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Abstract: The paper presents the modelling and stabilisation of an unconventional airship. The
complexity of such a new design requires both proper dynamic modelling and control. A complete
dynamic model is built here. Based on the developed dynamic model, a nonlinear control law is
proposed for this airship to evaluate its sensitivity during manoeuvres above a loading area. The
proposed stabilisation controller derives its source from a polytopic quasi-Linear Parameter varying
(qLPV) model of the nonlinear system. A controller, which takes into account certain modelling
uncertainties and the stability of the system, is analysed using Lyapunov’s theory. Finally, to facilitate
the design of the controller, we express the stability conditions using Linear Matrix Inequalities
(LMIs). Numerical simulations are presented to highlight the power of the proposed controller.

Keywords: dynamic modelling; nonlinear systems; quasi-LPV systems; LMI formulation;
stabilisation

1. Introduction

In recent decades, the use of large airships has attracted increasing attention over the
world because of their potential in many application areas, such as surveillance, advertising,
exploration, and in the medium term, heavy load carrying; see for example Liao et al. [1]
and Li et al. [2] for more details. Ellipsoidal shapes are usually used for airships as noted
by Jex et al. [3] and Hygounec et al. [4]. In order to explore new ways towards achieving
the holy grail of aerodynamic performance, a number of original shapes were subjected to
experiments in recent decades. This has become possible through the increased reliability
of numerical aerodynamics, advanced textile technology, and control theory.

Here, we investigate a craft that differs from conventional airships. The airship
presented here (Figure 1) is more like a flying wing. Hybrid airships have an exciting future,
due to their increased lift compared with a conventional airship. In this sense, we can cite
the pioneering airship LMH-1 from Lockheed Martin or the Airlander 10, the first Large
Capacity Airship to have flown in this millennium. The flying wing shape presented here
could minimise aerodynamic drag and has the advantage of presenting a larger flat (or
quasi-flat), surface allowing the installation of photovoltaic cells necessary to provide a
significant part of the thruster’s energy. We first set about building a dynamic model for
this airship: a Newton–Euler approach was taken. Note that the Lagrangian method has
also been considered in other dynamic models of airships, for example El Omari et al. [5]
and Bennaceur et al. [6].

In order to compensate for the airship’s great sensitivity to gusts of wind, it is over-
actuated. Moreover, in order to make these aircraft accessible and interesting for different
countries and parties, even those which lack infrastructure, it is necessary to consider han-
dling at altitude. This requires the development of a precise autopilot to stabilise the airship
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around a point of loading or unloading. Various techniques have been proposed for the
control and stabilisation of aerial vehicles, see for example Yang et al. [7] where a backstep-
ping method was used, or Moutinho [8] where a path-tracking gain-scheduling controller
is designed and its performance and robustness evaluated in a simulation environment.
Note that the dynamic models of aerial vehicles are often assumed to be linear, obtained
from the linearization of the nonlinear system around a specific operating point. In the
same way, linear models are extensively studied in the literature. Even though they solve
many problems, the applicability of such developed approaches may fail to stabilise the
system or lead to degraded performances when the system operates far from the operating
point where the linear model is valid. It is, therefore, interesting in certain cases to take into
account the nonlinear behaviours in the system. This allows the enhancing of the control
performances and enlarges the domain of applicability of the controllers.
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Figure 1. The studied Airship.

Nonlinear behaviours are often present in practical systems, especially in flight sys-
tems, such as airships. Everyone agrees that the nonlinear systems are complex and difficult
to study; they nonetheless allow the expression of the system behaviour with more accuracy
and in a large domain of operation. Several classes of nonlinear systems are studied in the
literature, such as Lipschitz systems, Linearizable systems by output injection, etc. Among
the most interesting structures of nonlinear systems, we find the Quasi-Linear Parameter
Varying (qLPV) models, as seen in Onat et al. [9]. An important advantage of these mod-
els is the possibility of scaling up tools designed for linear to non-linear systems. Many
control and observation themes are, in fact, applied to this class of systems, in particular
stability or stabilisation. Note that this class of systems can be represented in a polytopic
form which converges to the form of the well-known Takagi–Sugeno Systems, as seen in
Takagi et al. [10]. Stabilisation and control of nonlinear systems with qLPV representation
is largely studied. We can cite the works of Tanaka et al. [11,12] and Guerra et al. [13],
where a quadratic Lyapunov function was used to establish Linear Matrix Inequalities
(LMIs) for controller design. For the sake of conservatism of the proposed solutions, relaxed
stability conditions were obtained using, for example, the Tuan’s Lemma [14] or Polya’s
theorem in Sala et al. [15]. This last study provides sufficient and asymptotic necessary
conditions for stability and stabilisation by the use of quadratic Lyapunov functions seen
in Hayat et al. [16]. Another way dealing with the conservatism reduction is the use of
non-quadratic Lyapunov functions, as seen in Tanaka et al. [17], which produce more
relaxed LMI conditions.

