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Abstract: Previous staring attitude control techniques utilize the geographic location of a ground
target to dictate the direction of the camera’s optical axis, while the assembly accuracy and the internal
structure of the spaceborne camera are not considered. This paper investigates the image-based
staring controller design of a video satellite in the presence of uncertain intrinsic and extrinsic camera
parameters. The dynamical projection model of the ground target on the image plane is firstly
established, and then we linearly parameterize the defined projection errors. Furthermore, a potential
function and a self-updating rule are introduced to estimate the parameters online by minimizing
the projection errors. As the parameters are updating constantly, an adaptive control algorithm is
developed, so that the errors between the current and the desired projections of the ground target
converge to zero. The stability is proved using Barbalat’s lemma. Simulation results show that the
designed controller can successfully move the target’s projection to the desired coordinate even
though the camera parameters are unknown.

Keywords: video satellites; staring control; adaptive attitude control; image-based control; Earth
observation

1. Introduction

With the increasing importance of Earth observation projects, staring imaging out-
performs other sensing techniques owing to its unique capability in capturing continuous
images of the ground target [1,2]. As its name suggests, staring control requires the camera
to constantly point to the target, so we can obtain images where the target is always at the
center. To achieve this purpose, the optical axis of the camera is supposed to be aimed at
the target throughout the whole observation phase. Many video satellites (e.g., TUBSAT [3],
Tiantuo-2, Jilin-1) are equipped with staring mode, therefore they can be applied for various
scenarios, such as emergence rescue, target monitoring, and so on [4–6]. In a staring control
case, the satellite is moving along the orbit and simultaneously the ground target is not
stationary as it is fixed on the rotating Earth’s surface, leading to a time-varying relative
motion. Therefore, a dedicated attitude controller should be designed to keep the satellite
staring at the target.

Conventional methods for staring control mainly require the relative position between
the satellite and the target, normally obtained via orbital data and the geographic infor-
mation, respectively. Furthermore, a staring imaging for a single point dictates only the
optical axis, so the orientation perpendicular to it is free. Refs. [2,7] both propose PD-like
controllers to achieve staring imaging, while Refs. [8–10] pursue optimality during the
attitude maneuver. Ref. [11] realizes a similar real-time optimal control method with an
emphasis on the pointing accuracy. However, the above studies have not considered the
image feedback, though the image error directly and precisely reflects the controller’s
accuracy. In light of this, it is necessary to take use of the camera’s ability to achieve more
precise staring.
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Besides traditional methods whose attitude control torques are generated by establish-
ing the inertial geometry and disintegrating the relative orientation into different rotation
angles, state-of-the-art image-processing technologies [12–15] have made it possible to de-
velop a novel image-based staring controller relying on the target’s projection on the image
plane. As a camera plays an essential role in different engineering applications [16–22],
various image-based control methods have been developed. The same as staring control,
some of these control schemes use the image to obtain the orientation of the target point.
For example, Refs. [23,24] study positioning control of robots, Ref. [25] conducts research
on motion control of an unmanned aerial vehicle (UAV), and Ref. [26] uses images for space
debris tracking. However, above studies either neglect the uncertainties of the camera or
do not consider the spacecraft kinematics and dynamics. A spaceborne camera is hard to
calibrate in a complicated working environment such as space; therefore, this paper focuses
on analyzing an image-based adaptive staring attitude controller for a video satellite using
an uncalibrated camera.

To take advantage of the images, the projection model should be analyzed. The
target’s projection on the image plane is decided by the relative position between the target
and satellite in the inertial space, the satellite’s attitude and the camera’s configuration.
The camera configuration consists of the intrinsic structure and the extrinsic mounting
position and orientation. Camera parameters are to be properly defined, thus able to be
linearized and thereafter estimated online. Worth noting that the relative orientation of
staring imaging is influenced by both the attitude and orbital motion, which is different
from a robotic model. To conclude the discussion, for a video satellite whose camera is
uncalibrated, the image-based staring attitude controller is built upon the thorough analysis
of the camera structure.

This paper differs from traditional staring attitude control methods by focusing on
the image-based adaptive algorithm accommodating the unknown camera parameters,
therefore the kinematic relationship between the image and the attitude is firstly established.
Through linear parameterization, the negative gradients of the projection errors are chosen
as the direction of parameter adjustment. Estimated parameters and the image information
are then adopted to formulate the staring controller, which directs the target’s projection to
the desired coordinates. A potential function is also introduced to guarantee the controller’s
stability. The convergence of the ground target’s projection to its desired location indicates
that the optical axis reaches the desired orientation. Finally, simulation shows the trajectory
of the projection on the image plane. As the projection moves along the trajectory, the
image errors, as well as the estimated projection errors, are approaching zero.

The remainder of this paper is organized as follows. The camera modeling is intro-
duced in Section 2, where the projection kinematics are derived for a video satellite. In
Section 3, we propose the adaptive controller, including the parameter extraction and esti-
mation. Simulation is presented in Section 4 and the results demonstrate the effectiveness
of our controller. Conclusions are drawn in the last section.

