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Abstract: This paper proposes a modified glideslope guidance method that optimizes a hybrid
multiobjective of bearing-only navigation error and fuel consumption. The traditional glideslope
guidance fixes uniform maneuver intervals and the initial approach velocity as a predetermined
value, making this approach inflexible. In this paper, the maneuver intervals and the initial approach
velocity were used as optimization variables, and a hybrid cost function was designed. The tradeoff
between the two objectives was analyzed with a bearing-only navigation simulation conducted to
reveal the navigation performance following different resulting trajectories. The result showed that
the optimal scheduled times of maneuvers remained relatively stable under different tradeoff weights,
while a strong correlation between the optimal initial approach velocity and the tradeoff weight
was revealed. Therefore, when the optimization has to be solved several times online with different
tradeoff weights, the initial approach velocity can be the only optimization variable, leaving the
scheduled times of maneuvers fixed in the optimal values achieved offline. These findings provide a
potential reference for far-approach trajectory design of bearing-only navigation.

Keywords: guidance optimization; multipulse glideslope; far approach to small celestial bodies;
bearing-only navigation

1. Introduction

Small celestial body missions are popular with different mission profiles, such as
impactors [1], high-speed flybys [2], orbiters [3], landers [4], and sample returns [5–7],
because they cannot only promote space technology to defend the Earth, but also help us
understand the origin and evolution of the solar system [8].

The far-approach phase is necessary for all small celestial body missions [9,10]. It
is the key phase where the interplanetary transfer ends and the detection of the asteroid
begins [11]. Due to the orbit propagation error and the maneuver execution error during the
interplanetary transfer phase, as well as the error of the asteroid ephemeris, far-approach
guidance is necessary to arrive at a relative range and accuracy that will allow the start of
close-approach autonomous operations.

The far-approach guidance of the spacecraft usually realizes the optimization of some
performance indices (such as fuel consumption or rendezvous time) under multiple con-
straints. This generally requires that the original problem to be constructed as an optimal
control problem (OCP), such as linear programming (LP), quadratic programming (QP),
quadratically constrained quadratic programming (QCQP), second-order cone program-
ming (SOCP), and mixed integer programming (MIP) [12–14]. These problems are generally
solved by the active set or interior point method [3]. Due to the high sensitivity of open-loop
rendezvous guidance in the face of uncertain conditions, autonomous guidance generally
requires such an optimal control problem to be embedded into the closed-loop feedback
system, in which the real-time estimation of the state by the navigation system is used as
the input of the closed-loop guidance. In the closed-loop feedback guidance architecture,
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the optimal control problem needs to be solved repeatedly with a receding time horizon
and using current navigation filter estimates to set the initial conditions (ICs) for the op-
timization, which corresponds to model predictive control in spacecraft rendezvous [15].
This puts forward high requirements for computational efficiency when repeatedly solv-
ing the optimal control problem. In addition, Hablani proposed a multipulse glideslope
guidance method based on the Clohessy–Wiltshire (CW) equation [16], which was used
for rendezvous and proximity operations of the Space Shuttle because of its advantages
of an arbitrary design of the approximation direction, gradual reduction of the relative
distance and relative speed, prevention of collision, and safety. However, these guidance
methods usually fix uniform maneuver intervals and do not consider the optimization of
the scheduled times of maneuvers. Benedikter discretizes the independent variable over a
dense time grid to optimize the scheduled times of maneuvers, which is a viable choice,
despite one that makes the problem more complex [17].

In recent years, some researchers have taken navigation performance into considera-
tion in guidance method design [18]. During the far-approach phase to a small celestial
body, the spacecraft is far from the body, and the available relative measurement sensor
is generally only a narrow field camera. Therefore, the uniqueness of the asteroid far-
approach guidance design lies in the fact that the limited available sensors necessitate the
observability and navigation accuracy of relative angle-only navigation (AON) [19]. Based
on the geometric interpretation of maneuvers in angle-only rendezvous, Woffinden and
Geller proposed observability criteria for AON and developed an analytical solution of
the maneuver for optimizing observability [19,20]. Subsequently, Grzymisch et al. derived
a simpler closed form of the observability criteria from the concept of linear uncorrela-
tion, analytically obtained optimal observability maneuvers and proposed an optimal
rendezvous guidance method with enhanced angle-only observability [18,21,22]. Mok et al.
defined an observability measurement derived from the Fisher information matrix (FIM)
and the Cramér–Rao lower bound (CRLB) and added this measurement to the optimization
objective function to obtain a multipulse rendezvous guidance law [23]. Based on an angle-
only measurement equation with pseudorange measurement, Hou et al. used the FIM
and the CRLB to estimate navigation accuracy, providing another observability criterion.
The sum of the CRLB at each observation time during the whole process was taken as
the objective function of single maneuver rendezvous optimization [24]. In addition to
theoretical research, an angle-only rendezvous on-orbit test was conducted at the end of the
PRISMA mission [25]. In this test, the orbit maneuver of the spacecraft was planned offline
to maintain the desired formation configuration, and observability was used to select a
better strategy from the solved rendezvous strategy set. Generally, the above studies also
fix uniform maneuver intervals. They are suitable for missions with short rendezvous
times [26].

