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Abstract: The numerical assessment of T-tail flutter requires a nonlinear description of the structural
deformations when the unsteady aerodynamic forces comprise terms from lifting surface roll motion.
For linear flutter, a linear deformation description of the vertical tail plane (VTP) out-of-plane
bending results in a spurious stiffening proportional to the steady lift forces, which is corrected by
incorporating second-order deformation terms in the equations of motion. While the effect of these
nonlinear deformation components on the stiffness of the VTP out-of-plane bending mode shape
is known from the literature, their impact on the aerodynamic coupling terms involved in T-tail
flutter has not been studied so far, especially regarding amplitude-dependent characteristics. This
term affects numerical results targeting common flutter analysis, as well as the study of amplitude-
dependent dynamic aeroelastic stability phenomena, e.g., Limit Cycle Oscillations (LCOs). As LCOs
might occur below the linear flutter boundary, fundamental knowledge about the structural and
aerodynamic nonlinearities occurring in the dynamical system is essential. This paper gives an insight
into the aerodynamic nonlinearities for representative structural deformations usually encountered
in T-tail flutter mechanisms using a CFD approach in the time domain. It further outlines the impact
of geometrically nonlinear deformations on the aerodynamic nonlinearities. For this, the horizontal
tail plane (HTP) is considered in isolated form to exclude aerodynamic interference effects from
the studies and subjected to rigid body roll and yaw motion as an approximation to the structural
mode shapes. The complexity of the aerodynamics is increased successively from subsonic inviscid
flow to transonic viscous flow. At a subsonic Mach number, a distinct aerodynamic nonlinearity
in stiffness and damping in the aerodynamic coupling term HTP roll on yaw is shown. Geometric
nonlinearities result in an almost entire cancellation of the stiffness nonlinearity and an increase in
damping nonlinearity. The viscous forces result in a stiffness offset with respect to the inviscid results,
but do not alter the observed nonlinearities, as well as the impact of geometric nonlinearities. Ata
transonic Mach number, the aerodynamic stiffness nonlinearity is amplified further and the damping
nonlinearity is reduced considerably. Here, the geometrically nonlinear motion description reduces
the aerodynamic stiffness nonlinearity as well, but does not cancel it.

Keywords: aeroelasticity; T-tail flutter; quadratic mode shape components; CFD unsteady aerodynamics;

nonlinear dynamics

1. Introduction

The assessment of T-tail flutter requires unsteady aerodynamic forces beyond the
scope of the conventional Doublet Lattice Method (DLM), usually accounted for by means
of correctional terms computed by external methods and superposed with the DLM aero-
dynamics. Common approaches involve computing unsteady aerodynamic forces due to
lifting surface roll and in-plane motion by means of a strip theory method [1-3]. The theory
is based on tilting the steady aerodynamic forces in phase to the lifting surface roll motion
in addition to computing aerodynamic forces due to in-plane motion with the methods pre-
sented in [4]. The phase lag between structural displacements and aerodynamic response
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is accounted for by Theodorsen’s lift deficiency function [5]. L. van Zyl develops a more
integrated way of calculating generalized aerodynamic forces for T-tail flutter assessment
by using an extended DLM algorithm in [6,7]. This approach takes into account steady
aerodynamic forces and all relevant physical degrees of freedom on the aerodynamic box
level. An additional discretization of the geometry for the aerodynamic correction method,
hence, is not necessary. A comprehensive survey of the methods for augmenting unsteady
aerodynamic forces from conventional approaches for T-tail flutter assessment in addition
to the application of an unsteady vortex lattice method is presented in [8]. Alternatively,
unsteady CFD methods may be used to inherently capture the aerodynamic forces to their
full extent. Within the scope of the development of a tool for the estimation of flutter
boundaries at transonic flight speeds based on linear structure and nonlinear, inviscid
aerodynamics, numerical studies and wind tunnel experiments are compared in [9]. The
wind tunnel model used for the verification, however, features a very stiff Vertical Tail
Plane (VIP) and, therefore, does not show the common T-tail flutter phenomenon, usually
consisting of VTP out-of-plane bending and torsion. Application of a flutter assessment
process for a free-flying aircraft with T-tail incorporating CFD aerodynamics is shown
in [10], including the solution of the trim load and static deformation. The procedure is
applied to the Piaggio P180 aircraft and is based on the premises that the nonlinear steady
state flowfield has a significant impact on the flutter stability, but the response of the flow-
field to small disturbances can be considered linear. An iterative scheme is applied to align
the trimmed aircraft with the linearized system. Isogai [11,12] refers to the experiments
presented in [13] and emphasizes the need for methods capable of predicting transonic
T-tail flutter due to the unusually sharp transonic dip that was shown by the experiments.
In his work, he illustrates the development and application of a 3D Navier-Stokes code
especially designed to include the aerodynamic forces due to lifting surface in-plane motion.
The code is applied to T-tail configurations without and with swept and tapered vertical
and horizontal tail planes in transonic flow conditions. Santos [14] addresses the develop-
ment of a framework for numerical flutter assessment incorporating CFD aerodynamics for
industrial applications. The benefit of a comprehensive aerodynamic method especially for
the transonic flow condition is shown for numerical flutter studies of a T-tail wind tunnel
model. However, both the uncoupled, as well as the coupled fluid—structure interaction
routines are based on a linear modal approach, and this drawback is emphasized in the
outlook of the paper.

While the proper description of unsteady aerodynamic forces for T-tail flutter has
been the focus of the research community since the fatal crash of the Handley Page “Victor”
bomber in 1954 [15], the literature has also shown that the full description of the unsteady
aerodynamic terms in combination with a linear modal approach for the representation
of the dynamical system may lead to spurious stiffness terms [16]. For a physically more
accurate flutter assessment of T-tails, it is suggested to include quadratic deformation
components in the modal representation at least of the VTP out-of-plane bending. These
additional deformation components are usually obtained from linear [16,17] or nonlinear
finite element analyses [18,19]. This extended modal formulation is also used in aeroelastic
problems involving highly flexible wings, e.g., [19-21].