2. Problem Formulation

This section starts with a brief introduction of satellite attitude kinematics and dynam-
ics, and then establishes the camera projection model between the target’s position in the
Earth-centered inertial (ECI) frame and its pixel coordinates on the image plane. Finally,
the projection kinematics in the form of pixel coordinates are derived.

2.1. Attitude Kinematics and Dynamics

A quaternion q, which includes a scalar part q0 and a vector part qv = (q1 q2 q3)
T , is

adopted to describe the attitude:

q = cos(φ/2) + r sin(φ/2) = q0 + qv (1)



Aerospace 2022, 9, 283 3 of 18

where r is the Euler axis and φ is the rotation angle. The quaternion can avoid the singularity
of Euler angles and it must meet the normalization condition: ‖q‖ = 1. The attitude
kinematics and dynamics of a satellite as a rigid body are given by[

q̇v
q̇0

]
=

1
2

[
q0E3 + sk(qv)
−qT

v

]
ω

Jω̇ = −ω× Jω + U
(2)

where E3 is a 3× 3 unit matrix, J is the inertial moment of the satellite and ω represents the
angular velocity of the satellite relative to the inertial frame expressed in the body frame.
U is the attitude control torques. The operation sk(·) is defined as

sk(qv) =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (3)

In traditional attitude tracking controllers including the staring control, a desired
quaternion qd should firstly be designed and then the error quaternion qe is obtained.
According to different control strategies, U is calculated based on qe and the angular velocity
error ωe. For an image-based staring control case, alternative attitude representation is
needed as the attitude errors are embodied in the image errors, i.e., the pixel coordinate
errors between the current and desired projection. Therefore, we are to measure the
relative attitude via image recognition. Inevitably, an uncalibrated camera introduces extra
uncertainties into the images. For this reason, the analysis of a camera model is necessary.

2.2. Earth-Staring Observation

Earth-staring observation requires the camera’s optical axis to point towards the
ground target for a period of time. The scenario is shown in Figure 1. Oe − XeYeZe is ECI
frame. Oe and Ob are the the center of mass of Earth and the satellite, respectively. The
satellite with a camera is on the orbit, and the ground target T is located at the Earth surface
while rotating around Ze at the angular velocity of Ωe. The satellite’s position is expressed
in ECI as Reb, and b

i M represents the rotation matrix from ECI to the body frame. Define
the homogeneous transform matrix from the inertial frame to the body frame Th ∈ R4×4:

Th =

( b
i M − b

i M
iReb

01×3 1

)
(4)

Figure 1. The ground-target-staring observation geometry.
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iReT is the target’s position in ECI, and bRbT is the vector from the satellite to the target
expressed in the body frame. Homogeneous coordinates are adopted to better describe the
transformation. According to the geometrical relationship, we have( bRbT

1

)
= Th

( iReT
1

)
(5)

2.3. The Intrinsic Camera Model

Inside the camera, the target is projected on the image plane through the lens. Assume
the camera has a focal length of f and a pixel size of dx × dy. Figure 2 depicts the camera
frame Oc − XcYcZc and the 2D pixel frame o − uv, whose conjunction with the optical
axis is (u0, v0)

T . ϕ is the angle between the axis u and v. The target in the camera frame
is expressed as cRcT = (xc, yc, zc)

T , and its projection is y = (u, v)T . Thus, we have the
following projection transformation:

zc

(
y
1

)
= Π

( cRcT
1

)
(6)

where Π ∈ R3×4 is defined as

Π =

 f /dx − f /dx · cot ϕ u0 0
0 f /(dy · sin ϕ) v0 0
0 0 1 0

 (7)

Figure 2. The intrinsic camera model

2.4. The Extrinsic Camera Model

The position and attitude of the camera frame Oc − XcYcZc with respect to the body
frame Ob − XbYbZb is displayed in Figure 3. Rbc represents the position of Oc in the body
frame. Similarly, we define the homogeneous transform matrix from the body frame to the
camera frame T ∈ R4×4:

T =

( c
b M −cRbc

01×3 1

)
(8)

The target’s position in the camera frame is cRcT and in the body frame it is bRbT . The
transformation between them can be given by( cRcT

1

)
= T ·

( bRbT
1

)
(9)
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Figure 3. The extrinsic camera model

2.5. The Projection Kinematics of Staring Imaging

According to Equations (6) and (9), we have

zc

(
y
1

)
= N ·

( bRbT
1

)
(10)

where the projection matrix N ∈ R3×4 is defined by N = Π · T and its elements are denoted
as nij (i = 1, 2, 3; j = 1, 2, 3, 4). Then combine (5) and (10), we obtain(

y
1

)
=

1
zc

N · Th ·
( iReT

1

)
(11)

The above equation reveals the mapping relation between the target’s position in ECI
and its projection coordinates on the image plane. The matrix N reflects the camera’s role
in the transformation, while T contains the satellite’s attitude and orbit motion impacts.
Define

