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Abstract: Spacecraft component segmentation is one of the key technologies which enables au-
tonomous navigation and manipulation for non-cooperative spacecraft in OOS (On-Orbit Service).
While most of the studies on spacecraft component segmentation are based on 2D image segmenta-
tion, this paper proposes spacecraft component segmentation methods based on 3D point clouds.
Firstly, we propose a multi-source 3D spacecraft component segmentation dataset, including point
clouds from lidar and VisualSFM (Visual Structure From Motion). Then, an improved PointNet++
based 3D component segmentation network named 3DSatNet is proposed with a new geometrical-
aware FE (Feature Extraction) layers and a new loss function to tackle the data imbalance problem
which means the points number of different components differ greatly, and the density distribution of
point cloud is not uniform. Moreover, when the partial prior point clouds of the target spacecraft are
known, we propose a 3DSatNet-Reg network by adding a Teaser-based 3D point clouds registration
module to 3DSatNet to obtain higher component segmentation accuracy. Experiments carried out on
our proposed dataset demonstrate that the proposed 3DSatNet achieves 1.9% higher instance mIoU
than PointNet++_SSG, and the highest IoU for antenna in both lidar point clouds and visual point
clouds compared with the popular networks. Furthermore, our algorithm has been deployed on an
embedded AI computing device Nvidia Jetson TX2 which has the potential to be used on orbit with a
processing speed of 0.228 s per point cloud with 20,000 points.

Keywords: non-cooperative spacecraft; 3D spacecraft component segmentation network; 3D spacecraft
component segmentation dataset; registration; deep learning

1. Introduction

The OOS of spacecraft has already become one of the hot study areas in aerospace
science over the past decades [1], particularly on fault detection approaches, influence
of disturbances, modeling errors, and various uncertainties in the real systems [2]. Most
existing OOS missions, such as DEOS (Deutsche Orbital Servicing Mission) [3], iBOSS (In-
telligent Building Blocks for On-Orbit Satellite Servicing) [4], and SIS (Space Infrastructure
Servicing) [5], are based on cooperative spacecraft, which are equipped with cooperative
marks and can communicate with the servicing spacecraft [6]. However, more general
cases in OOS are aimed at non-cooperative spacecraft. For instance, the OOS tasks can
be repairing a malfunctioned satellite that has no cooperative mark and communication
ability. Without cooperative marks and sometimes even no prior knowledge of the target
spacecraft, the OSS task for non-cooperative spacecraft is still an open research area facing
many technical challenges [7].

The component-level segmentation of non-cooperative spacecraft is the premise and
core technology to achieve the more complex navigation-related tasks of the OOS task.
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Most existing spacecraft recognition approaches are based on 2D images [8]. Machine
learning, particularly deep learning, is being increasing utilised in space applications,
mirroring the groundbreaking success in many earthbound problems [9]. Several datasets,
such as Spacecraft-Parts [10] and SolarPanelDataset [11], have been published to evaluate
the performance of deep learning algorithms in spacecraft 2D component segmentation.
In [12], a hybrid convolution network, which used a two-stage target detection network
and Mask R-CNN [13] segmentation network, was used to join the global features and
partial semantic information for spacecraft component recognition. L Zhang et al. [14]
proposed a real-time docking ring detection method for on-orbit spacecraft based on arc
extraction and ellipse parameters estimation. The experiments were conducted on a novel
SPARK dataset [15]. A non-cooperative image recognition network was constructed in [16],
in which two networks were used to identify non-cooperative spacecraft panels. Visual
images, however, are easily be affected by illumination conditions, so the image-based
methods failed to perform well when spacecraft was in the shadow. Moreover, view angles
of 2D images are restricted, thus some components may be occluded from the current
perspective of view.

Compared to 2D-based methods, the advantages of using 3D point cloud for spacecraft
component segmentation is listed as follows. Firstly, the 3D point clouds contain the global
structure of the target spacecraft without the problem of occlusion [17]. Moreover, some
components of spacecraft can be easily recognized via a 3D point cloud. As spacecraft is
an artificial object, there contain many regular planes and lines, which are more suitable
for 3D-based recognition. For example, the solar panel appears to be quite flat in 3D point
cloud, while this is hard to be described in 2D images.

However, to the best of our knowledge, no 3D component segmentation network has
been proposed for non-cooperative spacecraft yet. Point cloud part segmentation is a topic
that has been studied for several years in the field of computer vision, which has recently
regained significant attention due to the success of deep learning. These approaches
can be divided into three categories: MLP-Based, Graph-Based, and Convolution-Based
methods [18]. The graph-based part segmentation methods use graph structure [19–21]
to reflect the topographic relationship between 3D points, however, the size of these
models are too large to be used in OOS. Similarly, the convolution-based component
segmentation approaches [22–24] also require large computation and memory resources,
which are not suitable for OOS missions. One of the typical MLP-based algorithms is
PointNet [25], which processed 3D point clouds with shared multi-layer perception and
uses max pooling to extract global features. Though efficient and effective, PointNet failed
to extract local features, limiting its ability to recognize fine-grained spacecraft components.
PointNet++ [26], which added a farthest point sampling layer and a ball query layer before
PointNet was proposed to extract both global and local features.

Although MLP-based methods have the potential to be used in 3D spacecraft com-
ponent segmentation tasks, there are still some problems that remain unsolved. Firstly,
the 3D models of spacecraft are rare and have different shapes. To the best of our kon-
wledge, no 3D spacecraft component segmentation dataset is available yet. Moreover,
the data distribution between different spacecraft components can be largely varied. For
example, for a spacecraft made up of 2500 points, a panel occupies 1000–1800 points, while
an antenna only occupies 50–100 points. This imbalanced data distribution may lead to
unreliable segmentation results for those components with fewer points. Furthermore,
memory, power, compute, and reliability have to be taken into account for deep learning
methods used on orbit. the largest limiting factor is the limited computing ability which is
not suitable for large-scale networks deployment. Finally, some spacecraft are customized
productions, it is impossible to include all the components in the dataset, so these kinds of
special components cannot be identified through the network.