The effect of the quadratic mode shape components on the stiffness of the VIP out-
of-plane bending mode shape is known from the literature [8,16], but their impact on the
aerodynamic coupling terms has not been studied yet, especially regarding amplitude-
dependent characteristics. This would affect numerical results targeting common flutter
analysis, as well as the study of amplitude-dependent dynamic aeroelastic stability phe-
nomena, e.g., Limit Cycle Oscillations (LCOs). In particular, the VTP out-of-plane bending
deformation, which results in a Horizontal Tail Plane (HTP) roll motion, induces an aero-
dynamic yaw moment, which performs mechanical work on the VTP torsion (HTP yaw
motion). These aerodynamic work terms have recently been shown to be nonlinear with
respect to the displacement amplitude at subsonic Mach numbers and, additionally, change
significantly when higher-order displacement terms are included in the numerical stud-
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ies [22]. Here, the aerodynamic nonlinearity is studied using inviscid flow at a Mach
number of 0.4 and is shown to be sensitive to drag forces, which raises the assumption
that it might as well be susceptible to viscous aerodynamic forces. Furthermore, as future
transport aircraft will still operate at transonic flow conditions, the effect of fluid compress-
ibility on the aerodynamic nonlinearity needs to be addressed. This paper will take up
the results presented in [22] and focus on a comparison between the nonlinear general-
ized aerodynamic responses in inviscid and viscous flow with regard to the frequency of
oscillation, the deformation amplitude, and the linearity of the deformation. In addition,
the results for a transonic Mach number and viscous flow conditions will be presented.
With these studies, the knowledge about aerodynamic nonlinearities occurring in T-tail
flutter and their dependencies on geometric structural nonlinearity is expanded and the
proper assessment of dynamic aeroelastic instabilities is supported. Although the primary
objective is the investigation of the aerodynamic coupling term between HTP roll and yaw
motion for T-tail configurations, the results may be transferable to other configurations
with intersecting lifting surfaces, e.g., H-tails, U-tails, or slender wings with winglets.

The paper is structured as follows: Section 2 will outline the details of the approach
selected to address the research question. This covers a description of the simulation
models, as well as the forced motion procedure and the way in which the results are
assessed. Section 3 follows with a presentation of the results, focusing first on inviscid
subsonic flow and advancing towards viscous transonic flow. The results are discussed
in Section 4. Here, the identified aerodynamic nonlinearities are studied regarding their
physical sources and put into perspective regarding T-tail flutter. Section 5 summarizes the
findings and proposes the next steps to be taken for further studies.

2. Approach and Simulation Models

To study the effect of viscosity and compressibility on the aerodynamic response to
structural deformation, the focus is set on an isolated HTP derived from a generic T-tail
configuration described in [8,23]. This facilitates studying the aerodynamic response and
its dependencies on the displacement amplitude, fluid viscosity, and fluid compressibility
without aerodynamic interference effects. The HTP, illustrated in Figure 1, has a span of
8m, a constant chord length of 2m, is unswept, and without a dihedral. The airfoil is a
symmetric NACA 0012. Previous studies on the generic T-tail have revealed a minimum
flutter speed at an incidence angle of 3.0° [23], for which reason this incidence angle was
chosen for the presented studies. With a reference surface area of 16 m? and the reference
values as listed in Table 1, this setting results in an up force and a positive lift coefficient of
roughly 0.208 at Mach 0.4 and 0.259 at Mach 0.8.

Figure 1. Geometry of the isolated HTP.
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Table 1. Simulation parameters.

Parameter Symbol Value
Mach numbers/- Ma 04108
Reduced frequencies/- k 0.056, 0.231
Frequencies/Hz f 1.213, 5.004 T 12.426, 10.008 ¥
Rotational amplitudes/° oy 0.01,0.917, 1.834, 3.669, 5.000
Temperature/K T 288.15
Density /kgm—3 0 1.225
Dynamic viscosity /N sm ™2 v 17.89 x 107°
Ratio of specific heats/- K 14
Ideal gas constant/J kg~ K1 R 287
Reduced frequency reference length/m c 1.0
Reynolds number reference length/m L 2.0
Reynolds numbers /- Re 15.216 x 10° *130.432 x 10°
Relative Cauchy error for ...
... lift coefficient/- €c, 1x107°
... drag coefficient/- ec, 1x10°°
... lateral force/- €Fy 1x10*
...longitudinal moment coefficient/- €C,, 1x 1073
... lateral moment coefficient/- €c 5x 1076

my

* Mach 0.4; ¥ Mach 0.8.

The procedure for the presented studies is illustrated in Figure 2. The structural mode
shapes usually involved in T-tail flutter, i.e., VIP out-of-plane bending and torsion, and
their quadratic deformation components are approximated by rigid body rotations with
respect to the longitudinal axis for the VTP out-of-plane bending and the vertical axis
for the VTP torsion. The origin for the rotational deformations is at the VIP root. This
allows for a straightforward, analytical evaluation of the linear and quadratic deforma-
tion components from rotation matrices without the need for using a structural solver to
compute the higher-order deformation components. With this, errors in computing the
deformation components are avoided and the terms involved in the deformation process
are explicitly defined. Sections 2.1 and 2.2 will outline details regarding the extended modal
approach and the method chosen to obtain quadratic displacement components. The HTP
is subjected to harmonic forced motion within a CFD framework in the time domain at five
displacement amplitudes and two reduced frequencies. Inviscid flow computations using
Euler equations were carried out at a Mach number of 0.4, while viscous flow computations
using RANS equations with the negative Spalart-Allmaras turbulence model [24] cover
the Mach numbers of 0.4 and 0.8; see Section 2.3 for further details. During the runtime of
the CFD solution, the unsteady aerodynamic forces are generalized employing the linear,
as well as the extended modal formulation. The resulting time domain data are assessed
regarding their frequency content and evaluated in terms of aerodynamic stiffness and
damping; see Section 2.4.
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Figure 2. Approach.
2.1. Extended Modal Approach

The geometrically nonlinear physical displacements of a structural grid point are
formulated in terms of the linear mode shapes ¢; and the corresponding quadratic mode
shape components g;; [19], viz.

m

= ¢iq;i + Z Zgzﬂzq; (1)
1

i=1j=1

where g; ; are the ith and the jth modal degree of freedom, respectively. The aerodynamic
forces are generalized with respect to the modal degree of freedom p according to

PQ="eTr+7g" fu; @)

with summation over repeated index i and

QU =rglf ©)

as the linear GAF term. The extended modal equation of motion for degree of freedom
p becomes

MG+ ('K = 1g" f)q; =o' f @

The quadratic mode shape components are distinguished into uncoupled and coupled
quadratic mode shape components. Uncoupled quadratic mode shape components result
only from a single linear mode shape and add to the diagonal elements of the generalized
stiffness matrix. Coupled quadratic mode shape components are subject to two linear
mode shapes and introduce a mode coupling by means of off-diagonal generalized stiffness
matrix elements depending on the force vector f. In the context of this work, however, only
uncoupled quadratic mode shape components will be considered.