N ,

 nT
1

nT
2

nT
3

 ,
(

P
nT

3

)
(12)

where P ∈ R2×4 is the matrix consisting of the first two rows of N, and nT
3 ∈ R1×4 is the

third row. To derive the kinematic equations more clearly, we will explicitly denote the
time-varying states. Equation (11) can be rewritten as

y(t) =
1

zc(t)
P · Th(t) ·

( iReT(t)
1

)
zc(t) = nT

3 · Th(t) ·
( iReT(t)

1

) (13)
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For simplicity, let nT
3(3) denote a vector formed by the first three elements of nT

3 , and
let P(3) denote a matrix formed by the first three columns of P. Differentiate the depth zc(t)
of the target in the camera frame and we obtain

żc(t) =nT
3

(
sk
(

b
i M(t)iReT(t)− b

i M(t)iReb(t)
)
− b

i M(t)
01×3 01×3

)(
ω(t)

iV eb(t)

)
+ nT

3 Th(t)
( iV eT(t)

0

)
=
(

nT
3(3) n34

)(sk
(

b
i M(t)iReT(t)− b

i M(t)iReb(t)
)
− b

i M(t)
01×3 01×3

)(
ω(t)

iV eb(t)

)
+
(

nT
3(3) n34

)(b
i M(t) − b

i M(t)iReb(t)
01×3 1

)( iV eT(t)
0

)
=nT

3(3)

(
sk
(

b
i M(t)iReT(t)− b

i M(t)iReb(t)
)
− b

i M(t)
)( ω(t)

iV eb(t)

)
+ nT

3(3)
b
i M(t) · iV eT(t)

=nT
3(3)sk

(
b
i M(t)iReT(t)− b

i M(t)iReb(t)
)

ω(t)

+ nT
3(3)

b
i M(t)

(
iV eT(t)− iV eb(t)

)

(14)

To simplify the expression, we define

a(t) =nT
3(3)sk

(
b
i M(t)iReT(t)− b

i M(t)iReb(t)
)

av(t) =nT
3(3)

b
i M(t)

(
iV eT(t)− iV eb(t)

) (15)

Thus we have
żc(t) = a(t)ω(t) + av(t) (16)

Similarly, we define

A(t) =
(

P(3) − y(t)nT
3(3)

)
sk
(

b
i M(t)iReT(t)− b

i M(t)iReb(t)
)

Av(t) =
(

P(3) − y(t)nT
3(3)

)
b
i M(t)

(
iV eT(t)− iV eb(t)

) (17)

then we have the derivative of the image coordinates given by

ẏ(t) =
1

zc(t)
P · Ṫh(t) ·

( iReT(t)
1

)
− żc(t)

zc(t)
y(t) +

1
zc(t)

P · Th(t) ·
( iV eT(t)

1

)
=

1
zc(t)

(
P(3) − y(t)nT

3(3)

)
sk
(

b
i M(t)iReT(t)− b

i M(t)iReb(t)
)

ω

+
1

zc(t)

(
P(3) − y(t)nT

3(3)

)
b
i M(t)

(
iV eT(t)− iV eb(t)

)
=

1
zc(t)

[A(t)ω(t) + Av(t)]

(18)

Equations (16) and (18) are the staring imaging kinematics. From the prior informa-
tion of the target point, the position iReT(t) and velocity iV eT(t) of the ground point are
already known. Moreover, noting that the attitude and orbit determination can provide
the rotation matrix b

i M(t) and the orbital location iReb(t) and velocity iV eb(t), the only
uncertain parameters are P(3) and nT

3(3). There are a few characteristics worth analyzing in
the kinematic equations. First, the depth zc(t) is not observable through images, therefore
our controller can not access depth information. Second, the matrices av(t) and Av(t)
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contain the relative orbital motion and are uncontrollable, and simultaneously we do not
conduct orbit maneuver. This brings in a problem that if the relative motion between the
target and the satellite is too fast, the demand to track the target may exceed the satellite’s
attitude maneuver capability. This can result in the target being lost in the field of view.
Hence, the satellite should have sufficient angular maneuver capability to keep up the
relative rotation. Moreover, refer to [2] for more analysis of the relative angular velocity.
Third, the image-based kinematics (16) and (18) maintain the same feature as quaternion-
based kinematics (2) as they are all linear with regard to ω. Fourth, the unknown camera
parameters exist in av(t), av(t), A(t) and Av(t), so no accurate projection change rate can
be derived through the kinematics, and a self-updating rule is to be proposed to estimate
them online.

2.6. Control Objective

The control objective is to guarantee the projection coordinate y(t) approaches its
desired location yd on the image plane. The y(t) is extracted from the real-time images and
yd is predetermined. Normally we expect to fix the target point at the center of the image
to gain a better view, thus without loss of generality, yd = (u0, v0)

T is selected. To realize
this purpose, an adaptive controller is to be designed to specifically address the camera
parameters. Define the image error ∆y(t) = y(t)− yd, the control objective is that ∆y(t)
asymptotically converges to 0.