In our work, navigation accuracy optimization, fuel consumption optimization, and
multipulse glideslope guidance are combined to realize a multipulse glideslope guidance
method with an enhanced navigation accuracy. The scheduled times of maneuvers and
the initial approach velocity are used as optimization variables to reveal their influence on
the far approach guidance. The proposed method retains the advantages of the multipulse
glideslope guidance method, including on-demand approach direction design and the
decreasing approach speed with the distance, and adds the optimization of the mixed
index of AON accuracy and fuel consumption. It is an attractive choice for the approach
trajectory design of a small celestial body mission.

The structure of this paper is organized as follows. First, the navigation accuracy
criteria based on the FIM are given in Section 2. Then, Section 3 introduces traditional multi-
pulse glideslope guidance and analyzes its potential independent variables. In Section 4, an
offline multipulse glideslope guidance method with a hybrid optimization of the navigation
accuracy and fuel consumption is proposed. Then, simulation results are given in Section 5,
and the influence of the weight of navigation accuracy vs. fuel consumption is analyzed.
Finally, Section 6 concludes with some interesting findings.
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2. Navigation Accuracy Criteria Based on the FIM
2.1. AON System with an Orbit Maneuver

For convenience, researchers usually study AON based on the orbital relative motion
equations—the CW equations [27]—under the assumption of a circular orbit and short
rendezvous times. However, the orbit of small celestial bodies around the Sun is generally
nonnegligibly elliptical, and the far approach to small celestial bodies lasts a long time. In
this paper, the Tschauner–Hempel (TH) equation [28] under the assumption of an elliptical
orbit is adopted, which also has an analytical homogeneous solution [29], similar to the
CW equations. After an impulse maneuver u, the relative motion equation can be written
as follows:

x(t) = Φ(t)x0 + G(t)u. (1)

The equation is defined in the asteroid Hill rotation coordinate system (see Appendix A
and Figure A1), where x0 is the state vector at the initial maneuver time and x is the state
vector at time t after the impulse maneuver. See Appendix B for the definitions of state
transition matrix Φ(t) and input matrix G(t), which are subsequently abbreviated as Φ

and G, respectively, and their block matrix form.
The angle-only measurement equation based on the orbital maneuver includes the

real measurement of azimuth angle θ and elevation angle φ of the spacecraft relative to
the target small celestial body and the pseudo measurement of distance d of the spacecraft
relative to the target, as shown in Figure A2 of Appendix C. The measurement equation
can be written in the following form:

y = h(x) + v ≡

 θ
φ
d

+

 vθ

vφ

vd



=


arctan(z/y)

arcsin
(

x/
√

x2 + y2 + z2
)

√
x2 + y2 + z2

+

 vθ

vφ

vd


(2)

where x, y, and z are relative position coordinates as defined in Appendix A, vθ and vφ are
angle measurement error noise, the covariance is known as Rθ,φ, and vd is the pseudorange
measurement error noise based on the angle measurement noise.

2.2. Pseudorange Measurement and Its Error Noise

The orbit maneuver provides potential range information for AON, and a pseudorange
measurement can be built to describe it. However, pseudorange measurements based on
the orbit maneuver bring errors. The relationship between the pseudorange measurement
error and the angle measurement error has been analyzed [20,24]. Previous studies have
proven that the orbit maneuver must change the angle measurement generated by the
original trajectory recurrence to render the navigation problem observable [19,21].

Figure 1 shows how the pseudorange measurement is established. Let initial state
vector be x0 =

[
r0

T v0
T ]T . Let nominal state vector x(t) =

[
rt

T vt
T ]T contain

the relative position and velocity when u = 0 in Equation (1). Let actual state vector
x(t) =

[
rt

T vt
T ]T contain the relative position and velocity when u 6= 0 in Equation (1).

In addition, δrt represents the position disturbance due to impulse maneuver u:

δrt = rt − rt. (3)
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Figure 1. Geometric interpretation of a pseudorange measurement.

Then, the nominal line of sight ir and the actual line of sight ir can be defined in
Equations (4) and (5), respectively, as follows:

ir =
rt

|rt|
=

Φrrr0 + Φrvv0

|Φrrr0 + Φrvv0|
, (4)

ir =
rt

|rt|
=

Φrrr0 + Φrvv0 + Φrvu
|Φrrr0 + Φrvv0 + Φrvu| , (5)

where Φrr and Φrv are the subblocks in the block matrix form of Φ and G that are defined
in Appendix B.