2.2. Obtaining Quadratic Mode Shape Components

While the linear mode shapes ¢; in Equation (1) may be obtained from conventional
solutions to an eigenvalue problem characterized by the mass and stiffness of the structure,
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the quadratic mode shape components g;; require alternative approaches. Besides using
linear or nonlinear finite element analysis [18,19,25], an approximation of the linear mode
shapes by rigid body rotations may already be suitable to obtain reasonable linear mode
shapes, as well as their quadratic displacement components. In addition, the modal
approach commonly used in numerical flutter assessment can be maintained. Focusing
exemplarily on the roll motion, the analytical description of the displacement uses the
nonlinear rotation matrix with roll angle ¢:

1 0 0
R= [O cos(¢) —sin((p)] ®)
0 sin(¢) cos(¢)

Expanding the sine and cosine terms in Equation (5) as Taylor series with collected Higher-
Order Terms (H.O.T) [26]:

sin(g) ~ ¢ — % +HOT ©)
(Pé
cos(¢) ~1—— +HO.T (7)

and truncating them after the first- and second-order terms, respectively, lead to the linear
(Equation (8), superscript ()(1)) and the quadratic (Equation (9), superscript ()(?)) rotation
matrices.

1 0 0

RV=10 1 —¢ 8)
0 ¢ 1
1 0 0

R® =10 1-1/2¢? —¢ )
0 @ 1—1/2¢?

The linear mode shape and its quadratic displacement component become

oRrR()
¢ 39 (10)
and 202
19%R
SfpthEWx (11)
with
) 0 0 0
81;7%': 00 -1 X (12)
¢ 0 1 0
20(2) 0 0 0
aaR2 xi=10 -1 0 |x (13)
¢ 0o 0 -1

and x as the vector of surface grid point coordinates. Note that, when using orthogonal
rotation vectors, the coupled quadratic mode shape components are zero.

The linear and quadratic displacement components are visualized in Figure 3 for the
HTP roll and yaw motion. The blue surface color illustrates the linear displacements and
the orange surface color the quadratic displacement components against the undisplaced
geometry shown in gray. Adding these components results in a second-order approxi-
mation of the nonlinear displacement field. For the roll motion (Figure 3a), the quadratic
displacement components result in a vertical motion of the HTP in combination with a re-
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duction in span. The second-order displacement components of the yaw motion (Figure 3b)
is a reduction in the span and chord length of the HTP.

(b)

Figure 3. Linear rigid body displacements (blue) and quadratic displacement components (orange)
against undisplaced geometry (gray). (a) Roll motion; (b) yaw motion.

2.3. Time Domain Harmonic Forced Motion

Harmonic excitation of the CFD surface mesh is used for computing the aerodynamic
response at varying amplitudes and frequencies; see Table 1. A Cauchy convergence
criterion with relative errors € is used for the inner CFD iterations at each physical time step
on lift coefficient Cy, drag coefficient C;, and side force Fy, as well as on the coefficients for
the moment around the longitudinal axis C;,;, and lateral axis Cmy. The simulations cover
the low reduced frequency of 0.056 together with the high reduced frequency of 0.231, as
well as the roll and, in the case of the inviscid flow studies, also the yaw angle amplitudes
of 0.010°, 0.917°, 1.834°, 3.669°, and 5.000°. Taking fully nonlinear displacements as a basis,
the roll angle amplitudes correspond to relative displacements of the center of the HTP
with respect to the VTP span of 0.017%, 1.600%, 3.200%, 6.403%, and 8.724%, respectively.
The largest displacement amounts to roughly 0.6 m at the HTP tip.

The resulting time domain aerodynamic forces are generalized according to the lin-
ear modal formulation (3) and the extended modal formulation (2). A discrete Fourier
transform (DFT) algorithm is applied to a sliding time window with a size of two periods
of oscillation to continue the simulation until the magnitudes of the target Generalized
Aerodynamic Forces (GAFs) show a convergence with a residual of 0.1% for a time span of
two periods. Figure 4 illustrates this approach for the hysteretic generalized aerodynamic
response to harmonic forced motion shown in the upper left plot. The development of the
GAF magnitude with the sliding DFT window is shown in the lower left plot and indicates
a quick convergence. The right-hand-side plots depict the GAF magnitude and phase angle
extracted from the last two periods of oscillation. Only a first harmonic GAF content is
evident, which is used to further analyze aerodynamic stiffness and damping.
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Figure 4. Analysis approach of generalized aerodynamic response.

2.4. Aerodynamic Stiffness and Damping from Time Domain Results

Recording the generalized aerodynamic forces in response to the harmonic motion
input of a generalized coordinate results in a hysteretic aerodynamic response; see Figure 5.
Here, the fictional input signal ¢(t) is plotted against time f in the bottom figure, and
the upper left figure shows the time history of the fictional output signal Q(t). The top
right figure displays the resulting hysteretic response. These hystereses are analyzed
regarding aerodynamic stiffness and damping of the first harmonic contents based on their
magnitudes and phase angles. In general, the mechanical work of a system with hysteretic
response to harmonic excitation may be considered as consisting of a contribution due to
the system’s stiffness term (Wy) and one due to the system’s damping term (W) [27,28].
The inclination and enclosed area of the hysteresis, as shown in Figure 5, are the parameters
defining these work terms. By focusing on the first harmonic content in the signals and
evaluating the corresponding integrals, the normalized work terms become [29]

Wi 1 [1Qcos(p) . 1Q
77 /o 7 gdg = 25 cos(9) (14)
W, 1 T+F dg,. Q.

with ¢ being the phase difference between the output and input signal, T the period of
oscillation, w the angular frequency, and 4 and Q the magnitudes of input and output
signal, respectively. In structural dynamics, the concept of a complex stiffness is commonly
employed to describe the stiffness and damping characteristics with a single complex-
valued quantity, usually referred to as a complex modulus. It consists of a real part, the
mechanical storage stiffness, and an imaginary part, the mechanical loss stiffness. The
complex modulus is defined as

K (w) =K (w) +ik" (w) (16)
K(w) = ?cos(é) . Z;Z" 17)
K (w) = (;sin( ) = rq’; (18)
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k' (w) characterizes the stiffness property and k" (w) the damping property. As both quanti-
ties are merely a scaling of the integrals described in Equations (14) and (15), this concept is
used in the present work to assess the aerodynamic stiffness and damping from harmonic
forced excitations.