Figure 4 shows the control framework. The camera captures the target when it appears
in the field of view, and then the image is processed so that the corresponding target
coordinate y(t) is obtained. With y(t), the camera parameters are estimated online and are
thereafter applied to the attitude controller. According to the kinematics and dynamics, the
satellite will finally accomplish the staring attitude maneuver.

Figure 4. The framework of the image-based staring control

3. Controller Design
3.1. Parameter Definition

To analyze the exact parameters that need to be estimated, we rewrite Equation (13) as

zc(t)
(

y(t)
1

)
=N · Th(t) ·

( iReT(t)
1

)
=N ·

( bRbT(t)
1

)

=

(
P(3)
nT

3(3)

)
bRbT(t) +

 n14
n24
n34


(19)

Comparing the imaging kinematics (16) and (18) with (19), we notice that all the
elements in the matrix N can influence projection coordinates, while the projection change
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rate is only affected by nT
3(3) and P(3). We take all the 12 elements in N as the parameters to

be estimated and then form a parameter sequence:

θ =
(
nij
)T i = 1, 2, 3 j = 1, 2, 3, 4 (20)

Theorem 1. For any ρ ∈ R that is not 0, θ and ρθ corresponds to the same projection y(t).

Proof. Substitute the depth zc(t) in the projection expression in (13) and we have

y(t) =
1

zc(t)
P · Th(t) ·

( iReT(t)
1

)

=

P · Th(t) ·
( iReT(t)

1

)
nT

3 · Th(t) ·
( iReT(t)

1

)

=

ρP · Th(t) ·
( iReT(t)

1

)
ρnT

3 · Th(t) ·
( iReT(t)

1

)
(21)

It is clear that θ and ρθ result in the same y(t). A similar property can be obtained for
visual servoing application [27].

Due to the Theorem 1, the parameters defined in (20) has at least one multiplier
difference with the real camera parameters. Without loss of generality, we can force n33 = 1
and only estimate the left parameters in θ, thus the estimation complexities are reduced.
We then redefine a new parameter sequence with 11 elements:

θp = (n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n34)
T . (22)

Theorem 2. Assume n represents the number of elements in θp. For any vector p ∈ R3×1 (e.g., the
angular velocity ω), the matrices Y(t, p) ∈ R2×n, y(t, p) ∈ R2×1, Z(t, p) ∈ R1×n, z(t, p) ∈ R
can be found, so that the matrices A(t) ∈ R2×3 and a(t) ∈ R1×3 have the following property:

A
(
t, θp

)
· p = Y(t, p) · θp + y(t, p)

a
(
t, θp

)
· p = Z(t, p) · θp + z(t, p)

(23)

Similarly, the matrices Y
′
v(t) ∈ R2×n, yv(t) ∈ R2×1, Z

′
v(t) ∈ R1×n, zv(t) ∈ R can be found, so

that the matrices Av(t) ∈ R2×1 and av(t) ∈ R have the following property:

Av
(
t, θp

)
= Yv(t) · θp + yv(t)

av
(
t, θp

)
= Zv(t) · θp + zv(t)

(24)

The proof is omitted here, since it is pretty straightforward based on
Equations (15) and (17). Theorem 2 demonstrates that the imaging kinematics can be ex-
pressed in a linear form of θp. This is the basis of the feasibility of estimation. The estimated
parameters are denoted as θ̂p(t), where the overhead scriptˆindicates that the variable is
estimated instead of a real value. Correspondingly, this notation applies to all the estimated
variables in the remainder of this paper.

3.2. Reference Attitude Trajectory

A PD-like controller requires both the convergence of ∆y(t) and the angular velocity er-
ror ωe(t) = ω(t)−ωd(t), where ωd(t) is the desired angular velocity. yd is predetermined
and time-invariant, while ωd(t) is time-varying and not as straightforward. Therefore it is
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troublesome to directly obtain the desired angular velocity trajectory. Instead, a reference
attitude trajectory, i.e., yr(t) and ωr(t), is designed to cope with the problem. Define yr(t)
so that it meets the following condition:

ẏr(t) = ẏd − λ∆y(t) = −λ∆y(t) (25)

where λ is a positive scalar. We further define the reference image tracking error:

δẏ(t) = ẏ(t)− ẏr(t) = ∆ẏ(t) + λ∆y(t) (26)

Theorem 3. If δẏ(t) asymptotically converges to 0, ∆y(t) and ∆ẏ(t) asymptotically converge to
0; if δẏ(t) exponentially converges to 0, ∆y(t) and ∆ẏ(t) exponentially converge to 0;

The theorem is obvious, so no proof is not listed here. Now the control objective is
converted to guaranteeing the stability of δẏ(t). Meanwhile, the reference angular velocity
tracking error is obtained by:

δω(t) = ω(t)−ωr(t) (27)

The reference angular velocity trajectory ωr(t) is defined as

ωr(t) = Â+(t)
(
−ẑc(t) · λ ·∆y(t)− Âv(t)

)
(28)

where Â+(t) is the pseudo-inverse matrix of Â(t), which is the estimated A(t). Â+(t) is
defined as

Â+(t) = ÂT(t)
[

Â(t)ÂT(t)
]−1

(29)

The presupposition of the existence of the definition of Â(t) is that Â(t) has a rank
of 2. As the values of Â(t) are dependent on θ̂p(t), the rank of Â(t) is affected by the way
θ̂p(t) is updated.