Two angles are defined: observation angle α and disturbance angle β. Observation
angle α is the angle between the actual line of sight ir and the nominal line of sight ir,
and disturbance angle β is the angle between the nominal line of sight ir and position
disturbance δrt, that is,

α = cos−1(ir · ir
)

β = cos−1
(
−ir ·

δrt

|δrt|

)
. (6)

If impulse maneuver u is known, position disturbance δrt can be calculated as:

δrt = Φrvu. (7)

Then, observation angle α and disturbance angle β can be calculated. Using the sine
theorem, under the ideal assumption of no angle measurement noise and no maneuver
error, the distance at time t can be calculated as:

ρ = |rt| = |δrt| ·
sin β

sin α
. (8)

As shown in Figure 2, it is assumed that the pseudorange measurement error is caused
by the angle measurement error and other factors, such as the orbit maneuver error, are not
considered. References [20,24] analyzed the relationship between the pseudorange mea-
surement error and the angle measurement error. Assuming that the angle measurement
error is σθ,φ � 1, the resulting pseudo distance measurement error can be calculated as:

σρ ≈ σθ,φ ·
ρ

tan α
. (9)
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Figure 2. Pseudorange measurement error caused by the angle measurement error.

In this way, measurement noise matrix R of AON based on the orbital maneuver can
be obtained as:

R =


σ2

θ,φ 0 0

0 σ2
θ,φ 0

0 0 σ2
θ,φ(ρ/tan α)2

. (10)

2.3. Navigation Accuracy Estimation Based on the FIM and the CRLB

However, for AON, some observability criteria are proposed from the geometric
interpretation or linear irrelevant theory, which are essential navigation accuracy criteria.
For more extensive-state optimal estimation and filter design analysis, the FIM is a more
general tool. The inverse of the FIM is the CRLB, which can be used to calculate the best
estimation accuracy that can be obtained in unbiased estimation. Therefore, the CRLB
is often used to calculate the best estimation accuracy that can be theoretically achieved.
This paper uses the inverse of the FIM, namely, the CRLB, as the estimation criteria of
navigation accuracy, which is also a part of the objective function of optimization as
discussed in Section 4.

When new observations are obtained at time k + 1, the update of the FIM can be
described by the following equation:

Fk+1 =
[(

ΦT
k+1

)
F−1

k Φk+1 + Qk+1

]−1
+ HT

k+1R−1
k+1Hk+1, (11)

where Fk ∈ R6×6 represents the FIM at current time k, Fk+1 ∈ R6×6 represents the FIM
after the new observation is obtained at time k + 1, Φk+1 is the state transition matrix from
time k to time k + 1, Rk+1 is the measurement noise with a pseudorange, Hk = ∂h(xk)/xk
represents the measurement sensitivity matrix with a pseudorange, and Qk+1 represents
the process noise covariance matrix, which is used to describe the unmodeled error of the
state transition equation.

The well-known CRLB can be obtained by calculating the inverse matrix of the FIM:

Ck = F−1
k . (12)
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For the traditional angle-only measurement equations, the pseudorange measurement
is not included explicitly, and the observation sensitivity matrix of the traditional angle-
only measurement equations does not include the pseudorange information. Therefore,
the traditional angle-only measurement equations are not directly applicable to the FIM
calculation, unless the relative distance has been perfectly determined by the initial orbit
determination and the initial state error can be modeled as zero-mean Gaussian white noise.
The traditional angle-only observation equation has no observation ability to distinguish
distance ambiguity; thus, the estimation of distance of the whole estimation process de-
pends on the initial state with error. When the initial state error is no longer zero-mean
Gaussian white noise, such an observation equation and an observation sensitivity matrix
can also be calculated by the FIM and the CRLB, which can also converge, but the calculated
FIM and CRLB cannot reflect the real estimation accuracy. The CRLB gives the lower bound
of the estimation error, but in fact, the estimation error will be much larger than the CRLB,
which goes against our original intention of using the CRLB to characterize the accuracy
of state estimation. Therefore, this paper introduces the pseudorange measurement to the
observation equation, observation sensitivity matrix, and measurement noise matrix to
calculate the FIM and the CRLB.

3. Multipulse Glideslope Guidance

A multipulse glideslope approach trajectory is shown in Figure 3. The spacecraft is
required to arrive at rT in a fixed approach time T with a specified velocity vT from the
initial r0 and v0. Then, a straight line from r0 to rT denoted by the vector d is defined as the
approach direction of the multipulse glideslope. At any instant in time, d can be expressed
as d(t) = rT − r(t) = did, where d and id are the magnitude and unit direction of vector d,
respectively, and id can be calculated as:

id =
rT − r0

|rT − r0|
. (13)

Figure 3. An example of the multipulse glideslope approach trajectory.