Concerning uncertain systems, the stabilisation problem still remains open in the case
of uncertain Quasi-LPV model. For this class of systems, we find some works dealing
only with the stabilisation problem and stability analysis, for example Cao et al. [18] and
Ibrir et al. [19]. Hence, this paper presents a new approach based on the Quasi-LPV
model representation with the aim of proposing a control for nonlinear dynamic systems
with uncertainties. To the best of our knowledge, this method has never been tested for
aerial vehicles. We have exploited the particularities of the airship in order to establish a
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stabilisation around an operating point within a polytope, which guarantees the stability
of the flying object in a domain, and which takes into account possible uncertainties
concerning the model or concerning the stresses which could impact the airship.

In this approach, designs based on the LMI method are used to find the feedback
gains of a controller, as well as common P matrices (defined positive) satisfying a stability
criterion derived in terms of the Lyapunov direct method.

We have organised this paper as follows: Section 2 presents the dynamic modelling
of the airship; in Section 3, we present the elaborated controller based on the q-LPV
representation; and numerical results are presented and discussed in Section 4.

2. Dynamics Model of the Airship
2.1. Kinematics

One can see in Figure 2 a reduced model of the airship. This last is assumed to be a
rigid flying object. As usual in aeronautics, we use the parameterisation in yaw, pitch and
roll (ψ, θ, ϕ) to define the orientation of the moving frame Rm = (O, Xm,Ym, Zm) fixed to
the centre of inertia G of the airship; with regard to the inertial frame R0 = (O, X0,Y0, Z0)
and is a NED Cartesian frame, its origin being on the ground (Figure 2).
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Figure 2. The different reference frames.

The airship subject of our study is propelled by four rotors. Each rotor consists of
two counter-rotating propellers. A given rotor i can rotate around two axes: the Ym-axis
(βi), (−180◦ ≤ βi ≤ 180◦) and the ZRi-axis (γi) normal to Ym and which matches the
Zm-axis (Figure 3) when βi = 0 (cruise flight); γi has these limitations: −30◦ ≤ γi ≤ 30◦. A
fictive axis XiR completes the rotor frame.

Let ‖Fi‖ be the thrust of rotor i; this force is positioned in the point Ti in Rm. The
location of the different thrusters is established as follows:

T1 = (a, b1, c0)
T; T2 = (a,−b1, c0)

T; T3 = (−a, b3, c0)
T; T4 = (−a,−b3, c0)

T

The transformation matrix from Rm to R0 is defined by Goldstein [20]:

JT
1 =

 cψ·cθ sψ·cθ −sθ
sφ·cψ·sθ− cφ·sψ sφ·sψ·sθ+ cψ·cφ sφ·cθ
cφ·cψ·sθ+ sφ·sψ cφ·sθ·sψ− cψ·sφ cθ·cφ

 (1)

For simplicity, we will note by: c(·) = cos(·) and s(·) = sin(·).
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The speed of the airship in R0 is denoted by
.
η1 = [

.
x0,

.
y0,

.
z0]

T. It can be expressed
with respect to the speed ν1 = [u, v, w]T, which represents the speed expressed with
respect to the local reference frame Rm, as is often the case in aeronautics.

.
η1 = J1·ν1 (2)

Note that η1 = [x0, y0, z0]
T represents the position of the centre of inertia G. We also

suppose that the distribution of masses is balanced between the top side and the bottom
side of the airship, and thus the centre of volume coincides with the centre of gravity G.

Similarly, the speed of rotation
.
η2 =

[ .
φ,

.
θ,

.
ψ
]T

with respect to the fixed ref-
erence frame could be expressed with respect to the angular speed of the airship in
Rm ν

T
2 = [p, q, r] as:

ν2 =

 1 0 −sθ
0 cφ cθ·sφ
0 −sφ cθ·cφ

·


.
φ
.
θ
.
ψ

 (3)

reciprocally:
.
η2 = J2·ν2 (4)

The matrix J2 is defined as follows:

J2 =

 1 tan θ·sφ tan θ·cφ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

 (5)

The overall kinematic relation of the airship can, therefore, be written in the following
compact form: ( .

η1.
η2

)
=

(
J1 0
0 J2

)(
ν1
ν2

)
(6)

2.2. Dynamical Model

The dynamic model of the flying body can be written in the following compact form,
as seen in Shabana et al. [21]:

M· .
ν = QG + τ (7)

Here, τ =

(
τ1
τ2

)
is the vector of forces and torques applied on the airship. This

includes the thrust of the rotors, the weight of the flying machine, the buoyancy Bu, as well
as the lift and the aerodynamic drag.
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Using the definitions of the thrusters, this vector will be written as:

τ1 =



4
∑

i = 1
cγi·cβi·‖Fi‖ − (−Bu + mg)·sθ

4
∑

i = 1
sγi·‖Fi‖+ (−Bu + mg)·sφ·cθ

−
4
∑

i = 1
cγi·sβi·‖Fi‖+ (−Bu + mg)cφ·cθ

 (8)

and:

τ2 = −



c0
4
∑

i = 1
sγi‖Fi‖+ b1(cγ1·sβ1‖F1‖ − cγ2·sβ2‖F2‖

+b3(cγ3·sβ3‖F3‖ − cγ4·sβ4‖F4‖) + BuzBcθ·sφ.

