
Citation: Liu, T.-L.; Subbarao, K.

Optimal Aggressive Constrained

Trajectory Synthesis and Control for

Multi-Copters. Aerospace 2022, 9, 281.

https://doi.org/10.3390/

aerospace9060281

Academic Editor: Mostafa

Hassanalian

Received: 11 April 2022

Accepted: 17 May 2022

Published: 24 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Optimal Aggressive Constrained Trajectory Synthesis and
Control for Multi-Copters
Tsung-Liang Liu † and Kamesh Subbarao *,†

Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, 500 W. First St,
Box 19018, 211 Woolf Hall, Arlington, TX 76019, USA; tsungliang.liu@mavs.uta.edu
* Correspondence: subbarao@uta.edu; Tel.: +1-817-272-7467
† These authors contributed equally to this work.

Abstract: In this paper, we propose a novel time and control effort optimal aggressive trajectory
synthesis and control design methodology. The trajectory synthesis is a modified minimum snap
design but with specific position and orientation constraints on a multi-copter, such as flying through
tight spaces (windows) at specific orientations. The paper also introduces a means to stitch together
multiple flight segments, enforce smoothness, and minimize segment times as well as the overall
time, thereby resulting in very aggressive and feasible trajectories. A novel analysis for a specific
scenario when no yaw angle specifications are provided is conducted, wherein a trade-off results
in additional aggressiveness. The control algorithms to follow these trajectories are based on an
inverse dynamics approach. Several candidate high-fidelity simulations are performed to verify the
effectiveness of the proposed approach.

Keywords: multi-copter; aggressive; optimal trajectory; constraints; nonlinear control

1. Introduction

Multi-copters, such as quadcopters, hexacopters, octocopters, and others have been
very popular in recent years mainly because of their availability, mobility, agility, and
flexibility. They are a great platform for control experiments and various applications. Their
characteristics also make them an attractive choice for high-speed aerial navigation through
complex environments. Various researches related to aggressive trajectory generation and
aggressive maneuver tracking have been conducted. Some recent examples include [1],
in which the authors proposed a novel control law for accurate tracking of aggressive
quadcopter trajectories. In [2] the authors presented a framework to do optimal time
allocation for quadcopter trajectory generation. In [3] the authors addressed the problem of
performing aggressive quadcopter maneuvers that are attitude-constrained.

Our main contribution in this paper is the development of a synthesis framework that
fully utilizes the available dynamic capability of the multi-copter when performing the
most aggressive maneuver. We pursue aggressiveness because time is a critical issue in the
given scenario. We adopt aggressive maneuvers because the environment is complicated
and sometimes very specific maneuvers are needed in order to satisfy path and vehicle
state constraints, given the environment model. However, the level of aggressiveness one
can achieve depends on the optimality of the trajectory plan and the dynamic capability of
the vehicle. It will be valuable if one can generate a trajectory that fully utilizes the dynamic
capability of the vehicle while accommodating the maneuvers required at specific locations.
Therefore, in this research, we assume that the dynamic capability of the multi-copter is
limited by its maximum rotor thrust and define the aggressiveness accordingly.

For multi-copter trajectory generation and motion control, ideas such as multi-segment
polynomial, minimum derivative optimization, and differential flatness inverse dynamics
analysis are widely adopted [4–6]. To achieve an aggressive trajectory, methods such as seg-
ment time allocation [7] and spatial-temporal trajectory [2] have been proposed. However,
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we do not yet have a synthetic architecture to find the most aggressive trajectory based on
the waypoints, the requirement for vehicle heading and maneuvering at waypoints, and the
constraints of rotor thrust for a multi-coper. We would further like to emphasize that the
contribution of this research lies in the development of a complete synthesis to fulfill this
gap. The constraint on vehicle maneuvering at waypoints is posed as a window passing
through problem and solved through the trajectory optimization as trajectory derivative
constraints. The maximum rotor thrust for the trajectory is obtained through the inverse
dynamics analysis. As the optimized aggressive trajectory is obtained, a geometric con-
troller is used to perform the polynomial trajectory tracking and verify the feasibility of the
trajectory and the accuracy of the inverse dynamics analysis. Further, a novel method for
yaw trajectory optimization is also proposed to further improve the aggressive performance
in the case when there are no specific requirements on the vehicle heading.

The rest of the paper is organized as follows. Section 2 describes the problem and
the setup. Section 3 summarizes the mathematical modeling providing the basic govern-
ing equations. Section 4 discusses the solution methodology in detail, followed by the
numerical results in Section 5. Section 6 summarizes the performance of the geometric
controller with Section 7 providing details on the modification to the trajectory should there
be no heading constraints. Finally, Section 8 provides concluding remarks and summarizes
future work.