The following linear relationship between d and its derivative
.
d is adopted to ensure

that the approach velocity decreases when the spacecraft approaches the target, shown
as following:

.
d = ad + b, (14)
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where a and b are constants that can be determined after the boundary conditions for d and
its derivative

.
d at t = 0 and t = T are substituted as:

for t = 0, d = d0 = |rT − r0|,
.
d =

.
d0 < 0, (15)

for t = T, d = dT = 0,
.
d =

.
dT < 0. (16)

The solution to d has forms such as:

d(t) = c1ec2t + c3, (17)

.
d(t) = c1c2ec2t, (18)

where c1, c2, and c3 are three constants of integration that can be determined after the
boundary conditions. Then, 

d0 = c1 + c3.
d0 = c1 · c2
dT = c1ec2T + c3.
dT = c1c2ec2T

. (19)

In addition, c2 can be obtained first by numerically solving the following equation:

.
d0ec2T + c2d0 −

.
d0 = 0, (20)

giving: 
c1 = c2/

.
d0

c3 = d0 − c1.
dT =

.
d0ec2T

. (21)

Note that if
.
d0 is known,

.
dT can also be determined.

A total of N pulses are applied during the whole approach process to divide the
actual trajectory into N − 1 segments. Assuming that the time of applying pulses is
tdv(i), i = 1, 2, · · · , N, where tdv(1) = 0 and tdv(N) = T, the duration of each segment of
the trajectory is ∆tj = tdv(j + 1)− tdv(j), j = 1, 2, · · · , N− 1. After the last pulse is applied,
the spacecraft reaches the target point that meets the velocity and position constraints.

Because the approaching trajectory is relatively far from the small body and the
gravitational force of a small body is weak, we consider only the gravitational force of the
Sun and ignore the gravitational force and other perturbation forces of the small body in
the far approach phase. If the initial and terminal position vectors of the spacecraft relative
to the asteroid are r1 = r0 and rN = rT , respectively, the i-th maneuver position ri and time
instant ti of each impulse maneuver in the process of glideslope guidance are written as:{

ri = rT − di = rT − diid
ti = tdv(i)

, i = 1, 2, · · · , N, (22)

where di = d(ti) represents the relative distance of the spacecraft from the terminal position
at time instant ti, which can be calculated using Equation (17).

The relative distance changes exponentially with time. The velocities v−i and v+
i ,

i = 1, 2, · · · , N − 1, before and after impulse maneuver dvi at time instant ti can be
expressed as: {

v+
i = Φ−1

rv (ti+1, ti)(ri+1 −Φrr(ti+1, ti)ri)
v−i+1 = Φrv(ti+1, ti)ri + Φvv(ti+1, ti)v+

i
, (23)
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where Φrr(ti+1, ti), Φrv(ti+1, ti), and Φvv(ti+1, ti) are different blocks in the block form of
the state transition matrix defined in Appendix B. According to the initial state and the
terminal target state, the following equations can be obtained:{

v−1 = v0
v+

N = vT
. (24)

Then, the i-th (i = 1, 2, · · · , N) maneuver dvi at time instant ti can be calculated
as follows:

dvi = v+
i − v−i . (25)

4. Navigation Accuracy-Enhanced Multipulse Glideslope Guidance Method

Multipulse guidance optimization often selects a set of control variables as the op-
timization variables, designs an optimization objective function and obtains the optimal
trajectory under a specific standard after solving the optimization problem. For approach
rendezvous guidance, components of multi-impulse maneuvers are often selected as the
optimization variable, and the optimization object is the time or fuel. At the same time,
constraints such as the approach corridor, maneuver amplitude, direction constraints, com-
munication window, and target lighting are considered, and the rendezvous time is taken
as a variable of the overall task design. Therefore, the optimal guidance problem is often a
fuel optimization problem under fixed time and multiple constraints.

As mentioned above, when approaching an asteroid from afar, only AON can be
used, so observability or navigation accuracy must be considered. In addition, the target
characteristics of asteroids are highly unknown, so the target illumination, that is, the solar
phase angle, becomes particularly important for autonomous rendezvous trajectory design.
The multipulse glideslope guidance method has natural advantages in approaching a target
from a fixed direction. With the distance approaching, the approach velocity also decreases,
and the degree of safety is high. The approach trajectory of multipulse glideslope guidance
has natural geometric constraints, that is, approaching a small celestial body from a fixed
direction. When the number of pulses is fixed, the maneuver can be calculated according
to the initial state, terminal state, total approach time, pulse maneuver time, and initial
approach velocity.