−c0
4
∑

i = 1
cγi·cβi‖Fi‖+ a(cγ4·sβ4‖F4‖+ cγ3·sβ3‖F3‖

−cγ1·sβ1‖F1‖ − cγ2·sβ2‖F2‖) + BuzB·sθ
b1(cγ1·cβ1‖F1‖ − cγ2·cβ2‖F2‖)
+b3(cγ3·cβ3‖F3‖ − cγ4·cβ4‖F4‖)
+a(sγ4‖F4‖+ sγ3‖F3‖ − sγ1‖F1‖ − sγ2‖F2‖)


(9)

Remark 1. In this study, we are only interested in the stabilisation of the airship around a fixed
point of loading and unloading; the drag and lift forces will, therefore, not be taken into consideration.
This is also the case for the effect of the elevator and rudders.

On the other hand, M =

(
MTT 0

0 MRR

)
is the inertia matrix, according to the choice

of the mobile reference frame, and is block-diagonal. The indices TT and RR correspond,
respectively, to the inertias in translation and in rotation. This 6 × 6 matrix includes both
the terms of inertia and the terms of added masses.

The latter reflect the increase in inertia of the solid under the effect of the resistance
force of the fluid which surrounds the airship. This force depends on the acceleration of
the moving solid body. Although these added masses can be neglected for airplanes or
helicopters, this cannot be tolerated when the density of the solid body and that of the fluid
which surrounds it are comparable, as in the case of airships or submarines, reported in
Bennaceur et al. [6]. The calculation of these added masses can be performed experimentally
or analytically as was done, for example, for the airship in Chaabani et al. [22].

Note that the over-actuation of the airship can generate certain complications in the
calculation of the response of the actuators. The specific problem of control allocation
was solved in a recent study by Azouz et al. [23]. In the aforementioned study, a control
vector of dimension six was used as input, corresponding to the six degrees of freedom
of the airship; the twelve degrees of freedom of the actuators (‖Fi‖, βi and γi) were used
as output. The system to be solved is rectangular. If this is done by means of numerical
inversions, this can be penalizing for real-time control. The developed technique is based
on energy concepts; this allows a quick and precise solution to the previous problem. This
technique gave similar results to those obtained from other known techniques.

The components of the inertia matrix are denoted by Mij.
The gyroscopic forces and moments are grouped together within the vector:

QG =

(
(MTTν1) ∧ ν2

(MRRν2) ∧ ν2 + (MTTν1) ∧ ν1

)
. ∧ is the cross product.
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Taking into account Equations (8) and (9), the development of Equation (7) gives:

.
u = 1

M11

4
∑

i = 1
cγi·cβi‖Fi‖ − 1

M11
sθ(−Bu + mg) + rv− qw

.
v = 1

M22

4
∑

i = 1
sγi·‖Fi‖+ 1

M22
sφ·cθ(−Bu + mg)− ru + qw

.
w = − 1

M33

4
∑

i = 1
cγi·sβi‖Fi‖+ 1

M33
cφ·cθ(−Bu + mg)− vp + uq

(10)

and:



.
p = − M66

(M44M66−M2
46)

c0
4
∑

i = 1
sγi‖Fi‖+ (M46−M66)

(M44M66−M2
46)

b1(cγ1·sβ1‖F1‖ − cγ2·sβ2‖F2‖)

+ (M46−M66)

(M44M66−M2
46)

b3(cγ3·sβ3‖F3‖ − cγ4·sβ4‖F4‖) + M46
(M44M66−M2

46)
a(sγ4‖F4‖+ sγ3‖F3‖ − sγ1‖F1‖ − sγ2‖F2‖)

− M66
(M44M66−M2

46)
BuzGsφ·cθ− M46(M44−M55+M66)

(M44M66−M2
46)

pq + (M55M66−M2
46−M2

66)

(M44M66−M2
46)

qr

.
q = − c0

M55

4
∑

i = 1
cγi·cβi‖Fi‖+ a

M55
(cγ4·sβ4‖F4‖+ cγ3·sβ3‖F3‖ − cγ1·sβ1‖F1‖ − cγ2·sβ2‖F2‖)

−BuzG
M55
·sθ+ M46

M55
p2 + (M66−M44)

M55
pr + M46

M55
r2

.
r = M46

(M44M66−M2
46)

c0
4
∑

i = 1
sγi‖Fi‖+ (M46−M44)

(M44M66−M2
46)

b1(cγ1·sβ1‖F1‖ − cγ2·sβ2‖F2‖)

+ (M46−M44)

(M44M66−M2
46)

b3(cγ3·sβ3‖F3‖ − cγ4·sβ4‖F4‖)− M44
(M44M66−M2

46)
a(sγ4‖F4‖+ sγ3‖F3‖ − sγ1‖F1‖ − sγ2‖F2‖)

+ M46
(M44M66−M2

46)
BuzGsφ·cθ+ (M2

44+M2
46−M44M55)

(M44M66−M2
46)

pq + M46(M44−M55+M66)

(M44M66−M2
46)

qr

(11)
This model will serve as a basis for the application of our control laws.

