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Abstract: For geostationary orbit transfers, a long duration is required using electric propulsion
and a large propellant mass is needed with chemical propulsion. Hybrid transfers can achieve a
balance between the fuel consumption and transfer time. In this paper, a trajectory optimization
method is proposed for time-fixed minimum-fuel orbital transfer with combined chemical–electric
propulsion. The necessary conditions and transversality conditions related to impulsive burns are
derived theoretically with Pontryagin’s maximum principle. The long-duration geostationary orbit
transfer is a many-revolution transfer, and is solved with the homotopic approach from the short-
duration transfer problem. The variation in fuel consumption with transfer time is nearly linear, and
the variation in the magnitude of impulsive burn is exponential. A simple model is presented for the
estimation of fuel consumption and magnitude of impulsive burn with given transfer time, specific
impulse of propulsion system and low-thrust magnitude.

Keywords: orbital transfer; combined chemical–electric propulsion; indirect method; geostationary
orbit; trajectory optimization

1. Introduction

Most commercial communications satellites, some weather satellites and navigation
satellites are placed in geostationary orbit (GEO). The transfers to GEO are generally accom-
plished by a chemical propulsion (CP) system. The satellites are injected into geostationary
transfer orbits (GTOs). Then, they are boosted into GEO using CP in several hours or
several days. This transfer is fast but requires a large amount of fuel due to its low specific
impulse. In the 1960s, electric propulsion (EP) was introduced as a practical alternative to
CP, being able to reduce fuel consumption at the cost of a longer mission time [1]. There
have been many works about the optimization of all-electric orbit transfers [2–4]. Most
of the optimization methods can be generally categorized into direct methods, indirect
methods and hybrid methods, which combine the two. In the direct method, the optimiza-
tion problem is converted into the parameter optimization problem and then nonlinear
programming (NLP) can be applied to obtain the solution, which requires a large amount of
computation [2,5]. As for the indirect method, the optimization problem is usually solved
through a two-point boundary-value problem (TPBVP) or multi-point boundary-value
problem (MPBVP), which is difficult to solve due to the small convergence radius [6,7].
Hybrid methods are combinations, which have the advantages of both methods, where the
time histories of costate variables are directly parameterized and the optimal solution is
obtained through the NLP method [8,9]. Apart from these trajectory optimization meth-
ods, the heuristic control law has also been applied to achieve low-thrust orbit transfer.
Although the obtained solutions are usually not optimal, the heuristic control law has the
advantages of simple formulation and quick calculation speed [4,10,11]. Moreover, the
shape-based method was developed to determine the analytical solutions to the low-thrust
transfer trajectory [12]. Boeing’s 702SP satellite was the first all-electric propulsion satellite

Aerospace 2022, 9, 200. https://doi.org/10.3390/aerospace9040200 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9040200
https://doi.org/10.3390/aerospace9040200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0001-6395-3296
https://doi.org/10.3390/aerospace9040200
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9040200?type=check_update&version=1


Aerospace 2022, 9, 200 2 of 21

launched into GEO [13]. Although EP is fuel saving, the transfer time is also essential
because of the economic benefits. Therefore, all-electric satellites are not applicable in some
GEO transfer missions when the mission time is limited. Combined chemical–electric mul-
timode propulsion has been the subject of most recent interest [14]. This type of propulsion
has shown benefits for commercial spacecraft, especially for orbit-raising missions. It has
been found that the advanced onboard propulsion systems can be used to perform both the
north–south station keeping and part of the orbit transfer to GEO [15]. This work shows
that the use of EP for portions of the transfer allows a greater net mass of spacecraft by
extending the transfer time, in comparison with chemical-only transfer. A hybrid orbital
transfer from low Earth orbit (LEO) to GEO was investigated by Mailhe and Heister [16].
The hybrid transfer was proven to be effective in reducing the trip time and radiation
damage in the Van Allen belts, and dramatically reducing the vehicle gross weight. Both
high–low and low–high–low thrusting strategies are studied in their investigation, and the
low–high–low thrusting strategy was proven to be more efficient. Oh et al. developed a
simple analytic multistage model for combined chemical–electric orbit-raising missions [17].
They applied the analytic model to estimate the performance of the transfer, along with a
graphical–analytic method for a more accurate estimation. Jenkin performed trade studies
in a case study of GEO transfer using combined chemical–electric propulsion [18]. In his
work, trajectory optimization was used to maximize the GEO insertion mass. His trade
studies determined trends among various missions and system parameters, such as the
elliptical orbit for the start of the EP phase, the input power for the EP system and the
specific impulse of the system. Kluever considered the mission sequence beginning with
injection into an elliptical orbit with an arbitrary apogee altitude, an apogee burn using
the onboard chemical stage to raise perigee and/or reduce inclination and a low-thrust
transfer to geostationary orbit [19]. Kluever also proposed a purely analytical algorithm
that can determine spacecraft mass requirements for a desired electric propulsion system
and desired transfer time [20].