2. Problem Description and Setup

While aggressive flight using multi-copters is widely discussed/mentioned, there
is not much effort put toward defining aggressiveness and finding the most aggressive
trajectory with complex maneuver requirements for a given vehicle model. Therefore,
in this paper, the problem is addressed as: Given waypoint coordinates, heading angles,
and some vehicle velocity and attitude constraints at these waypoints, how can we find
a feasible trajectory that fully utilizes the dynamic capability of a multi-copter to achieve
the optimal aggressiveness? A formal definition of aggressiveness will be provided in the
latter sections.

3. Mathematical Model Description

A generic model for quadcopters is used in this paper. Note that the proposed
approach can be applied to different configurations of multi-copters by modifying the
vehicle force and moment model according to the desired rotor configuration and control
allocation method. The coordinate systems and forces and moments generated by the
rotors are shown in Figure 1.

Figure 1. Reference frames and quadcopter forces/moments.

The body frame, B, is attached to the center of mass of the quadcopter and rotor 1
is on the positive XB-axis. The gravitational acceleration g is in the −ZI direction of the
inertial frame, I. Euler angles roll φ, pitch θ, and yaw ψ are used to define orientation from
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inertial frame to body frame. Note, Z− X − Y rotation order is used here, and therefore
the rotation matrix for transforming coordinates from B to I is given by:

RIB =

cos ψ cos θ − sin φ sin ψ sin θ − cos φ sin ψ cos ψ sin θ + cos θ sin φ sin ψ
cos θ sin ψ + cos ψ sin φ sin θ cos φ cos ψ sin ψ sin θ − cos ψ cos θ sin φ

− cos φ sin θ sin φ cos φ cos θ

 (1)

The position vector of the quadcopter in the inertial frame is denoted by r. With
the gravity force acting in the −ZI direction and the forces of the rotors acting in the ZB
direction, the equation governing the acceleration of the quadcopter with respect to inertial
frame is given by:

mr̈ =

 0
0
−mg

+ RIB

 0
0

F1 + F2 + F3 + F4

 (2)

With p, q, and r denoting the components of angular velocity of the quadcopter in the
body frame, the rotational kinematics equation is given by:p

q
r

 =

cos θ 0 − cos φ sin θ
0 1 sin φ

sin θ 0 cos φ cos θ

φ̇
θ̇
ψ̇

 (3)

Assuming rotors 1 and 3 rotate in the −ZB direction while 2 and 4 rotate in the ZB
direction, M1 and M3 act in the ZB direction while M2 and M4 act in the −ZB direction
since the moment produced by the rotor is opposite to the direction of rotation of the blade.
With I denoting the moment of inertia of the quadcopter referenced to the center of mass
and L denoting the distance from the axis of rotation of the rotors to the center of the
quadcopter, the rotational dynamics equation is given by:

I

 ṗ
q̇
ṙ

 =

 L(F2 − F4)
L(F3 − F1)

M1 −M2 + M3 −M4

−
p

q
r

× I

p
q
r

 (4)

Define the input u = [u1 u2 u3 u4]
T wherein u1 is the total force from the rotors

and u2, u3 and u4 are the moments about XB, YB and ZB axes. Following [6], we assume
that the force and moment produced by the ith rotor are proportional to the square of its
rotational speed as:

Fi = kFω2
i , Mi = kMω2

i (5)

The relationship between the input and the angular speed of the rotors can be
represented as:

u1
u2
u3
u4

 =


F1 + F2 + F3 + F4

L(F2 − F4)
L(F3 − F1)

M1 −M2 + M3 −M4

 =


kF kF kF kF
0 kFL 0 −kFL
−kFL 0 kFL 0

kM −kM kM −kM




ω2
1

ω2
2

ω2
3

ω2
4

 (6)

4. Solution Methodology

We use multi-segment polynomials to generate the trajectory and assure its smoothness
by having trajectory derivative continuities. To optimize the polynomial coefficients, we
form the quadratic problem with the cost on the trajectory derivative which is related
to the actuator input of the vehicle. We accommodate waypoint velocity and attitude
requirements in the optimization problem as equality constraints. To optimize the segment
time between waypoints, we introduce an augmented cost on both trajectory derivative and
total time. We connect the polynomial trajectory and actual quadcopter dynamics and rotor
inputs by performing inverse dynamics analysis. We finally define aggressiveness and
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find the optimal trajectory with desired aggressiveness by tracking the desired maximum
rotor force needed for the optimized trajectory. The whole methodology and the solution
procedure are illustrated below in Figure 2.

Figure 2. Methodology of the aggressive trajectory optimization.