3. Quasi-LPV Representation for the Dynamic Model
3.1. Vector Control

To control the airship in hovering flight, the voltages at the terminals of the electric
motors of the thrusters are varied, thus modifying the thrust forces Fi of the latter; the
angles of inclination of the axes of these rotors are also varied by modifying the βi and γi.
The airship, in this configuration, is fully actuated.

We must point out that we are interested in a case of stabilisation of the airship around
a loading point. We assume that in this configuration the reference frames R0 and Rm are
parallel and that the rotations of the airship are small.

The following control vector is proposed for the stabilisation of the airship:

u1 = 1
M11

4
∑

i = 1
cγi·cβi‖Fi‖

u2 = 1
M22

4
∑

i = 1
sγi‖Fi‖

u3 = − 1
M33

4
∑

i = 1
cγi·sβi‖Fi‖

(12)

and:



Aerospace 2022, 9, 252 7 of 20



u4 = − M66
(M44M66−M2

46)
c0

4
∑

i = 1
‖Fi‖sγi +

(Ixz−M66)

(M44M66−M2
46)

b1(‖F1‖cγ1·sβ1 − ‖F2‖cγ2·sβ2)

+ (M46−M66)

(M44M66−M2
46)

b3(‖F3‖cγ3·sβ3 − ‖F4‖cγ4·sβ4) +
M46

(M44M66−M2
46)

a(‖F4‖sγ4 + ‖F3‖sγ3 − ‖F1‖sγ1 − ‖F2‖sγ2)

u5 = − c0
M55

4
∑

i = 1
‖Fi‖cγi·cβi +

a
M55

(‖F4‖cγ4·sβ4 + ‖F3‖cγ3·sβ3 − ‖F1‖cγ1·sβ1 − ‖F2‖cγ2·sβ2)

u6 = M46
(M44M66−M2

46)
c0

4
∑

i = 1
‖Fi‖sγi +

(M46−M44)

(M44M66−M2
46)

b1(‖F1‖cγ1·sβ1 − ‖F2‖cγ2·sβ2)

+ (M46−M44)

(M44M66−M2
46)

b3(‖F3‖cγ3·sβ3 − ‖F4‖cγ4·sβ4)− M44
(M44M66−M2

46)
a(‖F4‖sγ4 + ‖F3‖sγ3 − ‖F1‖sγ1 − ‖F2‖sγ2)

(13)

The dynamic model (10) and (11) becomes:

.
u = u1 + c1·sθ+ rv− qw
.
v = u2 + c2·sφ·cθ− ru + qw
.

w = u3 +
1

M33
cφ·cθ(−Bu + mg)− vp + uq

.
p = u4 + a1·cθ·sφ+ a2·pq + a3·qr
.
q = u5 + a5·sθ+ a6·p2 + a4·pr + a6·r2
.
r = u6 + a7·sφ·cθ+ a8·pq + a9·qr

(14)

With: 

a1 = − BuzGM66
(−M2

46+M66M44)

a2 = − (M44−M55+M66)M46
(−M2

46+M66M44)

a3 = − (M55M66−M2
46−M2

66)

(−M2
46+M66M44)

a4 = −M44+M66
M55

a5 = −BuzG
M55

a6 = −M46
M55

and



a7 = BuzGM46
(−M2

46+M66M44)

a8 =
(M 2

44+M2
46−M44M55)

(−M2
46+M66M44)

a9 =
(M 44+M66−M55)M46
(−M2

46+M66M44)

c1 =
−Bu+mg

M11

c2 =
−Bu+mg

M22

(15)

In matrix form, the system (14) becomes:

.
X = AX + BU + E·d (16)

with: X =
[
u, v, w,φ,

.
φ, θ,

.
θ, r
]T

being the vector of states, d = cos θ·cos ϕ is considered as

a disturbance, and U = [u1, . . . , u6]
T being the vector of control. Since we are stabilising

the airship around a given point, and given the assumption made concerning the reference
frames, we use the following kinematics relations:

.
φ ≈ p;

.
θ ≈ q;

.
ψ ≈ r.

We should mention here that, for the specific problem at hand, the quadratic terms of
type q·w are small and will be neglected later in the approach. The matrices A, B and E
could be written as:

A =



0 r 0 0 0 c1

(
1− θ2

6

)
0 0

−r 0 0 c2cθ
(

1− θ2

6

)
0 0 0 0

0 −p 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 a1

(
1− θ2

6

)
cθ 0 0 a3r + a2p 0

0 0 0 0 0 0 1 0
0 0 0 0 a4r + a6p a5

(
1− θ2

6

)
0 a6r

0 0 0 a7

(
1− θ2

6

)
cθ 0 0 a8r + a9p 0


(17)
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and:

B =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


; E =



0
0

mg−Bu
M33
0
0
0
0
0


(18)

One can choose the points of non-linearity as follows:{
z1 = cθ·

(
1− ϕ2

6

)
z2 = p

and

{
z3 = r

z4 =
(

1− θ2

6

) (19)

