optimization framework of air-launched vehicles,
the design variables and their boundaries are shown in Table 2.

3.2. Objective Function

In order to determine the design direction and emphasis, it is necessary to obtain a
reasonable objective function. As a key index in the launch vehicle design process, payload
capacity partly represents the performance of the launch vehicle. Thus, it has generally been
considered as the design objective in the optimization process. In this study, the objective
of the optimization method for overall parameters design is to seek the maximum payload
capacity with the same gross mass as the air-launched vehicle. The objective function can
be expressed as

objective f unction = min − mpd(x) (13)
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Table 2. Boundaries of optimal design variables for overall parameters.

Design Variables
(Units)

Description
3-Stage Configuration 4-Stage Configuration

Lower Limit Upper Limit Lower Limit Upper Limit

F1 (kN) Average thrust of 1st stage motor 600 1000 800 1200
t1 (s) Working time of 1st stage motor 40 60 40 80

F2 (kN) Average thrust of 1st stage motor 50 500 400 800
t2 (s) Working time of 1st stage motor 30 55 30 60

F3 (kN) Average thrust of 1st stage motor 18 100 100 300
t3 (s) Working time of 1st stage motor 10 30 20 40

F4 (kN) Average thrust of 1st stage motor -- -- 20 40
t4 (s) Working time of 1st stage motor -- -- 10 35

tg12 (s) Gliding time of 1st stage 15 30 15 30
tg23 (s) Gliding time of 2nd stage 200 s 500 100 300
tg34 (s) Gliding time of 3rd stage -- -- 200 500

mpd (kg) Mass of the payload −300 300 −500 500
tp (s) Working time of program angle 5 40 20 50

αp (deg) Program angle of attack 0.5 20 0.5 20

3.3. Constraints

The constraints of the optimization problem consist of inequality constraints and
equality constraints. Considering the safety and stability of the launch vehicle and the
launch requirements during flight, the vertical overload (ny), dynamic pressure (qsep) at the
separation of the first stage motor, and Mach number (Ma) at the end time of the control
method are constrained. Thus, the inequality constraints, gi(x), are shown below:

g1(x) = (ny − nymax) ≤ 0
g2(x) = (qsep − qmax

sep ) ≤ 0
g3(x) = (Ma−Mamin) ≥ 0

(14)

where nymax represents the upper limit of normal overload, qmax
sep represents the maximum

dynamic pressure at the time of separation, and Mamin represents the minimum Mach
number. Considering that the angle of attack should remain zero at transonic velocity, in
this study, nymax = 0.05, qmax

sep = 10 kPa, and Mamin = 1.1.
As the objective orbit is a 500-km sun-synchronous orbit, the equality constraints,

Ceqi(x), can be expressed as 
Ceq1(x) = h− hobj = 0
Ceq2(x) = v− vobj = 0
Ceq3(x) = e− eobj = 0
Ceq4(x) = i− iobj = 0

(15)

where h, v, e, and i are the altitude, velocity, eccentricity, and inclination of the orbital
injection point, respectively, and hobj, vobj, eobj, and iobj are the altitude, velocity, eccen-
tricity, and inclination of the objective orbit, respectively. In this study, hobj = 500 km,
vobj = 7612.57 m/s, eobj = 0, and iobj = 96.67◦.

As the equality constraints are time-consuming and extremely difficult to satisfy in
the optimization process, it is necessary, efficient, and simple to transform the equality
constraints to inequality constraints. As the orbital inclination, i, is mainly affected by the
launch azimuth, A0, it is easy to meet Ceq4(x) in the optimization process by controlling the
launch azimuth A0 in 190 degrees, while Ceq1(x), Ceq2(x), and Ceq3(x) are the constraints
for height, velocity, and eccentricity, which are complex and sensitive to other design
variables. In order to simplify this problem, an energy-based method is proposed during
the optimization process. As the objective function is to search for the maximum payload
capacity with the same gross mass of the launch vehicle, a larger payload capacity would
lead to the launch vehicle being able to reach a lower orbital altitude. Thus, a constraint on
the lower limit value of the perigee, hp, of the injection point can fully represent the effect
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of Ceq1(x), Ceq2(x), and Ceq3(x). Finally, the global optimal solution is supposed to be a
circular orbit of 500 km; thus, the constraint conditions of the air-launched vehicle can be
obtained as follows: 