The main difficulty of hybrid transfer is how to determine the time, magnitude and
direction of impulsive burns to minimize the fuel consumption of the whole transfer.
Previous works have discussed the relations between the EP transfer stage and starting
orbit parameters, such as apogee, perigee altitudes and inclination. With these relations,
the delta-v of the chemical stage for a desired EP stage can be determined with Hohmann
transfer or some other methods. In this paper, the optimizations of EP stage and CP
stage are combined together. Different from previous works, optimal control theory is
employed here to determine the timing, magnitude and direction of the impulsive burns
along with the low-thrust control law. The impulsive burns can lead to discontinuities in
state variables at those moments. The necessary conditions and transversality conditions
related to impulsive burns are derived theoretically with Pontryagin’s maximum principle
(PMP). The time-fixed minimum-fuel hybrid transfer can be turned into a MPBVP with PMP.
This optimization method is similar to the indirect method in the optimization of low-thrust
transfer. Moreover, as the long-duration transfer from GTO to GEO is many-revolution,
the homotopic approach is taken to solve long-duration transfer with the solution of short-
duration transfer. Moreover, a model to estimate the performance of the hybrid transfer
is developed here for the determination of the parameters of the propulsion system to
meet the mission’s requirements, such as the mission time and fuel consumption. The
variations in the fuel consumption and magnitude of impulsive burn are studied to build
the interpolation model. With this model, the performance of the hybrid transfer, such
as the fuel consumption, magnitude of impulsive burn and transportation rate, can be
estimated quickly, while the errors between the estimated values through this model and
the accurate solutions through the indirect method are relatively small. There has been
some trajectory optimization software developed by the direct method, indirect method or
some other methods [21]. For example, GMAT (General Mission Analysis Tool) is a space
mission design software for computing multigravity-assisted interplanetary and Earth
orbit transfers in accurate dynamical models that implement direct methods combined
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with gradient-based solvers [22]. In the tool SEPTOP (Solar Electric Propulsion Trajectory
Optimization Program), indirect single shooting has been implemented [23]. However, it
would be difficult to use the existing software directly for the optimization of the timing,
magnitude and direction of the impulsive burns. This work can be used to provide the
necessary information for this software to further design the transfer orbit.

In this investigation, the optimization of GEO transfers via combined chemical–electric
propulsion is based on the following assumptions: (i) no effect of Earth shadow eclipses
is considered, (ii) the chemical burns are modeled as impulsive burns, (iii) switch time
between the work of chemical propulsion and electric propulsion is ignored, (iv) electric
propulsion is turned on for the whole trip (continuous thrust).

This paper is organized as follows: in Section 2, the method for solving time-fixed
minimum-fuel transfer using combined chemical–electric propulsion is introduced. The
optimization result and estimation model of hybrid transfer from GTO to GEO with one
impulsive burn is presented in Section 3.

2. Materials and Methods
2.1. Dynamic Model

In order to avoid singularities, the orbit of a spacecraft is described using modified
equinoctial elements (MEE) [24]:

p = a(1− e2),
f = e cos (ω + Ω),
g = e sin (ω + Ω),
h = tan (i/2) cos Ω,
k = tan (i/2) sin Ω,
L = Ω + ω + ν

(1)

where a is the semi-major axis, e is eccentricity, i is inclination, Ω is the longitude of the
ascending node, ω is the argument of perigee, and ν is a true anomaly.

In this study, the direction of thrust is described in the RSW (where the unit vectors R
and S in the orbital plane are along the local radial and transverse direction, and W is along
the angular momentum direction) reference frame, where the x axis is oriented along the
position vector, z along the angular momentum and y perpendicular to the radius vector in
the direction of motion, and rRSW, vRSW are used to denote position and velocity vectors in
the RSW reference frame. For the preliminary design, it is assumed that the spacecraft is
only subject to the central force of Earth’s gravity and the thrust of the electric propulsion
system. The differential equations of motion are given as [24]:

d
dt



p
f
g
h
k
L

 =
Tmaxu

m



0 2p
w

√
p
µ 0√

p
µ sL

√
p
µ
(1+w)cL+ f

w −
√

p
µ (hsL − kcL)

g
w

−
√

p
µ cL

√
p
µ
(1+w)sL+g

w

√
p
µ (hsL − kcL)

f
w

0 0
√

p
µ

s2

2w cL

0 0
√

p
µ

s2

2w sL

0 0 1
w

√
p
µ (hsL − kcL)


α +



0
0
0
0
0

√
µp
(

w
p

)2


(2)

dm
dt

= −Tmaxu
Ispg0

(3)

where sL = sin L, cL = cos L, µ is the gravitational constant of Earth, m is the mass of
the spacecraft, Tmax is the maximum of the thrust, Isp is the specific impulse of EP, g0 is
the gravitational acceleration of Earth on the sea level, u ∈ [0, 1] is the thrust ratio, and



Aerospace 2022, 9, 200 4 of 21

the unit vector α denotes the direction of thrust, w = 1 + f cL + gsL and s2 = 1 + h2 + k2.
In this study, all the quantities are nondimensionalized by the Earth’s radius RE, Earth’s
gravitational constant µ and the spacecraft’s initial mass m0.

Let x = [p, f , g, h, k, L], A and B, respectively, denote a 6× 1 vector and 6× 3 matrix on
the right-hand side of Equation (2). The differential equations of motion can be rewritten in
a compact form:

ẋ = A +
Tmaxu

m
Bα (4)

ṁ = −Tmaxu
Ispg0

(5)

Actually, matrix B is the derivative of MEE with respect to the velocity state in the RSW
reference frame, i.e., B = ∂x

∂vRSW
. For low-thrust transfer, there are boundary conditions

as follows:

a(t0) = a0, e(t0) = e0, i(t0) = i0,
Ω(t0) = Ω0, ω(t0) = ω0, ν(t0) = ν0, m(t0) = 1,

(6)

a
(

t f

)
= 6.6107RE, e

(
t f

)
= 0, i

(
t f

)
= 0. (7)

where t0 and t f are, respectively, the initial and final times. The terminal boundary condi-
tions can also be denoted with MEE:

p
(

t f

)
= 6.6107RE, f

(
t f

)
= g

(
t f

)
= h

(
t f

)
= k

(
t f

)
= 0. (8)

In this problem, the inner constraints regarding impulsive burns should be considered.
Assuming that the number of impulsive burns is n, the inner constraints are addressed as

ψi = s
(
t+i
)
− s
(
t−i
)
− ∆si = 0,

φi = m
(
t+i
)
−m

(
t−i
)

exp
(
− ∆vi

Ispcg0

)
= 0,

i = 1, 2, . . . , n (9)

where s , [r; v], r and v are position and velocity vectors in the Earth-centered inertial (ECI)
reference frame; ∆si , [03×1; ∆vi], ∆vi denotes the change in velocity vector in the ECI
reference frame conducted by the impulsive burn; ∆vi = ||∆vi||, t−i and t+i are, respectively,
time just before and after the i-th impulsive burn; r and v represent the position and velocity
vectors of the spacecraft in the ECI reference frame, and Ispc is the specific impulse of CP.

