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Abstract: Collision Detection and Avoidance is one of the critical technologies for fully allowing 

Unmanned Aerial Systems to fly in civil airspaces. Current methods evaluate only potential conflicts 

with other aircraft using specific parameters (e.g., time or distance to closest point of approach) that 

can only be used for pair-wise encounters, not considering the surrounding environment. The pre-

sent work proposes a new collision detection and avoidance concept to solve short-term conflicts in 

scenarios characterized by the simultaneous presence of aircraft and other path constraints (i.e., no-

fly zones, bad weather areas and terrain) including geo-fencing limitations. Differently from other 

open literature methods, the proposed algorithm computes two parameters that synthetically de-

scribe the conflict hazard level of a given scenario and its possible evolution, independently from 

the type and the number of surrounding potential threats. Using such indices, a risk evaluation 

strategy is proposed that detects hazardous situations and generates an optimal maneuver avoiding 

potential collisions while not causing secondary conflicts. The effectiveness of the proposed algo-

rithm is demonstrated by means of fast-time and real time simulations in some challenging conflict 

scenarios that cannot be solved by state of the art Detect and Avoid systems. 

Keywords: Collision Detection and Avoidance; avoidance of fixed obstacles; Detect and Avoid  

systems; Unmanned Aerial Vehicles; Fast Time Simulations; Real Time Simulations 

 

1. Introduction 

The operational concept defined by the International Civil Aviation Organization 

(ICAO) [1] specifies that the air traffic system shall have a conflict management process 

for limiting, to an acceptable level, the risk of collision between aircraft and other potential 

hazards. This conflict management process has three layers: strategic, tactical, and colli-

sion avoidance. The strategic layer manages the density/complexity of traffic and this is 

typically performed by the Air Traffic Management authorities. The tactical layer has the 

objective to keep traffic safely separated from each other and other hazards in medium- 

to long-term encounters and it is the responsibility of air traffic controllers and pilots, 

depending on the situation. The collision avoidance layer, finally, addresses short-term 

conflicts solving emergency situations where the tactical layer failed for some reason. The 

implementation of such layers varies across different airspace classes and types of opera-

tions. 

In this framework, the Detect and Avoid (DAA) system represents a critical compo-

nent of a Remotely Piloted Aircraft Systems (RPAS) or Unmanned Aerial Vehicle (UAS) 

to support the remote pilot in the tactical level process (Remain Well Clear) and imple-

ment the collision avoidance function [2]. However, DAA technologies have not yet 

achieved a level of maturity sufficient to guarantee a so-called equivalent level of safety 

[3] with respect to manned aircraft, as it is demonstrated by the several active develop-

ment projects all over the world. Indeed, NASA and FAA have just completed their UAS 
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in the NAS project (in 2020) while Europe (with EUDAAS project), Canada and Australia 

have still active DAA development projects. Despite other limitations of current DAA de-

sign that are discussed later on in this paper, some of the key technological gaps are re-

lated to the effectiveness of such systems with small unmanned aircraft having poor per-

formance, to the reliability and accuracy of surveillance sensors for aircraft without tran-

sponders (e.g., radar, cameras, etc.) and to the DAA processing algorithms that could be 

not effective in some situations with the presence of multiple maneuvering intruders. This 

obviously poses operational restrictions to UAS that limit their full adoption in civil air-

spaces. 

Nevertheless, DAA system technical standards are already being prepared by several 

working groups such as EUROCAE WG105 in Europe, and RTCA SC-228 in U.S.A. The 

former published the Operational Services and Environment Description (OSED) for DAA 

[4] while the latter the Minimum Operational Performance Standards (MOPS) for DAA 

systems, referred to as Phase 1 MOPS [5]. Moreover, other technical standards have just 

been published or are being prepared for the ACAS-X family of collision avoidance sys-

tem for different manned and unmanned vehicles with different performances. In both 

such technical standards and in other related specifications, DAA systems are defined 

only considering air traffic (not the surrounding environment), and furthermore a remote 

pilot is always present to supervise the flight. 

In this framework, the Italian Aerospace Research Center (CIRA) is also developing 

a DAA system prototype, named ADAPT (Advanced Detect and Avoid ProTotype) [6], as 

part of a national funded research program on fully autonomous aerospace vehicles 

(PRORA). ADAPT includes a Collision Detection and Avoidance (CDA) function that lev-

erages and extends some results of the most recent projects and research activities on the 

subject [7–13], trying to overcome some of the above-mentioned limitations of DAA sys-

tems. 

The present work merges the results included in [14], where a collision avoidance 

algorithm for air traffic has been proposed, with the concepts introduced in [15] for deal-

ing with fixed obstacles (i.e., no-fly zones, terrain and hazardous weather areas) and geo-

fencing constraints. With respect to above referenced papers, this paper presents a com-

prehensive description of the proposed CDA algorithm and adds several details about the 

specific techniques that are used for evaluating the most critical algorithm variables. 

Moreover, the procedures for tuning the algorithm parameters and the results ob-

tained on some sample cases using both Fast Time Simulations and Real Time Simulations 

are reported. 

2. Requirements of a Collision Detection and Avoidance System 

The high-level requirements that describe a CDA system can be found both in docu-

ments from ICAO [3] and in other technical standards, such as [4,5,12]. The final aim of 

this system is to reduce the risk of collisions between aircraft flying in the civil airspace 

under some given values, so as to increase the safety of flight. However, given the future 

introduction of unmanned aircraft in routine aeronautical airspace operations, several dis-

cussions on such safety criteria and related thresholds are still in progress. Nevertheless, 

it is possible to list some basic features that describe at very high level a CDA system to 

be integrated in both manned and unmanned aircraft, as follows. 