g1(x) = (ny − nymax) ≤ 0

g2(x) = (qsep − qmax
sep ) ≤ 0

g3(x) = (Ma−Mamin) ≥ 0

g4(x) = (hp − hobj) ≥ 0

Ceq4(x) = i− iobj = 0

(16)

4. Surrogate-Based SAO Method

In this study, the overall parameters of air-launched vehicles are optimized for a
practical launching mission based on the coupling of numerical optimization algorithms
and multidisciplinary simulations. As the computation cost of multidisciplinary simu-
lations can be potentially very high, the key point in accomplishing successful overall
parameters optimization is to increase the efficiency of the optimization methods while
reducing the calling times of multidisciplinary simulations as minimal as possible during
the optimization procedure. SAOs are known for their lower computational costs, gen-
erality, robustness, and accuracy [47]. SAO algorithms require much lower times in the
evaluation of original models to locate the global optimum when compared to evolutionary
algorithms, such as genetic algorithms, simulated annealing, particle swarm optimization
algorithms, immune algorithms, artificial bee colony algorithms, etc. Objectively, SAO
algorithms are a particularly good fit for overall parameters optimization based on coupling
with multidisciplinary simulations.

The surrogate model is the basis of the SAO method, the essence of which is multi-
variate function approximation aiming to satisfy certain accuracy conditions for optimal
design and analysis, instead of high precision numerical simulation. In the process of SAO,
a reasonable surrogate model can effectively reduce the calling times of high-precision sim-
ulation models and improve optimization design efficiency. Among the existing surrogate
models, the RBF surrogate model is widely used in SAO thanks to its simple principle
and ease of use. However, in practical applications a good surrogate model with good
performance needs to be obtained by optimizing the shape parameters of the basis function,
and the complexity of the shape parameter optimization increases sharply with the increase
in the number of sample points; therefore, the reasonable and efficient determination of the
shape parameters of the basis function represents a difficult research area in the field of
RBF surrogate models.

In this section, a shape parameter determination method is proposed for the radial
basis function based on the local density of sampling points, which unifies the determi-
nation of multiple shape parameters into one parameter and solves the problem of the
complexity of shape parameter optimization increasing sharply with the sample size. In
addition, a modified PSO using adaptive inertial weight is proposed to search the optimal
shape parameter and improve the efficiency of constructing the surrogate model.

4.1. Local Density-Based RBF Shape Parameter Determination Method

Given a set of training samples [xi, yi], i = 1, 2, · · · , n, the output prediction of the RBF
surrogate model at any design variable can be expressed as

f̂ (x) =
n

∑
i=1

ωi ϕi(r) (17)

where x is the design variable, ϕi(r) is the basis function of the ith sample, and ωi is the
coefficient of the basis function. In this study, the Gaussian basis function is applied as the
basis function, which can be expressed as
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ϕi(r) = exp(− r2

c2
i
) = exp(−‖x− xi‖2

c2
i

) (18)

where ci is the shape parameter of the ith sample. As for any non-zero shape parameter ci,
after substituting the training samples into Equation (17), the basis function coefficients, ωi,
can be obtained by introducing the interpolation condition, f̂ (xi) = yi

ω = Φ−1y (19)

where Φij = ϕj(xi) .
According to the basic theory of RBF interpolation, for a training sample set with

different sampling points, the corresponding basis function coefficients can be obtained
by solving linear equations for any shape parameter c in Equation (19), after which the
surrogate model can be constructed. In practice, different shape parameters have important
impacts on the prediction accuracy at non-sampling points, which is shown in Figure 3.

Figure 3. Influence extent of prediction accuracy with respect to the shape parameters.