4.1. Multi-Segment Polynomial Trajectory Optimization

Multi-segment polynomials are used to generate the trajectory. For each segment con-
necting one and the subsequent waypoint, independent polynomials are used to represent
the quadcopter states x, y, z, and ψ (yaw angle). Each polynomial segment is represented as:

P(t) = pNtN + pN−1tN−1 + · · ·+ p0 =
N

∑
i=0

piti (7)

The cost function on the integral of the quadratic of the trajectory derivatives is:

J =
∫ T

0
[c0P(t)2 + c1P′(t)2 + c2P′′(t)2 + · · ·+ cN P(N)(t)2]dt (8)

where T is the flight time for the trajectory segment and cr is user-specified penalty on the
rth derivative of the trajectory. This function can be written in matrix form as:

J = p̄TQ p̄ (9)
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where p̄ = [p0 p1 · · · pN ]
T and Q is the cost matrix. Following the formulation in [4],

Q can be constructed as:

for r = 0, 1, · · ·N , i = 0, 1, · · ·N , l = 0, 1, · · ·N

Qr(i + 1, l + 1) =

{
[∏r−1

m=0(i−m)(l −m)] Ti+l−2r+1

i+l−2r+1 if i ≥ r ∧ l ≥ r
0 if i < r ∨ l < r

(10)

Q =
N

∑
r=0

crQr (11)

In this paper, to minimize the input needed to achieve optimal aggressiveness, we
adopted the choice in [5] which is to minimize the snap (4th derivative) in trajectory x, y,
and z while minimizing the acceleration (2nd derivative) in trajectory ψ. Therefore, we use
c4 = 1 while all other coefficients are set to zero for x, y, and z polynomial, and only c2 = 1
for yaw polynomial. The constraints on the derivatives on the endpoints of a polynomial
segment can be imposed as a linear function of the coefficients:

A p̄ = b

A =

[
A0
AT

]
, b =

[
b0
bT

] (12)

where A is constructed by evaluating the components in the derivative formulations of the
polynomial at t = 0 and t = T corresponding to the appropriate coefficients as:

A0rn =

{
∏r−1

m=0(n−m) if r = n
0 if r 6= n

(13)

ATrn =

{
[∏r−1

m=0(n−m)]Tn−r if r ≤ n
0 if r > n

(14)

We use the 0th order derivative constraint to specify the waypoint position. Higher
order derivatives can be used to specify desired waypoint velocity, acceleration, etc., e.g., to
enforce that the quadcopter starts from rest at the beginning of a trajectory. If not specified,
these derivatives are subject to minimization of the cost function. Having assembled Q,
A, and b, the quadratic problem can be written below. There are methods to solve such
a standard equality constrained QP [8]. In this research, the Matlab solver “quadprog”
is used.

min
p̄

p̄TQ p̄

s.t. A p̄− b = 0
(15)

For M polynomial segments, the joint optimization can be composed by concatenating
their cost matrices in a block-diagonal fashion as:

Jjoint =

 p̄1
...

p̄M


TQ1(T1) 0 0

0
. . . 0

0 0 QM(TM)


 p̄1

...
p̄M

 (16)

The derivative constraints can also be concatenated in a block-diagonal fashion as:A1(T1) 0 0

0
. . . 0

0 0 AM(TM)


 p̄1

...
p̄M

 = Ader

 p̄1
...

p̄M

 =

 b1
...

bM

 (17)
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To have a feasible smooth trajectory, the derivatives should be continuous between
segments. The continuity constraints must be imposed to ensure that the derivatives at the
end of the ith segment match the derivatives at the beginning of the (i + 1)th segment:

AT,i p̄i = A0,i+1 p̄i+1 (18)


AT,1 −A0,2 0 0 · · · 0 0

0 AT,2 −A0,3 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · AT,M−1 −A0,M





p̄1
p̄2
p̄3
...

p̄M−1
p̄M


= Acon



p̄1
p̄2
p̄3
...

p̄M−1
p̄M


=



0
0
0
...
0
0


(19)

These constraints can be compiled into a single set of linear equality constraints for
the joint optimization problem:

[
Ader
Acon

] p̄1
...

p̄M

 =



b1
...

bM
0
...
0


(20)

4.2. Constraints on Vehicle Velocity and Attitude at Waypoints

In scenarios such that the quadcopter needs to pass through some narrow gap (e.g.,
a window) as shown in Figure 3, we can utilize the derivative constraints to achieve
the objective.