3.3. Potential Function Design

Assume the 3× 3 sub-matrix of the estimated projection matrix N̂(t) is defined as

N̂(3)(t) =

(
P̂(3)
n̂T

3(3)

)
(30)

According to Ref. [28], if N̂(3)(t) has a rank of 3, the matrix Â(t) has a rank of 2. Hence,
a potential function is designed as

U
(
θ̂p(t)

)
=

1

ea|N̂(3)(t)|2 − 1 + b
(31)

Apparently we can conclude that U
(
θ̂p(t)

)
is always positive. The coefficients a and

b are both positive as well, but b is very small, which is designed to avoid the singular
situation where the denominator is 0. The potential function reaches its maximum 1

b when∣∣∣N̂(3)(t)
∣∣∣ = 0, i.e., N̂(3)(t) has a rank less than 3. U

(
θ̂p(t)

)
will approach to 0 when θ̂p(t)

keeps far from the neighborhood of
∣∣∣N̂(3)(t)

∣∣∣ = 0. To ensure that, we should enhance the

resistance of θ̂p(t) getting close to the singular area. In the parameter estimation subsection,
the self-updating rule will incorporate the gradient of U

(
θ̂p(t)

)
regarding θ̂p(t) which is

given by

∂U
(
θ̂p(t)

)
∂θ̂p(t)

= −
2a
∣∣∣N̂(3)(t)

∣∣∣ea|N̂(3)(t)|2(
ea|N̂(3)(t)|2 − 1 + b

)2

∂
∣∣∣N̂(3)(t)

∣∣∣
∂θ̂p(t)

(32)
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3.4. Parameter Estimation

The estimation error is defined as ∆θp(t) = θ̂p(t)− θp. Equation (11) always holds
for an ideal camera whose parameters are all calibrated. However, the real parameters
may diverge from the ideal ones. Adopting the definition in [27], we define the following
estimated projection errors e(t) to represent the image deviations caused by ∆θp:

e(t) = ẑc(t)y(t)− P̂(t)Th(t)
( iReT(t)

1

)
(33)

where y(t) is obtained from the image, and ẑc(t) and P̂(t) are the estimated depth and
parameters.

Theorem 4. Given the estimated projection errors e(t), there exists a matrix Wp(t) ∈ R2×n,
so that

e(t) = Wp(t)∆θp(t) (34)

Proof. According to the projection Equation (11), with the real parameters we have

zc(t)y(t)− P · Th(t)
( iReT(t)

1

)
= 0 (35)

Thus, e(t) can be rewritten as

e(t) =ẑc(t)y(t)− P̂(t)Th(t)
( iReT(t)

1

)
−
(

zc(t)y(t)− P · Th(t)
( iReT(t)

1

))
=(ẑc(t)− zc(t))y(t)−

(
P̂(t)− P

)
Th(t)

( iReT(t)
1

)
=y(t)

(
n̂T

3 (t)− nT
3

)
Th(t)

( iReT(t)
1

)
−
(
P̂(t)− P

)
Th(t)

( iReT(t)
1

)
=
[
y(t)

(
n̂T

3 (t)− nT
3

)
−
(
P̂(t)− P

)]
Th(t)

( iReT(t)
1

)
(36)

(
n̂T

3 (t)− nT
3

)
and

(
P̂(t)− P

)
appear linearly in the last equation, such that ∆θ(t) can be

linearized from e(t). Considering that n33 and n̂33 in θ and θ̂ are both fixed to 1, we can
eliminate n33 − n̂33 in Equation (36). Then we can conclude that e(t) is linear with respect
to ∆θp(t), i.e., such a matrix Wp(t) exists. Apparently, Wp(t) consists of y(t), Th(t) and
iReT(t).

We propose the following self-updating rule for the parameters:

˙̂θp(t) = −Γ−1

{
YT

p (t)δẏ(t) + WT
p (t)K1e(t) + K2

∂U
(
θ̂p(t)

)
∂θ̂p(t)

‖δω(t)‖2

}
(37)

Γ, K1, K2 and K3 are all positive coefficient matrices, and YT
p (t) is a regressor matrix which

does not contain any camera parameters. It is defined via the following equation:

∆θT
p (t) · YT

p (t) = −
[
(zc(t)− ẑc(t))ẏr(t)−

(
Av(t)− Âv(t)

)
−
(

A(t)− Â(t)
)
ω(t)

]TK3 (38)

There are three components in the brace of Equation (37). The first one is about the
reference image tracking error, which will play a part in the stability proof. The second is
about the negative gradient of the estimated projection error, which drives down e(t) by
updating θ̂p(t). Additionally, the last term is the negative gradient of the potential function,
which mainly takes effect when θ̂p(t) is approaching an area that leads to rank(Â(t)) < 2.
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3.5. Adaptive Staring Imaging Controller