4.1. Problem Description

The asteroid far-approach phase starts from asteroid capture by the camera, and the
initial relative state is calculated from the inertial position and velocity of the spacecraft
based on measurement and control and the ephemeris of the small body. The terminal
rendezvous time and terminal aiming relative state are established by the overall mis-
sion design. This phase also requires less fuel consumption to approach the target point.
Therefore, this paper constructs the following asteroid approach problem:

Given initial relative state x0 and terminal aiming relative state x f (overall task design),
the fixed terminal time t f (overall task design), the fixed total number of orbital maneuvers
N, the first maneuver time t1 = t0, and the last maneuver time tN = t f , with initial relative

distance change rate
.
d0 and maneuver time ti = tdv(i), i = 2, · · · , N − 1 as variables, a

nonlinear programming problem to optimize the FIM-based navigation accuracy object
and fuel consumption object is developed.

4.2. Fuel Consumption Objective

Far-approach rendezvous generally requires the optimization of fuel consumption.
The fuel consumption function can be formalized as the sum of the magnitude of all
maneuvers during the approach phase, which can be shown as:

J f =
N

∑
i=1
|dvi|, (26)
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where dvi is the i-th maneuver at time instant ti and |·| is the 2-norm operator.

4.3. Navigation Error Objective

The navigation error objective function is constructed as:

Jo =
No

∑
i=1

3

∑
j=1

Ci(j, j)/‖ri‖2
2, (27)

where No is the total number of observations, Ci(j, j) is the j-th diagonal element of the
CRLB matrix, and ‖ri‖2 is the relative distance at the observation time. The diagonal
elements of the CRLB matrix reflect the estimation accuracy of the corresponding system
state. The smaller the navigation error objective Jo, the better the navigation accuracy.

4.4. Optimization Objectives

Multiobjective optimization seeks a balanced compromise between multiple optimal
objectives. Therefore, there is no unique optimal solution, but rather a Pareto optimal
solution set. The improvement of solutions in this solution set on one goal is at the cost of
reducing another goal. A simple processing method is to design the optimization objective
as the weighted sum of multiple objectives, that is, the weighted sum of the navigation
accuracy object and fuel consumption:

Jw = (1− w)J f + wJo, (28)

where w is the weight of a navigation accuracy objective, with the range of [0, 1], w = 0
represents the domination of the fuel consumption objective, and w= 1 represents the
domination of the navigation error objective.

4.5. Constraints

In an actual mission, certain preparations, such as attitude adjustment, are required
before a spacecraft orbit maneuver. Therefore, the maneuver time needs to meet the
constraints of the minimum maneuver time interval τ, which can be written as:

ti > ti−1 + τ, i = 2, 3, · · · , N. (29)

4.6. Optimization Problem

To generate the angle-only rendezvous trajectory with an optimal navigation accuracy
and fuel consumption, Sections 4.2–4.5 can be summarized in the form of the following
optimization problem:

min
Y

Jw

subject to ti > ti−1 + τ, i = 2, 3, · · · , N
(30)

Optimal solution Yopt is the optimal maneuver time ti = t∗dv(i), i = 2, · · · , N − 1, and

the initial relative distance change rate is
.
d0
∗, which can be substituted into the multipulse

glideslope guidance to obtain the corresponding maneuver amplitude and direction at each
maneuver time.

Under a certain objective weight w, the above optimization problem can be solved
using standard optimization algorithms such as the interior point method. This is the
offline multipulse glideslope guidance method with an enhanced navigation accuracy.

5. Numerical Simulation
5.1. Simulation Conditions

Taking 2016HO3 as the object asteroid (see Table 1 for its orbital elements), a simulation
study of multipulse glideslope guidance with an enhanced navigation accuracy for the
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far approach offline was carried out. The start time of the approach rendezvous is shown
in Table 2. According to the transfer scheme, it is planned to approach from 100,000 km
to 100 km from the asteroid by 6 impulse maneuvers. Table 2 summarizes the simulation
parameters used. To verify the effectiveness of the proposed method, different values of
the tradeoff weight w between the navigation error objective and the fuel consumption
objective were used for Monte Carlo simulation. Each value of the tradeoff weight w was
simulated 100 times, and the statistics were analyzed.

Table 1. Orbit elements of 2016HO3.

Epoch 2459600.5 (2022-Jan-21.0) TDB
Reference: Heliocentric J2000 Ecliptic

Element Value Units

Semimajor axis 1.001137344063433 AU
Eccentricity 0.1029843787386461
Inclination 7.788928644671124 deg

Longitude of the ascending node 66.0142959682462 deg
Perihelion argument angle 305.6646720090911 deg

Mean anomaly 107.172338605596 deg

Table 2. Simulation parameters.