It is easy to check that all these points are bounded.{
z1

min ≤ z1 ≤ z1
max

z2
min ≤ z2 ≤ z2

max and
{

z3
min ≤ z3 ≤ z3

max

z4
min ≤ z4 ≤ z4

max (20)

with: {
zmin

1 = −1; zmin
2 = −1; zmin

3 = −1; zmin
4 = − 2

ß
zmax

1 = 1; zmax
2 = 1; zmax

3 = 1; zmax
4 = 2

ß
(21)

Then, this matrix A becomes:

Azi(z) =



0 z3 0 0 0 c1z4 0 0
−z3 0 0 c2z1 0 0 0 0

0 −z2 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 a1z1 0 0 a3z3 + a2z2 0
0 0 0 0 0 0 1 0
0 0 0 0 a4z3 + a6z2 a5z4 0 a6z3
0 0 0 a7z1 0 0 a8z2 + a9z3 0


(22)

With z being the vector collection of the different zi.
The quasi-LPV method allows the expression of the behaviour of a system as a set

of linear models. Each sub-model contributes to this total representation according to
a weight function to value in the interval. The multi-model structure is written in the
following form:

.
X =

16

∑
i = 1

hi(X)AziX + BU + Ed (23)

where Ai ∈ R8×8. An example of a matrix Ai is detailed in Appendix A.1 in Appendix A.
The weighting functions hi are nonlinear, are given in Appendix A.1, and satisfy the

following properties: 
16
∑

i = 1
hi(X) = 1

with 0 ≤ hi(X) ≤ 1 ∀i ∈ {1, 2, . . . , 16}
(24)

In summary, the proposed control strategy can be represented as follows (Figure 4):
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Figure 4. Closed-loop architecture of control.

3.2. The Uncertain Matrix of the Airship

To test the reliability and the robustness of our method, we introduce uncertainty into
many parameters of the airship. Mathematical models of Large Capacity Airships always
contain uncertain elements, which model the designer’s lack of knowledge about certain
parameter values, disturbances, and unmodelled dynamics. These uncertain parameters
have values that are known only inside a given compact bounding set.

Let ∆Az be the uncertain matrices having the same structure as A(z).
We consider the following uncertain system:

.
X =

16

∑
i = 1

hi(X){Ai + ∆Az}X + BU + Ed (25)

where uncertainty is structured in the following way:

∆Az = Ã1·F1(t)·Ẽ1 + Ã2·F2(t)·Ẽ2 + Ã3·F3(t)·Ẽ3 (26)

Such as Ẽ1, Ẽ2 , Ẽ3, Ã1, Ã2 and Ã3 are constant matrices defined later, and F1(t), F2(t), F3(t)
satisfy the following condition: 

FT
1 (t)·F1(t) ≤ I

FT
2 (t)·F2(t) ≤ I, ∀t

FT
3 (t)·F3(t) ≤ I

(27)

with I representing the identity matrix.
The uncertain matrix ∆Az is given by:

∆Az =



0 0 0 0 0 ∆c1z4 0 0
0 0 0 ∆c2z1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 ∆a1z1 0 0 ∆s1 0
0 0 0 0 0 0 0 0
0 0 0 0 ∆s2 ∆a5z4 0 ∆a6z3
0 0 0 ∆a7z1 0 0 ∆s3 0


=

3

∑
i = 1

ÃiFi(t)Ẽi (28)

One can see Appendix A.2 for more details regarding uncertain terms ∆ai.
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With:

Ã1F1(t)Ẽ1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 ∆a1z1 0 0 ∆s1 0
0 0 0 0 0 0 0 0
0 0 0 0 ∆s2 ∆a5z4 0 ∆a6z3
0 0 0 0 0 0 0 0



Ã2F2(t)Ẽ2 =



0 0 0 0 0 ∆c1z4 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 ∆a7z1 0 0 ∆s3 0



Ã3F3(t)Ẽ3 =



0 0 0 0 0 0 0 0
0 0 0 ∆c2z1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



(29)

Using the expression (28), we can decompose the matrixes Ãi, Fi(t) and Ẽi (i = 1, 2, 3),
in the following way:

Ã1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0


; Ẽ1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 σ1 0 0 0 0
0 0 0 0 σ2 0 0 0
0 0 0 0 0 σ3 0 0
0 0 0 0 0 0 σ4 0
0 0 0 0 0 0 0 σ5


(30)

F1(t) =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 ∆a1z1

σ1
0 0 0 0

0 0 0 0 ∆s2
σ2

0 0 0
0 0 0 0 0 ∆a5z4

σ3
0 0

0 0 0 0 0 0 ∆s1
σ4

0
0 0 0 0 0 0 0 ∆a6z3

σ5


(31)

Two further decompositions are as follows:

Ã2(8, 7) = Ã2(1, 6) = Ã2(8, 4) = 1 (32)

Ẽ2(6, 6) = δ2; Ẽ2(7, 7) = δ3; Ẽ2(4, 4) = δ1 (33)

F2(t)(6, 6) =
∆c1z4

δ2
; F2(t)(4, 4) =

∆a7z1

δ1
; F2(t)(7, 7) =

∆s3

δ3
(34)
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Ã3(2, 4) = 1 (35)