• Minimizing the probability of entering Near Mid Air Collision (NMAC) standard 

volume (Figure 1) by performing an automatic maneuver (in the case of unmanned 

aircraft), in any airspace class. 

• Minimizing the occurrence of false alerts (nuisance) and not necessary avoidance ma-

neuvers. 

• Being acceptable to (remote) pilots by giving clear and stable indications on the cur-

rent traffic situation and on the resolution maneuver, so that the pilot can decide to 

manually execute it. 
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• Supporting the (remote) pilot by providing alerts in case of potential conflicts with 

other aircraft (i.e., entering the NMAC volume). 

• Correctly performing in the presence of more than one intruder, up to a pre-defined 

maximum, even with several simultaneous potential conflicts. 

• Being compatible with other aircraft with the same CDA system (auto-compatibility). 

 

Figure 1. NMAC volume. 

Other than the above basic requirements, some other special features should be spe-

cifically considered for unmanned aircraft, as listed below. 

• Being interoperable with the current legacy Collision Avoidance system (TCAS-II, 

see the next section). 

• Being compliant with Right-of-Way rules, if not detrimental to flight safety. 

• Dealing with both cooperative and non-cooperative traffic by correctly processing 

and fusing measurements and related accuracies of different surveillance sensors. 

• Accounting for vehicle flight envelope and maneuvering limitations using a limited 

set of easily retrievable parameters (vehicle agnostic), so being, in principle, easily 

adapted to any unmanned vehicle class, without performing any specific parameter 

tuning and/or algorithm modification when changing the vehicle performances. 

• Correctly performing even in presence of terrain, fixed obstacles, no-fly zones and 

bad weather. 

As it will be clearer in the subsequent sections, the last two requirements are not al-

ways considered in the current CDA algorithmic designs, so justifying the development 

proposed in this paper. 

3. Background 

Collision Detection and Avoidance for manned vehicles is a research topic that has 

been investigated since the late 1950s. This research was pushed by some accidents in 

which airliners experienced near mid-air collisions. After some years of developments, 

the Traffic Collision Avoidance System (TCAS-II) was introduced in late 1980s [12]. This 

is still the only CDA system currently commercialized and mandatorily installed on-board 

almost all commercial aircraft. 

For these reasons, this system is the reference design for CDA algorithms, also for 

unmanned vehicles because it has been specified as the baseline CDA system in the Phase 

1 MOPS [5]. 

TCAS-II systems use deterministic state projection from a single traffic surveillance 

sensor based on active radio interrogation and reply from the intruder. Therefore, in this 

system, the intruder aircraft is cooperative and equipped with at least a Mode C tran-

sponder. In case the intruder is also TCAS-II-equipped, an active radio interaction be-

tween the two aircraft is performed to finally agree on a coordinated avoidance maneuver 

on both vehicles (see Figure 2). 
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Figure 2. TCAS-II collision avoidance maneuver coordination. 

To generate alerts (Traffic Awareness) and collision avoidance maneuvers (Resolu-

tion Advisories), TCAS-II uses a set of pre-fixed (altitude dependent) thresholds (see [12]) 

on spatial volumes (larger than the NMAC one) and on an approximation of the time to 

Closest Point of Approach (CPA) of such protection volumes. For example, at 20,000 ft in 

a head-on encounter at 300 knt closing speed, the resulting Resolution Advisory alert is 

issued at 2.1 NM (about 25 s) from the CPA when the predicted altitude at CPA is less 

than 600 ft from the intruder. The key limitations of this system are that it can only deal 

with transponder-equipped aircraft with very low accuracy on the bearing measure and 

therefore avoidance maneuvers are only chosen within a given set of vertical commands 

and optimized only for pair-wise encounters and for aircraft with some minimum maneu-

ver performance on the vertical axis (so not suitable for the majority of unmanned vehi-

cles). Moreover, deployment of TCAS-II in unmanned aircraft needs a specific module 

that interprets the resolution commands and automatically executes the maneuver. 

Since beginning of the 2000s, in view of the insertion of unmanned vehicles into the 

civil airspace, both the USA and Europe are investing huge resources to overcome most 

of the TCAS-II limitations. The most relevant results of this research effort are represented 

by ACAS-X/Xu [8] for USA and MIDCAS [7] for Europe. 

In the U.S.A., ACAS-X is a family of algorithms designed for use on different vehicles 

classes (commercial, unmanned of different sizes, General Aviation aircraft) and desig-

nated by the U.S. Federal Aeronautical Administration (FAA) as the future replacement 

of TCAS-II. 

The basic ACAS-X algorithm [8] stores the optimal costs of a Markov Decision Pro-

cess (MDP) in a look-up table and, based on the current measured stochastic state of the 

encounter (belief state), performs on-line queries of this table to determine the best action 

(among pre-fixed ones) to be executed. The look-up table is determined by an off-line 

probabilistic optimization procedure that estimates the optimal MDP path for each state 

of the grid using standard traffic encounter numerical models and vehicle numerical per-

formance models. The algorithm is natively designed only for a fixed number of actions, 

selected (vertical) maneuvers, as modelled in the MDP, and it is not compatible with ter-

rain, fixed obstacles, etc. Moreover, optimality is guaranteed only for pair-wise encounters 

that exactly match the state space grid points. Selection of the optimal action for internal 

points of the grid is not optimal. Extension to multiple intruders with possibly simultane-

ous conflicts is based on appropriately merging each pair-wise encounter and, as such, it 

does not guarantee safety and optimality. Vehicle maneuvering limits are enforced during 

the off-line look-up table determination and cannot be changed on-line (e.g. a failure that 

further limits the vehicle maneuverability cannot be accommodated). The variant ACAS-
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Xu that is specifically designed for unmanned aircraft basically performs as above, but it 

also considers avoidance maneuvers in the horizontal plane. 