The influence of the shape parameters is mainly reflected in the following two aspects:
(1) The global prediction accuracy of the RBF surrogate model first increases as the

shape parameter increases from near zero, then the surrogate model oscillates and decreases
in prediction accuracy as the shape parameter increases.

(2) There is no uniform criterion for when the appropriate shape parameter appears,
and it depends on the property of the original output function.

Therefore, a reasonable determination method for the shape parameters of the basis
function can effectively improve the global prediction accuracy of the surrogate model,
which in turn reduces the number of training samples and improves the efficiency of
optimization design. The basic idea of the surrogate model is to predict the output law of
the whole design space through the output of training samples in the design space.

Thus, the output response of any sampling point is jointly influenced by the response
of all sample points, each sample point has the dominant influence on itself, and the
influence gradually decays on the region further away from the point. Furthermore, in
the same form of the basis function, the shape parameter determines the rate of the decay
of influence to each sample point in the surrounding space. A larger shape parameter
means that the influence of the point can be propagated further in the entire output, while a
smaller shape parameter determines a smaller influence range. Figure 4 shows the influence
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of the distance between sampling points and different shape parameters on the shape of
the basis function.

Figure 4. Gaussian basis functions corresponding to different shape parameters.

According to the distribution of sample points in the space, the influence range of
each sample point should be appropriately small for the region with dense distribution
of sample points to prevent overfitting. For a region with sparse distribution of sample
points, the input parameters are provided arbitrarily given as there is no more information
around the point to predict the output, and the output of the point can only be predicted
by increasing the influence of the surrounding sample points, which means appropriately
increasing the value of the shape parameter. Based on the above analysis, a determination
method for the shape parameter is proposed based on the local density of sample points.

In this method, the local density, ρ(x), can be expressed as

ρ(x) =
n
∑

i=1
ρi(x)

ρi(x) = e
− ‖x−xi‖

ci
2

(20)

where ci represents the influence extent of the ith sample point on the contribution of local
density. Too large or too small a value of ci will cause the local density to lose the local
characteristics. Without loss of generality, in the unit hypercube design space the value of
ci can be expressed as

ci =
1

d
√

n
(21)

where n is the number of sample points and d is the number or dimension of design
variables. The local density of the one-dimensional problem in Equation (20) can be
obtained according to Equation (21). Figure 5 shows an illustrative example of density
in one dimension. The example shows that the function has larger values in the region
with a dense distribution of sampling points and smaller values in the region with a sparse
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distribution of sampling points. This method can reasonably quantify the local density of
discrete sample points.

Figure 5. Illustrative example of density in one dimension.

As the shape parameter can be considered as the influence extent, the influence extent
should be inversely proportional to the local density of each sample point, which can be
expressed as follows:

Vi
Vj

=
cd

i

cd
j
=

ρj

ρi
(22)

where Vi represents the influence volume of the ith sample point and ρi represents the
local density at the ith sample point. The reference value, ci, of the shape parameter can be
obtained by normalizing the total volume of influence, which can be expressed as

n

∑
i=1

Vi = 1 (23)

Because the values of the optimal shape parameters vary with the model characteristics,
the reference value of shape parameters should be scaled based on the same relative size of
each shape parameter; the values of each shape parameter can be obtained as follows:

ci = λci (24)

where λ is the scale coefficient, which determines the effective range of the surrogate model.
Thus, as the shape parameters are simplified into one parameter, λ, the RBF surrogate
model can be efficiently constructed.

4.2. Particle Swarm Optimization Method Using Adaptive Control Parameters

As the RBF surrogate model of the air-launched vehicle system is sequentially estab-
lished and updated, the computation cost is gradually reduced. The optimization problem
with a surrogate model can be expressed as

min f̃ (x) xmin ≤ x ≤ xmax

s.t. g̃i(x) ≤ 0 i = 0, 1, 2, · · · , l
h̃j(x) = 0 j = 0, 1, 2, · · · , m
d(x) ≥ δ

(25)
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where f̃ (x), g̃i(x), h̃j(x) are the surrogate models of the objective function, inequality

constraints, and equality constraint, respectively, d(x) = min(
√
(x− xi)

T(x− xi))

(i = 1, 2, · · · , n) is the minimum Euclidean distance between the new sampling point
and former sampling points, and δ is the minimum distance between the existing sampling
points, which gradually decreases during the SAO iteration process.