AN

Figure 5. Illustration for GAF hysteresis analysis.
2.5. CFD Models

The study targeting aerodynamic nonlinearities due to HTP roll and yaw motion
comprises inviscid, as well as viscous flow computations. Hence, two CFD mesh topologies
are required. The CFD mesh used for inviscid flow computations is described first, followed
by that used for viscous flow computations. All CFD meshes have in common an initially
semi-span mesh, which is mirrored to facilitate a symmetric CFD mesh and to avoid
numerical asymmetries. The farfield covers 50 chord lengths in the front, left, right, below,
and above the configuration, as well as 150 chord lengths aft of it.

2.5.1. Inviscid Flow

Mlustrated in Figure 6 is the surface mesh of the left semi-span geometry.
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Figure 6. CFD mesh of the isolated HTP for inviscid flow computations.

The mesh consists of roughly 865 k nodes and 4.8 million tetrahedral elements and is a
result of a mesh independency study focusing on the complex GAF values at the largest
displacement input and high reduced frequency. Three meshes with the grid point and
element counts listed in Table 2 form the basis for the independency study. The resulting
deviations A in the magnitudes and phase angles of the first harmonic GAF contents with
respect to the fine mesh are illustrated in Figure 7. Here, Qy,,(1,1) denotes the aerodynamic
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forces generalized with the roll motion and Qy;(2,1) the aerodynamic forces generalized
with the yaw motion. The comparison substantiates the medium mesh density to be
sufficiently accurate.

Table 2. Mesh densities used for mesh independency study.

Parameter Coarse Medium Fine
Number of grid points 0.432 million 0.865 million 1.412 million
Number of surface triangles 85.732 k 178.066 k 412.094 k
Number of volume tetrahedrons 2.407 million 4.816 million 7.689 million
2.0 coarse
medium
15
1.0
®
5 05
0.0
-0.5
-1.0
Mag(Qnn(1, 1)) Mag(Qnn(2, 1)) Phase(Qnn(1,1)) Phase(Qnn(2,1))

Figure 7. Deviations in magnitudes and phase angles of first harmonic GAF contents with respect to
fine mesh (inviscid flow, Mach 0.4, reduced frequency 0.231, 5.0° roll angle amplitude).

2.5.2. Viscous Flow

The computational mesh for viscous flow simulations differs from that used for
inviscid flow computations by a structured surface mesh and an additional discretization
of the boundary layer. The latter requires knowledge of the turbulent boundary layer
thickness at the trailing edge, which is calculated after [30]. With the reference values as
listed in Table 1 and

Ma+v/xkRTL

Re = . (19)
5(L) 037
[~ Re2 (20)

the Reynolds number Re ranges from roughly 15 x 10° to 30 x 10° and the boundary layer
thickness ¢ at the trailing edge amounts to roughly 0.027 m and 0.024 m, respectively.
Estimating the first layer thickness with a desired y*-value of 1 according to [31] with

JF
Ay =7 (21)
Ot
vr =, /%’*’ (22)
Ty = 0.5Cﬂov2 (23)
Cy ~ 0.058Re ™2 (24)
v = MaVvVkRT (25)

results in a minimum first layer thickness of 4.034 x 10~%m for a Mach number of 0.4 and
2.162 x 10~ m for a Mach number of 0.8. After manual iterations, a value of 1.4 x 10 ®m
is used for all Mach numbers to ensure a proper resolution of the boundary layer. The final
parameters for the prism layer are listed in Table 3.
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Table 3. Parameters of prism layer.

Parameter Value
First layer thickness 14 x107°m
Number of layers 38
Stretching ratio 1.25
Total prism layer height 0.027 m

With the bounding box as described above, the finally used mesh, shown in Figure 8,
consists of roughly 2.2 million nodes and 5.7 million volume elements.

Z
% LRI
L

VAVAVA A7,
%%A%ép‘ K]
JAYAY

VYAV

Figure 8. CFD mesh of the isolated HTP for viscous flow computations.

2.6. Temporal Discretization

Using harmonic forced motion of the CFD surface mesh with a succeeding evaluation
of the converged frequencies contained in the generalized aerodynamic forces signal
requires a proper time step size along with a reasonable simulation duration to ensure
that the transients have faded away. The latter is handled by the sliding DFT algorithm
combined with the GAF convergence criterion, as illustrated in Figure 4. The time step
size is relevant as it prescribes the gradient of the displacement, which in turn impacts
the convergence of the inner iterations required by the CFD solver. As the convergence
is handled by the Cauchy criteria defined for the aerodynamic coefficients of interest, the
time step size does not alter the final results, but the computational time. Hence, apart
from the largest displacements listed in Table 1, a time step size of 2 x 1072 s was found
to be adequate. The simulations with large displacement amplitude and inviscid flow
conditions require an adaption of the time step size to 5 x 10~*s to maintain a reasonable
computational time.

3. Results

At first, the results for inviscid flow at a Mach number of 0.4 are presented in terms
of GAF hystereses and aerodynamic stiffness and damping obtained from evaluating the
first harmonic aerodynamic response to harmonic forced motion. The impact of fluid
viscosity on the aerodynamic response is addressed next, followed by its sensitivity to
compressibility with consideration of a high Mach number of 0.8.