To tackle the above problems, we proposed a 3D spacecraft component segmentation
network named 3DSatNet. Our contributions can be summarized as follows:



Aerospace 2022, 9, 248 3 of 23

1. A multi-source dataset for 3D spacecraft component segmentation is proposed. The
dataset includes both visual point clouds and lidar point clouds using 3D reconstruc-
tion and 3D scanning. Finally, the dataset covers 32 3D spacecraft models including
3 component categories: body, panel, antenna.

2. We peoposed a 3D spacecraft component segmentation network named 3DSatNet
based on PointNet++ and made some improvements A geometrical-aware feature
extraction layer named FE layer using ISS (Intrinsic Shape Signatures) [27] keypoint
detection methods is proposed to extract geometric and transformation invariant
features. Furthermore, a new weighted cross-entropy loss is proposed to increase the
weight of components with fewer points, such as antenna. We fine tune the 3DSatNet
by freezing the feature extractor and retraining the last full connected layers. We made
some model pruning methods on PointNet++ to reduce the model size and compute
power demand.

3. When the partial prior point clouds of the target spacecraft are known, we proposed
a 3DSatNet-Reg network by adding a Teaser-based [28] 3D point cloud registration
module behind 3DSatNet to obtain higher component segmentation accuracy. For the
purpose of achieving semantic corrections, we assigned the label of the prior point
clouds to the closest point on semantic point clouds generated by 3DSatNet.

The remaining sections in this paper are organized as follows. Section 2 detailed
presents the 3D multi-source spacecraft segmentation dataset and the architecture of the
proposed 3DSatNet Network. Section 3 presents the experimental results. The result is
discussed in Section 4. This paper is concluded in Section 5.

2. Materials and Methods

As shown in Figure 1, this section describes the 3D spacecraft component segmentation
materials and methods we proposed. The 3DSatNet is trained on earth using our 3D
spacecraft component segmentation dataset. The input of the 3DSatNet network is the
3D point cloud of the target spacecraft which is reconstructed from a sequence of on-orbit
visual images or lidar-SLAM. The 3D point cloud is transferred into semantic point clouds
via the 3DSatNet. When the partial prior point clouds of the spacecraft are known, 3D
point cloud registration module based on Teaser [28] is added to 3DSatNet to obtain higher
component segmentation accuracy, which is named as 3DSatNet-Reg.

Section 2.1 is the introduction of the 3D spacecraft component segmentation dataset we
proposed to train the 3DSatNet model. Section 2.2 detailedly introduces the proposed 3D
component segmentation network named 3DSatNet, and Section 2.3 presents the network
3DSatNet-Reg for accurate segmentation.

On Earth

On orbit

3D spacecraft component 
segmentation dataset 

Model 

weights

3DSatNet

(Train)

3DSatNet

(Test)

Semantic 
point cloud

Partial  labeled 
prior point cloud

Partial prior 
point cloud 

Manual

label

On-orbit point cloud
Registration

3DSatNet-Reg

Corrected semantic 
point cloud

3DSatNet

Figure 1. The pipeline of the proposed 3D spacecraft component segmentation system.
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2.1. Dataset

We download the CAD model of the published spacecraft from open-source websites,
such as NASA https://www.nasa.gov/, accessed on 21 March 2022 and Free3d https:
//free3d.com/, accessed on 21 March 2022. Lately, we print the CAD models utilizing
the 3D printing technology to get the 3D printed models. As shown in Figure 2, Figure 2a
illustrates the CAD model of AcrimSAT https://nasa3d.arc.nasa.gov/detail/jpl-vtad-
acrimsat, accessed on 21 March 2022 downloaded from NASA, and Figure 2b presents the
3D printed model of this satellite. 28 CAD models and 5 3D printed models of different
sizes shapes are eventually obtained (Considering the expensive cost of the 3D printing
technology, we only print a trivial number of spacecraft CAD models).

(a) (b)

Figure 2. The CAD model and 3D printed model of ArcimSAT: (a) CAD model. (b) 3D printed model.

Further, the simulated point clouds and the actual point clouds are obtained. There
are three methods to gain 3D point clouds: generating 3D point clouds via AirSim, gen-
erating 3D point clouds via VisualSFM, generating 3D point clouds via 3D scanning of
spacecraft models.

Generation of 3D point clouds via AriSimAirSim is an open-source and cross-platform
simulation engine which can imitate the lidar data for multiple different channels. In
experiments, lidars of 32 channels are configured on the simulation engine, and parameters
are listed in the following Table 1.

Table 1. The configuration of the simulation lidar in AirSim.

Parameters Name Parameters

Number Of channels 32
Rotations per second 10

Points per second 100,000
Horizontal FOV range (0, 360)

Vertical FOV range (−20, 20)
xyz (0, 0, −1)

Roll Pitch Yaw (0, 0, 1)

To obtain a rather completed 3D model, the flight trajectory of the simulation engine is
designed in Figure 3a. Besides, to obtain accurate scanning results, it is necessary to rebuild
the collision model to the max for each component imported into the spacecraft. The final
scanned 3D point cloud is shown in Figure 3c.

Generation of 3D point clouds via VisualSFM: VisualSFM [29] is a GUI application
for 3D reconstruction using 2D images. VisualSFM is able to run very fast by exploiting
multicore parallelism in feature detection, feature matching, and bundle adjustment. There
are two methods to gain image sequences: Blender simulation, or using the camera on the
Nvidia Jetson TX2 https://developer.nvidia.com/embedded/jetson-tx2, accessed on 15
March 2022.

https://www.nasa.gov/
https://free3d.com/
https://free3d.com/
https://nasa3d.arc.nasa.gov/detail/jpl-vtad-acrimsat
https://nasa3d.arc.nasa.gov/detail/jpl-vtad-acrimsat
https://developer.nvidia.com/embedded/jetson-tx2
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(a) (b) (c)

Figure 3. Airsim simulation system: (a) Airsim simulated trajectory. (b) Airsim simulated trajectory.
(c) Airsim simulated point cloud.