In order to solve this optimization problem, a modified PSO method is proposed in
this section. Standard PSO methods cannot adaptively balance the performance of global
search (exploration) and local search (development). It is easy to fall into local optima
and low search accuracy. This paper improves the standard PSO from the perspective of
control parameters.

The inertia weight, ω, and learning factor, c1 and c2, are independent control parame-
ters in the PSO method. Therein, the inertia weight, ω, is a key parameter to balance the
global and local search capabilities of the particles. Larger inertia weight can make particles
have better exploration capabilities, while smaller inertia weight can make particles have
better development capabilities. In general, the particle swarm needs better exploration
ability at the early stage and better development ability at the later stage in order to im-
prove search efficiency. Thus, an adaptive inertia weight strategy should be applied in the
optimization process. Existing strategies need to set the maximum number of optimization
steps in advance, and the inertia weight is related to the maximum number. In this study,
an adaptive inertia weight strategy is proposed based on the distribution of the current
optimal solution, pbest, found by a particle Pi.

In this method, the design space is first normalized as follows:

xi =
Xi − XL

i
XU

i − XL
i

i = 1, 2, · · · , n (26)

where XU
i and XL

i are the upper and lower bounds of the ith dimension of the original
design space and n is the dimension of the design space.

The distribution of pbest can be characterized by its standard deviation, σpbest. At the
beginning of the search, pbest is approximately considered as a uniform distribution in the
design space, of which the standard deviation, σpbest, is 0.2887. Along with optimization
process, σpbest continues to decrease, and approaches 0 when the optimization process is
convergent. Thus, the inertia weight can be expressed as

ωi =

ωmax i f σi
pbest ≥ 0.2887

ωmin + (ωmax −ωmin)
σi

pbest
0.2887 i f σi

pbest < 0.2887
(27)

where i is the current iteration number and ωmax and ωmin are the initial value and final
value of the inertia weight, ω.

In addition, the learning factor is an important factor in balancing the exploration and
development capabilities of PSO. In the early stage of optimization, the learning factor
should have greater self-learning ability and weaker swarm learning ability to strengthen
the global search. In the later stage of optimization, the learning factor should have greater
swarm learning ability and weaker self-learning ability to accelerate the convergence to the
global optimal solution. In [48], a learning factor strategy is proposed based on sine and
cosine functions, although it relies on information about the maximum iteration number:

c1 = ρ · sin
[(

1− i
Iter _max

)
· π

2

]
+ δ

c2 = ρ · cos
[(

1− i
Iter _max

)
· π

2

]
+ δ

(28)

where Iter _max is the maximum iteration number, i is the current iteration number, and
ρ = 2, δ = 0.5.

In this study, the modified learning factor strategy is based on the information of the
standard deviation, σpbest, which is shown below:
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c1 =


ρ i f σi

pbest ≥ 0.2887

ρ · sin
(

σi
pbest

0.2887 ×
π
2

)
+ δ i f σi

pbest < 0.2887
(29)

c2 =


ρ i f σi

pbest ≥ 0.2887

ρ · cos
(

σi
pbest

0.2887 ×
π
2

)
+ δ i f σi

pbest < 0.2887
(30)

where i is the current iteration number and ρ = 2, δ = 0.5.

4.3. Modified Sequence Approximate Optimization Method

In this study, the modified surrogate-based SAO method mainly consists of a design
of experiment (DoE) stage, an approximation stage, and a termination criteria and infilling
stage. The procedure of the proposed surrogate-based SAO method is shown in Figure 6.