Ẽ3(4, 4) = h1 (36)

F3(t)(4, 4) =
∆c2z1

h1
(37)

Other terms are all zero: F2(t)(i, j) = Ã2(i, j) = Ẽ2(i, j) = 0 and F3(t)(i, j) = Ã3(i, j)
= Ẽ3(i, j) = 0 for i, j ∈ {1, 2, . . . , 8}, with:

∆s1 = ∆a2z2 + ∆a3z3; ∆s2 = ∆a6z2; ∆s3 = ∆a8z2 + ∆a9z3
σ1 = max(∆a1zmax

1 ); σ2 = max(∆a6zmax
2 );σ3 = max(∆a5zmax

4 )
σ4 = max(∆a2zmax

2 + ∆a3zmax
3 );σ5 = max(∆a6zmax

3 );
δ1 = max(∆a7zmax

1 ); δ2 = max(∆c1zmax
4 );

δ3 = max(∆a8zmax
2 ); h1 = max(∆c2zmax

1 )

.

To eliminate the term E·d of disturbance, we can suppose that:

U = −
16

∑
i = 1

hi(X)KiX− S·d (38)

Using the control expression (38), the Quasi-LPV structure of the airship is given by:

.
X =

16

∑
i = 1

hi(X)(Ai + ∆A− BKi)X + (E− BS)·d (39)

With:

A =
16
∑

i = 1
hi(X)Ai; ∆A = Ã2F2(t)Ẽ2 + Ã1F1(t)Ẽ1

and U = −
16
∑

i = 1
hi(X)KiX− S·d

(40)

where Ai ∈ R8×8; Ki ∈ R6×8

We can choose the matrix S as: S =B+ E, where B+ is the pseudo-inverse matrix of the
matrix B.

3.3. Robust Stabilisation of the Airship

Theorem 1. The uncertain dynamic system (39) would be stable if there are definite, positive and
symmetric matrixes P, and three positive diagonal matrixes Ω1, Ω2 and Ω3, such that the following
LMIs and LME hold:


Q̃AT

i + AiQ̃−Mi
TBT − BMi + Ẽ

T
1 Ω1Ẽ1 + Ẽ

T
2 Ω2Ẽ2 + Ẽ

T
3 Ω3Ẽ3 Ã

T
1 Ã

T
2 Ã

T
3

Ã1 −Ω1 0 0
Ã2 0 −Ω2 0
Ã3 0 0 −Ω3


E− BS = 0

(41)

with: Q̃ = P−1, and the matrix gains Ki are defined by: Ki = MiQ̃
−1

, i = 1, . . . , 16 and

Ω1 =



ε1
1 0 0 0 0

0 ε1
2 0 0 0

0 0 ε1
3 0

...
...

...
...

. . . 0
0 0 0 0 ε1

16

; Ω2 =



ε2
1 0 0 0 0

0 ε2
2 0 0 0

0 0 ε2
3 0

...
...

...
...

. . . 0
0 0 0 0 ε2

16

; Ω3 =



ε3
1 0 0 0 0

0 ε3
2 0 0 0

0 0 ε3
3 0

...
...

...
...

. . . 0
0 0 0 0 ε3

16

 (42)

such as: ε1
i , ε2

i , ε3
i � 0 for i = 1, . . . , 16.
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To prove the above theorem, we must first recall the following lemmas which are
useful in the proof:

Lemma 1. Peterson [24]: Suppose F(t) satisfying FT(t)F(t) ≤ I, ∀t, Q = QT, E, H are matrixes of
appropriate dimension, the inequality below:

Q + HF(t)E + ETFT(t)HT ≺ 0 (43)

is regarded as met only when the following inequality is true for:

Q + ε−1HHT + εETE ≺ 0 (44)

Lemma 2. Let Ω be a positive definite matrix; for Y and X matrixes with compatible dimensions,
the property below is true:

XYT + XTY ≺ XTΩ−1X + YΩYT, Ω � 0 (45)

Lemma 3. (Congruence) Consider two matrixes P and Q; if P is positive definite and if Q is a full
column rank matrix, then the matrix is positive definite.

If P is a positive definite matrix, and if Q is a full column rank matrix, then the matrix
product Q·P·QT is definite positive.

This lemma is called the congruence lemma

Lemma 4. Boyd [25] (Schur Complement). Given constant matrixesM1, M2 and M3 with ap-
propriate dimensions, where: M1 = MT

1 and M2 = MT
2 , then: M1 + MT

3 M−1
2 M3 ≺ 0 if and

only if: [
M1 MT

3
∗ −M2

]
≺ 0 or

[
−M2 M3
∗ M1

]
≺ 0 (46)

Using these lemmas, the proof of Theorem 1 is presented as follows:

Proof. Consider the Lyapunov function expressed as follows:

V = XTPX (47)

with P = PT ≥ 0 being a definite positive matrix. �

The derivative with respect to time of V will then be:

.
V = XTP

.
X +

.
X

T
PX

= XT
16
∑

i = 1
hi(X)

[
(Ai + ∆A− BKi)

TP + P(Ai + ∆A− BKi)
]
X + 2XTP(E− BS)d

(48)

And since we choose E− BS = 0, the Equation (48) becomes:

.
V = XT

16

∑
i = 1

hi(X)
[
(Ai − BKi + ∆A)TP + P(Ai − BKi + ∆A)

]
X (49)

As the weighting functions hi satisfy the property of convex sum, such that
.