2.2. Optimal Control Theory

The purpose of this problem is to minimize the fuel consumption. The mass of the
spacecraft after the i-th impulsive burn is derived as (normalized by m0)

m
(
t+i
)
= exp

(
−∑i

l=1 ∆vl

Ispcg0

)
−

i−1

∑
l=0

Tmax

Ispg0
exp

(
−

∑i
j=l+1 ∆vj

Ispcg0

) ∫ t−i+1

t+i
udt (10)

Define the n + 1-th impulsive burn at t f as ∆vn+1, and assume ∆vn+1 = 0. The final
mass of the spacecraft can be expressed as

m
(

t f

)
= exp

(
−∑n

l=1 ∆vl

Ispcg0

)
−

n

∑
i=0

Tmax

Ispg0
exp

(
−

∑n+1
j=i+1 ∆vj

Ispcg0

) ∫ t−i+1

t+i
udt (11)
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Therefore, the performance index is

J0 = ∆m = 1−m
(

t f

)
= 1− exp

(
−∑n

l=1 ∆vl

Ispcg0

)
+

n

∑
i=0

Tmax

Ispg0
exp

(
−

∑n+1
j=i+1 ∆vj

Ispcg0

) ∫ t−i+1

t+i
udt

(12)

As there are constraints ψi and φi, Lagrange multipliers χi and κi are applied to trans-
form it into an unconstrained problem. With the assumption that the electric propulsion
system turns on for the whole trip, the performance index of the unconstrained problem is
given as

J1 =J0 +
n

∑
i=1

(
χT

i ψi + κiφi

)
=1− exp

(
−∑n

l=1 ∆vl

Ispcg0

)
+

n

∑
i=1

(
χT

i ψi + κiφi

)
+

n

∑
i=0

Tmax

Ispg0
exp

(
−

∑n+1
j=i+1 ∆vj

Ispcg0

) ∫ t−i+1

t+i
1dt

(13)

For convenience, define

Φ , 1− exp
(
−∑n

l=1 ∆vl

Ispcg0

)
+

n

∑
i=1

(
χT

i ψi + κiφi

)
(14)

L(i) =
Tmax

Ispg0
exp

(
−

∑n+1
j=i+1 ∆vj

Ispcg0

)
(15)

The Hamiltonian can be built as

H(i) =L(i) + λTẋ + λmṁ

=
Tmax

Ispg0
exp

(
−

∑n+1
j=i+1 ∆vj

Ispcg0

)
+ λT

(
A +

Tmaxu
m

Bα

)
− λm

Tmaxu
Ispg0

(16)

where λ ,
[
λp; λ f ; λg; λh; λk; λL

]
is the costate vector related to MEE, λm is the costate

related to mass, and the superscript i in H(i) and L(i) means the expressions when ti <
t < ti+1 (i = 0, 1, 2, . . . , n). According to PMP, the optimal thrust direction and magnitude,
which minimize the Hamiltonian, are determined by

α = −
(
λTB

)T

||λTB||
, (17)


u = 1 if SF(i) < 0
u = 0 if SF(i) > 0
u ∈ [0, 1] if SF(i) = 0

(18)

where SF(i) is the switching function, which holds the form

SF(i) = −
Ispg0

m

∣∣∣∣∣∣λTB
∣∣∣∣∣∣− λm (19)

Substituting the optimal control law shown by Equation (17) into the Hamiltonian function,
the costate differential equations, which are also called the Euler–Lagrange equations, can
be obtained as [25]
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λ̇ = − ∂H(i)

∂x = −
(

λT ∂A
∂x + λT Tmaxu

m
∂B
∂x α
)

,

λ̇m = − ∂H(i)

∂m = −
∣∣∣∣λTB

∣∣∣∣ Tmaxu
m2

(20)

where the derivatives ∂A
∂x and ∂B

∂x are shown in Appendix A.

Because the final mass m
(

t f

)
and L

(
t f

)
are not constrained, the transversality condi-

tions show that the final costates λm

(
t f

)
and λL

(
t f

)
should satisfyλm

(
t f

)
= 0,

λL

(
t f

)
= 0

(21)

Now, the necessary conditions related to impulsive burns can be derived from
Equation (13). The first-order variation in performance index is [25]

δJ1 =... +
n

∑
i=1

[
∂Φ

∂x
(
t−i
) − λT(t−i )

]
δx
(
t−i
)
+

n

∑
i=1

[
∂Φ

∂x
(
t+i
) + λT(t+i )

]
δx
(
t+i
)

+
n

∑
i=1

[
∂Φ

∂m
(
t−i
) − λm

(
t−i
)]

δm
(
t−i
)
+

n

∑
i=1

[
∂Φ

∂m
(
t+i
) + λm

(
t+i
)]

δm
(
t+i
)

+
n

∑
i=1

[
∂Φ

∂ti
+ H(i−1)(t−i )− H(i)(t+i )]δti +

n

∑
i=1

[
∂Φ

∂∆vi
+

n

∑
j=0

∫ t−j+1

t+j

∂L(j)

∂∆vi
dt

]
δ∆vi

(22)

where ... denotes the terms related to Euler–Lagrange equation (20) and control variables u
and α, which have been introduced before.