Blender2.8.2 https://www.blender.org/, accessed on 15 March 2022 is used to gain
the simulation image sequence of spacecraft. As shown in Figure 4a, the CAD model of
the Aqua satellite is imported into Blender, and a circle with a radius of 10 m at 10 m
above the CAD model is drawn. Setting the camera’s light center aligned with the model,
600 simulation images with the size of 1024 × 1024 are obtained by shooting around along
the circular trajectory. Lately, the simulated vision point clouds are obtained via VisualSFM,
and the noise within them is manually removed to get the relatively clean point clouds as
shown in Figure 4b.

(a) (b)

Figure 4. Blender simulation system: (a) Blender simulation platform. (b) Simulation visual
point cloud.

The acquisition of actual image sequences uses the camera on the Nvidia Jetson TX2
developer component https://developer.nvidia.com/embedded/jetson-tx2, accessed on
15 March 2022, as shown in Figure 5a. The image acquisition frequency is 30 FPS, The TX2’s
camera is aligned to the 3D printed model, 600 actual images with the size of 1920 × 1080
are obtained by shooting around along the circular trajectory. The real vision point clouds
are obtained using the VisualSFM method.

(a) (b)

Figure 5. TX2 simulation system: (a) Camera on TX2. (b) Actual visual point cloud.

https://www.blender.org/
https://developer.nvidia.com/embedded/jetson-tx2
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Generation of 3D point clouds via 3D scanner: The scanner selected in this experiment
is EinScan Pro 2X Plus Handheld 3D scanner https://www.einscan.com/handheld-3d-
scanner/2x-plus/, accessed on 17 March 2022, as shown in Figure 6a below. Figure 6b
shows the scene of the 3D scanner scans a 3D printing model of spacecraft. According to the
different materials of spacecraft, the scanning mode includes handheld fine scanning and
handheld fast scanning. The handheld fine scanning mode is used to scan high reflective
objects by pasting control points on the target, while the handheld fast scanning mode
which does not need to paste control points is feasible for scanning general materials.

(a) (b)

Figure 6. 3D scan system: (a) 3D scanner scan spacecraft. (b) 3D scan point clouds.

As the initial CAD models have different sizes and shapes, varying from around 50 cm
to 6 m, which makes it difficult for MLP-based models to deal with. Furthermore, different
CAD models have different coordinate systems, for example, AcrimSAT satellite may use
the left vertex of the panel as the origin of coordinates while LRO https://nasa3d.arc.nasa.
gov/detail/jpl-vtad-lro, accessed on 23 April 2022 may use the centroids. Thus, point cloud
pre-processing methods including size normalization and centroid-based centralization
is required.

The pre-processing methods of point clouds are based on Equations (1) and (2), after
this pre-processing, the point clouds are transformed within the range of (0, 1) in x, y, and
z-axis. Where P ⊂ Rm×3 is raw point clouds, m is point numbers, P

′
is the centralized and

normalized point clouds data.
For a point cloud P ⊂ Rm×3 containing n points, Pi represents the ith points in P, P′i

represents the ith point in the point cloud after centralization. Pmorm represents the point
cloud after normalization. P′min represents the minimum value of the three channels (x, y, z)
in P′i . Similarly, P′max represents the maximum value of the three channels. Through the
above two steps, the coordinate range of the spacecraft is normalized to (0, 1), and the
coordinate origin is changed to the center of mass of the spacecraft.

P′i = Pi −
1
n

n

∑
i=1

Pi (1)

Pnorm =
P′ − P′min

P′max − P′min
(2)

In this paper, our annotation system is based on open-source software CloudCompare
https://www.cloudcompare.org/, accessed on 15 March 2022, and Figure 7 presents
its details.

As shown in Table 2, the 3D spacecraft component segmentation dataset divides
spacecraft into three categories: body, panel, antenna. In this dataset, the points distribution
between different components in a spacecraft can be largely varied, a solar panel occupies
8000–15,000 points, while an antenna only occupies 300–1500 points in point clouds with
20,000 points.

https://www.einscan.com/handheld-3d-scanner/2x-plus/
https://www.einscan.com/handheld-3d-scanner/2x-plus/
https://nasa3d.arc.nasa.gov/detail/jpl-vtad-lro
https://nasa3d.arc.nasa.gov/detail/jpl-vtad-lro
https://www.cloudcompare.org/


Aerospace 2022, 9, 248 7 of 23

Figure 7. Screenshot of annotation system.

Table 2. Label of components in 3D spacecraft component segmentation dataset.

Components Label

Body 0
Panel 1

Antenna 2

The results of some annotations are shown in Figure 8.

（c）Labeled actual visual 

point clouds 

（b）Labeled Airsim simulation 

lidar point clouds 

（a）Labeled simulation visual

point clouds 

（d）Labeled actual 3D scan 

point clouds

Visual point clouds Lidar point clouds 

Simulation

data

Actual

data

Figure 8. Visualization of the labeled spacecraft. (Red: antenna, Blue: body, Green: panel).

As shown in Figure 9, the format of the annotated point clouds is described as follows:
the first three columns are x, y, z coordinates, the following three columns are normal
vectors, and the last column is semantic labels.

A total of 66 raw point clouds of four types are generated, as is shown in Figure 3
each containing 20,000 points. Then, various methods are adopted to enhance the obtained
point clouds, such as randomly adding noise points, translating and rotating point clouds,
and adding different degrees of occlusion. After data enhancement, 792 point clouds
are obtained.
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Figure 9. Visualizationof the labeled data formation.

Table 3. Summary of the proposed 3D spacecraft component segmentation dataset.

Simulated Visual Actual Visual Simulated Lidar Actual Lidar

Acquisition methods Visual SFM Visual SFM AirSim 3D scan
Source CAD models 3D printed spacecraft CAD models 3D printed spacecraft

Model Types 28 5 28 5
Point Cloud Number 1 336 60 336 60

1 The point cloud number is the enhanced point cloud number and the summary of the two versions.

To facilitate the testing of various models, the final released dataset consists of two
versions: one with 20,000 points per point cloud which provides a detailed representation
of the three-dimensional structure of spacecraft, the other with around 2500 points per
point clouds which share similar point numbers per shape as the ShapeNet dataset. To be
specific, each point cloud with 20,000 points is downsampled to around 2500 points using
ISS methods.