Figure 6. Procedure of improved surrogate-based optimization method.
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4.3.1. DoE Stage

In this stage, the design space of the optimization problem is mapped to the unit
hypercube space and the optimal Latin hypercube design (OLHD) method is applied to
generate the initial sample points in the unit hypercube. The original multidisciplinary
model is employed to calculate the objective function and constraint value of the initial
sample points. According to the OLHD method, the number of initial sampling points is
supposed to be the multiple of the dimension of the design variables. In addition, as the
computation cost of the original multidisciplinary model is substantial, the calling times
of the multidisciplinary model should be limited. Thus, the number of initial sampling
points is set to 28. The initial sample set, including the initial samples and corresponding
responses, are then obtained and applied in order to establish the surrogate models in the
Approximation Stage.

4.3.2. Approximation Stage

In this stage, the proposed local-density-based method is applied based on the initial
sample set to determine the influence area of each sample point and calculate the shape
parameters of RBF. Then, the RBF surrogate models of the objective function and constraints
are constructed and sequentially updated when new sample points are infilled using the
infilling strategy in the Infilling Stage.

4.3.3. Termination Criteria

Termination of the proposed SAO is determined by the following criteria:
(1) If the relative distance between the optimal solutions of two successive iterations is

less than 1‰, then evaluate criterion (2). Otherwise, the SAO proceeds to the Infilling Stage.
(2) If the relative error between the two successive iterations’ optimal objective func-

tions with the constraints imposed using a penalty method is less than 0.0001, then evaluate
criterion (3). Otherwise, the SAO proceeds to the Infilling Stage.

(3) If the relative error between the objective functions of the surrogate model and the
true model is less than 0.0001, convergence is reached and the proposed SAO algorithm is
terminated. Otherwise, the SAO proceeds to the Infilling Stage.

4.3.4. Infilling Stage

In order to reasonably infill new sample points in the design space, a multistage
adaptive infilling strategy is employed to balance the exploitation and exploration capacity
of SAO [49]. In this stage, the minimum distance, δ, between the sampling points in the
sample set is initially calculated; then, based on the surrogate models constructed in the
approximation stage, an adaptive infilling with penalty method is implemented by solving
the optimization problem using the proposed PSO algorithm.

The optimization problem (25) can be converted to an unconstrained optimization
problem with penalties as follows:

min fp(x) = f̃ (x) + | f |max

〈
∑

i
αi{max(0, g̃i)/|gi|max}

2
+ ∑

j
β j

(
h̃j/
∣∣hj
∣∣
max

)2
+ τ[min(d(x), δ)− δ]2

〉
(31)

where | f |max, |gi|max and
∣∣hj
∣∣
max are the roughly maximum absolute values of the objective

function, inequality, and equality constraints, respectively, and αi, β j, and τ are the penalty
coefficients. The orders of magnitude for αi and β j are 104, τ is set to different values in
order to achieve sampling goals for different stages, and the global minimum point, xs f , of
Formula (31) is solved using the proposed PSO algorithm with adaptive control parameters.
Then, xs f is added to the sample set in order to update the surrogate models in the next
iteration. The termination conditions of the sampling stages are determined based on the
approximation accuracy of the response surfaces. The details of the multistage infilling
strategy are elaborated as follows:

(1) Potentially feasible region locating stage (Stage 1)
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In this stage, τ is two orders greater than αi and β j, and reaches the magnitude
order as 106. The global minimum point, xs f , lies in the sparse regions, which clearly
improves the global accuracy of the response surfaces. On the other hand, xs f inclines
towards the feasible regions, which is beneficial for discovery of potentially feasible regions
separate from each other. This sampling stage terminates automatically when one of
the following two conditions is met: (a) the number of sampling iteration steps in Stage
1 reaches a presupposed parameter I1; or (b) the relative error between the response
surfaces and the original models satisfies the following inequation for the last successive
λ1 sampling iterations:

ε = max


∣∣∣ f̃ − f

∣∣∣
max(| f |, 1)

,
|g̃i − gi|

max(|gi|, 1)
,

∣∣∣h̃j − hj

∣∣∣
max

(∣∣hj
∣∣, 1
)
 ≤ ε1 (32)

where ε is the maximum relative error of the response surfaces of the objective function and
constraints at the latest sampling point of each iteration and ε1 is the maximum permissible
error of Stage 1.