It is obvious that ∂Φ
∂ti

= 0. Then, let us analyze the derivatives ∂Φ
∂x(t±i )

, ∂Φ
∂m(t±i )

, ∂Φ
∂∆vi

and

the term ∑n
j=0
∫ t−j+1

t+j
∂L(j)

∂∆vi
dt. Applying Equations (9) and (14), the following relations can

be deduced:

∂Φ

∂x
(
t±i
) = χT

i
∂ψi

∂x
(
t±i
) = ±χT

i
∂s
∂x

∣∣∣∣
t=t±i

(23)

∂Φ

∂m
(
t+i
) = κi

∂φi

∂m
(
t+i
) = κi (24)

∂Φ

∂m
(
t−i
) = κi

∂φi

∂m
(
t−i
) = −κi exp

(
− ∆vi

Ispcg0

)
(25)

∂Φ

∂∆vi
=

1
Ispcg0

[
exp

(
−∑n

l=1 ∆vl

Ispcg0

)
+ κim

(
t−i
)

exp
(
− ∆vi

Ispcg0

)]
∆vT

i
∆vi
− χT

i,4∼6 (26)

n

∑
j=0

∫ t−j+1

t+j

∂L(j)

∂∆vi
dt =

n

∑
j=0

Tmax

Ispg0

∂

∂∆vi

(
exp

(
−

∑n+1
l=j+1 ∆vl

Ispcg0

)) ∫ t−j+1

t+j
1dt

∆vT
i

∆vi
= − 1

Ispcg0

i−1

∑
j=0

∫ t−j+1

t+j
L(j)dt

∆vT
i

∆vi
(27)

The expression of matrix ∂s
∂x is shown in Appendix A. In the remaining part, Asx is used to

denote matrix ∂s
∂x . Substituting Equations (23)–(27) into Equation (22), λ(t), λm(t) and ∆vi

should satisfy
λT(t−i ) = −χT

i Asx
(
t−i
)

(28)

λT(t+i ) = −χT
i Asx

(
t+i
)

(29)

κi = −λm
(
t−i
)

exp
(

∆vi
Ispcg0

)
(30)
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λm
(
t+i
)
= −κi (31)[

exp
(
−∑n

l=1 ∆vl

Ispcg0

)
−

i−1

∑
j=0

∫ t−j+1

t+j
L(j)dt + κim

(
t−i
)

exp
(
− ∆vi

Ispcg0

)]
∆vT

i
∆vi

= Ispcg0χT
i,4∼6

(32)

H(i−1)(t−i )− H(i)(t+i ) = 0 (33)

The Lagrange multipliers χi can be determined with λ
(
t−i
)

and Asx
(
t−i
)

according to
Equation (28), and κi can be determined using Equation (30). Costates λ

(
t+i
)

and λm
(
t+i
)

are updated using Equations (29) and (31). From Equation (32), the direction and magnitude
of impulsive burn ∆vi satisfy

∆vi
∆vi

=
χi,4∼6

||χi,4∼6||
(34)

exp
(
−∑n

l=1 ∆vl

Ispcg0

)
−

i−1

∑
j=0

∫ t−j+1

t+j
L(j)dt + κim

(
t−i
)

exp
(
− ∆vi

Ispcg0

)
− Ispcg0||χi,4∼6|| = 0

(35)

Equation (34) shows the direction of the impulsive burn in the ECI reference frame. La-
grange multiplier χi is derived from Equation (28) as

χi = −
[
AT

sx
(
t−i
)]−1

λ
(
t−i
)
= −


(

∂x
∂r

∣∣∣
t=t−i

)
λ
(
t−i
)(

∂x
∂v

∣∣∣
t=t−i

)
λ
(
t−i
)
 (36)

Combining Equations (17), (34) and (36), it can be deduced that

∆vi
∆vi

= αECI
(
t−i
)
= αECI

(
t+i
)
= −

(
∂x
∂v

∣∣∣
t=t−i

)
λ
(
t−i
)

∣∣∣∣∣∣∣∣( ∂x
∂v

∣∣∣
t=t−i

)
λ
(
t−i
)∣∣∣∣∣∣∣∣ (37)

where αECI is the direction of low thrust in the ECI reference frame. Equation (37) proves
that the direction of the impulsive burn stays the same as the direction of low thrust just
before and after the impulsive burn in the ECI reference frame.

The differential equations shown by Equations (4), (5) and (20) are numerically inte-
grated using the classic eighth-order Runge–Kutta integrator with a seventh-order RKF7(8)
for automatic step-size control [26]. The unknowns include seven initial values of costates
λ(t0), λm(t0), the timing and magnitude of impulsive burn ti, ∆vi (i = 1, 2, . . . , n). Numer-
ical Lagrange multipliers χi, κi (i = 1, 2, . . . , n) are obtained using Equations (28) and (30).
The direction of impulsive burn can be determined with Equation (34). At the same time,
there are also equations consisting of the 5-D Equation (8), the 2-D Equation (21), transver-
sality condition Equation (33) and first-order necessary condition Equation (35). States
x
(
t+i
)

and m
(
t+i
)

can be updated with Equation (9). Costates λ
(
t+i
)

and λm
(
t+i
)

are up-
dated with Equations (29) and (31). Hence, the solution of the MPBVP can be obtained
using the numerical method for solving nonlinear equations.

2.3. Steps of Solving Hybrid Transfer Problem

Similar to the all-electric transfer problem, the hybrid transfer problem is difficult to
solve when there are many revolutions. For short-duration transfer, the initial guess of
the solution can be obtained by the global optimization method improved cooperative
evolutionary algorithm (ICEA) [27]. However, as the solution of MPBVP is sensitive to
the initial guess, it is difficult to solve the long-duration transfer problem with the initial
guess obtained by global optimization. To deal with this issue, homotopy techniques, also
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called numerical continuation, as introduced in the all-electric transfer problem [28,29], are
employed. In this work, the long-duration transfer problem is solved through transfer time
continuation and thrust continuation.