The controller is given by

U(t) = ω(t)× Jω(t) + Jω̇r(t)− K4δω(t)− ÂT(t)K3δẏ(t)− K5

∥∥∥∥∥∂U
(
θ̂p(t)

)
∂θ̂p(t)

∥∥∥∥∥δω(t) (39)

where K4 and K5 are positive coefficient matrices. For simplicity, we define 2 non-negative
functions:

V1(t) =
1
2

δT
ω(t)Jδω(t)

V2(t) =
1
2

∆θT
p (t)Γ∆θp(t)

(40)

The derivatives of V1(t) and V2(t) are given respectively as follows

V̇1(t) =δT
ω(t)Jδ̇ω(t)

=δT
ω(t)J(ω̇(t)− ω̇r(t))

=δT
ω(t)(−ω(t)× Jω(t) + U(t)− Jω̇r(t))

=δT
ω(t)

(
−K4δω(t)− ÂT(t)K3δẏ(t)− K5

∥∥∥∥∥∂U
(
θ̂p(t)

)
∂θ̂p(t)

∥∥∥∥∥δω(t)

)

=− δT
ω(t)K4δω(t)− δT

ω(t)ÂT(t)K3δẏ(t)− K5δT
ω(t)

∥∥∥∥∥∂U
(
θ̂p(t)

)
∂θ̂p(t)

∥∥∥∥∥δω(t)

(41)

V̇2(t) =∆θT
p (t)Γ∆θ̇p(t)

=−∆θT
p (t)

{
YT

p (t)δẏ(t) + WT
p (t)K1e(t) + K2

∂U
(
θ̂p(t)

)
∂θ̂p(t)

‖δω(t)‖2

}

=−∆θT
p (t)Y

T
p (t)δẏ(t)− eT(t)K1e(t)−∆θT

p (t)K2
∂U
(
θ̂p(t)

)
∂θ̂p(t)

‖δω(t)‖2

(42)

The δT
ω(t)ÂT(t)K3δẏ(t) in the expression of V̇1(t) can be decomposed into

ωT(t)ÂT(t)K3δẏ(t) and −ωT
r (t)ÂT(t)K3δẏ(t). We have

ωT(t)ÂT(t) =ωT(t)AT(t) + ωT(t)
(

ÂT(t)− AT(t)
)

=[zc(t)ẏ(t)− Av(t)]
T + ωT(t)

(
ÂT(t)− AT(t)

)
=[zc(t)ẏr(t) + zc(t)(ẏ(t)− ẏr(t))− Av(t)]

T + ωT(t)
(

ÂT(t)− AT(t)
)

=
[
zc(t)ẏr(t)− Av(t) + zc(t)δẏ(t)

]T
+ ωT(t)

(
ÂT(t)− AT(t)

)
ωT

r (t)ÂT(t) =
[
ẑc(t)ẏr(t)− Âv(t)

]T

(43)

Thus with the definition of YT
p (t) in Equation (38), δT

ω(t)ÂT(t)K3δẏ(t) is decomposed
into

δT
ω(t)ÂT(t)K3δẏ(t) = (ω(t)−ωr(t))

T ÂT(t)K3δẏ(t)

=
[
(zc(t)− ẑc(t))ẏr(t)−

(
Av(t)− Âv(t)

)
+
(

Â(t)− A(t)
)
ω(t) + zc(t)δẏ(t)

]TK3δẏ(t)
=zc(t)δẏ(t)K3δẏ(t)+[

(zc(t)− ẑc(t))ẏr(t)−
(

Av(t)− Âv(t)
)
+
(

Â(t)− A(t)
)
ω(t)

]TK3δẏ(t)

=zc(t)δẏ(t)K3δẏ(t)−∆θT
p (t)Y

T
p (t)δẏ(t)

(44)
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Now we define the Lyapunov function V(t) = V1(t) + V2(t). Substitute Equation (44)
into Equation (41) and we obtain the derivative of V(t)):

V̇(t) =V̇1(t) + V̇2(t)

=− δT
ω(t)K4δω(t)− zc(t)δẏ(t)K3δẏ(t)− eT(t)K1e(t)

− K5δT
ω(t)

∥∥∥∥∥∂U
(
θ̂p(t)

)
∂θ̂p(t)

∥∥∥∥∥δω(t)−∆θT
p (t)K2

∂U
(
θ̂p(t)

)
∂θ̂p(t)

‖δω(t)‖2

6− δT
ω(t)K4δω(t)− zc(t)δẏ(t)K3δẏ(t)− eT(t)K1e(t)

−
(

K5 −
∥∥∥∆θT

p (t)
∥∥∥K2

)∥∥∥∥∥∂U
(
θ̂p(t)

)
∂θ̂p(t)

∥∥∥∥∥‖δω(t)‖2

(45)