In Europe, a different system from ACAS-X/Xu is being investigated because of some 

differences with the air traffic system of the U.S.A. that had already caused some problems 

when TCAS-II was applied in Europe. Several DAA development projects have been 

funded also in Europe and some are still in progress, with MIDCAS and related follow-

on projects being the bigger ones. MIDCAS developed a demonstration prototype of a 

complete Detect and Avoid system, including a CDA function. The CDA algorithm pro-

posed in MIDCAS [7] basically uses a numerical optimization procedure that computes 

the maneuver with the highest Distance at the Closest Point of Approach (DCPA) and, 

when this DCPA is on the border of a protected collision avoidance volume, the avoidance 

maneuver is automatically activated. The Protected Collision Avoidance Volume is ob-

tained by adding a safety margin to the Collision Avoidance Volume that has an ellipsoi-

dal shape approximating the NMAC standard volume. The safety margin is derived from 

the position measurement accuracy of the intruder and ownship, and from the predicted 

precision in performing the maneuver. The maneuver optimization for each intruder is 

computed by iteratively calling an ownship vehicle model simulator that returns the tra-

jectory under a pre-fixed command, thus a failure that further limits vehicle maneuvera-

bility cannot be accommodated, unless it is included in the vehicle simulation model. The 

avoidance maneuver is both vertical and horizontal or a combination of both and it is 

continuously updated and displayed to the Remote Pilot (i.e., it can change over time). 

Eventually, the algorithm selects the three intruders with higher priority (most hazardous 

ones, given some criteria), computes the optimal maneuver only for these aircraft and fi-

nally executes the resolution maneuver that has the highest DCPA. 

Other than above mentioned developments that received huge funding, several other 

CDA methods can be found in the open literature reflecting the efforts of a wide research com-

munity on this topic (see [9–11] for an overview). A complete examination of such methods is 

outside the scope of this paper. However, the most adopted classification is included below 

and a high-level description of algorithms related to each class is provided. 

Geometric/Analytical approaches perform some assumptions to simplify the prob-

lem of CDA and try to find the avoidance maneuver by using suitable geometric consid-

erations and/or analytical computations. Algorithms belonging to this class (e.g., TCAS-II 

[12] and a geometric approach proposed by some authors [13]) require very little compu-

tational effort but have several limitations because of their simplified assumptions. 

On the other hand, the big branches of Numerical Optimization approaches, such the 

MIDCAS one [7], require much more computational effort in view of the higher reliability and 

accuracy of the solution. In these methods, the CDA is formulated as a numerical optimization 

problem solved using Mixed Integer Linear Programming, Nonlinear Programming, Dy-

namic Programming, Quadratic Programming, and Pontryagin’s Minimum Principle, or arti-

ficial heuristic methods, such as Genetic Algorithms, Particle swarm optimization, etc. 

The Decoupled Path Planning approaches need high computational effort but can 

guarantee better performances when considering a longer time horizon than what is nor-

mally required by a CDA system. These methods compute a discrete path in the continu-

ous configuration space using some of the well-known path planning algorithms (e.g., A*, 

Probabilistic Roadmap, Voronoi approach), and then the resulting trajectory is used as 

basis for the generation of a collision avoidance maneuver that is feasible for the un-

manned vehicle dynamics. 

Sampling-Based Search algorithms find a feasible solution within a limited (finite) 

set of candidate maneuvers that are chosen from a continuous state space, whereas either 

deterministic or probabilistic search methods can be used. The CDA algorithm proposed 

in this paper actually belongs to this class of methods. 

Other approaches that can be found in the open literature seem to be no more devel-

oped because they can only give solutions to the CDA problem in limited cases. Two of 

them that can be here cited are those based on the Potential Field (the ownship is viewed 
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as an electrical particle moving into an electrical field) and on Game Theory (mostly used 

in defense scenarios). 

Eventually, in most cases, the computational burden of the above-mentioned ap-

proaches is not suitable for on-line implementation or, when this is not true, they exhibit 

at least some of the below reported issues and limitations. 

• Some methods exhibit either conservative or too optimistic results when performing 

collision detection and computing the resolution maneuver because the measure-

ment and prediction uncertainties on traffic trajectories are indirectly considered in 

the computation through enlarging the NMAC volume. This is not the case, for in-

stance, for the ACAS-X/Xu algorithms. 

• In almost all methods, the uncertainty regarding the traffic evolution and regarding the 

intruder’s maneuvers are not considered. The most common assumption is that traffic 

evolution can be based on straight projections of the intruder’s trajectories that can 

cause a potential increase in nuisance alerts and unnecessary avoidance maneuvers. 

• Collision avoidance maneuvers are based on prioritization of conflicts, and optimality 

of the solution is guaranteed only for pair-wise encounters. These maneuvers can easily 

create secondary conflicts or be highly variable (even because priority can change). 

• Vehicle maneuver performances and flight envelope limitations are only partially ac-

counted for, and minimum vehicle performance are required. This does not allow 

such algorithms to be applicable to any unmanned vehicle (that may have very wide 

performance ranges) and prevents consideration of vehicle performance variations 

due to non-critical failures. 

• The surrounding environment is not considered, preventing any autonomous ma-

neuvers in proximity to the ground (e.g., during take-off and landing or in canyons) 

and when geo-fencing, buildings, no-fly zones or bad weather are in close proximity. 

This paper proposes an algorithm that, even with some limitations, tries to overcome 

several of the above limitations, with specific reference to the last two. 