The steps of solving the hybrid transfer problem can be concluded as the following.

1. Apply the ICEA algorithm to search the approximate solutions of the initial costate
vector [λ(t0); λm(t0)], the timing and magnitude of impulsive burn [ti; ∆vi] (i =
1, 2, . . . , n) and numerical Lagrange multipliers χj to the high-thrust short-duration

transfer problem Γ
(

T(0)
max, t(0)f

)
.

2. Take the approximate solutions of step 1 as the initial guess to provide the accurate

solution of the high-thrust short-duration transfer problem Γ
(

T(0)
max, t(0)f

)
. Go back to

step 1 if it does not converge.
3. Set k = 1 and begin the thrust continuation process. Reduce the thrust by hT , i.e.,

T(k)
max = T(k−1)

max − hT . Employ the solution of the previous problem Γ
(

T(k−1)
max , t(0)f

)
as

an initial guess to solve the new problem Γ
(

T(k)
max, t(0)f

)
. If it does not converge, reduce

hT and repeat this step. Let k = k + 1 if it converges.
4. When T(k)

max = Tmax, set j = 1 and begin the transfer time continuation process.

Increase the transfer time by ht f , i.e., t(j)
f = t(j−1)

f + ht f . Employ the solution of

the previous problem Γ
(

Tmax, t(j−1)
f

)
as an initial guess to solve the new problem

Γ
(

Tmax, t(j)
f

)
. If it does not converge, reduce ht f and repeat this step. Let j = j + 1 if

it converges.
5. When t(j)

f = t f , output the desired solutions of the hybrid transfer problem Γ
(

Tmax, t f

)
.

The time continuation process and thrust continuation process are accomplished
separately in the algorithm above. The two steps can also be combined together by reducing
the thrust and increasing the transfer time at the same time.

3. Results

Orbit transfer from GTO to GEO via combined chemical-electric propulsion is discussed
in this section. The gravitational acceleration of Earth on the sea level is g0 = 9.806 m/s2, the
specific impulse of chemical propulsion is Ispc = 300 s, and the initial mass of the spacecraft
is m0 = 800 kg. The initial orbital elements of the spacecraft are listed in Table 1.

Table 1. Initial orbital elements of spacecraft in J2000.0 for GTO–GEO hybrid transfer.

a (RE) e i (◦) Ω (◦) ω (◦) M (◦)

3.82 0.731 27 0 0 0

3.1. Solution of Hybrid Minimum-Fuel Hybrid Transfer

Firstly, hybrid transfer orbits with thrust magnitude Tmax = 200 mN and low-thrust
specific impulse Isp = 3000 s are optimized with various transfer times. MinPack-1 [30]
and GNU Scientific Library (GSL) are used to solve the MPBVP. In this way, the convergence
and efficiency of this algorithm can be discussed with different solvers. In GSL, the hybrid
solver, discrete Newton solver and Broyden solver are considered to solve the MPBVP [31–33].
Moreover, the hybrid solver in GSL is based on MinPack. The computations are executed
on a desktop personal computer with a CPU of 1.8GHz, and Visual Studio 2019 is used.
Considering the homotopic approach from t(j)

f to t(j+1)
f , set ht f = t(j+1)

f − t(j)
f days, and

the maximum iteration number of the solvers in GSL is 100. When it does not converge,
set ht f = 0.8ht f . Part of the performance of the algorithm with the four solvers is listed
in Table 2. According to Table 2, this homotopic approach converges with all of the four
solvers. The fuel consumption of the solution with four solvers is the same. However, the
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efficiency of solving this algorithm with MinPack-1, the hybrid solver and the Broyden
solver in GSL is slightly higher than with the discrete Newton solver in GSL. Therefore, it
is suggested to use Minpack-1, the hybrid solver and the Broyden solver in GSL to solve
this problem. In the following works, MinPack-1 is used to solve this MPBVP.

Table 2. Performance of the algorithm with different solvers (computation time and fuel consumption
of the solution).

t(j)
f (Days) t(j+1)

f (Days) MinPack-1 Hybrid Discrete Newton Broyden

40 42 1.8 s
257.22 kg

1.2 s
257.22 kg

4.7 s
257.22 kg

1.4 s
257.22 kg

70 72 4.9 s
182.28 kg

3.0 s
182.28 kg

8.6 s
182.28 kg

2.7 s
182.28 kg

100 105 6.9 s
96.59 kg

5.2 s
96.59 kg

19.5 s
96.59 kg

8.6 s
96.59 kg

In this case, chemical-only transfer orbit and all-electric transfer orbit are optimized
first for comparison. The minimum time transfer problem with electric propulsion is solved
by the indirect method [34] and thrust continuation. The fuel consumption of chemical-only
transfer with two impulsive burns is ∆mc = 366.86 kg. Moreover, the magnitude of the two
burns is, respectively, 1.805 km/s and 0.22 m/s. The minimum transfer time from GTO to
GEO with all-electric propulsion is 115.942 days, and the fuel consumption is 68.10 kg.

