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Abstract: This correspondence proposes an optimal cooperative guidance law for protecting a target
from a guided missile. The linearized three-body kinematics using the line-of-sight (LOS) triangle
concept is formulated, and a new concept called error distance is introduced. A generalized linear
quadratic optimization problem is formulated in minimizing weighted energy consumption while
regulating the error distance. The analytic guidance command is derived by solving the optimization
problem formulated. The main feature of the proposed guidance law lies in that it helps reduce the
maneuver capability demand of the defender. Extensive numerical simulations are carried out to
demonstrate the effectiveness of the proposed solution.

Keywords: active aircraft protection; cooperative guidance; line-of-sight guidance; optimal control

1. Introduction

Due to the velocity and maneuverability advantage, missiles pose a severe threat
to aircraft in modern warfare. To improve the survival probability of aircraft, numerous
defensive methods have been reported and can be generally divided into two categories:
passive defense and active defense. Passive defense mainly depends on performing evasive
maneuvers or releasing deceptive decoys. However, with the development of the attacking
missile’s sensing and maneuver capabilities, the passive defensive method is insufficient
to ensure the safety of the aircraft. Hence, active defense has been proposed to further
enhance the survivability of the aircraft [1–3]. The primary active defense strategy utilized
by the aircraft is launching a defensive missile to intercept the incoming missile, which is
known as the target–missile–defender three-body problem [4,5].

By considering the defense missile and attacking missile engagement separately from
the target, the three-body problem can be simplified into two one-on-one engagements:
attacking missile to target engagement and defender to attacking missile engagement.
From this standpoint, the defense problem can be defined as an interception problem
for the defender or an evasive guidance problem for the target aircraft [6,7]. Within this
framework, existing guidance laws developed from optimal control theory [8,9], e.g.,
proportional navigation guidance (PNG) and its variants [10–13], can be directly applied.
However, a separate one-on-one design philosophy cannot fully exploit the synthetic effect
of the cooperation between the aircraft and the defender. For this reason, cooperative
guidance for active aircraft protection has attracted extensive interest in recent years [14,15].
For example, the authors in [16] developed a linear cooperative guidance algorithm for the
defender to pursue the attacker and the target aircraft to evade the attacker simultaneously
in minimizing the control effort. This work was later extended to a nonlinear guidance
law using sliding mode control (SMC) in [17,18]. With no information on the guidance law
implemented by the attacking missile, an optimal cooperative guidance law was proposed
and sufficient conditions for the existence of the optimal solution were also derived in [19].
Different from energy minimization, the authors in [20] presented a differential game
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guidance law that strove to maximize the terminal separation between the target aircraft
and the attacker at the time instant where the attacker was intercepted by the defender.

Recently, the target–missile–defender three-body problem was also recast into a three-
point guidance problem, i.e., the defender can protect the target aircraft as long as it can
move along the LOS from the target to the attacker. This geometric rule was first leveraged
in [21–23] for active aircraft protection by manipulating two LOS rates associated with the
three players. However, this algorithm assumed no cooperation between the target and
the defender. For this reason, the authors in [24] developed a cooperative command to
LOS (CLOS) guidance law by minimizing the defender–to–attacker maneuverability ratio.
The potential of CLOS guidance in active aircraft protection was later analyzed in [25]
by comparing PNG and pursuit guidance in a game theory framework. Later in [26,27],
a nonlinear cooperative CLOS guidance law using SMC was proposed, and the lateral
acceleration command was optimally allocated to the defender–target team. However,
these guidance strategies did not consider any control effort minimization in deriving the
guidance commands.

This paper proposes an optimal cooperative defense guidance law both in implicit
form and explicit form for a defense system that comprises a target and a launched missile.
We first formulate a linear three-body kinematics model by the three-point guidance
geometry and introduce a new concept called error distance. A generalized linear quadratic
optimal control problem with arbitrary weighting functions for both implicit and explicit
cooperative defense guidance problem is then formulated, and the analytical solution is
derived with optimal control theory. The potential of the proposed guidance law is that
we can further reduce the defender–to–attacker maneuverability ratio by placing different
energy penalty weights on the defender and the attacker. The benefits of the guidance law
developed are also compared with existing solutions with numerical simulations. To the
best of our knowledge, no similar results on optimal cooperative guidance law have been
reported in the literature.