4. CDA Problem Mathematical Formulation 

In this section, a mathematical formulation of the collision avoidance problem is pro-

posed that captures most of the CDA requirements defined in Section 2. This formulation 

considers both air traffic and the surrounding environment implemented as path con-

straints. The objective is to minimize the Near Mid-Air Collision (NMAC) occurrence, 

given by the violation of the volume defined in Figure 1. 

Let: 

𝒙𝐴 = [𝑷𝐴, 𝑽𝐴, 𝜽𝐴, 𝝎𝐴]
𝑇 ∈ 𝑅12, (1) 

be the ownship state vector in terms of position (𝑷𝐴), inertial velocity (𝑽𝐴), attitude (𝜽𝐴), 

angular rates (𝝎𝐴), and: 

𝒙𝐵𝑚
𝑖 = [𝑷𝐵

𝑖 , 𝑽𝐵
𝑖 ]
𝑇
∈  𝑅6, 𝑖 = 1…𝑁, (2) 

the measured state vector (as achieved by the on-board surveillance traffic sensors) of the 

i-th intruder. Let 𝒙𝐴
∗  be the nominal ownship state vector (i.e., ownship nominal flight 

plan) and 𝒖𝐴𝑑, 𝒙𝐴𝑑 be, the control commands as required by the avoidance maneuver 

and the related desired ownship state vector (i.e., ownship flight path due to the avoid-

ance command), respectively. 

The CDA problem can be mathematically formulated as a nonlinear programming 

problem (see also Figure 3). Equation (3) tells that, at each time step tk, the algorithm shall 

compute the maneuver that minimizes the deviation (Euclidean distance) of the ownship 

desired state vector from the nominal one in a given observation interval T in the future 

(Look-Ahead Time). The solution also avoids the intruders’ NMAC volume (3.1) and the 

surrounding environment (e.g., terrain, thunderstorm cells, cloud icing layers, no-fly 

zones, etc.) given by the path constraints 𝑔𝑗(. ) in (3.2). Moreover, it complies with the 
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ownship performance limitation and its dynamic constraints (3.3). The dynamics of the i-

th intruder are modelled in (3.4) as a function (𝑓𝐵
𝑖) of predicted flight commands (𝒖𝑝

𝑖 ) and 

of the traffic state measurements (i.e., indicated with 𝒙𝐵𝑚). 

min
𝒖𝐴𝑑

‖𝒙𝐴𝑑 − 𝒙𝐴
∗‖, (3) 

𝑠. 𝑡.

{
 
 

 
 
𝑃𝑟{𝑑𝐻

𝑖 < 𝐷 ⋀ ℎ𝑖 < 𝐻} ≤ 𝜖, ∀ 𝑖 = 1…𝑁              (3.1)

𝑃𝑟 {𝑔𝑗(𝑷𝐴𝑚) ≤ 0} ≤ 𝜖, ∀ 𝑗 = 1…𝑀                    (3.2)

�̇�𝐴 = 𝑓𝐴(𝒙𝐴, 𝒖𝐴𝑑)                                                       (3.3)

�̇�𝐵
𝑖 = 𝑓𝐵

𝑖(𝒙𝐵𝑚, 𝒖𝑝
𝑖 ), ∀ 𝑖 = 1…𝑁                             (3.4)

  

In above equations, 𝑑𝐻
𝑖  and hi are, respectively, the horizontal and vertical distances of 

the ownship with respect to the i-th intruder in the time horizon T, while D and H are the 

dimensions of the NMAC volume. 𝑷𝐴𝑚 is the ownship predicted position in [tk, tk + T]. 

The constraints (3.1) and (3.2) are expressed in terms of probability (Pr) because of 

the uncertainties that affect the predicted state values in [tk, tk+T] for any couple of own-

ship and intruder aircraft, given the available (uncertain) measurements up to tk and the 

intrinsic uncertainty in the prediction process. 

The CDA problem stated in Equation (3) is formulated as an Open Loop Optimal 

Control problem because it is requested (see Section 2) that the collision avoidance ma-

neuver should not change after it has been started. A closed loop formulation, such as the 

one preferred in [7,13], would be more accurate but it would require that the optimal com-

mand time history could be changed in any tk, so being less acceptable for a remote pilot. 

Finding a command that minimizes the distance between the avoidance and the nom-

inal ownship’s trajectory is one the techniques that contributes reducing secondary con-

flicts and unnecessary maneuvers. 

Finally, it is noted that the above stated problem is a (Non-Polynomial) NP hard com-

plex, due to the presence of the dynamic ((3.3) and (3.4)), collision (3.1) and path (3.2) 

constraints. However, considering some assumptions, and limiting the number of intrud-

ers N and fixed obstacles/areas M, this paper proposes a solution that can be computed in 

a reasonable (and limited) time for implementation in real time. 

 

Figure 3. Optimal CA maneuver in a scenario characterized by air traffic and fixed obstacles. 
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5. CDA Algorithm Description 

5.1. Assumptions 

Basically, two key assumptions are needed to find a solution to the CDA problem (3). 

As will be demonstrated by the Fast Time Simulations and by the justifications reported 

below, they do not limit the generality of the solution that still complies with CDA key 

requirements too much. 

First, a simplification is introduced with reference to the non-linear dynamic con-

straint (3.3) associated to the own aircraft. Full nonlinear 6DOF rigid-body dynamics, in-

cluding limitations on real actuators, sensors and engines, should be used to produce an 

accurate solution that is actually reachable in the state-space trajectories of the own air-

craft. However, this model is typically highly uncertain, with a very large number of pa-

rameters. Therefore, it is not suitable in a CDA implementation in a generic unmanned 

vehicle that could have only limited available information. Moreover, collision avoidance 

maneuvers are typically executed using autopilot commands, thus also the flight control 

system should have been included in such model. 