(2) Exploring in potentially feasible regions stage (Stage 2)

In this stage, τ is set at the same magnitude order as αi and β j. The global minimum
point, xs f , obtained from Formula (31) lies in the potentially feasible regions, and maintains
distance with the existing sampling points, which clearly improves the response surfaces
accuracy in the feasible regions. Sampling stage 2 terminates similarly to stage 1, and the
parameters I1, λ1, and ε1 are replaced with I2, λ2, and ε2, respectively.

(3) Optimum point of the response surfaces sampling stage (Stage 3)

In this stage, τ is set as 0, and the optimum point of the response surfaces is sampled.
Termination of Stage 3, as well as the whole SAO algorithm, occurs according to the
termination criteria.

Finally, the optimal solution, together with its objective function and the constraints of
the original model, are added to the sample set in order to update the surrogate models in
the next iteration.

4.4. Numerical Examples

In order to provide a comparison with other optimization methods in the liter-
ature, five classic benchmark functions with continuous design variables are utilized
here, namely, the well-known surrogate-based global optimization algorithms SOCE [50],
EGO [51], HAM [52], and KMS [50], which have been widely cited. Table 3 shows the five
benchmark functions.

Table 3. Benchmark functions.

Benchmark Function Number of Design
Variables

Design
Space

Global
Optimum

F1(x) = (
5
∑

i=1
i cos((i + 1)x1 + i))(

5
∑

i=1
i cos((i + 1)x2 + i)) 2 [−2,2] −186.7309

F2(x) = −
4
∑

i=1
ci exp(−

6
∑

j=1
aij(xj − pij)

2) 6 [0,1] −3.32

F3 =
2
∑

i=1
x2

i + ( 1
2

2
∑

i=1
ixi)

2

+ ( 1
2

2
∑

i=1
ixi)

4
2 [−5,10] 0

F4(x) =
2
∑

i=1

x2
i

4000 −
2
∏
i=1

cos( xi√
i
) + 1 2 [−10,10] 0

F5(x) =
10
∑

i=1

x2
i

4000 −
10
∏
i=1

cos( xi√
i
) + 1 10 [−600,600] 0
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The optimization results of the benchmark functions are shown in Table 4, which
states the best values obtained by all SBO algorithms; “Best, Median, Worst” represents the
best, median and worst results obtained in ten tests within 300 function evaluations (NFE),
while “MNFE” represents the mean NFE of the ten results.

Table 4. Numerical results obtained by the surrogate-based optimization algorithms.

Functions F1 F2 F3 F4 F5

SAO

Best −186.728 −3.319 2.84 × 107 1.87 × 106 3.36 × 103

Median −186.717 −3.313 1.93 × 104 5.90 × 105 4.25 × 102

Worst −185.055 −3.300 3.08 × 103 7.57 × 103 9.56 × 102

MNFE 48 49 54 67 >300

SOCE

Best −186.701 −3.317 7.58 × 106 2.86 × 106 1.18 × 102

Median −186.053 −3.306 2.72 × 104 2.14 × 104 3.28 × 102

Worst −185.342 −3.290 8.47 × 104 8.28 × 104 9.75 × 102

MNFE 68 89 135 140 >300

KMS

Best −186.203 −3.312 2.32 × 105 7.40 × 103 0.912
Median −101.456 −3.308 5.04 × 104 8.63 × 103 1.093
Worst −39.589 −3.291 2.80 × 103 1.97 × 102 1.367
MNFE >244 87 >198 >300 >300