Assume k5 min is the smallest eigenvalue of K5, k2 max is the biggest eigenvalue of K2,
and τmin is the smallest eigenvalue of Γ. Select proper values so that

k5 min > k2 max

√
2V(0)
τmin

(46)

In this way, we can guarantee
V̇(t) 6 0 (47)

According to Equations (45) and (47), V(t) is bounded and the upper bound is V(0).
Taking the expression of V(t) from (40) into account, ω(t), ωr(t) and θ̂p(t) are all bounded
variables. Due to the definition of ωr(t) and yr(t), the boundedness of ωr(t) implies that the
boundedness of y(t) and yr(t). The bounded θ̂p(t) also indicates the estimated projection
error e(t) is bounded, as is obvious in Equation (34). Attributing to the boundedness of the
aforementioned variables, we can infer that V̈(t) is also bounded. According to Barbalat’s
Lemma, we can conclude that

lim
t→∞

V̇(t) = 0 (48)

i.e.,
lim
t→∞

δω(t) = 0

lim
t→∞

δẏ(t) = 0

lim
t→∞

e(t) = 0

(49)

As Theorem 3 suggests, we have

lim
t→∞

∆y(t) = 0

lim
t→∞

∆ẏ(t) = 0
(50)

Hence, the stability of the proposed adaptive staring imaging controller (37) and (39) is
proved. Although the camera is uncalibrated, the estimated projection error e(t) is defined
to help to estimate the parameters. As the parameters are updated online, the controller
utilizes the image extraction information y(t) and angular velocity ω(t) as the input and
then computes the errors between the input and the reference trajectory. The control torques
will finally direct the projection of the target point to its desired location on the image plane
and achieve staring observation.

4. Simulation and Discussion

In this section, the proposed image-based adaptive staring controller and a conven-
tional position-based controller are applied to realize the ground target observation.

At the initial time (12 Jul 2021 04:30:00.000 UTC), the ground target’s location is given
in Table 1 and the orbital elements of the satellite are listed in Table 2. The target is
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initially near the sub-satellite point. The real and theoretical camera parameters are listed in
Table 3. M321(·) denotes the rotation matrix with a 3-2-1 rotation sequence. The theoretical
parameters were initially real states of the camera and are used as the initial estimated
values. Due to various causes, e.g., the long-term oscillation, the real parameters deviate
from the theoretical ones and reflect the current camera states. The image plane of the
camera consists of 752× 582 pixels. The desired projection location is at the center of the
plane, i.e., (u0, v0)

T . The initial attitude is presented in Table 4 where the camera is roughly
kept pointing to Earth center.

Table 1. Ground target location.

Longitude (◦) Latitude Values (◦) Height (km)

128.271 64.72 0

Table 2. Orbital elements.

Semimajor Axis
(km) Eccentricity Inclination (◦) Argument of

Perigee (◦)
Right Ascension of the

Ascending Node (◦) True Anomaly (◦)

6868.14 0 97.2574 59.3884 290.017 54.8163

Table 3. Camera parameters.

Camera Parameters Theoretical Values Real Values

f 1 m 1.1 m
u0 376 396
v0 291 276
dx 8.33× 10−6m 8.43× 10−6

dy 8.33× 10−6m 8.43× 10−6

cRbc

 −0.2682
0.0408
0.0671

m

 −0.2582
0.0358
0.0771

m

c
b M M321(−30◦, 40◦,−20◦) M321(−29◦, 39.6◦,−18.9◦)

Table 4. Initial attitude.

Quaternion Angular Velocity (◦/s)

(0.4228, 0.6600, 0.5414,−0.3040)T (0.0178, 0.0587,−0.0167)T

In the given initial conditions, the ground target already appears on the image. The
control torques are bounded by the maximum output Umax of the attitude actuator, i.e., a re-
action flywheel, which in our simulation is 0.1 Nm. So the inequality ‖Ui(t)‖ 6 Umax holds
for i = 1, 2, 3. The following two cases are simulated using the same uncalibrated camera
and the same initial attitude and orbit conditions. In case 1, the conventional position-based
controller only utilizes target’s location information without taking advantage of the images.
In case 2, we suppose the image processing algorithm detects its pixel coordinates and the
image-based adaptive controller outputs the control torques incorporating the image and
location information.

4.1. Case 1: Conventional Position-based Staring Controller

The conventional staring control methods are normally based on the location of the
ground target. By designing the desired orientation and angular velocity, the optical axis of
camera is supposed to be aimed at the target in an ideally calibrated camera case. Using
the uncalibrated camera and the initial conditions presented in this section, we adopt a
position-based staring controller from [2]. The controller is

U(t) = Kδδ− Kω∆ω (51)
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where Kδ and Kω are the coefficient matrices. Let δ = (α, β)T where α and β are the two
rotation angles between the camera’s optical axis and its desired orientation aiming at the
target. Let ∆ω = ω−ωd where ωd is the desired angular velocity. α, β and ωd are designed
based on target’s position. Refer to the original article for more detailed definitions. Table 5
shows the coefficient values adopted in the simulation.

Table 5. Position-based control parameters.