On the other hand, the CDA problem only needs good accuracy on the predicted 

position and velocity of the own aircraft. Therefore, considering that states related to the 

aircraft Center of Mass have a frequency range that is typically separated from the rigid 

body rotational dynamics, a 3DOF numerical model can be a very good approximation of 

the aircraft dynamics that fits the scope of designing a CDA algorithm. With this schema-

tization, the aircraft limitations can be accounted for by using suitable performance and 

flight envelope static maps as follows (see also Figure 4): 

{
�̇�𝐴 = 𝑽𝐴 = 𝑓𝐸𝑛𝑣(𝑷𝐴, 𝑽𝑅)

�̇�𝑅 = 𝑓𝑀𝑎𝑛(𝒂𝑅, 𝑽𝐴)
, (4) 

where linear accelerations are given by the maneuverability map fMan that depend on some 

commanded accelerations aR and current aircraft velocity. The flight envelope limitations 

are given by another map fEnv that limits the velocity states based on the current positions 

and inertial velocities (mainly altitude and speed). In a first attempt, these maps can be 

implemented with maximum and minimum accelerations and velocities of the aircraft on 

each axis or, in a more accurate modelling, as a function of barometric altitude and air-

speed measurements (or other parameters where relevant), so including the limitations 

on aerodynamic and thrust forces. However, it will be pointed out that they refer to the 

closed loop performance and flight envelope of the aircraft. The above maps can be also 

changed to degrade aircraft performances to accommodate some non-critical failures (e.g., 

reduced actuation speed, engine failure in a dual engine aircraft, etc.). 
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Figure 4. Simplified own aircraft model for CDA Design. 

The second key assumption is related to the avoidance maneuver command profiles. 

In this paper, it is considered that the aircraft can perform single axis maneuvers (either 

right/left turn or climb/descend) and that any of these maneuvers is performed at its max-

imum acceleration (given by the maneuverability map) applied instantaneously to the re-

lated axis until a desired velocity change is obtained (limited by the flight envelope map) 

and then removed instantaneously again. After this change, the velocity vector is kept 

constant until the Look-Ahead Time T. When performing such maneuvers, the 3D wind 

field estimated by the on-board navigation system and the True Air Speed are considered 

constant, so that the initial and final inertial speeds can be different. Constant wind is 

assumed because of the relatively short timeframe of CDA, so that time and space varia-

tion of the wind could be considered negligible. Finally, in order to approximately account 

for the vehicle dynamics reaching the maximum horizontal and vertical accelerations, the 

maneuver is started with a (constant) time latency referred to as ‘On Set Time’. 

With these command profiles, the avoidance maneuver is defined using a single pa-

rameter for each of the axes (i.e., the final velocity). 

While the above command sets might seem very limiting for the scope of a CDA, it 

should be noted that they are easily acceptable and executable by a remote pilot. These 

aspects are of paramount importance when remotely piloting a vehicle, because a pilot is 

always the final party responsible for the aircraft. Maximum accelerations are used be-

cause the collision avoidance maneuver is normally a last resort command that, therefore, 

needs the fastest response by the aircraft. Airspeed changes are not considered because 

the resolution maneuver could be not ‘visible’ by the intruder pilot. 

Finally, it shall be noted that, not considering airspeed changes, single axis maneu-

vers do not limit the range of possible maneuvers as much because the algorithm can 

command another maneuver on a different axis soon after the first one has been com-

pleted or while it is being executed. 

5.2. Trajectory Prediction of Air Traffic and Own Aircraft 

Based on problem formulation (3), a key function of the CDA algorithm is the pre-

diction of both ownship and air traffic. The information related to air traffic concerns the 
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position and velocity of the aircraft (intruders) that are in some proximity to the own un-

manned vehicle and are provided by the so-called traffic surveillance sensors. Two types 

of such sensors are available [9] and will be considered in this paper: 

• Cooperative Sensors, which require some equipment to be on board the intruder to 

send radio messages allowing determination of its position and velocity. The most 

common sensors of this type are the Active Traffic sensors or Interrogators, which 

need a transponder mode A/C or S on the intruder able to answer to a radio interro-

gation with a given message enclosing some data (e.g., Aircraft Identifier and Alti-

tude). Further examples are the ADS-B-IN sensors, which receive radio messages 

from intruders equipped with a Transponders Mode S-ES (Extended Squitter) that 

regularly transmits intruders’ data without any need to be interrogated. These sen-

sors typically have a very long range of detection (from 20 NM up to 50 NM), no 

field-of-view limitations and very good accuracy, except for the Interrogators that 

normally have a very low bearing accuracy. 

• Non-Cooperative Sensors, that do not need the intruder to be equipped with any 

device and, therefore, can potentially detect any flying object depending on sensor’s 

capabilities. An example of such sensors are Radars that send radio-frequency pulses 

and gather position and velocity measurements from the reflected signals (active sen-

sors), and Video Cameras (passive sensors) that produce the images of the surround-

ings to determine the presence and the trajectory of intruders. These sensors typically 

have very short ranges of detection (from 2 NM of cameras up to about 7 NM for air-

to-air-radars), a limited field of view (most of the time [−110…110] deg in azimuth 

and [−15…15] deg in elevation) and good accuracy of range (for radars) and azi-

muth/elevation (for cameras). 

In this paper, it is considered that a suite of both Cooperative and Non-Cooperative 

sensors is available. The measurements are fused and processed so as to provide a consol-

idated estimate of position, inertial velocity and related accuracy of the surrounding air 

traffic. Where needed, this consolidated intruder state is estimated considering a constant 

wind field, as provided by the on-board navigation system. Even if the algorithms used 

to process the raw measurements coming from the available traffic, surveillance sensors 

are not within the scope of this paper; it is worth noting that data fusion of sensors’ meas-

urements is needed because each sensor has its own advantages and weaknesses over the 

other, as above summarized. With the above assumptions on surveillance sensors and 

related processing algorithms, this paper considers that intruders of any type can be de-

tected even if at different ranges and with different accuracies. 