Assume a waypoint at the center of the window and the window orientation is defined
with Z − X − Y Euler angles roll φ, pitch θ, and yaw ψ. The window forward vector in
inertial frame can be obtained as:

wF = RIB

1
0
0

 =

cos ψ cos θ − sin φ sin ψ sin θ
cos θ sin ψ + cos ψ sin φ sin θ

− cos φ sin θ

 =

WFx

WFy

WFz

 (21)

The window upward vector in inertial frame can be obtained as:

wU = RIB

0
0
1

 =

cos ψ sin θ + cos θ sin φ sin ψ
sin ψ sin θ − cos ψ cos θ sin φ

cos φ cos θ

 =

WUx

WUy

WUz

 (22)

To fly through the window safely, the velocity vector at the waypoint should be aligned
with the window forward vector. Therefore, the cross product of the vectors should be zero,
and the constraints for the waypoint 1st order derivatives can be composed as:

v×wF =

ẋ
ẏ
ż

×
WFx

WFy

WFz

 =

 ẏWFz − żWFy

żWFx − ẋWFz

ẋWFy − ẏWFx

 =

0
0
0

 (23)

From the equation of acceleration, we can deduce that zB in inertial frame is in the
direction of the vector [ẍ ÿ z̈ + g]T :

m

ẍ
ÿ
z̈

 =

 0
0
−mg

+ RIB

0
0
1

∑ F ⇒ m

 ẍ
ÿ

z̈ + g

 = zB ·∑ F (24)
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For safely flying through the window, the zB vector of the quadcopter should be
aligned with the window upward vector. Therefore, the constraints for the waypoint 2nd
order derivatives can be composed as: ẍ

ÿ
z̈ + g

×
WUx

WUy

WUz

 =

ÿWUz − (z̈ + g)WUy

(z̈ + g)WUx − ẍWUz

ẍWUy − ÿWUx

 =

0
0
0

 (25)

⇒

 ÿWUz − z̈WUy

z̈WUx − ẍWUz

ẍWUy − ÿWUx

 =

 gWUy

−gWUx

0

 (26)

For these constraints, the relationship between x, y, and z derivatives needs to be spec-
ified. Therefore, the joint optimization of x, y, and z should be composed by concatenating
their cost and constraint matrices in a block-diagonal fashion as:

Jxyz =

 ¯̄px
¯̄py
¯̄pz

TQx 0 0
0 Qy 0
0 0 Qz

 ¯̄px
¯̄py
¯̄pz

 (27)

Ax 0 0
0 Ay 0
0 0 Az

 ¯̄px
¯̄py
¯̄pz

 =

bx
by
bz

 (28)

where ¯̄px = [ p̄x1 · · · p̄xM ]T , ¯̄py = [ p̄y1 · · · p̄yM ]T and ¯̄pz = [ p̄z1 · · · p̄zM ]T . With this joint
optimization setup, the constraints for a window passage on waypoint s in an M-segment
trajectory can be implemented as:

0 WFz v0,s −WFy v0,s
−WFz v0,s 0 WFx v0,s
WFy v0,s −WFx v0,s 0

0 WUz a0,s −WUy a0,s
−WUz a0,s 0 WUx a0,s
WUy a0,s −WUx a0,s 0


 ¯̄px

¯̄py
¯̄pz

 =



0
0
0

gWUy

−gWUx

0

 (29)

v0,s =
[
[0×(n+1)]×(s−1) v0 [0×(n+1)]×(M−s)

]
a0,s =

[
[0×(n+1)]×(s−1) a0 [0×(n+1)]×(M−s)

] (30)

For a segment polynomial P(t) = p0 + p1t1 + p2t2 + p3t3 + · · ·+ pNtN , the 1st order
derivative (velocity) at t = 0 is v0 p̄ and v0 = [0 1 0 0 · · · 0]. The 2nd order derivative
(acceleration) at t = 0 is a0 p̄ and a0 = [0 0 2 0 · · · 0].

Figure 3. Relevant frames for quadcopter and window constrains.
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4.3. Segment Time Optimization

The above optimization finds the optimal trajectory polynomials for the given segment
times. However, in general cases, we do not specify segment times, and instead, we would
like to also optimize them to achieve better aggressiveness. To optimize segment times, we
modify the cost function in the form:

JT = Jorg + cT

M

∑
i=1

Ti (31)

where Jorg combines the original cost on x, y, z, and ψ while cT is a penalty on total
time. The cost on x, y, z is the integral of square of derivatives on distance while the
cost on ψ is on angle. To combine the costs, two coefficients µr and µψ are introduced to
non-dimensionalize the costs.

Jorg = µr Jxyz + µψ Jψ (32)

In this research, we minimize the 4th derivative in trajectory x, y, and z while mini-
mizing the 2nd derivative in trajectory yaw angle. Therefore, the above equation can be
represented as:

Jorg =µr

∫ Tf

0

[(
d4x
dt4

)2

+

(
d4y
dt4

)2

+

(
d4z
dt4

)2]
dt

+ µψ

∫ Tf

0

(
d2ψ

dt2

)2

dt

(33)

where µr and µψ are defined as:

µr =

 1

max
(∣∣∣ d4x

dt4

∣∣∣, ∣∣∣ d4y
dt4

∣∣∣, ∣∣∣ d4z
dt4

∣∣∣)
2

(34)

µψ =

 1

max
(∣∣∣ d2ψ

dt2

∣∣∣)
2

(35)

We find µr and µψ in the first iteration with initial segment times and then use them as
constants throughout the optimization process. With the cost function defined, we perturb
each segment time by some δt to obtain the gradient of the cost function with respect to each
segment time. This is then used in a gradient descent method to find the time allocation for
the minimum cost iteratively.