Kδ Kω4 0
0 1.6
0 0

 2.5 0 0
0 2.5 0
0 0 2.5



The target’s trajectory on the image plane is shown in Figure 5 where the black box is
the field of view. Figure 6 depicts the changes of two rotation angles. The initial location of
the ground point is the upper right corner of the plane marked by the start point. As the
controller starts working, the target gradually moves out of the field of view, which means
the camera can not see the target temporarily. Since this controller is dependent on the
position, it can still work without the sight. However, the end point shown in the Figure 5
demonstrates that when the satellite finishes attitude maneuvering and is at the stable
staring stage, the target is still lost in our image. This leads to the failure of observing the
ground target, which results from the uncalibrated camera. According to transform matrix
from the body frame to camera frame c

b M in Table 3, the optical axis of camera has over
1◦ deviation from its ideal orientation in the body frame. Hence, when the position-based
controller thinks the optical axis is aimed at the target, the target is actually lost in the view.
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Figure 5. The projection trajectory on the image plane for the position-based controller.
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Figure 6. The evolution of rotation angles α and β.
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4.2. Case 2: Image-Based Adaptive Staring Controller

Table 6 shows the control coefficients in the controller. The operation diag{·} repre-
sents a matrix with the elements located at the diagonal consecutively.

Table 6. Image-based control parameters.

Control Parameters Values

K1 10−15 × E2
K2 10−3

K3 2.5× 10−15 × E2
K4 2× E3
K5 30× E3
Γ diag

{
8× 10−4 × E8, 1000× E3

}
a 1
b 0.001

Figure 7 depicts the trace of the target’s projection on the image plane. Initially, the
target appears at the same location on the image plane as in the case Section 4.1. With the
staring controller working properly, the projection moves along the trajectory and finally
reaches the end point, which is also the image center (376, 291). The trajectory indicates that
it takes some time for the controller to find the proper direction of the desired destination,
because the initial guess of the parameters is primary factor affecting the accuracy of the
controller at the starting stage. Furthermore, the initial angular velocity of the satellite also
determines the initial moving direction the target. Figure 8 shows the differences between
the current and the desired coordinates and it reflects the same trend as Figure 7.

0 100 200 300 400 500 600 700

u (pixel)

0

100

200

300

400

500

582

v
 (

p
ix

e
l)

end point

start point

Figure 7. The projection trajectory on the image plane.
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Figure 8. The evolution of image errors.
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Figure 9 is the time evolution of estimated projection errors. The adaptive rule contin-
uously updates the parameters in the negative gradient direction of e(t), so the estimated
projection errors can be reduced due to the parameter estimation.
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Figure 9. The evolution of estimated projection error.

Figure 10 shows the angular velocities of the satellite. At first, ω(t) adjusts very fast
and is then gradually stabilized. It is worth noting that ω(t) is not convergent to 0, because
the ground target is a moving point in the inertial space. The satellite is required to rotate at
a certain rate to keep staring at it. Moreover, from Figure 10 we can see that the final angular
velocity is not a constant but varies at a very low speed because of the relative motion
between the ground point and the satellite. Figure 11 shows the control torques generated
by attitude actuators. In the starting process, u2 reaches its upper bound which is the joint
result of the parameter estimation, the initial image errors and the initial angular velocity.
As the target projection approaches its desired location, the control torques are decreasing
and are eventually kept within a narrow range to meet the need for the aforementioned
minor adjustment of the angular acceleration.
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Figure 10. The evolution of angular velocities.
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Figure 11. The evolution of control torques.
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Here, we sum up these two cases. For a position-based staring controller, it fails at
coping with the deviation in the presence of an uncalibrated camera. For the proposed
image-based adaptive staring controller, although the camera parameters are not unknown,
the online estimation can reduce the estimated projection errors. With this technique,
control torques are generated to drive the target projection to its desired location. The
simulation demonstrates that the adaptive controller achieves the goal of keeping the
target’s projection at the center and we can expect that high precision can be realized to
gain better ground target staring observation. Only small control torques are needed to
maintain the constant tracking in the stable staring process.

5. Conclusions and Outlook

For a video satellite, staring attitude control has been its main working mode and has
reaped many promising applications. This paper proposes an adaptive controller that takes
the camera’s model into account. First, the projection kinematics are established based on
the staring imaging scenario, where constant relative motion exists. Second, an attitude
reference trajectory is introduced to avoid designing the desired angular velocity and a
potential function is introduced to guarantee that the definition of the reference angular
velocity exists. Third, we define the parameters that need to be estimated and a corre-
sponding parameter updating rule is proposed. Finally, the image and attitude information
is incorporated to form the adaptive staring controller, which is constructed using the
estimated variables. Stability is proved and the projection is successfully controlled to the
predetermined desired location on the image plane in the simulation. Thus, an image-based
staring controller for an uncalibrated camera is formulated.

While we can obtain the information of ground targets, it is hard to predict the motion
of many moving targets such as planes and ships. In the further study, non-cooperative
targets should be dealt with where the relative motion is unknown.
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