3.1. Inviscid Flow
3.1.1. GAF Hystereses

The GAF response over sinusoidal motion input in roll and yaw for increasing am-
plitudes and reduced frequency values k is summarized in Figure 9. Here, Figure 9a,c
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illustrate the aerodynamic influence of the HTP roll motion on itself and on the yaw motion,
Qun(1,1) and Qy;,(2,1). The aerodynamic influence of the HTP yaw motion on the roll
motion and on itself, Q;,(1,2) and Qy,(2,2), is depicted in Figure 9b,d, respectively. For all
figures, the reduced frequency is increased from top to bottom, whereas the results based
on linear and quadratic displacement are displayed from left to right. The input signal
and the response are normalized to the displacement amplitude. Figure 9a shows largely
coinciding ellipsoids with regard to the displacement amplitude for the diagonal GAF term
Qun(1,1). A distinct impact of the nonlinear displacement term on the inclination of the
hysteresis is notable, even for the smallest amplitudes. At a high reduced frequency, this
change in inclination is less pronounced compared to that at a low reduced frequency, but
still observable. As outlined in Section 2.4, the inclination is a measure for the aerodynamic
stiffness, and hence, a reduction in aerodynamic stiffness by the addition of second-order
displacement terms is shown. This non-zero stiffness resulting from fully described un-
steady aerodynamic forces in combination with a linear displacement model has already
been observed by L. van Zyl in [16] and is termed “spurious stiffening”. As this effect is
purely numerical, the quadratic displacement terms are required to properly describe the
physical system even for linear T-tail flutter assessment. Apart from the identical change
in stiffness for all deformation amplitudes, the elliptical shapes of the hystereses do not
change considerably with amplitude and, hence, show a linear harmonic input-output
behavior. Contrary to the observations made for Qy;, (1, 1), the shapes of the hystereses of
Qur(2,1) shown in Figure 9c are majorly affected by higher-order displacement terms. For
linear displacements, a distinct higher-order term in the aerodynamic response is notable
at large displacement amplitudes, which is not present at small displacement amplitudes.
This is detailed for one period of oscillation in Figure 10a for the smallest displacement
amplitude and Figure 10b for the largest one. This higher-order term in the aerodynamic
response is reduced with quadratic displacement components. However, a deviation of
the hystereses from an elliptical shape with increasing displacement amplitude can still
be identified for quadratic displacements at high reduced frequencies, indicating as well
a higher harmonic content in the aerodynamic response. Insensitive to the displacement
description is the aerodynamic coupling term Qy,;,(1,2); see Figure 9b. For both linear and
quadratic displacements, a small reduction in inclination with increasing displacement
amplitude can be noticed. For all reduced frequencies and amplitudes, the hystereses main-
tain their elliptical shape. Similar to the first diagonal the GAF term, the second diagonal
term Qy,(2,2) (Figure 9d) shows a change in inclination for all amplitudes and reduced
frequencies when higher-order displacement terms are taken into account. However, the
VTP, which is not modeled in this study, will presumably induce aerodynamic forces that
are not negligible for this GAF term. Thus, the results presented for this particular GAF
matrix element must be assessed cautiously. Besides this, all hystereses show an elliptical
shape and coincide for all displacement amplitudes, demonstrating a linear harmonic
input-output behavior.

3.1.2. Aerodynamic Stiffness and Damping

With the approach outlined in Section 2.4, the aerodynamic stiffness and damping
characteristics are evaluated in terms of relative deviations to the values for linear dis-
placements at the smallest displacement amplitude, as this represents the values used for
linear flutter assessment. Since all GAF terms except for that shown in Figure 9c appear
to be rather insensitive to the displacement amplitude, the analysis will be focused on the
off-diagonal GAF term Qy;,(2,1), i.e., the mechanical work performed on the HTP yaw
motion by aerodynamic forces induced by HTP roll motion. Figure 11 shows the deviations
in stiffness (Ak’) and damping (Ak”) over the displacement amplitude evaluated for the
first harmonic term in the GAF signal. A deviation of zero indicates that the results agree
with those at the smallest displacement amplitude, and hence, a linear response is shown.
The results based on the linear modal approach are represented by the blue solid line, while
the orange solid line illustrates the results based on the extended modal approach.
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Figure 10. Time history of Qy;(2,1) for one period of oscillation (inviscid flow, Mach 0.4, reduced
frequency 0.231): (a) 0.01° roll motion amplitude; (b) 5.0° roll motion amplitude.

Identical stiffness and damping values are shown for all reduced frequencies at the
smallest displacement amplitudes. As elaborated, the simulations covered only uncoupled
quadratic mode shape components, as the coupled quadratic mode shape components are
zero. At a small displacement amplitude, hence, the stiffness is not affected by second-order
displacement terms. Increasing the displacement amplitude reveals a nonlinear dependency
of the aerodynamic stiffness (left figure column) with a sign change between linear and
extended modal displacements. While an increase in stiffness for low reduced frequencies
is observable for the linear modal displacement, the extended modal displacement actually
indicates a decrease in stiffness, which is significantly lower in magnitude compared
to the linear approach. At high reduced frequencies, the linear displacement results
showed a reduction in stiffness up to 15% at a 5.0° displacement amplitude. With quadratic
displacement components, an increase in stiffness is observable, but again considerably
lower in magnitude compared to the change in stiffness based on linear displacements. The
extended modal approach linearizes the aerodynamic stiffness at both reduced frequencies.
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The impact of the higher-order displacement components on aerodynamic damping (right
figure column) is again a sign change for low reduced frequencies. The linear modal
approach results in a slight reduction in damping, whereas the quadratic displacement
terms yield an increase in damping with a higher magnitude. At high reduced frequencies,
both displacement approaches show a distinctly nonlinear dependency of the damping on
the displacement amplitude with deviations exceeding 40% for the largest displacement
amplitude. Here, the quadratic displacement approach results in a larger impact on the
damping compared to the linear one.

25
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AK" | %
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Figure 11. Aerodynamic stiffness and damping over amplitude for Qy,(2,1) (inviscid flow, Mach 0.4).

The essential observations regarding the stiffness and damping of the aerodynamic
coupling term at inviscid subsonic flow and the impact of geometric nonlinearities on these
values may be summarized as follows:

e Aerodynamic stiffness:
—  Nonlinear for low and high reduced frequencies with linear displacements;
- Only marginally nonlinear for low and high reduced frequencies with quadratic
displacements.
¢  Aerodynamic damping;:
- Marginally nonlinear for low reduced frequencies and both displacement descriptions;

- Nonlinear for high reduced frequencies and both displacement descriptions;
—  Increased nonlinearity with quadratic displacements.

3.2. Impact of Fluid Viscosity

The viscous flow computations concentrate on the aerodynamic response to HTP roll
motion only. At first, a low Mach number case is considered to support a comparison to
the inviscid flow results. Section 3.3 then outlines the results for viscous transonic flow.