T̄ =
[
T1 · · · TM

]T (36)

∇i JT =
JT
[
T1 · · · Ti + δt · · · TM

]T − JT(T̄)
δt

(37)

Tnew
i = Ti + α∆Ti , ∆Ti = −

∇i JT
‖∇i JT‖

(38)

Since this is a high-dimensional problem with a complex cost function, the step
size α can easily become too small or too large during the iterations and lead to slow
convergence or even divergence. For numerical efficiency, stability, and convergence, we
use the backtracking line search method [9] to find a suitable step size α in every iteration.

while J(T̄ + α∆T̄) > J(T̄) + εα∇JT
T ∆T̄ , α := βα (39)

With β = 0.5 and ε = 0.0001, we have fast and stable convergence in our test cases.
Figure 4 shows the result of segment time optimization for a simple 2D 4-waypoint scenario.
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The initial segment time is T̄ = [1 3 1]T s, and we optimize it with two different cT
values, 50 and 5000. The result trajectories look identical because they have similar segment
time distribution while the total time turned out to be 6.28 and 3.53 seconds, respectively.
It is observed that, with this segment time optimization process, the optimal segment
time distribution will be found to minimize the cost on integral of the square of trajectory
derivatives, while the optimal total time is found based on the value of cT . The larger cT
used, the smaller the total time will be, which makes the trajectory more aggressive.

Figure 4. Comparison of trajectories optimized with different cT .

4.4. Inverse Dynamics

To connect the polynomial trajectory optimization framework and actual quadcopter
dynamics, we perform the inverse dynamics analysis. The differential flatness method is
widely adopted in inverse dynamics analysis for multi-copters [6]. In this process, we will
find all the states and inputs of the quadcopter according to the trajectory x, y, z, ψ, and
their derivatives. For orientation φ and θ, first from the equation of acceleration we have:

zB =

[
ẍ ÿ z̈ + g

]T

‖
[
ẍ ÿ z̈ + g

]
‖

, u1 = m‖
[
ẍ ÿ z̈ + g

]
‖ (40)

Assume xC is the vector obtained by rotating xI around zI by yaw angle ψ:

xC =
[
cos ψ sin ψ 0

]T (41)

We can determine xB and yB by:

yB =
zB × xC
‖zB × xC‖

, xB = yB × zB (42)

With vehicle body frame defined, we can determine the rotation matrix and roll and
pitch angles by:

RIB =
[
xB yB zB

]
(43)
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φ = arcsin [RIB(3, 2)] , θ = arctan
[
−RIB(3, 1)
RIB(3, 3)

]
(44)

For angular velocity p, q, and r, first we take the 1st derivative of the equation
of acceleration:

mȧ = u̇1zB + ωB × u1zB (45)

Substituting u̇1 = zB ·mȧ we have:

ωB × zB =
m
u1

[ȧ− (zB · ȧ)zB] (46)

With ȧ = [
...
x

...
y ...

z ], the RHS is known. With xB, yB, and zB being unit vectors,
ωB × zB can be considered as the projection of ωB onto the xB − yB plane with 90◦ shift.
Therefore, the body angular velocities p and q can be determined as:

p = −(ωB × zB) · yB , q = (ωB × zB) · xB (47)

From the rotational kinematics equation, we have:

ψ̇ = − sin θ

cos φ
p +

cos θ

cos φ
r

⇒ r =
(

ψ̇ +
sin θ

cos φ
p
)

cos φ

cos θ

(48)

With p, q, and r solved, we have ωB = RIB[p q r]T , and θ̇ and φ̇ can also be obtained
from the inversion of the rotational kinematics equation. For angular acceleration ṗ, q̇ and
ṙ, first we take the 2nd derivative of the equation of acceleration:

mä = ü1zB + 2ωB × u̇1zB + ωB ×ωB × u1zB + ω̇B × u1zB

⇒ ω̇B × zB = (mä− ü1zB − 2ωB × u̇1zB −ωB ×ωB × u1zB)/u1
(49)

With ä = [
....
x

....
y ....

z ], ü1 = zB · (mä−ωB ×ωB × u1zB) and u̇1 = zB ·mȧ, the RHS
is known and the body angular accelerations ṗ and q̇ can be determined as:

ṗ = −(ω̇B × zB) · yB , q̇ = (ω̇B × zB) · xB (50)

Taking derivative of previous ψ̇ equation, we have:

ψ̈ = − sin θ

cos φ
ṗ +

cos θ

cos φ
ṙ− p

d
dt

(
sin θ

cos φ

)
+ r

d
dt

(
cos θ

cos φ

)
⇒ ṙ =

cos φ

cos θ

[
ψ̈ +

sin θ

cos φ
ṗ + p

(
cos θ cos φθ̇ + sin θ sin φφ̇

cos2 φ

)
−r
(

cos θ sin φφ̇− sin θ cos φθ̇

cos2 φ

)] (51)

Next we determine the moment inputs from obtained angular velocity and acceleration
by the rotational dynamics equation:u2

u3
u4

 = I

 ṗ
q̇
ṙ

+

p
q
r

× I

p
q
r

 (52)
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Now we have found all the states and inputs of the quadcopter derived from the
trajectory x, y, z, ψ, and their derivatives. We can further determine the angular speed and
force produced of each rotor by:

ω2
1

ω2
2

ω2
3

ω2
4

 =


kF kF kF kF
0 kFL 0 −kFL
−kFL 0 kFL 0

kM −kM kM −kM


−1

u1
u2
u3
u4

 , Fi = kFω2
i (53)

4.5. Max Force Tracking and Aggressiveness Defined

We find the maximum rotor force needed for the trajectory through the inverse dy-
namics analysis and observe how the maximum force and the trajectory total time vary
with different cT values. Figure 5 shows the analysis result for a 3D 4-waypoint scenario.
It is observed that, with the increment in cT , the total time decreases smoothly while the
maximum force rises smoothly with increasing slope. With this relationship, we can track a
particular total time or maximum force for a given scenario by the gradient descent method
through cT .

Figure 5. Comparison of maximum rotor force and total time for trajectories optimized with
different cT .

With optimal aggressiveness, the quadcopter should finish the tasks in the shortest
time possible by means of its dynamic capability. Generally speaking, the dynamic capabil-
ity of a quadcopter is restricted by the maximum thrust of its rotors. Therefore, we define
aggressiveness as the percentage of excess thrust required for the optimized trajectory.

Aggressiveness =
Fmax_req − Fhover

Fmax − Fhover
· 100% (54)

where Fmax_req is the maximum rotor force required for the trajectory, Fhover is the rotor force
for steady hover, and Fmax is the maximum thrust of the rotor. One might conserve the ag-
gressiveness for safety reasons. Given waypoints x, y, z, ψ, and the desired aggressiveness,
the whole methodology to find the optimal trajectory and segment time allocation for a
given quadcopter model is summarized in Figure 2.

5. Numerical Results

The quadcopter parameters we use in this research are from [10] and tabulated below
in Table 1.
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Table 1. Quadcopter parameters.

m 1.023 kg g 9.81 m/s2

L 0.2223 m Ixx 0.0095 kg ·m2

kF 1.4865 · 10−7 N/RPM2 Iyy 0.0095 kg ·m2

kM 2.9250 · 10−9 N ·m/RPM2 Izz 0.0186 kg ·m2

We test the optimization framework with a four-waypoint scenario. The waypoint
settings are tabulated below (yaw angles at waypoints 2 and 3 are not specified) in Table 2.

Table 2. Waypoint settings in the scenario.

WPT Setting x (m) y (m) z (m) ψ

Waypoint 1 0 2 0 0
Waypoint 2 1 2 0 -
Waypoint 3 1 0 0.5 -
Waypoint 4 0 0 0.5 −180◦

We specify the mission to be from rest to rest, therefore the velocity and acceleration at
the first and the last waypoint are constrained to be zero. There are two narrow windows
to pass through in this scenario. The window settings are tabulated below in Table 3.

Table 3. Window (WDW) settings in the scenario.

WDW Setting φ θ ψ Location

Window 1 0◦ 15◦ 0◦ Waypoint 2
Window 2 −30◦ 0◦ −20◦ Waypoint 3

We specify the aggressiveness to be 80%. For this quadcopter model the rotor force for
steady hover is Fhover = 2.5 N. Assuming Fmax = 3.75 N, we have the maximum rotor force
we can use for the trajectory as Fmax_req = 3.5 N. With initial guess of T̄ = [5 5 5]T s
and cT = 100, we use 10th order segment polynomials and have derivative continuity
constraints on up to 6th order derivative (Pop). Figure 6 shows the scenario and the
optimal trajectory.

Figure 6. Plot of the test scenario and the optimal trajectory.