2. Three-Body Kinematics Equations and Linearization
2.1. Nonlinear Relative Kinematics

The planar three-body engagement is shown in Figure 1. The defending missile,
denoted by D, is launched from the target T. The objective is to protect the target away
from the attacking missile, which is denoted by M. The relative ranges and LOS angles be-
tween the three vehicles are, respectively, represented by rij and λij, where i, j ∈ {T, D, M}
and i 6= j. The notation γi denotes the flight path angle, and Vi stands for the velocity.
Since the moving speed is generally slow-varying for aerodynamically-controlled vehi-
cles, we assume Vi is constant, and only its heading direction can be adjusted by lateral
acceleration ui.

λTM

γT

T

D

M

z

γD
λDM

γM

φ

VT

VD

VM

rDM

rTM

uM

uD

uT

Figure 1. Three-body engagement geometry.
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According to the geometry, the range rates and LOS rates can be readily obtained as

ṙDM = VM cos(γM − λDM)−VD cos(γD − λDM) (1)

ṙTM = VM cos(γM − λTM)−VT cos(γT − λTM) (2)

rDMλ̇DM = VM sin(γM − λDM)−VD sin(γD − λDM) (3)

rTMλ̇TM = VM sin(γM − λTM)−VT sin(γT − λTM) (4)

Differentiating Equations (3) and (4) with respect to time yields

λ̈DM =− 2
ṙDM
rDM

+
cos(γM − λDM)

rDM
uM

− cos(γD − λDM)

rDM
uD

(5)

λ̈TM =− 2
ṙTM
rTM

+
cos(γM − λTM)

rTM
uM

− cos(γT − λTM)

rTM
uT

(6)

where ui(i ∈ {T, D, M}) denotes the lateral acceleration.
Let t f ij represent the final time with i, j ∈ {T, D, M} and i 6= j. The remaining flight

time, or the so-called time-to-go, can be approximately calculated as

tgij = t f ij − t ≈ −
rij

ṙij
(7)

2.2. Linear Error Distance Dynamics

In this paper, we describe the engagement geometry with the triangle connected
by three lines of sight: LOSTD, LOSDM, and LOSTM. The perpendicular distance from
defender to LOSTM, denoted by z, is defined as the error distance. Define φ = λTM − λDM,
and it can be considered as a small angle near the collision course. Then, the error distance
can be expressed as

z ≈ rDMφ (8)

which subsequently gives the dynamics of the error distance as

ż = ṙDMφ + rDM
(
λ̇TM − λ̇DM

)
(9)

z̈ =2VDM
t f TM − t f DM

tgDM
λ̇TM + cos(γD − λDM)uD

− rDM
rTM

cos(γT − λTM)uT

+

[
rDM
rTM

cos(γM − λTM)− cos(γM − λDM)

]
uM

(10)

Choose x = [z ż λ̇TM λ̇DM]T as the state vector of the system. Then, the linearized
kinematics can be written in a compact matrix form as

ẋ = Ax + BDuD + BTuT + BMuM (11)

with

A =


0 1 0 0

0 0 2VDM
∆t f

tgDM
0

0 0 2
tgTM

0

0 0 0 2
tgDM

 (12)
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BD =

[
0 cos(γD − λDM) 0 − cos(γD − λDM)

rDM

]T
(13)

BT = [0 t2 t3 0]T (14)

BM =

[
0 m2 m3

cos(γM − λDM)

rDM

]T
(15)

where Vij = −ṙij, ∆t f = t f TM − t f DM, and

t2 =− rDM
rTM

cos(γT − λTM)

t3 =− cos(γT − λTM)

rTM

m2 =
rDM
rTM

cos(γM − λTM)− cos(γM − λDM)

m3 =
cos(γM − λTM)

rTM

(16)

According to the concept of three-point guidance, the defender should stay on the LOS
connecting the target aircraft and the attacking missile; hence, it can successfully capture
the attacking missile before the target is intercepted by the attacker [21]. For this reason,
the main purpose of this paper is to design an optimal cooperative guidance law that zeros
the error distance while minimizing a performance index.

3. Optimal Problem Formulation
3.1. Implicit Cooperative Defense Problem

Since the objective of this paper is to protect the target from the attacking missile by
zeroing z, the terminal constraint is

z(t f DM) = 0 (17)

Notice that the quadratic control energy consumption is directly related to the induced
drag; hence, minimizing the quadratic energy is helpful to improving the terminal speed
of the vehicle, enabling the improvement of the kill probability. Hence, we consider a
quadratic energy performance index as

J =
1
2

∫ t f DM

t
u2

D dτ (18)

Consider uT and uM as two external known inputs to the defender. Then, the implicit
cooperative defense problem for the defender is formulated as

min
uD

J =
1
2

∫ t f DM

t
u2

D dτ

s.t.