3.2.1. GAF Hystereses

The impact of fluid viscosity on the aerodynamic response to HTP roll motion is
depicted in Figure 12. On the left-hand side, Figure 12a,c repeat the results for inviscid
flow as presented in Section 3.1.1, while the right-hand side contrasts the results for viscous
flow in Figure 12b,d. As for the inviscid flow results, a reduction in aerodynamic stiffness
is observable for Qy;,(1,1) at both reduced frequencies when quadratic displacement
components are considered. Regarding this GAF matrix element, the results agree well



Aerospace 2022, 9, 256

15 of 25

between inviscid and viscous flow for all displacement amplitudes and both reduced
frequencies. On the contrary, the aerodynamic coupling term Qy;,(2,1) appears to be
affected by fluid viscosity. At low reduced frequency k = 0.056, the inclinations and areas
of the hystereses change noticeably, indicating an impact on both aerodynamic stiffness and
damping. At high reduced frequency k = 0.231, the impact is distinctly lower, especially
regarding the numerical results based on the extended modal approach. Nevertheless, the
aerodynamic response is still revealed to be nonlinear with regard to the displacement
amplitude and, as observed for the inviscid flow, shows a higher harmonic content. This
content is dominant for the results based on linear displacements, but less pronounced for
the results based on nonlinear displacements.
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Figure 12. Impact of fluid viscosity on GAF hystereses (Mach 0.4). (a) Inviscid flow—Qy,;,(1,1);
(b) viscous flow—Qy,;,(1,1); (c) inviscid flow—Qy,;, (2,1); (d) viscous flow—Qy;(2,1).

3.2.2. Aerodynamic Stiffness and Damping

Following the observations made above, the off-diagonal GAF term Qy;,(2,1) is again
selected for further studies regarding the impact of fluid viscosity on aerodynamic stiffness
and damping, which is depicted in Figure 13. The aerodynamic stiffness, illustrated on the
left-hand side, reveals a distinct increase in value for low reduced frequencies even at the
lowest displacement amplitudes. At high reduced frequencies, a less pronounced reduction
in value can be observed. Albeit the stiffness reduction identified for the high reduced
frequency solution is by roughly one order of magnitude lower in absolute value compared
to the low reduced frequency case, it still amounts to roughly a 13% deviation from the
inviscid flow results. However, the general trend of the stiffness values with increasing
displacement amplitude agrees between the inviscid and viscous flow results and both
displacement descriptions. That is, the impact of fluid viscosity on the aerodynamic stiffness
is independent of the displacement amplitude and the geometric nonlinearity introduced
by the extended modal approach. Regarding the aerodynamic damping shown on the
right-hand side of Figure 13, the impact of fluid viscosity is amplitude dependent, but
again, the general effects of an increasing displacement amplitude agree with the inviscid
flow results. For the low reduced frequency results at small displacement amplitudes, the
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viscous aerodynamic forces show a marginal increase of 2% in damping compared to the
inviscid results. Increasing the displacement amplitude reveals that the viscous forces
yield a stronger drop in aerodynamic damping compared to the linear modal displacement
results. With the addition of geometrically nonlinear displacements, the viscous forces
reduce the nonlinear character of the aerodynamic damping. At the high reduced frequency,
the general trends of the aerodynamic damping terms agree well between the inviscid and
viscous flow results. However, the viscous terms yield a weakened nonlinear characteristic
of the aerodynamic damping.
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Figure 13. Impact of fluid viscosity on aerodynamic stiffness and damping of Qy;(2,1) (Mach 0.4).

The essential observations regarding the impact of fluid viscosity on stiffness and the
damping of the aerodynamic coupling term at a moderate subsonic Mach number may be
summarized as follows:

e Aerodynamic stiffness:

-  Significant and amplitude-independent offset with respect to inviscid flow results;
- No remarkable impact on nonlinear character.
* Aerodynamic damping;:

- Marginally larger damping at small displacement amplitudes and low reduced
frequencies;

- Marginally lower damping at small displacement amplitudes and high reduced
frequencies;

—  Increased nonlinearity for linear modal displacement at low reduced frequencies;

—  Decreased nonlinearity for extended modal displacement at low reduced frequencies;

—  Decreased nonlinearity for linear and extended modal displacement at high
reduced frequencies.

3.3. Impact of Fluid Compressibility

Having addressed the effect of fluid viscosity on the aerodynamic coupling term, an
increase in Mach number from 0.4 to 0.8, while maintaining viscous flow conditions shall
give insight into the sensitivity of the nonlinearity to fluid compressibility. Considering
exemplarily the maximum allowable Mach number of a Gulfstream G650 of 0.925, the Mach
number of 0.8 selected for the simulations corresponds closely to the normal Mach number
of the 30° swept HTP [32]. Hence, the flow conditions come close to real-world applications.
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3.3.1. GAF Hystereses

Figure 14 presents the results for a Mach number of 0.8 on the right-hand side in
comparison to the already presented results for a Mach number of 0.4 on the left-hand
side. Consistent with the observations made above for the inviscid, as well as viscous flow
results at Mach number 0.4, the diagonal GAF term Qy;,(1,1) shows the elaborated impact
of geometric nonlinearities on aerodynamic stiffness. Additionally, a visually identical
aerodynamic response between subsonic and transonic speeds is evident, which indicates
that this GAF matrix element is insensitive to fluid viscosity and compressibility. Only the
aerodynamic coupling term Qy; (2, 1) shows strong sensitivities to the parameter variation.
Here, especially, the higher harmonic content is affected and significantly reduced at high
Mach number. Furthermore, a distinct increase in the area of the hystereses is notable,
which indicates an increase in aerodynamic damping. A change in inclination is observable
as well. Contrary to the results presented so far, however, the geometric nonlinearity is
evidently only of minor relevance for this GAF matrix element at transonic speed.
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Figure 14. Impact of fluid compressibility on GAF hystereses (viscous flow). (a) Mach 0.4—Qy,;,(1,1);
(b) Mach 0.8—Qy,,(1,1); (c) Mach 0.4—Qy,,(2,1); (d) Mach 0.8—Qy,(2,1).