Parameter Value Unit

Environment
Equivalent disturbance 1σ 1 × 10–8 m/s2

Equivalent disturbance 1σ 1 mrad
Sample time 10 s

Rendezvous Mission

Initial condition x0 = [x, y, z,
.
x,

.
y,

.
z] [0,−99160,−7490,−0.068, 0.458, 0.036] km km km

km/s km/s km/s

Target condition x f = [x, y, z,
.
x,

.
y,

.
z] [14,−100, 0, 0, 0, 0] km km km

km/s km/s km/s
Number of pulses N 6

Start time t0 2023-May-7
Total time T 15.5 day

Optimization Parameter
Minimum maneuver interval time τ 5 hour

Navigation Initiation

Initial navigation error 1σ [1000, 1000, 1000, 1, 1, 1] km km km
km/s km/s km/s

5.2. Navigation Accuracy-Enhanced Multipulse Glideslope Guidance Optimum Results

w is the tradeoff weight of the fuel consumption objective and the navigation error
objective. We conducted a parameter analysis of w to show its influence on the resulting
optimal maneuvers and the resulting rendezvous trajectory. Different values of the tradeoff
weight w were set to solve the optimization problem.

Figure 4 shows the resulting optimal trajectories corresponding to different tradeoff
weights w. When w takes a larger value, such as w = 0.5 or 1.0, which means the navigation
accuracy is more emphasized, the corresponding trajectories show less deviation from the
direction of the approaching straight line after the first maneuver, and the maneuvers are
distributed more evenly over relative distances. This result is opposite to the result in [18]
in the context of the Vbar approach, because the mission condition in this paper is different
with a large initial velocity. At the latter stage of trajectories, all trajectories seem alike,
which can be distinguished in the following analysis.
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Figure 4. Resulting optimal trajectories corresponding to different tradeoff weights w.

Figure 5 shows the distributions of the magnitude of dvs along the optimal trajectories
with different w. Overall, the maneuvers show a gradually decreasing trend over time,
which verifies the safety benefit of the guidance method. When w takes a larger value, such
as 0.5 or 1, the magnitude of the first maneuver is larger, and the magnitude of the second
maneuver shows an opposite trend. The small magnitudes of the last two maneuvers
with different w are consistent with the relatively small deviation seen at the latter stage of
trajectories in Figure 4.

Figure 5. Distributions of the magnitude of dvs along the optimal trajectories with different w.

Figures 6 and 7 show how the fuel consumption (total ∆v) and the navigation error
objective of the resulting trajectories change with the tradeoff weight w. It is seen that
with the increasing w, which means more emphasis is placed on the navigation error
objective, the fuel consumption begins to increase and the navigation error objective begins
to decrease when w is larger than 0.6, and the navigation error objective starts to play a
major role. The tradeoff weight w must be at least 0.7 to bring obvious improvement in
navigation accuracy at the cost of extra fuel consumption. A clearer correlation between the
fuel consumption and the navigation error objective can be spotted from Figure 8, where
these two quantities are plotted. The navigation accuracy continues to improve with the
increasing fuel consumption.
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Figure 6. Fuel consumption vs. tradeoff weight.

Figure 7. Navigation error objective vs. tradeoff weight.

Figure 8. Navigation error objective vs. fuel cost.

Table 3 shows the distributions of the time instants of dvs along the optimal trajectories
with different w. It can be seen that the distributions are similar, which indicates that the
optimal distribution of the time instants of dvs remains stable and insensitive when w takes
different values. However, as shown in Figure 9, the initial relative distance change rate
decreases significantly, as w increases. This is attractive, because the optimal distribution
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of the time instants of dvs can be solved only once and then fixed when the optimization
problem has to be solved multiple times onboard with different w, which will leave initial
relative distance change rate

.
d0 as the only optimization variable. Although this will save

the time of the optimization computation, it will lead to a satisfactory solution instead of
an optimal solution.

Table 3. Distributions of the time instants of dv s along the optimal trajectories with different w.

Tradeoff Weight
w

Maneuver Time Instant (/T)

2nd Maneuver 3rd Maneuver 4th Maneuver 5th Maneuver

0 0.260 0.424 0.575 0.739
0.1 0.263 0.425 0.574 0.736
0.2 0.268 0.427 0.572 0.731
0.3 0.263 0.425 0.574 0.736
0.4 0.262 0.425 0.574 0.737
0.5 0.264 0.426 0.573 0.735
0.6 0.264 0.425 0.574 0.735
0.7 0.257 0.422 0.577 0.742
0.8 0.230 0.411 0.588 0.769
0.9 0.263 0.425 0.574 0.736
1 0.257 0.422 0.577 0.742

Figure 9. Initial approaching speed vs. tradeoff weight.