With a consolidated set of tracks available (i.e., intruders’ position and inertial veloc-

ity) with related accuracies, the first step of a CDA algorithm is to predict their trajectories 

over the time horizon [tk, tk + T]. As has been declared, one of the most adopted techniques 

is to consider the projection of the position using the current intruder’s velocity vector 

(straight trajectory prediction). In this paper we consider a more general trajectory predic-

tion technique that is also able to give an estimate of the prediction accuracy. 

Each intruder is modelled as a hybrid dynamic model, with continuous and discrete 

states, as follows: 

{

�̇�𝐵𝑘
𝑖 = 𝑔𝑚𝑘

𝐶 (𝒙𝐵𝑘
𝑖 )

�̇�𝑖 = 𝑔𝑚𝑘
𝜎 (𝝈𝑖 , 𝒙𝐵𝑘

𝑖 )

𝑚𝑘+1
𝑖 = Υ𝑘(𝑚𝑘

𝑖 , 𝑆𝑖)

, (5) 

where the continuous states 𝒙𝐵𝑘
𝑖 are the predicted position, velocity and accelerations of 

the i-th intruder, σi is the prediction error, mik is the discrete state representing the flight 

mode of the intruder (straight and level, right turn, etc.) and Si is information related to 

the type of the CDA algorithm installed on board the intruder (e.g., TCAS-II) that can 

come from the processing of traffic surveillance sensors. The maps 𝑔𝑚𝑘
𝐶  and 𝑔𝑚𝑘

𝜎  are pre-

fixed and depend on the current flight mode. The function Υ𝑘 is a finite Markov chain 



Aerospace 2022, 9, 190 11 of 29 
 

 

that can be static (if the intruder is assumed to not change its flight mode) or time-variable 

in the case some information on the intruder’s flight plan being available from the surveil-

lance sensors. 

The parameters related to the above intruder’s trajectory prediction model are esti-

mated using the past and current available traffic measurements from traffic surveillance 

sensors. To this end, this paper adopts the method based on Residual-Mean Interacting 

Multiple Model, described in detail in [16,17]. These methods provide a sub-optimal iden-

tification of the current flight mode and of the key parameters for predicting intruders’ 

trajectory and the associated accuracy: 

{

𝑿𝑘
𝑖 = 𝑓𝑚𝑘−1

𝐶 (𝑿𝑘
𝑖 , 𝝈𝑘−1

𝑖 , 𝑼𝑘
𝑖 , 𝝈𝑈𝑘

𝑖 )

𝝈𝑘
𝑖 = 𝑓𝜎(𝝈𝑘−1

𝑖 , 𝑿𝑘
𝑖 , 𝑼𝑘

𝑖 , 𝝈𝑈𝑘
𝑖 )

𝑚𝑘
𝑖 = 𝛱(𝑚𝑘−1

𝑖 , 𝝈𝑘
𝑖 , 𝑿𝑘

𝑖 , 𝑼𝑘
𝑖 , 𝝈𝑈𝑘

𝑖 )

, (6) 

where Uk and 𝝈𝑈𝑘
𝑖  are the current intruder measurements and their accuracy. In this way 

it is possible to consider intruders’ maneuvers (where possible, given the current sensed 

accuracy), variable sensor measurement errors and reliability of the trajectory prediction. 

Concerning the prediction of the own aircraft inertial trajectory, the measurement 

and related accuracy estimation can come from both the on-board navigation system and 

from the Flight Management System (FMS). In case the unmanned aircraft is manually 

piloted, the trajectory can be predicted using the same procedure adopted for the intrud-

ers. However, in this paper a straight trajectory is considered in this paper because it is 

more understandable by the remote pilot. On the other hand, when an automatic flight is 

being performed, the parameters for predicting the future ownship trajectory and related 

errors can be directly derived from the FMS. 

Finally, note that using the above method is not essential for the proposed CDA al-

gorithm. Other different methods can be used to obtain trajectory and error predictions. 

Obviously, the final results could vary depending on the accuracy of the chosen method. 

5.3. Risk Assessment of the Flight Scenario and Its Evolution 

The core of the proposed CDA algorithm is the method used for evaluating whether 

the air traffic and/or the surrounding environment can be a threat to the safety of flight in 

the chosen future time horizon or Look-Ahead Time (LAT) T. Moreover, it is also neces-

sary to quantitatively estimate the level of collision risk associated to the possible evolu-

tions of the current scenario. In this way, suitable (and autonomous) decisions could be 

taken, sufficiently in advance, whether or not issuing a collision alarm and, in that case, 

performing an automatic escape maneuver. 

To this end, the proposed CDA algorithm not only evaluates potential collisions 

given the current air traffic and ownship trajectory predictions, but also tries to under-

stand what happens in case of maneuvers, so to obtain indications regarding all possible 

evolutions of the current scenario. Indeed, as will be clearer in the following sections, the 

proposed quantification of risk level, used for taking decisions, is defined by the remain-

ing possibilities of performing some escape maneuvers in the future rather than just eval-

uating a predicted conflict with one or more intruders, such as any current CDA method. 

This is the key for solving the CDA problem with an arbitrary number of intruders and 

path constraints, because the above defined risk level is only dependent upon ownship 

possibilities to safely continue the flight and not specifically influenced by any of these 

hazards. 