3.3.2. Aerodynamic Stiffness and Damping

Focusing again on the aerodynamic coupling term with the hystereses shown in
Figure 14d and addressing aerodynamic stiffness and damping require considering the
deviations from the smallest displacement results individually for Mach 0.4 and Mach
0.8, respectively, as the aerodynamic response is, in general, nonlinear with Mach number.
Figure 15 illustrates the impact of fluid compressibility on the nonlinear response. In
general, the aerodynamic stiffness nonlinearity is amplified at high Mach number, whereas
the damping nonlinearity is almost entirely canceled. Additionally, the impact of the higher-
order displacement components on the nonlinearities is distinctly reduced. While the low
Mach number results presented in Sections 3.1 and 3.2 suggested an almost complete
cancellation of the stiffness nonlinearity with the addition of geometric nonlinearity, the
high Mach number case leaves this observation valid only at low reduced frequency.
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However, a mild mitigation of the stiffness nonlinearity due to nonlinear displacement
components is still apparent.
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Figure 15. Impact of fluid compressibility on aerodynamic stiffness and damping of Qy;(2,1)
(viscous flow).

The essential observations regarding the impact of fluid compressibility on the stiffness
and damping of the aerodynamic coupling term for viscous flow may be summarized
as follows:

¢ Aerodynamic stiffness:

—  Increased nonlinearity for low and high reduced frequencies;
- Reduced impact of geometric nonlinearity, especially at high reduced frequencies.

*  Aerodynamic damping:
—  Nonlinearity is almost entirely canceled;
-  No impact of geometric nonlinearity.

4. Discussion

The results presented above give insight into an aerodynamic nonlinearity for a motion
pattern that represents a structural elastic degree of freedom encountered in typical T-tail
flutter mechanisms. As this study originates from a generic T-tail with a flutter mechanism
close to the reduced frequency of 0.231, the discussion of the physical reasons leading to
the aerodynamic nonlinearities and the conceivable impact on T-tail flutter will be limited
to the high reduced frequency results.

4.1. Physical Sources for Aerodynamic Nonlinearities

Studying the results presented above raises the question for the physical reasons lead-
ing to the nonlinear character of the aerodynamic coupling term. As this GAF term is an
aerodynamic yaw moment due to HTP roll, there needs to be an asymmetric aerodynamic
force induced by the rolling motion that performs mechanical work on the yaw motion and
is nonlinear with respect to the displacement amplitude. That is, an asymmetric longitudi-
nal force component, as well as an asymmetric lateral force component are possible sources
for the elaborated nonlinearity. Fluid viscosity does not alter the observed aerodynamic
nonlinearity significantly; thus, the study of physical reasons leading to the nonlinear work
terms is illustrated for viscous flow at Mach 0.4 and high reduced frequency; see Figure 16.
Here, the generalized aerodynamic force components are evaluated at the CFD surface node



Aerospace 2022, 9, 256

19 of 25

level and separated into a longitudinal and a lateral component. The positive semi-span
visualizes the results based on the linear modal approach and the negative semi-span those
based on the extended modal approach. For the illustration, the amplitude-normalized
complex aerodynamic responses on lower and upper surface are summed up first for
both the smallest, as well as the largest displacement amplitudes. Then, the difference
between the largest and smallest displacement amplitude is calculated and projected on
the mean camber surface. If the aerodynamic response was linear, the resulting surface
value magnitudes would be zero everywhere, which was not the case for the evaluated
simulations. Regarding the longitudinal component (Figure 16a), a nonlinearity close to
the HTP tips is evident for the linear, as well as the extended modal approach, suggesting
the assumption that the tip vortex is a relevant contributor to the aerodynamic nonlinearity.
Visually, the extended modal approach results in almost the same location and magnitude
of the nonlinearity at the wing tip as the linear modal approach. However, the linear modal
approach indicates an additional aerodynamic nonlinearity at the leading edge, which is
reduced for the extended modal approach. Figure 16b illustrates the lateral generalized
aerodynamic force components, again highlighting a nonlinearity close to the HTP tips. In
addition and most notably, the linear modal approach shows a distributed nonlinearity
and a distinct difference from the extended modal approach. With the consideration of
geometric nonlinearity, this nonlinear aerodynamic work term is largely diminished.
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Figure 16. Spatial locations of nonlinear components of Qy;,(2,1) (viscous flow, Mach 0.4. Positive
semi-span: linear modal, negative semi-span: extended modal). (a) Longitudinal GAF component;
(b) lateral GAF component.

These findings are emphasized by evaluating the differences in aerodynamic non-
linearities between the linear and extended modal approach; see Figure 17. One slice in
the spanwise direction at x/c = 0.725, with c being the chord length, and one slice in the
chordwise direction at /s = 0.7, with s being the semi-span, further detail the impact
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of the geometric nonlinearities on the aerodynamic nonlinearities in terms of numerical
quantities. The GAF difference AQy,(2,1) illustrates the nonlinearity of the aerodynamic
work term for the linear (blue solid line), as well as the extended modal approach (orange
solid line), in addition to the difference between the approaches (dark gray solid line). As
can be seen in the upper left Figure 17a, the nonlinearity of the longitudinal aerodynamic
work term at the wing tip agrees between the linear and extended modal approach, which
also holds true for the remaining linear terms along the spanwise slice. At the leading
edge, however, the geometric nonlinearity linearizes the longitudinal aerodynamic work
term; see upper right Figure 17b. The remaining values along the chordwise slice are rather
linear and identical between the linear and extended modal approach. The lateral aerody-
namic work terms show a spanwise distributed nonlinearity for the linear displacements,
as stated above and shown in the lower left Figure 17c. The second-order displacement
terms linearize this GAF element except for at the wing tip, where the nonlinearity remains
unchanged. The lower right Figure 17d further illustrates the linearization of the lateral
aerodynamic work components at the leading edge when geometric nonlinearities are
considered. The remaining chordwise distributed GAF values show a reduced nonlinearity
as well when geometric nonlinearities are accounted for. Considering the numerical values
for the GAF differences, the lateral components are revealed to be an order of magnitude
smaller compared to the longitudinal terms, but with a distributed character rather than a
local one. An impact on the integral quantity, thus, cannot be ruled out.
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Figure 17. Nonlinear components of Qy;,(2,1) along spanwise and chordwise slices (viscous flow,
Mach 0.4). (a) Longitudinal component, spanwise distribution at x/c = 0.725; (b) longitudinal
component, chordwise distribution at y/s = 0.7; (c) lateral component, spanwise distribution at
x/c = 0.725; (d) lateral component, chordwise distribution at y/s = 0.7.