ẋ = Ax + BDuD + GDω, z(t f DM) = 0

(19)

where
GD = [BT BM], ω = [uT uM]T (20)

Remark 1. Notice that the implicit cooperation defense problem is formulated to derive the guidance
command of the defender with the known target maneuver uT . Since error distance z is determined
by the movement of three vehicles, the guidance strategy of the defense missile is related to the target
aircraft. Therefore, this strategy can be regarded as a weak cooperation or an implicit cooperation.
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3.2. Explicit Cooperative Defense Problem

The explicit cooperation between the target and the defender minimizes an arbitrary
weighted quadratic energy consumption, i.e.,

min
uD ,uT

J =
1
2

∫ t f DM

t
[RD(τ)uD(τ)

2 + RT(τ)uT(τ)
2] dτ (21)

where RD(t) and RT(t) are arbitrary positive weighting functions and are utilized to shape
the guidance commands.

Consider uM as an external known input to the defender. Then, the explicit cooperative
defense problem for the defender and the target is formulated as

min
uD ,uT

J =
1
2

∫ t f DM

t
uTRu dτ

s.t.

ẋ = Ax + Bu + Gω, z(t f DM) = 0

(22)

where
B = [BD BT], u = [uD uT ]

T

G = BM, ω = uM

R =

[
RD 0
0 RT

] (23)

Remark 2. Since RD(t) 6= 0 and RT(t) 6= 0, the target and the defender perform explicit
cooperation to defend the attacking missile. In this case, the target performs an inducing maneuver
to cooperate with the defender. The benefit of explicit cooperation lies in the ability to shape the
guidance commands to reduce the maneuverability demand of the defender. For example, if the
defender has enough maneuvering capability, we can choose a smaller RD to fully exploit the
maneuverability of the defender; otherwise, a larger RD would be a wise option.

4. Guidance Law Derivation

In this section, we derive the optimal cooperative defense guidance laws for both
implicit and explicit cooperative scenarios.

4.1. Implicit Cooperative Defense Guidance Law

To solve the optimization problem formulated in Section 3.1, zero-effort transformation
is first applied to reduce the system order. We denote Z as the zero-effort error distance, i.e.,
the terminal error distance when the defender performs no maneuvers from the current
time onwards. With this in mind, the zero-effort error distance can be readily obtained as

Z = DΦ
(

t f DM, t
)

x +
∫ t f DM

t
DΦ

(
t f DM, t

)
GDωdτ (24)

where Φ
(

t f DM, t
)

is the transition matrix associated with system (11), and

D , [1 0 0 0]

Taking the time derivative of Equation (24) gives the dynamics of the zero-effort error
distance as

Ż = bDuD (25)

where
bD = DΦ

(
t f DM, t

)
BD (26)
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With this state transformation, the terminal constraint (17) can be replaced by

Z
(

t f DM

)
= 0 (27)

Then, the optimization problem (19) becomes finding uD that minimizes performance
index (18) subject to dynamics (25) and terminal constraint (27). For this optimization
problem, the Hamiltonian function can be formulated as

H =
1
2

u2
D + λ Ż (28)

where λ is the Lagrange multiplier.
Taking the time derivative of Equation (28) and applying the first-order optimality

condition, i.e., ∂H/∂uD = 0, the optimal guidance command satisfies

uD = −λ R−1
D bD (29)

Substituting the preceding equation into Equation (25) and integrating it yields

Z(t f AD)− Z(t) = −λ
∫ t f DM

t
b2

D(τ)dτ (30)

Imposing constraint (27) in Equation (30), the Lagrange multiplier λ can be uniquely
solved as

λ =
Z(t)∫ t f DM

t b2
D(τ)dτ

(31)

Substituting Equation (31) into Equation (29) gives the analytic guidance command as

uD = − bD∫ t f DM
t bD(τ)2dτ

Z(t) (32)

For practical implementation, it is beneficial to formulate the guidance command in
a more explicit form. From the definition of the system transition matrix, we can easily
verify that

DΦ
(

t f DM, t
)
=
[
1 tgDM ϕ 0

]
(33)

where

ϕ =
VDM∆t f

2

[(
t + ∆t f

)(
e

2tgDM
t+∆t f − 1

)
− 2tgDM

]
(34)

Substituting Equation (33) into Equation (26) gives

bD = cos(γD − λDM)tgDM (35)

Using Equation (33), the zero-effort error distance can be rewritten as

Z =z + żtgDM + ϕλ̇TM

+
∫ t f DM

t
[bT(τ)uT + bM(τ)uM]dτ

(36)

where
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bT =DΦ
(

t f DM, t
)