Figures 7–9 show the result of the inverse dynamics analysis from the trajectory with
respect to the particular quadcopter model. The magenta dashed lines mark the times of
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waypoint passages. It can be noticed that the quadcopter had a spike in angular acceleration
and angular rate around waypoint 3 because it was making the maneuver to pass through
the highly tilted window 2.

Figure 7. Vehicle Euler angles along the trajectory flight.

Figure 8. Vehicle body angular rate along the trajectory flight.

Figure 9. Vehicle body angular acceleration along the trajectory flight.

Figures 10 and 11 show the control input and the rotor thrust along the trajectory.
From the plot, we confirmed that the maximum rotor thrust used is 3.5 N as expected.

Figure 10. Control input along the trajectory flight.
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Figure 11. Rotor thrust along the trajectory flight.

Figure 12 shows the quadcopter on the trajectory with a fixed time interval of 0.33 s.
It can be observed that the quadcopter had the highest speed in segment 2 so it can
maneuver through the highly tilted window 2. The successful passage through the nar-
row windows can be visually confirmed. If we further check the data at waypoint 3,
we have the window forward and upward vectors as wF = [0.939 − 0.342 0]T and
wF = [0.171 0.469 0.866]T . Additionally, the quadcopter velocity and thrust vectors
(aligned with zB) are v = [−1.777 0.6470 0]T and f = [1.454 3.995 7.364]T . The veloc-
ity and thrust vectors are confirmed to be aligned with the window forward and upward
vectors. Finally, the optimal time allocation was found as T̄opt = [1.29 2.29 2.62]T s.

Figure 12. Plot of the quadcopter along the trajectory flight.

6. Geometric Control and Simulation Result

To perform the polynomial trajectory tracking and verify the result of the aggressive
trajectory optimization, we adopted the geometric controller proposed by Lee et al. in [11]
and implemented it in MATLAB/Simulink. The controller is constructed in two parts,
trajectory tracking and attitude tracking. The control input of total force f is obtained by
the trajectory tracking part with:

f = −(−kxex − kvev −mge3 + mẍd) · Re3 (55)

The control input of the moments is obtained by the attitude tracking part with:

M = −kReR − kωeω + ω× Iω− I(ω̂RT Rdωd − RT Rdω̇d) (56)
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where vector e3 defines the direction of gravity and R is the rotation matrix from body
to inertial frame. The tracking errors for position ex, velocity ev, attitude eR, and angular
velocity eω are defined as:

ex = x− xd

ev = v− vd
(57)

eR =
1
2
(RT

d R− RT Rd)
∨

eω = ω− RT Rdωd

(58)

where the hat map ˆ : R3 → SO(3) is defined by the condition that x̂y = x × y for all
x, y ∈ R3. Additionally, the vee map ∨ : SO(3) → R3 is the inverse of the hat map. At a
given moment, x, v, ω, and R represent the position, linear velocity, body angular velocity,
and rotation matrix of the vehicle. The corresponding desired position xd and velocity vd
are captured from the polynomial trajectory. The desired body z axis can be obtained as:

zd = − −kxex − kvev −mge3 + mẍd
‖ − kxex − kvev −mge3 + mẍd‖

(59)

With the desired body z axis, yaw angle, and derivatives of the polynomial trajectory
available, we can find the desired rotation matrix Rd, angular velocity ωd, and angular
acceleration ω̇d by following the process discussed previously in inverse dynamics. The
simulation is implemented with the following equations of motion:

ẋ = v

mv̇ = mge3 − f Re3
(60)

Ṙ = Rω̂

Iω̇ + ω× Iω = M
(61)

With 10% error in estimated inertia, ±1 N noise added to f and ±0.003 Nm noise
added to M (around 10% of the maximum input used) as control input disturbance, we
have the simulation result shown in figures below.

From the simulation result we can see that, despite the existence of inertia estimation
error and control input disturbance, the geometric control had a good performance in
tracking the polynomial trajectory. Position and yaw angle are well tracked and roll and
pitch angles turned out to be very close to the inverse dynamics estimation as shown
in Figures 13 and 14. Therefore, the successful passage through the narrow windows is
confirmed. Figures 15 and 16 show that the linear acceleration is well tracked and the
angular acceleration is very close to the estimation. From Figure 17, the control input
used to track this polynomial trajectory is verified to be very close to the inverse dynamics
estimation. The maximum rotor thrust used in the simulation is also confirmed to be around
the maximum rotor force (3.5 N) requirement we specified in the trajectory generation as
shown in Figure 18.
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Figure 13. Trajectory tracking result.

Figure 14. Vehicle Euler angle comparison.

Figure 15. Vehicle linear acceleration tracking.

Figure 16. Vehicle angular acceleration comparison.
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Figure 17. Control input comparison.

Figure 18. Rotor force comparison.