4.2. Impact of Fluid Compressibility

Increasing the Mach number from subsonic to transonic speed has been shown to
affect the stiffness and damping nonlinearities and to reduce the relevance of geometri-
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cally nonlinear displacement terms. Figure 18 illustrates the sources for the aerodynamic
nonlinearities for the linear and extended modal approaches. The nonlinearities of the lon-
gitudinal and lateral work terms concentrated at the HTP tips are again visible, in addition
to a strong contribution of the shock to both terms. Especially the longitudinal component
reveals a distributed amplitude-dependent character, which appears to be similar for both
modal approaches. Consistent with the observations made for subsonic flow, the lateral
term shows deviations between the linear and extended modal approach in terms of the
distributed nonlinearity.

The differences between the linear and the extended modal approach are again visual-
ized by two slices, one in the spanwise direction at x/c = 0.725 and one in the chordwise
direction at y/s = 0.7. As is evident, the relative deviations between the linear and the
extended modal approach are minor for the longitudinal GAF component (Figure 19a,b)
and large for the lateral GAF component (Figure 19¢,d, respectively). As the aerodynamic
nonlinearities at the shock are only local, a significant contribution to the integral quantity is
not expected. On the contrary, the distributed nonlinear terms, which additionally deviate
between the linear and the extended modal approach and have already been observed for
subsonic flow, are presumably noticeable for the integral quantity.

MAG(GAF_x_2): Nonlinearity

5.36833x10*
4.47361x10%
3.57889x10%
2.68416x10™
1.78944x10%
8.94722x10™
0.00000x10*°

@

MAG(GAF_y_2): Nonlinearity

9.33979x10*
7.78316x10*
6.22653x10™
4.66989x10*
3.11326x10*
1.55663x10™
0.00000x10*°

(b)

Figure 18. Spatial locations of nonlinear components of Qy;(2,1) (viscous flow, Mach 0.8. Positive
semi-span: linear modal, negative semi-span: extended modal). (a) Longitudinal GAF component;
(b) lateral GAF component.
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Figure 19. Nonlinear components of Qy;,(2,1) along spanwise and chordwise slices (viscous flow,
Mach 0.8). (a) Longitudinal component, spanwise distribution at x/c = 0.725; (b) longitudinal
component, chordwise distribution at /s = 0.7; (c) lateral component, spanwise distribution at
x/c = 0.725; (d) lateral component, chordwise distribution at y/s = 0.7.

4.3. Summary of Aerodynamic Coupling Term Nonlinearity and Implications for T-Tail Flutter

The nonlinearities in aerodynamic stiffness and damping were observed to be of a
quadratic kind (cf. Figures 11, 13 and 15). A second-order polynomial was fit through the
data, and the leading coefficients resulting from the curve fit were used to quantify the non-
linearity. Figure 20 illustrates the low impact of fluid viscosity on the overall stiffness and
damping nonlinearity for the subsonic Mach number results. The geometrically nonlinear
displacement components resulted in a significant reduction of the stiffness nonlinearity
and an increase of the damping nonlinearity for inviscid and viscous flow. At the transonic
Mach number, the distinct stiffness nonlinearity in addition to the negligible damping
nonlinearity can be recognized. The quadratic displacement components have a slightly
mitigating effect on the stiffness nonlinearity and, furthermore, can be neglected for the
damping. As the change in stiffness of the aerodynamic coupling term introduced by the
quadratic displacement components is dependent on the deformation amplitude, it is insuf-
ficient to simply account for the spurious stiffening of the diagonal GAF matrix element and
to perform the subsequent amplitude-dependent simulations with a geometrically linear
structural model. As the aerodynamic stiffness for the non-autonomous system studied
here is observed to be reduced with increasing deformation amplitude, the autonomous
system presumably experiences a stiffening nonlinearity, which potentially results in an
LCO with instabilities above the linear flutter onset (supercritical or benign LCO) [33].
Here, the linear modal approach might show a smaller LCO amplitude compared to the
extended modal approach, as the nonlinearity is shown to be larger when the structural
displacements are considered linearly.
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Figure 20. Summary of aerodynamic coupling term nonlinearity (reduced frequency 0.231).

5. Conclusions and Outlook

An amplitude dependency of aerodynamic forces resulting from HTP roll motion
that perform mechanical work on the HTP yaw motion was identified. At a subsonic
Mach number, this nonlinearity was shown to be in both stiffness and damping. The
geometric nonlinearities showed a strongly mitigating impact on the aerodynamic stiffness
nonlinearity and an amplifying impact on the aerodynamic damping nonlinearity. At a
transonic Mach number, only the stiffness nonlinearity remained, which was shown to be
reduced when accounting for geometric nonlinearities. The reasons for these nonlinearities
were identified to be related to the wing tip vortex and, regarding linear displacements, to
a contribution by longitudinal forces at the leading edge and one by lateral forces, which
are distributed across the entire wing. The latter two sources diminished when taking
into account geometric nonlinearities, and only the nonlinear terms close to the wing tips
remained, suggesting these as sources of the elaborated aerodynamic stiffness nonlinearity.
Fluid viscosity was shown to have a minor impact on the aerodynamic nonlinearity, but led
to a stiffness offset, which might affect the linear flutter onset predictions. These findings
indicate that it is reasonable to include geometric nonlinearities for amplitude-dependent
T-tail flutter studies, as the aerodynamic stiffness nonlinearity was reduced when nonlinear
geometric displacement terms were accounted for. For a self-excited system, the linear
structural displacement might therefore result in a benign LCO with a smaller amplitude
compared to the results based on nonlinear structural displacements.

As the studies have merely given an insight into a nonlinear aerodynamic coupling
term, its relevance for T-tail flutter is still speculative. There is a need to address the
amplitude-dependent stability of the autonomous system without and with geometric
nonlinearities in order to put the suggestions made in this work regarding the impact of the
elaborated aerodynamic nonlinearity into perspective. Moreover, previous studies of the
author have led to focusing on a positive incidence angle of 3.0°, which is not necessarily a
conventional operation point of an HTP. A negative incidence angle resulting in a steady
downforce would be suitable to obtain insight into the character of the stiffness nonlinearity
at a more realistic operation point. In doing so, the dependency of the nonlinearity on the
incidence angle and, with this, on the steady reference state can be addressed. Furthermore,
the coupled quadratic mode shape components were, in this particular case of orthogonal
rotations, zero. For a more realistic T-tail configuration with sweep and taper, the coupled
quadratic mode shape components would be non-zero and have an impact on the aerody-
namic coupling term even at the smallest displacement amplitude as well. Sweep and taper
would additionally result in a potentially smaller tip vortex and reduce the nonlinearity of
the aerodynamic coupling term.
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