BT

=t2 tgDM + t3 ϕ

=− rDM
rTM

cos(γT − λTM)tgDM −
cos(γT − λTM)

rTM
ϕ

bM =DΦ
(

t f DM, t
)

BM

=m2 tgDM + m3 ϕ

=

[
rDM
rTM

cos(γM − λTM)− cos(γM − λDM)

]
tgDM

+
cos(γM − λTM)

rTM
ϕ

(37)

Remark 3. From Equation (36), it is clear that calculating the zero-effort error distance requires
the knowledge of target maneuver uT and attacker maneuver uM. Since the target aircraft can
send information to the defender using a data link, the defender is capable of having access to the
information of uT . However, the future maneuver of the attacking missile is naturally unavailable to
the defender, unless we can accurately identify the guidance law implemented by the attacker. For
this reason, we use the current value of uM in calculating Z and update it at every time instant.
Notice that the proposed guidance law works in a closed-loop fashion and, hence, is helpful to
compensate for the mismatch error.

4.2. Explicit Cooperative Defense Guidance Law

In this subsection, the guidance commands of both the target aircraft and the defender
missile are simultaneously optimized. For the explicit cooperative guidance problem, the
zero-effort error distance can be similarly derived as

Z = DΦ
(

t f DM, t
)

x +
∫ t f DM

t
DΦ

(
t f DM, t

)
Gωdτ (38)

which subsequently gives the dynamics of the zero-effort error distance as

Ż = bu (39)

where
b = [bD bT ] (40)

With this state transformation, the explicit cooperative defense guidance optimization
problem formulated in Section 3. B becomes

min
uD ,uT

J =
1
2

∫ t f DM

t
uTRu dτ

s.t.

Ż = bu, Z(t f AD) = 0

(41)

Consider the Hamiltonian function

H =
1
2

uTRu + λ Ż (42)

where λ denotes the Lagrange multiplier.
From the first-order optimality condition, i.e., ∂H/∂u = 0, the optimal guidance

command can be determined as
u = −λ R−1 bT (43)
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Substituting the preceding equation into Equation (41) and integrating it yields

Z(t) = λ
∫ t f DM

t
b R−1 bTdτ (44)

Then, the Lagrange multiplier λ can be readily solved as

λ =
Z(t)∫ t f DM

t [R−1
D b2

D(τ) + R−1
T b2

T(τ)]dτ
(45)

On substitution of Equation (45) into Equation (43), the analytic explicit cooperative
guidance law can be obtained as

uD = −
R−1

D bD∫ t f DM
t [R−1

D b2
D(τ) + R−1

T b2
T(τ)]dτ

Z(t)

uT = −
R−1

T bT∫ t f DM
t [R−1

D b2
D(τ) + R−1

T b2
T(τ)]dτ

Z(t)

(46)

where bD, bT , and bM are the same as those of the implicit cooperative scenario. The explicit
form of the zero-effort error distance is

Z(t) = z + żtgDM + ϕλ̇TM +
∫ t f DM

t
bM(τ) uMdτ (47)

Remark 4. Similar to the implicit cooperation case, uM is assumed as constant at every time
instant in calculating Z. The benefit of the explicit cooperation strategy is that we can shape the
guidance command of the target–defender team by choosing proper weighting functions RD and RT .
We also demonstrate in numerical simulations that the explicit cooperation strategy helps to reduce
energy consumption, compared with the implicit cooperative guidance law.

5. Simulations and Discussions

In this section, the performance of the proposed implicit and explicit cooperative
guidance laws is evaluated through numerical simulations. We first numerically analyzed
the characteristics of the proposed guidance algorithm. Then, existing cooperative CLOS
and PNG were performed in the simulations for the purpose of performance comparison.
The required initial conditions are summarized in Table 1. Notice that the guidance law of
the attacking missile was chosen as PNG with the navigation gain being 3. The maximum
accelerations of target and missiles were respectively limited as 30 m/s2 and 300 m/s2 in
the simulations. In addition, since the simulations were performed under a constant speed
model and the missile was treated as an ideal mass point, the normal wind was negligible.

Table 1. Initial Conditions.

Parameters Values

(xM0 yM0 ) (15 km 0 km)
(xD0 yD0 ) (0 km 6 km)
(xT0 yT0 ) (0 km 6 km)

VM 600 m/s
VD 600 m/s
VT 300 m/s

γM0 135◦

γD0 0◦

γT0 0◦
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5.1. Characteristics Analysis

In this subsection, the implicit cooperative defense guidance (ICDG) and explicit
cooperative defense guidance (ECDG) were firstly simulated and compared with each
other. The energy penalty weightings were chosen as RD = 1 and RT = 1, i.e., energy
minimization was considered in the simulations. The simulation results, including vehicle
trajectory, guidance command, and zero-effort error distance, obtained from ICDG and
ECDG for the considered scenario are presented in Figure 2.