2.2. 3DSatNet

The proposed 3DSatNet is inspired by PointNet++ [26]. The pipeline of the proposed
3DSatNet is demonstrated in Figure 10. Firstly, A geometrical-aware feature extraction
layer named the FE layer is proposed to extract geometric and transformation invariant
features. When extracting features, the point cloud is continuously down-sampled. Then,
the FP (Feature Propagation) layer is used for feature aggregation, which includes an
up-sampling and skip connection parts. Moreover, a new loss function is proposed to
increase the segmentation accuracy of the component with fewer points, such as antenna.
The following sections will describe more details of the network.

Figure 10. The architecture of the proposed 3DSatNet.
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2.2.1. The Proposed Geometrical-Aware FE Layers

The proposed FE layers contain three parts: ISS (Intrinsic Shape Signatures) point
selection, ball query, and PointNet. We first partition the set of points into overlapping
local regions by the ISS [27], ball query, and then feed them into PointNet for further
feature extractions.

ISS [27] point selection method has better coverage of the structure point set given
the same number of centroids. The ISS saliency measure is based on the Eigenvalue
Decomposition (EVD) of the scatter matrix S(p).

S(p) =
1
N ∑

q∈N (p)

(
q− µp

)(
q− µp

)T

with µp =
1
N ∑

q∈N (p)
q

(3)

N (p) means the neighborhood point of the point p, S(p) means the scatter matrix of the
points belonging to the neighborhood of p. q represents the points in N (p). N means the
total number of N (p).

Given S(p), the eigenvalues λ1, λ2, λ3(λ1 > λ2 > λ3) are computed, points whose
ratio between two successive eigenvalues is below a threshold are retained:

λ2(p)
λ1(p)

< γ12 ∧
λ3(p)
λ2(p)

< γ23 (4)

where γ12 = 0.5 and γ23 = 0.5.
After the detection step, a point will be considered as an ISS keypoint if it has the

maximum salience value in a given neighborhood, as is shown in Figure 11.

Figure 11. The ISS keypoint extraction result. The red points are the selected ISS keypoints.

After obtaining the ISS key points, we take them as the center of the sphere and draw
a sphere with a certain radius (given that point clouds in the dataset have been normalized,
the radius is taken as 0.2 in this paper). Then the points located in the sphere are indexed.
Although the number of points varies across groups, the PointNet layer can convert them
into feature vectors with fixed-length.

The PointNet network is used as the backbone to extract feature vectors of point
clouds. In order to reduce the model size, this paper prunes the PointNet network structure.
For the input point clouds, PointNet firstly uses a T-Net network to learn 3× 3 matrices to
convert the input of different perspectives into the input of the same perspective, but this
part doubles the size of the network. So we remove the T-Net Network and use MLP to
extract transformation invariant features.

The following Figure 12 shows the original structure of PointNet network and the
PointNet network structure used in our FE layer.
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(a)

(b)

Figure 12. Comparison of PointNet structure and the PointNet network structure used in our FE
layer: (a) Partical structure of initial PointNet. (b) Partical structure of PointNet used in our FE layer.

We convert the MLP to matrix form, it can be found that the hidden feature vector is
as follows:

h(P) =


x1 y1 z1
x2 y2 z2
...

...
...

xn yn zn


 w11 w12 · · · w1k

w21 w22 · · · w2k
w31 w32 · · · w3k

+
[

b1 b2 · · · bk
]

(5)

(xi, yi, zi) are coordinates of one point Pi in the point cloud P, k represents the output chanel
of MLP, in our network k = 64.

The learnable parameters of the MLP can act as a many rotation martix. The output
of the T-Net is a 3 × 3 rotation matrix. Considering that the point cloud is put into a
3 × 64 MLP, the 64 output channels is stroung enough to make the network’s rotation
invariant approximately.

2.2.2. The FP Layers

FP layers share a similar structure as PointNet++’s decoder part, which adopts a
hierarchical propagation strategy with distance-based interpolation and across-level skip
links. Taking the FP3 layer as an example, for the 1 × 1024 feature output by FE3 layer,
it was simply repeated 128 times to 128× 1024. Then the feature was combined with the
128× 896 features output by the FE2 layer to form a new 128× (1024 + 896) feature, and
then mapped to 128× 256 by MLP.

2.2.3. Loss Function

As stated in Section 1 that data distribution between different components in a space-
craft can be largely varied. To improve the segmentation accuracy of components with few
points(e.g., antenna), we proposed a new weighted cross-entropy loss.

L = −
3

∑
c=0

wcyc log(pc) (6)

wc =
N−Nc

N is a weighted parameter indicating that the point belongs to a certain category,
Nc represents the number of points belonging to the class c, yc is a one-hot vector. If the
segmentation result is consistent with the prior label, the value of yc is set as 1; otherwise,
the value will be set as 0. pc represents the probability that the predicted sample belongs to
class c.

2.3. 3DSatNet-Reg

In OOS tasks, several pictures and several frames of lidar scanning results of the target
spacecraft can be obtained, and then visual 3D reconstruction technology and lidar 3D
reconstruction techniques are used to obtain partial prior point clouds. Aiming at the
problems of spatial target component segmentation with prior point clouds, this section
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proposes a Teaser-based [28] component semantic segmentation network 3DSatNet-Reg.
The labels of the prior point clouds labeled on earth are assigned to the closest point of the
raw semantic point cloud gained by 3DSatNet. The pipeline of the proposed 3DSatNet-Reg
is shown in Figure 13.

D3Feat 

Detection 

and Description

D3Feat 

Detection 

and Description

Teaser 

Registration

ICP

Refinement

Semantic 

Correction

Semantic point cloud 
using 3DSatNet

Labeled partial prior 
point cloud Registered 

point clouds

Corrected semantic 
point clouds

Figure 13. Pipeline of the proposed 3DSatNet-Reg network.