V(X) is
negative, it is sufficient to check that:

(Ai + ∆A− BKi)
TP + P(Ai + ∆A− BKi) ≺ 0, i = 1, . . . , 16 (50)
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We replace ∆A by its value (27), and we obtain:(
Ai + Ã2F2(t)Ẽ2 + Ã1F1(t)Ẽ1 + Ã3F3(t)Ẽ3 − BKi

)T
P

+P
(

Ai + Ã3F3(t)Ẽ3 + Ã1F1(t)Ẽ1 + Ã2F2(t)Ẽ2 − BKi

)
≺ 0; i = 1, . . . , 16

(51)

Thereafter, and by relying on Lemma 1:

AT
i P + PAi − PBKi − (BKi)

TP + PÃ1Ω1Ã
T
1 P + Ẽ

T
1 FT

1 (t)Ω
−1
1 F1(t)Ẽ1

+PÃ2Ω2Ã
T
2 P + Ẽ

T
2 FT

2 (t)Ω
−1
2 F2(t)Ẽ2 + PÃ3Ω3Ã

T
3 P + Ẽ

T
3 FT

3 (t)Ω
−1
3 F3(t)Ẽ3 ≺ 0;

i = 1, . . . , 16

(52)

and as: Fi
T(t)Fi(t) ≤ I, ∀t and i = 1,2,3, then the inequality (51) becomes:

AT
i P + PAi − PBKi − (BKi)

TP + PÃ1Ω−1
1 Ã

T
1 P + Ẽ

T
1 Ω1Ẽ1

+PÃ2Ω−1
2 Ã

T
2 P + Ẽ

T
2 Ω2Ẽ2 + PÃ3Ω−1

3 Ã
T
3 P + Ẽ

T
3 Ω3Ẽ3 ≺ 0;

i = 1, . . . , 16

(53)

Based on Lemma 2, and if we suppose P−1 = Q̃ and Mi = KiQ̃, we obtain:

P−1[AT
i P + PAi − PBKi − (BKi)

TP + PÃ1Ω−1
1 Ã

T
1 P + Ẽ

T
1 Ω1Ẽ1

+PÃ2Ω−1
2 Ã

T
2 P + Ẽ

T
2 Ω2Ẽ2 + PÃ3Ω−1

3 Ã
T
3 P + Ẽ

T
3 Ω3Ẽ3]P−1 ≺ 0;

i = 1, . . . , 16

(54)

We can rewrite the system (52) as:

Q̃AT
i + AiQ̃−Mi

TBT − BMi + Ã1Ω−1
1 Ã

T
1 + Q̃Ẽ

T
1 Ω1Ẽ1Q̃

+Ã2Ω−1
2 Ã

T
2 + Q̃Ẽ

T
2 Ω2Ẽ2Q̃ + Ã3Ω−1

3 Ã
T
3 + Q̃Ẽ

T
3 Ω3Ẽ3Q̃ ≺ 0,

∀i ∈ {1, . . . , 16}
(55)

Finally, by using the Schur complement (Lemma 4), we will produce the following LMIs:
Q̃AT

i + AiQ̃−Mi
TBT − BMi + Ẽ

T
1 Ω1Ẽ1 + Ẽ

T
2 Ω2Ẽ2 + Ẽ

T
3 Ω3Ẽ3 Ã

T
1 Ã

T
2 Ã

T
3

Ã1 −Ω1 0 0
Ã2 0 −Ω2 0
Ã3 0 0 −Ω3

 ≺ 0 (56)

4. Simulation Results

We present here some numerical examples demonstrating the power of our formu-
lation. As support for our development, we will use the following characteristics of the
studied airship:

Mass: m = 500 Kg; gravity: g = 9.81 m·s−2;
Position of the centre of inertia zG = 0.5 m;
Buoyancy Bu = 5000 N;
Components of the total mass matrix M:

M11 = 630 kg; M22 = 712 kg; M33 = 1723 kg
M44 = 9415 kg; M55 = 10, 455 kg;
M66 = 18, 700 kg; M46 = 161 kg.

Uncertainty values:
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∆a1 = ∆
(

−M66BuzG
(−M2

46+M44M66)

)
= 0.146

∆a2 = ∆
(
−(M46M44−M55+M66)

(−M2
46+M44M66)

)
= 0.0083

∆a3 = ∆
(

(M55M66−M2
46+M2

66)

(−M2
46+M44M66)

)
= 1.2393

∆a4 = ∆
(

M66−M44)
M55

)
= 0.3577

∆a5 = ∆
(
−BuzG

M55

)
= 0.0789, ∆a6 = ∆

(
M46
M55

)
= 0.037

∆a7 = ∆
(

M46BuzG
(−M2

46+M44M66)

)
= 0.013

∆a8 = ∆
(

M2
44+M2

46−M44M55

(−M2
46+M44M66)

)
= 0.2237

∆a9 = ∆
(

M46(M44−M55M66)

(−M2
46+M44M66)

)
= 0.083

The envelope:
Axis: a = 2.5 m; c = 2 m; Volume: V= 500 m3;
Position of the actuators: b1 = 5.4 m; b3 = 6.5 m;
The numerical developments were carried out using the MATLAB code.
As an illustration, we present a typical manoeuvre of a blimp over a loading area,

which includes an attitude change due to a squall of wind. This change is estimated to π6
rad in both pitch and roll motion.