EGO

Best −186.664 −3.318 6.31 × 106 1.03 × 106 13.968
Median −186.109 −3.298 7.68 × 104 5.73 × 104 28.083
Worst −184.941 −3.201 7.71 × 103 3.53 × 103 56.223
MNFE 71 >123 >158 >157 >300

HAM

Best −186.720 −3.316 3.31 × 106 2.30 × 106 9.88 × 103

Median −119.826 −3.295 7.51 × 105 7.40 × 103 2.39 × 102

Worst −39.589 −3.159 2.35 × 104 9.86 × 103 0.585
MNFE 209 >151 48 >244 >300

In Table 4, all five surrogate-based optimization algorithms perform well in low-
dimension functions. However, the KMS, EGO, and HAM algorithms have problems with
convergence in different cases and cannot solve high-dimension problems well. The pro-
posed SAO and SOCE algorithms show similar performance in both accuracy and function
evaluations, while the proposed SAO can achieve better results with fewer evaluations.
Consequently, the proposed SAO method shows high robustness on the test functions and
better performance in searching for the true global optimum, and proves competitive with
the other surrogate-based optimization algorithms.

5. Optimization Results and Analysis
5.1. Results and Discussion

In this study, eight design cases are set up in order to explore the effect on speeding
up the optimization convergence rate by employing the terminal guidance module in a
conceptual design process of air-launched vehicles, exploring the efficiency between genetic
algorithm (PSO) and surrogate-based methods (SAO). The specific illustration of the design
cases is shown in Table 5.

Table 5. Illustration of the eight design cases.

Cases Configuration Optimization Method Terminal Guidance

Case1

3 stages
PSO

None
Case2 Employ
Case3

SAO
None

Case4 Employ
Case5

4 stages
PSO

None
Case6 Employ
Case7

SAO
None

Case8 Employ
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Based on the multidisciplinary optimization design framework, the optimal design
results are shown in Table 6.

Table 6. Optimal results of the eight design cases.

Variables Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

F1 (kN) 993.01 777.27 898.52 765.26 811.28 846.44 909.97 878.58
t1 (s) 47.68 54.72 44.46 54.39 47.19 45.79 42.75 42.41

F2 (kN) 226.88 441.03 383.20 482.45 552.66 479.55 409.94 414.07
t2 (s) 39.58 30.90 42.12 30.03 31.93 36.10 40.70 42.05

F3 (kN) 46.42 80.62 60.11 45.80 144.20 110.68 128.40 135.38
t3 (s) 31.00 25.00 41.93 49.29 17.90 18.62 19.16 24.37

F4 (kN) -- -- -- -- 25.04 37.55 39.74 42.45
t4 (s) -- -- -- -- 24.88 21.50 26.02 29.51

tg12 (s) 15.47 16.16 25.12 26.58 20.19 15.28 29.90 16.25
tg23 (s) 456.17 410.75 380.63 396.13 222.94 113.66 89.69 96.10
tg34 (s) -- -- -- -- 349.67 469.39 421.88 373.18

mpd (kg) 341.27 382.55 374.33 381.50 317.42 338.09 358.28 370.06
tp (s) 12.71 22.09 24.21 18.04 44.84 49.09 18.75 76.66

αp (deg) 10.10 14.30 12.03 19.13 8.26 5.63 13.36 6.00

The optimal objective function (payload capacity) and certain constraints (orbital
perigee and apogee altitude) of each case are shown in Figures 7 and 8.

Figure 7. The optimal payload capacity of design cases.

Figure 8. The orbital altitude of design cases.

For the objective function, the results (Case 1|2 and Case 5|6) show that employing the
terminal guidance module in the multidisciplinary framework can significantly improve
the global search ability of classic evolutionary algorithm PSO; for the surrogate-based SAO
method, the results (Case 3|4 and Case 7|8) show less effect from the terminal guidance
module, as the construction of surrogate model mainly relies on the input and response of
the original model without considering the intrinsic connection of the multidisciplinary
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framework, which means the surrogate-based SAO method can reduce the requirement of
the terminal guidance module in the conceptual design process of air-launched vehicles. In
addition, the results (Case 1|3, Case 2|4, Case 5|7 and Case 6|8) show the better global
search ability of SAO than PSO, whether in a three-stage or four-stage configuration.