The point cloud registration problem aims to find the optimal rotation, translation
and scale transformation matrices of the labeled prior point clouds A = {ai}N

i=1 and the
on-orbit semantic point cloud B = {bi}N

i=1. Considering the influence of the noise of the
on-orbit semantic point cloud, the problem can be modeled as Equation (7):

bi = s◦R◦ai + t◦ + oi + εi (7)

where s◦ > 0, R◦ ∈ SO(3), t◦ ∈ R3, εi models the measurement noise, and oi is a vector of
zeros if the pair (ai, bi) is an inlier. ‖εi‖ ≤ βi, where βi is a given bound.

The critical technology to realize partial prior point clouds and overall semantic
point cloud registration is to detect the corresponding point pairs on the two point clouds.
Traditional feature extraction methods such as FPFH (Fast Point Feature Histogram) and
VFH (Viewpoint Feature Histogram) can’t perform well, so we use D3Feat [30] to realize
local feature detection and description which can be used to find key points and point
correspondences with noise.

ICP (Iterative Closest Point) [31] is a commonly used registration algorithm when
the initial pose between the two point clouds is not too large. Considering the large
poses and scale difference between the prior point clouds and the semantic point cloud, a
highly robust Teaser [28] registration algorithm is added to achieve a rough registration
and estimation scale of two point clouds before ICP. Then, ICP is used to optimize the
registration results.

Teaser [28] is a registration algorithm that can tolerate a large amount of noise. Teaser
uses a TLS (Truncated Least Squares) cost that makes the estimation insensitive to a large
fraction of spurious correspondences. It assumed the noise is unknown but bounded and
proposed a general approach to decouple the estimation of scale, translation, and rotation.

The TRIMS (Translation and Rotation Invariant Measurements) [28] is used to estimate
the scale ŝ.

ŝ = arg min
s

K

∑
k=1

min

(
(s− sk)

2

α2
k

, c̄2

)
(8)

Equation (8) can be solved exactly and in polynomial time via adaptive voting.
bounded noise

∣∣∣εs
ij

∣∣∣ ≤ αij.
Given the scale estimate ŝ produced by the scale estimation and TIMS (Translation

Invariant Measurements). The rotation estimate R̂ is defined as Equation (9) which can be
solved in polynomial time via a tight semi-definite relaxation. bounded noise

∥∥εij
∥∥ ≤ δij.

R̂ = arg min
R∈SO(3)

K

∑
k=1

min


∥∥∥bk − ŝRak

∥∥∥2

δ2
k

, c̄2

 (9)
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After obtaining the scale and rotation estimates ŝ and R̂, t̂ is estimated from (ai, bi) in
Equation (10) which can be solved exactly and in polynomial time via adaptive voting.

t̂j = arg min
tj

N

∑
i=1

min


(

tj −
[
bi − ŝR̂ai

]
j

)2

β2
i

, c̄2

 (10)

Finally, the ICP [31] algorithm is used to complete fine registration. Estimate the
combination of rotation and translation using a point to point distance metric minimization
technique defined in Equation (11) which will best align each source point to its match
found in the previous step. Then transform the labeled prior point clouds using the
obtained scale, translation, and rotation.

(R, t) = argmin
R∈SO(3),t∈R3

n

∑
i=1
‖Rai + t− bi‖2 (11)

After registration, we calculate the closest point between the on-orbit semantic point
cloud and the labeled prior point clouds and assign the label to the closest point.

3. Results
3.1. Overall Performance

This section demonstrates the proposed 3DSatNet on both the ShapeNet-Part dataset
and the proposed spacecraft component segmentation dataset. Then, we compare it with
SOTA (State-of-the-Art) models.

3.1.1. Overall Performance on the ShapeNet-Part Dataset

The ShapeNet-Part dataset consists of 16,881 3D objects, covering 16 shape categories.
Most of the point cloud instances are annotated with less than six labels, and there exist
50 parts labels in total. Following the official split policy announced by [32], the dataset is
split into training, validation, and testing parts, containing 12,137, 1870, and 2874 shapes
respectively. Both the object categories and the object components within the categories are
highly imbalanced in the ShapeNet-Part dataset.

In this section, 3DSatNet is compared with the popular networks, including CNN-
based, Graph-based, Transformer-based, and MLP-based methods. All of the networks are
trained and tested on Nvidia RTX 3090 https://www.nvidia.cn/geforce/graphics-cards/
30-series/rtx-3090-3090ti/, accessed on 22 April 2022 with 24 GB memory. We count the
GPU occupancy of these networks. In terms of the metric for evaluation, we adopt the
instance average mIoU and the class mIoU (mean Intersection-over-Union). The IoU of
the shape is calculated by the mean value of IoUs of all components in that category, and
instance mIoU is the average of IoUs for all testing shapes. The class mIoU is the average
of IoUs for all testing classes. In the table, techniques like PointNet++, SO-Net also exploit
normals besides point coordinates as the input features.

mIoU derives from the confusion matrix. Given that there exist τ + 1 classes in
spacecraft point clouds (Body: 0, Panel: 1, Antenna: 2), pij denotes the amount of points of
class i inferred to class j. Assuming that pij is true positive, so pji and pii represent false
positives and true negatives respectively. Under the circumstances, we can derive the mIoU
as Equation (12):

mIoU =
1

τ + 1

τ

∑
1

pii

∑τ
j=0 pij + ∑τ

j=0 pji − pii
(12)

It can be seen in Table 4 that although KPconv [23] achieves the highest class mIoU and
Instance mIoU, the large model size and params numbers make it unsuitable for the OOS
tasks. The Transformer-based point transformer occupied the most GPU memory, which
can’t be deployed on Nvidia TX2 (the fastest, most power-efficient embedded AI computing
device that has the potential to be used on-orbit). The proposed 3DSatNet not only achieves

https://www.nvidia.cn/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://www.nvidia.cn/geforce/graphics-cards/30-series/rtx-3090-3090ti/
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the similar instance mIoU and class mIoU as SpiderCNN [33] and DGCNN [34] but also
achieves an increase of 0.6% compared to the initial PointNet++_SSG and 0.2% compared
to PointNet++_MSG. Particularly, our 3DSatNet achieves the smallest GPU usage (equal to
PointNet) because we remove the T-Net part of PointNet and use the geometrical-aware
FE layers.

Table 4. Comparisons with the SOTA methods on the ShapeNet-Part dataset and 3D spacecraft
component segmentation dataset (%).