Figures 5–12 show the stabilisation of the angles of roll and pitch, as well as their
derivatives, and the convergence of the linear velocities u, v and w, in a relatively short
period of time.
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Figure 5. Convergence of the pitch angle.
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Figure 8. Convergence of q.
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Figure 9. Convergence of r.
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Figure 11. Convergence of u.
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This demonstrates the ability of the proposed control to stabilise the airship around a
point of equilibrium, even under the effect of a moderate squall of wind. The time evolution
of the weighting functions is depicted in Figure 13. It can be clearly seen that the weighting
functions hi (1 ≤ i ≤ 8) are between 0 and 1 and thus satisfy the convex sum property.
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Figure 13. The weighting function. The different colors represent the different weighting functions hi

(1 ≤ i ≤ 8).

The robustness of the proposed control is also tested on the complete nonlinear
model (28).
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We note, according to Figures 14–17, that even in the presence of a disturbance (pres-
ence of the wind) of maximum amplitude the 0.1, the airship remains stable. This demon-
strates the performance of the elaborated control.
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Figure 14. Velocities u and v in presence of disturbance.
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Figure 15. Velocities w and r in presence of disturbance.
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Figure 16. Roll angle φ and pitch angle θ in the presence of disturbance.
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Figure 17. Angular velocities p and q in the presence of disturbance.

5. Conclusions

In the first part of this paper, we presented a dynamic model of an unconventional
airship. The latter has a flying wing shape and is over-actuated.

The stabilisation of this flying object at a point of equilibrium above a loading area
was the highlight of this work.

Specifically, we have presented a controller design technique for uncertain nonlinear
systems with external disturbances described by the Quasi-LPV model. The main results
concern the two theorems developed to ensure a sufficient condition in terms of LMI for
the problem of tracking uncertain systems, expressed in Quasi-LPV form. The results of
the numerical simulations are satisfactory and prove the robustness of our approach.
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Appendix A

Appendix A.1

The sub matrixes Ai were determined as follows:

A1 =



0 zmax
3 0 0 0 c1zmax

4 0 0
−zmax

3 0 0 c2zmax
1 0 0 0 0

0 −zmax
2 0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 a1zmax

1 0 0 a2zmax
2 + a3zmax

3 0
0 0 0 0 0 0 1 0
0 0 0 0 a6zmax

2 + a4zmax
3 a5zmax

4 0 a6zmax
3

0 0 0 a7zmax
1 0 0 a8zmax

2 + a9zmax
3 0


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The weighting functions were:

h1(z) = F0
4·F0

3·F0
2·F0

1 h6(z) = F0
4·F0

3·F1
2·F1

1 h11(z) = F1
4·F1

3·F0
2·F0

1
h2(z) = F0

4·F0
3·F0

2·F1
1 h7(z) = F0

4·F1
3·F0

2·F1
1 h12(z) = F0

4·F1
3·F1

2·F1
1

h3(z) = F0
4·F0

3·F1
2·F0

1 h8(z) = F1
4·F0

3·F0
2·F1

1 h13(z) = F1
4·F0

3·F1
2·F1

1
h4(z) = F0

4·F1
3·F0

2·F0
1 h9(z) = F0

4·F1
3·F1

2·F0
1 h14(z) = F1

4·F1
3·F0

2·F1
1

h5(z) = F1
4·F0

3·F0
2·F0

1 h10(z) = F1
4·F0

3·F1
2·F0

1 h15(z) = F1
4·F1

3·F1
2·F0

1
h16(z) = F1

4·F1
3·F1

2·F1
1

where: F0
1 =

z1−zmin
1

zmax
1 −zmin

1
; F1

1 =
zmax

1 −z1
zmax

1 −zmin
1

; F0
2 =

z2−zmin
2

zmax
2 −zmin

2
; F1

2 =
zmax

2 −z2
zmax

2 −zmin
2

; F0
3 =

z3−zmin
3

zmax
3 −zmin

3
;

F1
3 =

zmax
3 −z3

zmax
3 −zmin

3
; F0

4 =
z4−zmin

4
zmax

4 −zmin
4

; F1
4 =

zmax
4 −z4

zmax
4 −zmin

4
.

Appendix A.2

We determined the terms of uncertainties, as shown in the following example:

∆a5 = ∆(−BuzG
M55

) = ∆(BuzG)·M55+BuzG∆M55
M2

55
= M55(zG∆Bu+Bu∆zG)+BuzG∆M55

M2
55

∆a6 = ∆(M46
M55

) = ∆M46·M55+M46∆M55
M55

2
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