5.3. AON Using Resulting Trajectories

To verify that the proposed guidance strategy can improve the performance of AON,
an AON simulation model is constructed, as shown in Figure 10. Navigation filtering [30]
is based on the classical Cartesian extended Kalman filter (EKF) and TH equations. The
calculated maneuver is directly input into the dynamic model of the spacecraft, regardless
of the realization model and the control error of the maneuver.

Figure 10. Simulation model of angle-only navigation using resulting approach maneuvers.
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The Monte Carlo simulation for each w includes 100 realizations of truth trajectories
and the associated set of angle-only observables generated in each realization. In each
realization, the filter model is the EKF, starts with the same nominal reference trajectory
and processes the data from the realization. For the case of w = 0.3, the state position
errors and the associated uncertainties in each position component and associated RSS
(residual sum of squares) are presented in Figure 11. Shown are the 1-sigma and 3-sigma
uncertainty bounds as well as the filter solution error obtained by differencing the filter
solutions with the truth trajectory. Additionally, listed in the results are statistics of the
percentage by which a filter solution exceeds the 1-sigma and the 3-sigma uncertainty
bounds. In the present case, the respective percentages are 28.463% and 0.002%, from a
population of 13,392,200 samples. Assuming ergodic processes and statistics that conform
to a normal distribution, one expects 1-sigma exceedances to be <31.7% of the time and
3-sigma exceedances to be <0.3% of the time, which is true for this case. For the case of
w = 0.3, the state velocity errors and the associated uncertainties in each velocity component
and the associated RSS (in the lower right) are presented in Figure 12. The statistics of
the percentage at which a filter solution exceeds the 1-sigma and 3-sigma bounds show
that the filter works normally, which are 28.670% and 0.007%, respectively. Because of the
dispersion of initial navigation errors, the dispersion of the navigation errors is still obvious
at the early stage of the trajectory, but it then reduces significantly. Another observation
with these results is that as the spacecraft is close to the asteroid, the navigation errors
fluctuate with the maneuvers, because after each maneuver, it takes some time for the AON
filter to converge when the magnitude of the maneuver is relatively small at the latter stage
of the trajectory.

Figure 11. Angle-only navigation position errors along the resulting trajectory for 100 realizations
and uncertainties (1-sigma uncertainty bound in red and 3-sigma uncertainty bound in blue) for the
case with w = 0.3.
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Figure 12. Angle-only navigation velocity errors along the resulting trajectory for 100 realizations
and uncertainties (1-sigma uncertainty bound in red and 3-sigma uncertainty bound in blue) for the
case with w = 0.3.

As shown in Figure 13, when the tradeoff weight w increases, the navigation error
converges faster first, but the navigation error then increases. In spacecraft rendezvous,
there is a quantified minimum navigation accuracy rule, the 1% range rule, which is that
the relative navigation accuracy needs to be guaranteed to be at least 1% of the relative
distance [23]. Figure 14 shows that along the trajectory, the navigation error converges to
less than 1% of the range.

Figure 13. Sample navigation errors for typical tradeoff weights.
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Figure 14. Sample navigation errors (% of range) for typical tradeoff weights.

As shown in Figure 15, with the increasing tradeoff weight w, the whole navigation
error decreases gradually. Tradeoff weight w should be at least 0.7 to see a clear effect. Simi-
larly, Figure 16 shows that the reduction in the whole-range navigation error comes at the
cost of increased fuel consumption. As shown in Figures 17 and 18, the arrival navigation
error and the whole navigation error show the opposite trend. With the increasing tradeoff
weight w and fuel consumption, the arrival navigation error also shows an increasing trend.
Therefore, to improve the navigation accuracy at the time of arrival, less fuel can be used;
that is, tradeoff weight w can be 0, corresponding to fuel optimal guidance. This shows that
the navigation error in the early stage of the approach phase and the navigation error in
the later stage or the final arrival navigation error are subject to mutual compromise, which
is very important.

Figure 15. Sum of navigation errors along the resulting trajectory vs. tradeoff weight w.
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Figure 16. Sum of navigation errors along the resulting trajectory vs. fuel cost.

Figure 17. Arrival navigation error vs. tradeoff weight w.