ShapeNet-Part Dataset Our Dataset

Models Backbone GPU-
Memory

Class
mIoU

Instance
mIoU Size Params Forward

Time
Instance

mIoU

KPconv [23] CNN 2.8 GB 85.1 86.4 56 MB 14.2 M - -
SpiderCNN [33] CNN 6.5 GB 82.4 85.4 27 MB 6.5 M - -

PCNN [35] CNN - 81.8 85.1 62 MB 8.2 M 326 ms 84.2
DGCNN [34] Graph 2.4 GB - 85.2 22 MB 1.85 M 340 ms 84.8

PT [36] Trans 8.2 GB 82.6 85.8 51 MB 15.3 M - -

PointNet++_MSG [26] MLP 2.0 GB 81.9 85.1 26.8 MB 1.7 M 278 ms 83.6
PointNet++_SSG [26] MLP 1.8 GB 81.2 84.7 24 MB 1.5 M 260 ms 82.8

PointNet [25] MLP 1.5 GB 80.3 83.7 30.8 MB 3.5 M 156 ms 82.1
3DSatNet MLP 1.5 GB 82.1 85.3 20.8 MB 1.3 M 228 ms 84.7

3.1.2. Overall Performance on 3D Spacecraft Component Segmentation Dataset

This section contains two groups of experiments. The first group experiments ex-
plore how to train the network, and the second group compares 3DSatNet network with
SOTA networks in our dataset. All experiments in this section are tested on embedded
computing devices.

The proposed 3D spacecraft component segmentation dataset is insufficient enough
compared with the ShapeNet-Part dataset, which even cannot be improved despite we
adopt multiple sensors to acquire the 3D point clouds. Training the 3DSatNet directly
on our dataset takes the risk of over-fitting and affects the generalization of the model.
Thus, we train a fine-tune model based on the spacecraft dataset and initialize the model
weights with ones that are pre-trained on the ShapeNet-Part dataset. To be specific, we
establish a pre-trained weights on the ShapeNet-Part dataset and then froze layers except
for the FC layers. Only the FC layers are trained during the training process. The training
process is run on the Nvidia RTX 3090 with 24 GB memory, and all testing process based
on the proposed dataset is run on the Nvidia Jetson TX2. Nvidia Jetson TX2 https://
www.nvidia.cn/autonomous-machines/embedded-systems/jetson-tx2/, accessed on 23
April 2022 is a power-efficient embedded 7.5-watt AI computing device. It’s built around
an NVIDIA Pascal™-family GPU and loaded with 8 GB of memory and 59.7 GB/s of
memory bandwidth.

The first experiment demonstrates the influence of different training data on segmen-
tation results through several comparative experiments. As shown in Table 5, considering
that the data obtained on-orbit are actual point clouds, the test part only contains actual
lidar point clouds and actual visual data. The training process requires large amounts of
data and cannot be completed using only actual lidar or actual visual point clouds. There-
fore, in the training data, the Lidar only in Table 5 means that the training part contains
only simulated lidar and real lidar point clouds, while Lidar & Visual indicates that the
training sample contains four kinds of point clouds.

https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-tx2/
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Table 5. Studies on the different sources in 3D component segmentation dataset (%).

Model Train Train Point Cloud
Number Test Test Point Cloud

Number Instance mIoU

A Lidar only 366 Actual Lidar 30 84.2
B Lidar & Visual 762 Actual Lidar 30 84.5
C Visual only 366 Actual Visual 30 82.8
D Lidar & Visual 762 Actual Visual 30 83.3

Compare experiment A with B, adding visual point clouds to the training part can
improve the instance mIoU, experiment C and D can get the same conclusion. So we
suggest using all sources of point cloud to train the fine-tuned 3DSatNet network.

Secondly, we try to deploy all the advanced algorithms in Table 4 on TX2. Unfortu-
nately, KPconv [23], Point transformer [36], SpiderCNN [33], and other algorithms can not
be deployed due to their high GPU memory usage and large model size.

This experiment compares the proposed algorithm with five networks: PointNet [25],
PointNet++_SSG [26], PointNet++_MSG [26], PCNN [35], and DGCNN [34] for spacecraft
segmentation on the proposed dataset.

The segmentation results are listed in Table 4. Although DGCNN achieves the best
instance mIoU, the KNN computation and dynamic kernel computation are quite time-
expensive. Our 3DSatNet achieves an IoU of 84.7%, which is superior to the other three
MLP-based models. This experiment demonstrates that the ISS point selecting methods and
the weighted cross-entropy loss proposed in our algorithm can improve the segmentation
accuracy. Furthermore, the pruning of T-Net can make the model size reduced by 13.3%
compared with PointNet++_SSG.

3.1.3. Components Segmentation Results Using 3DSatNet and 3DSatNet-Reg

In this section, we conduct an experiment to support our claim that the 3DSatNet-Reg
has better performance than 3DSatNet. The experiment is based on a lidar point cloud
generated by Arisim using the CAD model of Mars https://nasa3d.arc.nasa.gov/detail/
eoss-mgs, accessed on 23 April 2022 with special components and a visual point cloud
generated by visualSFM using the CAD model of Aqua https://nasa3d.arc.nasa.gov/
detail/jpl-vtad-aqua, accessed on 23 April 2022. The visual point cloud contains a lot of
noise. The visualization and precision analysis of the component segmentation results via
3DSatNet and 3DSatNet-Reg are presented in Figure 14 and Table 6.

Note that the 3D component segmentation results generated by other networks are
listed in Figure A1.

GT 3DSatNet

Lidar

Visual

3DSatNet -RegPartial Prior 3DSatNet error 3DSatNet- Reg error

Figure 14. Visualization of the component segmentation results via different networks. (Blue:
panel, Green: body, Red: Antenna, Grey: special components. In 3DSatNet error and 3DSatNet
error Figures: red points represent wrong segmented points, blue points represent points that are
segmented correctly).

https://nasa3d.arc.nasa.gov/detail/eoss-mgs
https://nasa3d.arc.nasa.gov/detail/eoss-mgs
 https://nasa3d.arc.nasa.gov/detail/jpl-vtad-aqua
 https://nasa3d.arc.nasa.gov/detail/jpl-vtad-aqua
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Table 6. Accuracy evaluations of the component segmentation result via different models (%).