For hybrid transfer with two impulsive burns with a transfer time of several days,
the solution shows that the first impulsive burn is the same as that of hybrid transfer with
one impulsive burn, and the magnitude of the second impulsive burn is 0. Moreover,
the positions where the two impulsive burns are conducted are the same as those of
chemical-only transfer. The first impulsive burn is conducted at the apogee to raise the
perigee and lower the inclination, which is also the descending node. For GTO orbits, the
apogee or the descending node is usually close to the GEO orbit (usually with an apogee
of 42,164 km), which means that the delta-v of the second impulsive burn is almost 0 for
chemical-only transfer. For hybrid transfer from GTO to GEO, the very small delta-v of
the second impulsive burn can be completely replaced with the delta-v of EP in a short
transfer time. As the magnitude of the second impulsive burn of hybrid transfer with two
impulsive burns is 0, only hybrid transfer with one impulsive burn is considered for this
transfer mission.

A series of hybrid transfer problems with transfer time varying from several days to
115 days are optimized. There are multiple local optimal solutions for the hybrid transfer
problem. In the time continuation process, the timing of impulsive burn t1 varies in a small
range. When beginning from solutions with different t1, the homotopy approach will lead
to different solutions. In this work, two series of solutions with different values of t1 are
studied. The variation in fuel consumption ∆m with transfer time t f and variation in the
magnitude of impulsive burn ∆v1 with t f are demonstrated in Figure 1. The timing of
impulsive burn t1 of the first series of solutions is 1.10 days, and t1 of the second series
of solutions is 0.66 days. According to Figure 1, when the transfer time is short enough,
the hybrid transfer is close to chemical-only transfer, which requires fuel consumption
of 366.86 kg. When the transfer time is close to the minimum transfer time with all-
electric propulsion, the performance of hybrid transfer orbit is close to that of all-electric
transfer orbit. The local optimal solutions with t1 = 1.10 days perform better than those
with t1 = 0.66 days. Therefore, only solutions with t1 = 1.10 days are discussed in the
following section.
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Figure 1. The variation in fuel consumption with transfer time and variation in magnitude of
impulsive burn with transfer time.

As is shown in Figure 1, there is a linear relation between fuel consumption ∆m and
transfer time t f , and also an exponential relation between ∆v1 and t f . The curve-fitting
result with t1 = 1.10 days is presented in Figure 2. The curves are fitted with linear models,
which hold the forms

exp
(
− ∆v1

Ispcg0

)
= a0 + a1t f , (38)

∆m = b0 + b1t f (39)

Combining Equations (12), (38) and (39), it can be derived that

b0 =
(

m0 − Tmaxt1
Ispg0

)
(1− a0) ≈ m0(1− a0),

b1 = −
[

a1

(
m0 − Tmaxt1

Ispg0

)
− Tmax

Ispg0

]
≈ −

(
a1m0 − Tmax

Ispg0

) (40)

Equation (40) describes the relation between coefficients a0, a1 and b0, b1. By MATLAB tool
curve-fitting, the linear coefficients are solved:

a0 = 0.5441, a1 = 3.9213× 10−3,
b0 = 364.4245, b1 = −2.5471,

(41)

where the units of a0 and a1 are, respectively, 1 and 1/day, and the units of b0 and b1 are,
respectively, kg and kg/day. The goodness of the two models is guaranteed, with an R2

statistical value of 0.9999. For a set of data yj
(

j = 1, 2, . . . , ny
)
, the estimated value is ŷj,

and the average value is ȳ. The definition of R2 is [35]

R2 = 1− S
Syy

, (42)

where S = ∑
ny
j=1

(
yj − ŷj

)2 is the sum of the squares of the error, and Syy = ∑
ny
j=1

(
yj − ȳ

)2 is the

total sum of squares. The root mean squared error (RMSE) is expressed as
√

∑
ny
j=1

(
yj − ŷ

)2/ny.

The value of R2 lies between 0 and 1, where the value of 1 means a perfect fit. The curve-
fitting result implies that when the transfer time is t f = 0, impulsive burn ∆v1 and fuel
consumption ∆m satisfy that

exp
(
−∆v1(0)

Ispcg0

)
= a0 = 0.5441,

∆m = b0 = 364.42 kg
(43)

Equation (43) means ∆v1 = 1.7906 km/s and ∆m = 364.42 kg, which is close to the
performance of chemical-only transfer. When ∆v1 = 0, it can be solved from the fitted
linear model that t f = 116.263 days, which is close to the minimum time of all-electric
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transfer, tEP = 115.942 days. Theoretically, when t f reaches the minimum time of all-electric
transfer, we have

t̂EP = t f =
1− a0

a1
=

1− exp
(
−∆v1(0)

Ispcg0

)
a1

(44)

where t̂EP represents the estimated minimum time of all-electric transfer. Because the value
of t̂EP is independent of the term related to chemical propulsion, we have

a1 =
1− exp

(
−∆v1(0)

Ispcg0

)
t̂EP
(
Tmax, Isp

) (45)

Several previous investigations yielded the empirical conclusion that the product of low-
thrust magnitude Tmax and minimum time of all-electric transfer tEP was nearly con-
stant [6,28,36]. There is also a model suggested for the estimation of t̂EP [35,37]

t̂EP = c1

(
Tmax

m0

)d1(
Isp
)d3 + c2

(
Tmax

m0

)d2

(46)

The values of the coefficients vary with the initial and terminal orbits. However, for transfer
missions from GTO to GEO and from LEO to GEO, the values of d1 and d2 are both near -1,
which indicates that the empirical conclusion about the constancy of the product tEP× Tmax
is practical in some cases. Combining Equations (44) and (46), we have the interpolation
model in this work:

1− a0

a1
= c1

(
Tmax

m0

)d1(
Isp
)d3 + c2

(
Tmax

m0

)d2

(47)

When the coefficients c1, c2, d1, d2 and d3 are determined, the fuel consumption ∆m and
impulsive burn ∆v1 can be estimated with transfer time t f , low-thrust magnitude Tmax,
specific impulse of CP Ispc and specific impulse of EP Isp.
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Figure 2. Curve-fitting results of fuel consumption and impulsive burn’s magnitude.