7. Yaw Trajectory Optimization

If we do not have a specific requirement on yaw angle, can we optimize the yaw
trajectory to achieve better aggressive performance? In other words, by finding the yaw
trajectory such that no Mz control moment input is required to track the aggressive polyno-
mial trajectory, we can further reduce the maximum rotor force needed and thereby track
the aggressive trajectory with less motor force or achieve a faster trajectory with the same
aggressiveness specified. From the equations of motion:Mx

My
Mz

 = I

 ṗ
q̇
ṙ

+

p
q
r

× I

p
q
r

 (62)

Because of the symmetry, the moment of inertia of the quadcopter is assumed as:

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 , and Ixx = Iyy (63)

Mz = Izz ṙ + pq(Iyy − Ixx) = Izz ṙ (64)

Therefore, to make Mz = 0, we need ṙ = 0. Assuming the initial state r0 = 0, this
means ṙ = r = 0 for the whole trajectory. Based on this, we can modify the inverse
dynamics analysis to solve for ψ̇ and ψ̈ as:

r =
(

ψ̇ +
sin θ

cos φ
p
)

cos φ

cos θ
= 0

⇒ ψ̇ = − sin θ

cos φ
p

(65)
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ṙ =
cos φ

cos θ

[
ψ̈ +

sin θ

cos φ
ṗ + p

(
cos θ cos φθ̇ + sin θ sin φφ̇

cos2 φ

)
−r
(

cos θ sin φφ̇− sin θ cos φθ̇

cos2 φ

)]
= 0

⇒ ψ̈ = − sin θ

cos φ
ṗ− p

(
cos θ cos φθ̇ + sin θ sin φφ̇

cos2 φ

) (66)

Having ψ̇ and ψ̈ at each moment in the trajectory, we can integrate ψ iteratively
throughout the inverse dynamics analysis by ψn+1 = ψn + ψ̇∆t + 1

2 ψ̈∆t2. Figures 19 and
20 show a simple four-waypoint aggressive trajectory and the corresponding optimal yaw
trajectory obtained by this method.

Figure 19. Simple 4-waypoint aggressive trajectory.

Figure 20. Optimal yaw trajectory for the trajectory.

We converted this optimal yaw trajectory into a polynomial form and used the geo-
metric controller to track this aggressive polynomial trajectory. Figure 21 shows that, by
tracking this optimal yaw trajectory, the Mz control input will be indeed close to zero.

Figure 21. Simulation result of control input with geometric controller.

Figure 22 shows the comparison of rotor thrust used to track the aggressive trajectory
between constant zero yaw and the optimal yaw trajectory. The additional yaw control
effort Mz in the constant zero yaw case pulls the F1 and F3 rotor forces away from the F2
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and F4 rotor forces and thereby increases the maximum rotor force needed. From the result,
we can see that, by tracking the optimal yaw trajectory, the maximum rotor force is reduced
significantly by 17.5% (from 4 N to 3.3 N).

Figure 22. Rotor force comparison.

Remark 1. With the optimization and analysis framework developed, we review the choice of
minimum snap trajectory. For the same four-waypoint scenario and segment times, we compare
the optimal trajectory and the maximum rotor force required with the cost of different orders of
trajectory derivatives to minimize. Figure 23 shows the geometry of the trajectories. As shown in
Figure 24, the trajectory that minimizes the cost on the fourth derivative has the minimum force
required. Therefore, we conclude that minimum snap is indeed the optimal choice for this approach
of multi-copter aggressive trajectory optimization.

Figure 23. Comparison of trajectories optimized with cost on different order of derivative.
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Figure 24. Maximum rotor force required for trajectories optimized with cost on different order
of derivative.

8. Conclusions

With the framework developed in this research, we can find the optimal polynomial
trajectory and the corresponding segment time allocation for a given quadcopter model, a
specified scenario, and a desired aggressiveness. We can also tell if the given scenario is
beyond the capability of the given quadcopter by examining whether the solution exists.
Furthermore, we can use the algorithm to evaluate the minimum required rotor thrust to
achieve the scenario. Instead of tracking the maximum force, we can also use the algorithm
to track the total time. That is, given a desired flight time, we can find the optimal trajectory
that has the minimum required rotor thrust. Though the quadcopter model is used in
this paper, the inverse dynamics analysis for control input (collective force and three-
axis moment) applies to generic multi-copters. Therefore, the method developed in this
research can be applied to multi-copters with minor modifications to the vehicle control
allocation model. The geometric controller used in this research showed the capability of
tracking the optimized aggressive trajectory. The tracking result verified the feasibility of
the optimized trajectory and the credibility of the inverse dynamics analysis. In addition,
the yaw trajectory optimization method is capable of improving the aggressive performance
in the case of no requirement on heading angle.
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