Categories Methods Body Panel Antenna Special

Lidar

DGCNN [34] 87.1 84.2 68.2 -
PCNN [35] 86.5 84.4 67.5 -

PointNet++(MSG) [26] 85.3 83.4 62.5 -
PointNet++(SSG) [26] 84.8 82.6 58.2 -

PointNet [25] 84.3 81.5 56.1 -
3DSatNet 86.2 83.8 68.2 -

3DSatNet-Reg 86.2 83.7 68.2 89.2

Visual

DGCNN [34] 82.2 80.7 47.5 -
PCNN [35] 81.2 80.2 43.8 -

PointNet++(MSG) [26] 80.2 78.6 43.5 -
PointNet++(SSG) [26] 79.3 78.4 38.4 -

PointNet [25] 78.2 76.5 31.2 -
3DSatNet 81.3 80.9 48.5 -

3DSatNet-Reg 81.2 91.1 48.5 -

The lidar point cloud contains a special component that does not appear in the dataset,
as the red box shown in lidar point clouds in Figure 14. Due to this inexistent component,
3DSatNet fails to generate semantic labels. However, when the prior model of the compo-
nent is known, its semantic label can be predicted by the 3DSatNet-Reg and achieve an IoU
of 89.2%.

Due to the presence of noise in the visual point cloud, the component segmentation
results are far from expectations. The 3DSatNet network segments poorly even upon these
popular components, such as body, panel. When the prior of the panel is provided, we can
get the accurate segmentation result of the panel using registration.

The segmentation precision is shown in Table 6. Quantitative analysis shows that
our 3DSatNet-Reg has achieved better results than the 3DSatNet, and can accurately
generate the semantic labels of the components which are inexistent in the dataset using
the supervision of registration.

3.2. Ablation

We design and perform extensive ablation studies on the proposed 3D spacecraft com-
ponent segmentation dataset to analyze the significance of different components proposed
for the 3DSatNet: the Fine Tune methods, the proposed geometrical-aware FE layer, and
Our loss function.

We run tests on the 3D spacecraft component segmentation dataset under the same
settings, and Table 7 presents the results. Model A means to train the 3DSatNet network
on our dataset directly. Model B, C, and D use the weights trained on the ShapeNet-Part
dataset as the weights of the trunk network, and only the FC layers and trained on our
dataset. Model C uses the geometrical-aware FE layer, and model D uses both the FE layer
and the proposed loss function.

As is shown in Table 7, directly training 3DSatNet network on our dataset has the
problem of over-fitting. Considering there is only one class in our dataset, so we only com-
pute the instance mIoU. Comparing model D to model B and model C, we observe that the
proposed FE layer and the proposed loss function significantly improve the part segmenta-
tion’s network performance. Compared to model B, model D’s instance mIoU improved by
1.5%. These ablation experiments are further described in the following sections.
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Table 7. Ablation studies on the proposed 3D component segmentation dataset (%).

Model Fine-Tune Our Geometrical-Aware
FE Layer

Our Loss
Function Instance mIoU

A - - - over-fitting
B X - - 83.2
C X X - 84.0
D X X X 84.7

3.2.1. Comparisons on the Feature Extraction Methods

In this experiment, we compare the proposed ISS with FPS and random selection
methods. The three point selection methods are used to select 5 to 150 points. The sampling
results are then processed by 3DSatNet on the spacecraft dataset.

The component segmentation results using three point selection methods are shown in
Figure 15. The points selected by FPS contain no structure information, which leads to the
network performing badly on some spacecraft’s components with few points.The ISS point
selection method achieved the best performance. When the number of selected key points is
20, the performance of the ISS-based point selection method achieved 11% higher accuracy
than the FPS. With the increase of sampling number, the performance of the ISS is slightly
better than FPS and a random selection, the advantage of the proposed method became
less evident. That is because, with a large sampling numbers, randomly selected and
FPS can ultimately sample the points along the spacecraft edges. The experiment results
demonstrate that if the reconstructed point cloud is sparse, for example, the total number
is below 150, it is crucial to use the ISS point selection method for a better component
segmentation accuracy.

IoU

Points num

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 20 40 60 80 100 120 140 160

ISS FPS RandIoU

Points num

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 20 40 60 80 100 120 140 160

ISS FPS Rand

Figure 15. Component segmentation accuracy of three point selection methods.

3.2.2. Comparisons on the Different Loss Functions

This experiment tests the different component segmentation performances using two
different losses of point clouds: the proposed loss function and cross-entropy loss. The
component segmentation visualization is shown in Figure 16. The accuracy and IoU with
are defined the same as [25] are listed in Table 8. The red dots represent the points predicted
incorrectly, and the blue dots represent the points predicted correctly.

It can be seen in Figure 16 and Table 8 that while using the proposed loss function, the
component segmentation accuracy of body, panel, and antenna are all increased. Particu-
larly, the IoU of the antenna significantly increase by 15.8% while the segmentation IoU of
other categories not be affected.
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Cross-entropy loss Weighted cross-entropy loss Cross-entropy loss Weighted cross-entropy loss 

Panel

Body

Antenna

The proposed loss functionCross-entropy loss

Figure 16. The segmentation error visualization of cross-entropy and the proposed loss function.
(red: wrong segmented points; blue: correct segmented points).

Table 8. Accuracy evaluations of cross-entropy loss and the proposed loss function (%).

Components Methods Accuracy IoU

Body
Cross-entropy loss 89.1 80.3

The proposed loss function 91.2 82.1

Panel
Cross-entropy loss 84.6 80.7

The proposed loss function 92.3 84.6

Antenna
Cross-entropy loss 95.2 41.8

The proposed loss function 93.1 57.6

3.2.3. Registration Results

This section verifies the feasibility of the registration scheme proposed in this paper.
Experiments are carried out on two types of point clouds: visual point clouds and lidar
point clouds. The experimental results are shown in Figure 17.