From Figure 2a, it is clear that the defender guided by the proposed guidance laws
was capable of intercepting the attacking missile. This can also be verified by Figure 2b
where the zero-effort error distance gradually converged to zero. The guidance commands
in Figure 2c revealed that the required defender maneuverability of ECDG was smaller
than that of ICDG. This can be attributed to the fact that the ECDG enabled the target
aircraft to perform an inductive maneuver to lure the attacker, as can be seen from the target
acceleration in Figure 2c. Hence, the ECDG algorithm provided more operational margins
for the defender to cope with other disturbances and reduce the terminal miss distance.
It is worth mentioning that the control energy consumption required by the defender of
ICDG and ECDG were 7.60× 104 and 7.05× 103, respectively. This again confirmed that
the ECDG helped to reduce energy consumption and, thus, can improve the kill probability
with higher speed.

We analyzed the effect of the energy penalty weighting on the guidance performance.
Figure 3 presents the simulation results of ECDG with RT = 1 and various RD = 0.5, 1, 2.
Notice that increasing RD generated similar results to decreasing RT . Hence, we kept RT
fixed in the numerical study. The quantitative comparison results of the required control
effort of the defender and the target are shown in Table 2. The results indicated that increas-
ing RD helped to reduce the energy consumption and the required maneuver capability
of the defender. Therefore, if the defender had enough maneuvering capability, we could
choose a smaller RD to fully exploit the maneuverability of the defender; otherwise, a larger
RD would be a wise option. However, it is worth pointing out that RD cannot be arbitrarily
large, since the maneuver of the target aircraft is physically limited.

Table 2. Control Effort of ECDG with Different RD.

Defender Target

RD = 0.5 7.27 × 103 m2/s3 5.95 × 102 m2/s3

RD = 1 7.05 × 103 m2/s3 9.62 × 102 m2/s3

RD = 2 6.12 × 103 m2/s3 2.18 × 103 m2/s3
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Figure 2. The simulation results of the proposed guidance law. (a) Trajectory, (b) Zero-effort error
distance, (c) Guidance command.
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Figure 3. The simulation results of the proposed guidance law with different RD. (a) Zero-effort error
distance, (b) Guidance command of defender, (c) Guidance command of target.

5.2. Comparison with Existing Solutions

In this subsection, the ECDG with RT = RD = 1 was compared with the existing coop-
erative CLOS [24] and PNG to demonstrate the superiority of the proposed guidance law.

Figure 4 presents the comparison results obtained from different guidance laws. The
results indicated that these three different guidance laws could successfully guide the
defender to intercept the incoming missile and the error distance gradually converged
to zero. However, we can observe from Figure 4c that the guidance command of CLOS
was saturated at the beginning. This is because the cooperative CLOS is derived from an
ideal geometry condition in which the first and second derivatives of the LOS angle among
the three vehicles are equal. However, this assumption is invalid at the initial period,
since Z 6= 0. Although the CLOS leverages a lead-lag compensator to regulate the angle
error, tuning the design parameters depends on the application scenarios. The recorded
control effort and maximum defender–to–attacker maneuverability ratio are summarized
in Table 3. The results indicated that the proposed ECDG consumed less energy than the
other two guidance laws. More importantly, the ECDG ensured successful interception
with the smallest maneuverability demand. In conclusion, the proposed ECDG is more
practical for aircraft protection applications, since the defender and the attacker usually
have similar maneuver capability.
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Figure 4. Comparison results of the proposed guidance law with PNG and CLOS. (a) Trajectory,
(b) Zero-effort error distance, (c) Guidance command of defender.

Table 3. Quantitative Comparison Results.

Control Effort |uD/uM |max

ECDG 7.05 × 103 m2/s3 2.09
CLOS 4.88 × 104 m2/s3 15.57
PNG 1.09 × 104 m2/s3 3.06
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6. Conclusions

An optimal guidance law for a target aircraft and its defender cooperatively intercept-
ing an incoming missile was proposed based on three-body kinematics. By formulating
a finite-time optimal control problem, the optimal defense guidance laws based on LOS
triangle geometry were derived in both implicit and explicit cooperative forms. The ob-
tained guidance command consisted of time-varying navigation gains and zero-effort error
distance. The main feature of the proposed approach was to realize the cooperation in
different levels. Numerical simulations with some comparisons clearly demonstrated the
superiority of the proposed algorithm.
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