As for the constraints, the results (Case 1|3, Case 2|4, Case 5|7 and Case 6|8) show
that the surrogate-based SAO has much better performance and stability in dealing with the
constraints compared to PSO; the eccentricity is controlled on the order of magnitude 10−4,
while the PSO shows unstable performance in dealing with the constraints.

The optimization convergence procedures of the design cases are shown in Figure 9;
the control parameters of the PSO, including inertia weight, learning factor, and number
of populations, are set as ω = 0.2, c = 0.8, Npop = 20. The results (Case 1|2,5|6) show that
employing the terminal guidance module in the conceptual design process can improve
both the convergence speed and the strength of the global search capability of the objective
function. The oscillation in the convergence procedure in cases 3, 4, 7, and 8 show the effect
of the multistage infilling strategy applied in the SAO method, as it tried several times to
jump out of the local optimal solutions. In addition, the run time of PSO is over ten times
longer than that of SAO, which demonstrates the great performance of the proposed SAO.

Figure 9. Cont.
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Figure 9. Convergence of the objective function.

5.2. Performance Analysis

The flight simulation and performance of the air-launched vehicles using the optimal
solutions of the overall parameters in two configurations are shown in Figure 10. The flight
characteristic parameters include the altitude, Mach number, velocity, dynamic pressure,
thrust, and gross mass of the launch vehicle. The title and units of each curve are shown
in the legend of each figure with the same color. Figure 10a,c shows the flight altitude,
thrust, Mach number, and velocity of the optimized air-launched vehicles. Both of the
altitude curves show that the launch vehicles successfully reach the target injection point
at 500 km, which means that the optimization results meet the constraint of the altitude.
The trust curves show the time sequence and average trust of each stage. Figure 10b,d
shows the local slope angle, weight, and dynamic pressure of the optimized air-launched
vehicles. The curves of the local slope angle show the flight attitude of the launch vehicles
after separating from the carrier aircraft. Furthermore, the optimization results meet the
conditions of all the constraints with an error rate under 0.05%.

Figure 10. Optimization results of the optimized air-launched vehicles.
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6. Conclusions

This paper proposes a conceptual design and overall parameters optimization frame-
work for air-launched vehicle systems using a modified surrogate-based SAO method. A
multidisciplinary model including aerodynamic, propulsion, mass, trajectory, and terminal
guidance was established in order to simulate and analyze the flight performance of the air-
launched vehicle system. In order to improve the optimization efficiency and performance
in searching for the global optimal solution, the calling times of the time-consuming multi-
disciplinary model were reduced by a proposed local density-based RBF surrogate model.
The surrogate-based optimization problem can be solved by the proposed PSO method
using adaptive control parameters. In addition, a multistage adaptive infilling strategy
with a penalty method was employed to balance the exploration and exploitation of SAO.
According to the results of eight design cases, employing the terminal guidance module in
the optimization process can improve both the convergence speed and the global search
strength and capability of PSO. The proposed SAO method only relies on the input and
response of the original model, without requiring the internal information, which means
that it can reduce the requirements of the terminal guidance system in the conceptual
design process of air-launched vehicles. For the overall parameters optimization problem
concerning air-launched vehicles, the computational costs for locating optimum results are
reduced by an order of magnitude when the proposed SAO is used. The optimal solution
increased the payload capacity of the three-stage air-launched vehicle by 82.55 kg (27.52%)
and the payload capacity of the four-stage air-launched vehicle by 70.06 kg (23.35%) with
the same lift-off mass of the original scheme (300 kg for 500 km SSO). Thus, combined with
a surrogate optimization technique and reliable terminal guidance module, the proposed
SAO method and multidisciplinary optimization framework are suggested for solving
complicated aerospace engineering problems for spacecraft chasing high payload capacity,
rapid response, and high reliability.
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