To understand how this risk level can be computed, let us first reconsider the con-

straints (3.1) and (3.2) of the CDA problem and, specifically, the evaluation of the conflict 

probability related to the intruders (3.1). Similar considerations can be performed for the 

path constraints (3.2). 
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First, it can be easily verified that, when the predicted horizontal and vertical dis-

tances between ownship and intruder show very low accuracy, the probability of a colli-

sion over the time horizon T can be very low (and below the threshold ε) even if a specific 

intruder can be a potential collision threat. This situation is depicted in the Figure 5 where 

two intruders with different trajectory prediction accuracy have the same probability of 

collision if strictly computed using (3.1). 

 

Figure 5. Computation of collision probability with two different prediction accuracies. 

In other terms, simply using the probability of collision would require that the thresh-

old be variable with the accuracy of prediction (which is also variable along the predicted 

trajectories). To avoid this, the concept of Relative Probability (RPr) of collision as an index 

of the conflict threat level is introduced. The RPr is defined as the ratio between the max-

imum probability of collision with the current encounter geometry and the maximum 

probability that would be obtained in a perfect collision situation (i.e., when the distance 

to the Closest Point of Approach is predicted to be 0). In mathematical terms, given the 

following function of collision probability as a variable of time that shall be evaluated over 

the time horizon T: 

𝑃𝑟{𝑑𝐻(𝑡) ≤ 𝐷 ⋀ |ℎ(𝑡)| ≤ 𝐻} = 𝑓𝑃(𝑑𝐻𝐴(𝑡), ℎ𝐴(𝑡), 𝝈(𝑡)), (7) 

where dHA and hA are, respectively, the average values of distance and relative altitude 

between the generic intruder and the ownship and σ their accuracy; the related maximum 

probability of collision over the time horizon T can be written as: 

𝑓𝑃(𝑡) = max
𝑡∈[𝑡𝑘,𝑡𝑘+𝑇]

𝑓𝑃(𝑑𝐻(𝑡), ℎ(𝑡), 𝝈(𝑡)), (8) 

where 𝑡 is the moment in time at which the collision probability has its maximum value. 

Then, using Equations (7) and (8), the RPr index for a given intruder encounter is defined 

as: 

𝑅𝑃𝑟 =
𝑓𝑃(𝑡)

𝑓𝑃 (0,0, 𝜎(𝑡))
     (9) 

Considering the above definition, it can be easily verified that Scenario A of Figure 5 

has a higher RPr than that of Scenario B, according to the evidence that the former poses 

a higher risk of collision between the two aircraft. Moreover, it can also be intuitively 

noted that the RPr is less sensitive to possible variations of the accuracy on distance and 

relative altitude, because this quantity is present in both the numerator and denominator 

of definition (9). 
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Anyway, RPr is still an index related to a single encounter or potential conflict with 

a surrounding fixed obstacle, while the proposed CDA algorithm needs to quantify the 

risk level associated to any possible hazard, also evaluating possible maneuvers. 

To this aim, let us first note that the RPr index can only assume values in the compact 

set [0…1]. A small maneuver of either the ownship or the intruder is likely to produce 

only small variation in this value, so we can consider the RPr a continuous function of the 

ownship maneuvers. We recall here that, following the assumption of Section 5.1, the pos-

sible maneuvers that the ownship can perform are characterized by a single value (track 

angle or vertical velocity for the horizontal and vertical axes, respectively). Therefore, for 

each intruder or fixed obstacle, the RPr function can be evaluated on a suitable grid of 

ownship commands for each type of CA maneuver. The number of points on the grid is a 

tuning parameter and shall be determined based on the variability of the probability and 

on the resolution that is requested for the final velocity value. Verification of the RPr con-

tinuity with respect to ownship maneuvers shall be verified a posteriori with numerical 

simulations in different encounter scenarios, as well as by performing grid spacing tuning. 

Now, let us evaluate, at a given time tk and for each intruder and path constraint ν in 

1…N + M, all the maps 𝑅𝑃𝑟𝑘
𝑣 as a function of the own aircraft maneuvers 𝑦𝑖

𝑗, where j = 

1…4 is the type of maneuver (right turn, climb, etc.) and 𝑦𝑖 ∈ 𝑌𝑘 with 𝑖 = 1⋯𝑍𝑗 is the 

grid of ownship maneuvers for the j-th maneuver type. With these maps of relative prob-

ability, it is possible to compute the following four Overall Relative Probability (ORPr) 

functions: 

𝑂𝑅𝑃𝑟𝑘
𝑗
(𝑦𝑖

𝑗
) = 𝑚𝑎𝑥

𝑣
 𝑅𝑃𝑟𝑘

𝑣 (𝑦𝑖
𝑗
)   (10) 

The ORPr functions (one for each type of considered avoidance maneuver: left/right 

turn, climb/descend) includes almost all the information needed by the CDA algorithm 

for taking a decision and computing the optimal escape command, as will be described in 

the following sections. Actually, these functions give an estimation of the highest conflict 

risk level that is expected in the time horizon T in case the own aircraft either continues 

on the current flight path or performs a maneuver. In this sense, these functions almost 

completely characterize the current flight scenario and its possible evolutions, also giving 

detailed indications of where to go to lower the conflict risk. 

The following section details the methods that can be used for estimating the relative 

probabilities for air traffic and the surrounding fixed obstacles, while the subsequent sec-

tions describe the computation of the optimal avoidance maneuver and the decision-mak-

ing process. 

Note that the above method for conflict risk level assessment does not prioritize in-

truders and/or fixed obstacles. All possible hazards are fairly treated, even if they are in-

trinsically prioritized because of the associated conflict risk level that, however, is not ev-

idenced in the ORPr. This is in line with the philosophy of the proposed CDA algorithm, 

in which it is only important to understand if the own aircraft has currently, and would 

have future, safe maneuver margins for avoiding any conflict, no matter how many and 

which specific threats caused the conflict situation. On the other hand, it is possible to use 

the single RPr functions to identify the most hazardous threats, because they can be im-

portant to display to the remote pilot. 