Figure 18. Arrival navigation error vs. fuel cost.
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6. Conclusions

This paper proposes a navigation accuracy-enhanced glideslope guidance method
in the context of bearing-only navigation. The tradeoff between the navigation accuracy
and the fuel consumption was deeply numerically analyzed. Navigation accuracy can be
improved at the cost of extra fuel consumption. The trade-off factor between the navigation
accuracy and the fuel consumption has little effect on the pulse maneuver conduction time
corresponding to the optimal solution, so the optimal pulse maneuver conduction time can
be fixed in engineering implementation. However, the trade-off factor has a very direct
impact on the initial relative distance change rate. There is a strong correlation between
the navigation accuracy and the fuel consumption trade-off factor, initial relative distance
change rate, total fuel consumption, initial maneuver, and navigation accuracy. Therefore,
during project implementation, one variable can be changed to change another variable. For
example, we can fix the maneuver pulse time and take the change rate of the initial relative
distance as the only optimization variable to improve the optimization problem-solving
speed. This is attractive for using this method in online closed-loop guidance. The proposed
method retains the advantages of a multipulse glideslope guidance method; for example,
the approach direction can be designed on demand, and the approach speed decreases
with the distance. All these contributions provide a reference for the rendezvous trajectory
design of high-precision AON and the design of an autonomous guidance algorithm for
the far approach phase of angle-only rendezvous missions.
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Appendix A. Asteroid Hill Rotation Reference Frame

To describe the relative motion between the spacecraft and the asteroid, the coordinate
systems shown in Figure A1 are established, including the asteroid Hill rotation coordinate
system Oaxyz and the heliocentric inertial coordinate system OsXYZ. The spacecraft and
the asteroid can be regarded as points.

The center Oa is at the barycenter of the asteroid. Oaxyz rotates at the orbital angular
velocity ω relative to OsXYZ. Its basic plane is the asteroid orbital plane, and Oaxyz is
defined as follows:

1. The x axis is inward along the orbit radius;
2. The z axis follows the angular momentum direction of the asteroid’s orbit;
3. The y axis completes the right-handed coordinate system and is perpendicular to the

x axis in the orbital plane.

The unit vector corresponding to the asteroid Hill rotation coordinate system Oaxyz is{
ix, iy, iz

}
, and the unit vector corresponding to the heliocentric inertial coordinate system

OsXYZ is {iX , iY, iZ}.
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Figure A1. Definition of asteroid Hill rotation coordinate systems.

Appendix B. Tschauner–Hempel Equation of a Relative Motion

The relative motion between the spacecraft and the asteroid is shown in Figure A1. If
the asteroid travels in an elliptical orbit around the Sun, the asteroid orbit in the heliocentric
inertial system can be described by classical orbit elements, that is, the semimajor axis,
eccentricity, inclination, longitude of the ascending node, perihelion argument angle, and
true anomaly (a, e, i, Ω, ω, f ).

Therefore, the state transition matrix can be defined as:

Φ( f , f0) =

[
Φrr( f , f0) Φrv( f , f0)

Φvr( f , f0) Φvv( f , f0)

]
. (A1)

For the specific details of Φ( f , f0), see [28]. The state transition matrix is transferred
from the true anomaly frame to the time frame; then,

Φrr(t, t0) = {A0Φrr( f , f0) + B0Φrv( f , f0)}/A, (A2)

Φrv(t, t0) = {A0Φrr( f , f0) + B0Φrv( f , f0)}/A, (A3)

Φvr(t, t0) = {(A0Φvr( f , f0) + B0Φvv( f , f0))

−BΦrr(t, t0)}/C
, (A4)

Φvv(t, t0) = {C0Φrv( f , f0)− BΦrv(t, t0)}/C, (A5)

A =
1 + ec f

a(1− e2)
, B =

−es f

a(1− e2)
, C =

A
.
f

. (A6)

If t0 = 0, then Φrr(t, t0), Φrv(t, t0), Φvr(t, t0), and Φvv(t, t0) can be abbreviated as
Φrr(t), Φrv(t), Φvr(t), and Φvv(t), respectively. Then, Φ (t) can be described as:

Φ(t) =

[
Φrr(t) Φrv(t)

Φvr(t) Φvv(t)

]
. (A7)

The input matrix corresponding to the impulse maneuver at time t0 is G(t); then,

G(t) =

[
Φrv(t)

Φvv(t)

]
. (A8)

If dT is a sampling step, then,

Φk+1 ≡ Φ(k + 1, k) ≡ Φ((k + 1) · dT, k · dT). (A9)
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Appendix C. Angle Measurement and Pseudodistance Measurement

The angle-only measurement equation based on the orbital maneuver includes the
real measurement of the azimuth angle θ and the elevation angle φ of the spacecraft relative
to the target asteroid and the pseudo measurement of distance d of the spacecraft relative
to the target. These angles and distances are defined in the asteroid Hill rotation coordinate
system, as shown in Figure A2. The azimuth angle θ is defined from 0◦ to 180◦, and the
elevation angle φ is set to be from –90◦ to +90◦.

Figure A2. Measurement angle and relative distance of the asteroid in the asteroid Hill rotating
reference frame.
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