The transportation rate TR, which is the payload mass advantage gained by using EP
divided by the low-thrust transit time [17], can be deduced from Equation (39):

TR =
∆mc − ∆m

t f
=

∆mc − b0

t f
− b1 (48)

Because ∆mc − b0 = 2.44 kg, the first term on the right-hand side of Equation (48)
can be neglected when t f is large enough, and the transportation rate is near constant
−b1. The actual transportation rate, deduced transportation rate in Equation (48) and
simplified quadratic model are presented in Figure 3. For short-duration transfer with
several days, the deduced model cannot be applied to estimate the transportation rate. This
is because the error is enlarged when the term ∆mc − ∆m is divided by a small value of t f .
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For hybrid transfer over 6 days, the deduced model is applicable for the estimation of the
transportation rate.
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Figure 3. Transportation rate versus transfer time.

Now, hybrid transfer orbits with transfer time of 40 days, 80 days and 115 days are
shown among the transfer orbits with t1 = 1.10 days. Moreover, the time-optimal transfer
orbit with all-electric propulsion is also shown for comparison. The time histories of the
semi-major axis, eccentricity, inclination and mass are presented in Figure 4. As is shown
in Figure 4, the transfer orbit with t f = 115 days is close to the all-electric transfer orbit.
For hybrid transfer orbits with transfer time of 40 days and 80 days, time histories of thrust
direction angles in the RSW reference frame are illustrated in Figure 5. The trends of thrust
direction and the transfer orbit with transfer time of 80 days are shown in Figure 6. As is
presented in Figure 6, the impulsive burn is conducted at the ascending/descending node,
which is also the apogee, to raise the perigee and lower the inclination.
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transfer orbit with transfer time of 40 days, 80 days, 115 days and all-electric transfer orbit.
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Figure 5. The time histories of thrust direction angles with transfer time of 40 days and 80 days.
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Figure 6. Hybrid transfer orbit when transfer time is 80 days.

3.2. Performance of Hybrid Transfer with Various Low-Thrust Maximum Magnitude and
Specific Impulse

As is mentioned above, the linear coefficients in Equations (38) and (39) are related
to low-thrust maximum magnitude Tmax and specific impulse Isp. A group of values of
Tmax and Isp are considered to determine the coefficients in Equation (46). The hybrid
transfer problems are solved when Tmax and Isp are set with different values. When Tmax
takes various values, the variation in fuel consumption ∆m with transfer time t f and the
variation in the magnitude of the impulsive burn ∆v1 with t f are demonstrated in Figure 7.
When Isp takes various values, the variation in fuel consumption ∆m with transfer time
t f and the variation in the magnitude of impulsive burn ∆v1 with t f are demonstrated in
Figure 8. The data are fitted with the linear model presented in Equations (38) and (39).
Then, the coefficients a0 and a1 can be obtained on different occasions.
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Figure 7. The variation in fuel consumption with transfer time and variation in magnitude of
impulsive burn with transfer time for different values of Tmax when Isp = 3000 s.
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Figure 8. The variation in fuel consumption with transfer time and variation in magnitude of
impulsive burn with transfer time for different values of Isp when Tmax = 200 mN.

With the model described in Equation (47) for curve fitting, the coefficients of the
interpolation model are shown in Table 3. The goodness of the fit is guaranteed, with
an R2 statistical value of 1.0000. The interpolation surface is illustrated in Figure 9. In
these cases, the coefficient a0 varies between 0.5413 and 0.5453, and its average value is
0.5441. Therefore, the coefficient a0 is determined as a0 = 0.5441. Then, the coefficient
a1 can be obtained using Equation (47), and coefficients b0 and b1 can be computed with
Equation (40).

The value of the term c1

(
Tmax
m0

)d1(
Isp
)d3 is much smaller than that of the term c2

(
Tmax
m0

)d2

in Equation (47). Moreover, the value of d2 is 0.98333, which is close to −1. This suggests
that the product (1− a0)/a1 × Tmax is nearly constant when Isp is fixed, which has only a
small range of variation. This simplified conclusion can be applied for a fast estimation of
a1 with low precision.

Table 3. Coefficients of the interpolation model.

c1 c2 d1 d2 d3

−3.99577 0.03540 −0.70065 −0.98333 −0.65100
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Figure 9. Interpolation surface and the real values of (1− a0)/a1.

Once the coefficients are determined, the model can be applied for estimating the
fuel consumption ∆m and impulsive burn ∆v1. The hybrid transfer problems with an-
other group of values of Tmax and Isp are solved for validation. When Isp = 2500 s and
Isp = 3500 s, considering different values of Tmax, the variation in fuel consumption ∆m
with transfer time t f , and the variation in the magnitude of impulsive burn ∆v1 with t f
are, respectively, illustrated in Figures 10 and 11. The values of RMSE of the model for
estimation are presented in Figure 12. Applying this model for estimation, the RMSE of the
fuel consumption is no more than 2 kg, and the RMSE of the magnitude of impulsive burn
is approximately 10−3 km/s.
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Figure 10. The variation in fuel consumption with transfer time and variation in magnitude of
impulsive burn with transfer time for different values of Tmax when Isp = 2500 s.
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Figure 11. The variation in fuel consumption with transfer time and variation in magnitude of
impulsive burn with transfer time for different values of Tmax when Isp = 3500 s.
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Figure 12. RMSE of the estimation of fuel consumption and magnitude of impulsive burn with the
interpolation model.