As shown in Figure 17, the first two columns are the results of D3Feat feature points
(red points shown in Figure 17) extracted from the global point cloud and the prior point
clouds respectively. The third column demonstrates the initial poses of the prior point
clouds and the semantic point clouds gained by 3DSatNet, and their registration results are
depicted in the fourth column. Further, the fifth column visualized the accuracy evaluation
results of registration, and the sixth column presents the diagram of average precision. A
conclusion can be drawn from Figure 17 that the proposed 3DSatNet-Reg can correctly
register the two point clouds.
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Priori Semantic Initial pose Reg- result Dist visualize Dist analyze

Lidar

Visual
Panel

Panel

Body

Body

Priori Semantic Initial pose Reg- result Dist visualize Dist analyze

Lidar

Visual
Panel

Panel

Body

Body

Figure 17. Partial prior point clouds registered with semantic point clouds generated by 3DSatNet.

We calculate the Euclidean Distance of the nearest points between the partial point
cloud S1 and the complete point cloud S2 in the accuracy evaluation and utilize average
distance to present the registration error. It is defined as:

d(x, S2) = min
y∈S2

√
(x− y)2 (13)

As shown in the sixth column in Figure 17, for the visual point cloud with the size
of 1.25 m × 0.56 m × 0.48 m, the average registration accuracy of the body part is 0.7 cm,
while it is 3.2 cm for the panel due to the presence of noise. As for the simulated lidar point
cloud with the size of 1.35 m × 0.86 m × 0.65 m, the average registration accuracy of the
body part is 0.56 cm, and that is 0.51 cm for the panel with less noise.

As we can see in Table 9, registering partial prior point clouds with the semantic
point clouds gained by 3DSatNet cannot be achieved by ICP [31] alone. Comparing
model B to model C and model D to model E, adding ICP [31] behind Teaser [28] can
obviously improve the registration accuracy. Using Teaser’s registration results as the
initial transformation, ICP only needs a small number of iterations to get nearly perfect
registration results. Comparing model C to model E, the deep learning-based D3Feat [30]
can obtain repeatable keypoints for 3D point clouds compared with FPFH [37].

Table 9. Accuracy evaluations of registration.

Lidar Point Clouds Visual Point Clouds
Model Feature Registration Methods Error Time Error Time

A - ICP [31] - - - -
B FPFH [37] Teaser [28] 1.02 cm 0.68 s 7.28 cm 0.75 s
C FPFH [37] Teaser + ICP 0.67 cm 0.86 s 6.05 cm 1.24 s
D D3Feat [30] Teaser [28] 0.96 cm 0.74 s 6.35 cm 1.02 s
E D3Feat [30] Teaser + ICP 0.43 cm 0.99 s 5.14 cm 1.46 s

4. Discussion

This section describes a few limitations and planned future improvements on our
3DSatNet performance and 3D spacecraft component segmentation dataset.
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4.1. Dataset Limitations

The proposed 3D spacecraft component segmentation dataset is insufficient enough
to train large scale networks, such as Kpconv [23], CapsuleNet [38], DGCNN [34], and
Point Transformer [36]. To solve this problem, firstly, we have adopted multiple sensors
to acquire 3D point clouds. Then, we initialize the model weights with ones that are
pre-trained on the ShapeNet-Part dataset. Therefore, future sequels of the dataset will
include more spacecraft to facilitate the study of deep learning techniques beyond the
application of 3D component segmentation about non-cooperative spacecraft. Furthermore,
more advanced point cloud filtering methods can be used to improve the quality of the
visual point clouds. For example, we can adopt GAN (Generative Adversarial Networks)
to complete the point clouds.

4.2. Relation to Real Mission Constraints

In real missions, lidar is used to compute distances and relative poses. When the
distance is long, the spacecraft contains only a few points, which cannot conduct component
segmentation. For practical application, it is necessary to perform a fly-around task before
component segmentation, using lidar odometry to reconstruct complete spacecraft point
clouds, or using visual SLAM reconstruction to obtain sparse point clouds. In 3DSatNet-
Reg, the prior point clouds obtained are not complete, and the density of the prior point
clouds and semantic point clouds is also different. Future work will use some point clouds
from lidar odometry to verify the registration accuracy.

4.3. Further Refinement of Segmentation Accuracy of Components with Fewer Points

To find a 3D component segmentation network suitable for spacecraft, our methods
are based on the PointNet++ network and contain many improvements. A new weighted
cross-entropy loss is proposed to increase the weight of components with fewer points. The
pruning operation is performed on the model to reduce the size of 3DSatNet. The effect of
improvement is still insignificant due to the limitation of MLP characterization capability.
It is necessary to explore lightweight networks and introduce attention mechanisms to
achieve higher-precision 3D spacecraft component segmentation results. Moreover, the
accuracy of semantic correction in 3DSatNet-Reg depends on the accuracy of registration,
more efforts should be made to increase registration accuracy.

5. Conclusions

This paper proposes a 3D spacecraft component segmentation dataset with multi-
source spacecraft point clouds. Then, A 3D spacecraft component segmentation network
named 3DSatNet is proposed with a geometrical-aware FE layer to extract geometric and
transformation invariant features and a new loss function to increase the segmentation
performance of spacecraft components with fewer points. Experiments carried out using the
proposed dataset and the ShapeNet prove that our network achieves better segmentation
instance mIoU compared to all MLP-Based networks, and achieves the smaller forward
time and model size compared to CNN-based, Graph-based networks. Specifically, when
the prior point clouds are known, 3DSatNet-Reg is recommended. By registering the
labeled prior point clouds with the on-orbit semantic point cloud, 3DSatNet-Reg has the
ability to segment special components that are not contained in the dataset.
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Appendix A

3DSatNet

Visualization

(b) Visual point cloud of Aqua

3DSatNet

-Reg

PointNet++

(MSG)

PointNet++

(SSG)

PointNet

DGCNN

PCNN

Error Visualization Error

(a) Lidar point cloud of Mars

Figure A1. Spacecraft component segmentation results using special networks. (Blue: panel, Green:
body, Red: Antenna. In error Figures: red points represent wrong segmented points, blue points
represent points that are segmented correctly).
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