Among these cases, the case where Tmax = 100 mN, Isp = 3500 s is discussed as an
example. The variation in relative error (∆m̂− ∆m)/∆m with transfer time t f and the
variation in error ∆v̂1 − ∆v1 with transfer time t f are presented in Figure 13. It can be seen
that the estimated fuel consumption error is less than 5%, and the estimated error of the
impulsive burn’s magnitude is within 0.015 km/s. The estimation of the transportation
rate is shown in Figure 14. Starting from t f = 10 days, the estimated transportation rates
are essentially the same as the real transportation rates. The large error with a small value
of t f has been explained before. The relative error of the transportation rate is presented in
Figure 15, where the error with t f less than 10 days is ignored. It can be seen from Figure 15
that the transportation error is mainly within 2%.
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Figure 13. Prediction error of fuel consumption and magnitude of impulsive burn when
Tmax = 100 mN and Isp = 3500 s.
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Figure 14. Transportation rate versus transfer time when Tmax = 100 mN and Isp = 3500 s.
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Figure 15. Transportation rate error versus transfer time when Tmax = 100 mN and Isp = 3500 s.

4. Discussion and Conclusions

In this paper, a trajectory optimization method is proposed for time-fixed minimum-
fuel orbital transfer with combined chemical–electric propulsion. The first-order necessary
conditions for impulsive burn constraints are derived analytically. The long-duration
geostationary orbit transfer is many-revolution, and is solved through the homotopic
approach from the short-duration transfer problem. For hybrid transfer missions from
GTO to GEO, the solution of hybrid transfer with two impulsive burns shows that the
magnitude of the second impulsive burn is 0, which indicates that only hybrid transfer
with one impulsive burn should be considered.

There are multiple local optimal solutions of this problem. Some of the local optimal
solutions have different timings of impulsive burn t1. When the transfer time is close to
0, the performance of hybrid transfer is close to that of chemical-only transfer. Moreover,
when the transfer time reaches the minimum all-electric transfer time, the performance of
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the hybrid transfer is close to that of all-electric transfer. The variation in fuel consumption
with transfer time is nearly linear, and the variation in the magnitude of the impulsive
burn is exponential. The models in Equations (38) and (39) are applied to describe the
two relations. According to the linear coefficients a0 and b0, the magnitude of impulsive
burn ∆v1 and fuel consumption at t f = 0 are close to those of chemical-only transfer. The
coefficients a0 and b0 are constant when the specific impulse of chemical propulsion Ispc
is fixed. The coefficient a1 can be expressed with a0 and the estimated minimum time of
all-electric transfer t̂EP. The value of t̂EP is estimated with an interpolation model. The
coefficients of the interpolation model are related to the initial and terminal orbits. Once the
coefficients are determined, the model can be applied for estimating the fuel consumption
and magnitude of the impulsive burn with a given transfer time, specific impulse of the
propulsion system and low-thrust magnitude. A group of hybrid transfer cases with
various low-thrust magnitude Tmax and specific impulse of EP Isp are optimized to offer
data for the determination of the coefficients. Then, a new group of hybrid transfer cases are
optimized for the validation of the model. The initial mass of the spacecraft is 800 kg, and
the specific impulse of CP is fixed with Ispc = 300 s. For the cases for validation, the RMSE
of the fuel consumption is within 2 kg, and the RMSE of magnitude of the impulsive burn
is approximately 10−3 km/s. For hybrid transfer with Tmax = 100 mN and Isp = 3500 s,
the fuel consumption prediction error is less than 5%. The error of the impulsive burn’s
magnitude is within 0.015 km/s. Finally, the transportation error is mainly within 2%.

Because this paper is based on some assumptions, the solution of this method is not
accurate enough to design a precise transfer trajectory. The results and model can be used
to provide an initial solution for existing software or programs such as GMAT, which can
be used to further design a precise transfer trajectory.
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Appendix A

In this appendix, some expressions of the derivatives in this paper are listed. The
derivatives of matrix A with respect to MEE are given as:

∂A
∂p

=
[
0 0 0 0 0 − 3w2

2

√
µ
p

1
p2

]T

∂A
∂ f

=
[
0 0 0 0 0 2

√
µp w

p2 cL
]T

∂A
∂g

=
[
0 0 0 0 0 2

√
µp w

p2 sL
]T

∂A
∂h

=
∂A
∂k

=
[
0 0 0 0 0 0

]T
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∂A
∂L

=
[
0 0 0 0 0 2

√
µp w

p2 q1
]T

where q1 = − f sL + gcL.
The derivatives of matrix B with respect to MEE are given as:
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where q2 = hsL − kcL, q3 = cL + f , q4 = hcL + ksL, q5 = sL + g.

The derivative of state vector with respect to MEE is
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,

where the submatrices have the forms

∂r
∂p

=
r
p

,
∂r
∂ f

= − r
w

cL,
∂r
∂g

= − r
w

sL,



Aerospace 2022, 9, 200 20 of 21

∂r
∂h

= −2h
r
s2 +

2p
ws2

 q4
−q2
sL

,
∂r
∂k

= −2k
r
s2 +

2p
ws2

 q2
q4
−cL

,

∂r
∂L

= − q1

w
r +

p
ws2

−q6sL + 2hkcL
q7cL − 2hksL

2q4

,

∂v
∂p

= − v
2p

,

∂v
∂ f

=

√
µ

p
1
s2

2hk
q7
2h

,
∂v
∂g

= −
√

µ

p
1
s2

 q6
2hk
−2k

,

∂v
∂h

= −2h
v
s2 −

√
µ

p
2
s2

hq5 − kq3
hq3 + kq5
−q3

,
∂v
∂k

= −2k
v
s2 +

√
µ

p
2
s2

kq5 + hq3
kq3 − hq5

q5

,

∂v
∂L

= −
√

µ

p
1
s2

q6cL + 2hksL
q7sL + 2hkcL

2q2

,

where q6 = 1 + h2 − k2 and q7 = 1− h2 + k2.
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