5.4. Estimation of the Conflict Risk Level for Each Hazard 

The above method for assessing the conflict risk level associated to the current sce-

nario and its evolution is based on the estimation of the RPr as function of the ownship 

maneuvers, for each intruder and obstacle from the surrounding environment. The pro-

posed methods for such estimation are described below. 
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5.4.1. Air Traffic 

Concerning the air traffic, evaluation of the RPr functions to be used for Equation 

(10) is performed by first setting a given maneuver step according to the chosen fixed grid 

and then predicting the ownship trajectory, as depicted in the Figure 6. 

 

Figure 6. Relative probability function determination for air traffic. 

After that, using the predicted trajectories and related accuracies, Equation (7) is eval-

uated. To this end, several techniques can be used, such as the one proposed in [18]. How-

ever, in this context a different method is adopted in order to reduce the computational 

effort at the cost of accepting some errors in estimating the relative probability. 

Specifically, the RPr is computed approximating the NMAC cylindrical volume with 

a right parallelogram prism (Figure 7) and assuming that relative position coordinates 

between ownship and intruder (𝑃𝑥
𝑟𝑒𝑙 , 𝑃𝑦

𝑟𝑒𝑙 , 𝑃ℎ
𝑟𝑒𝑙) are independent stochastic variables with 

time-uncorrelated Gaussian distribution. 

 

Figure 7. Approximation of the NMAC volume in the horizontal plane. 

The above assumption lets us write the probability of collision (𝑓𝑃𝑘) as follows, for 

any t in the look-ahead interval T. 

𝑓𝑃𝑘 = 𝑃𝑟{𝑑𝐻(𝑡) ≤ 𝐷 ∧ |ℎ(𝑡)| ≤ 𝐻} ≅ 

𝑃𝑟{|(𝑃𝑥
𝑟𝑒𝑙(𝑡)| ≤ 𝐷} ∙ 𝑃𝑟{|𝑃𝑦

𝑟𝑒𝑙(𝑡)| ≤ 𝐷} ∙ 𝑃𝑟{|𝑃ℎ
𝑟𝑒𝑙(𝑡)| ≤ 𝐻}, 

(11) 
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The probability of each Gaussian variable, namely 𝑃𝑥
𝑟𝑒𝑙 , 𝑃𝑦

𝑟𝑒𝑙 , 𝑃ℎ
𝑟𝑒𝑙 , of being less than 

the associated dimension of the NMAC volume is evaluated through an analytical ap-

proximation of the standard normal cumulative distribution function defined in [19]. 

In this way, the RPr for each intruder can be estimated as follows: 

𝑅𝑃𝑟𝑘
𝜁
(𝑦𝑖

𝑗
) ≅

𝑓𝑃𝑘
𝜁
(∆𝑃𝑘

𝑟𝑒𝑙(𝑦𝑖
𝑗
, 𝑡𝐶𝑃𝐴), 𝜎(𝑦𝑖

𝑗
, 𝑡𝐶𝑃𝐴))

𝑓𝑃𝑘
𝜁
(0, 𝜎(𝑦𝑖

𝑗
, 𝑡𝐶𝑃𝐴))

 (12) 

where 𝜁 is the subset of intruders inside the ν hazard set, 𝑡𝐶𝑃𝐴 is the time to closest point 

of approach [5] and ∆𝑃𝑘
𝑟𝑒𝑙(𝑦𝑖

𝑗
, 𝑡𝐶𝑃𝐴) and 𝜎(𝑦𝑖

𝑗
, 𝑡𝐶𝑃𝐴) are the current relative position pre-

diction and the current prediction error, respectively, for the 𝑦𝑖
𝑗 ownship maneuver eval-

uated at 𝑡𝐶𝑃𝐴. 

The method above for computing RPr functions is relatively simple in that it only 

needs the evaluation of the ownship and intruders’ trajectories prediction with related 

errors and tCPA, for which several methods exist in the literature [5,6,13] that can also be 

expressed with explicit analytical relations. On the other hand, in case cartesian relative 

positions cannot be used (such as in the case of relative positions in polar or cylindrical 

coordinates) it is possible to find a different approximation of the NMAC volume so to be 

again in similar conditions as requested by Equations (11) and (12). Moreover, some cor-

relation exists between the horizontal and vertical coordinates, Equation (11) can be con-

sidered as a worst case, as this correlation is neglected in the computation. 

When the intruder is turning (as identified from the flight mode), the RPr is com-

puted by choosing the worst value between a set of trajectories that considers the intruder 

can stop its turn maneuver and go straight, as shown in the Figure 8. The number of points 

along the intruder’s turn trajectory that are used for such assessment is an algorithm tun-

ing parameter (the default is five points). This different way of computing RPr for turning 

intruders takes into account the uncertainty in the intruder prediction trajectory. 

 

Figure 8. Relative probability function computation for turning intruders. 
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5.4.2. Surrounding Areas and Obstacles 

These hazards have very different (known) shapes from the NMAC volume, do not 

move (or their movements can be neglected in the timeframe of the avoidance maneuver) 

and typically their position is known quite accurately. Moreover, it should be pointed out 

that the CDA algorithm is not used for avoiding fixed obstacles, because this is a task of 

other on-board systems (e.g., the Terrain Avoidance and Awareness System). Therefore, 

a potential conflict with fixed obstacles only would not start any avoidance maneuver, 

unless air traffic is also involved. In this case, the air traffic avoidance maneuver accounts 

for these path constraints. Finally, the computation considering generic path constraints 

usually requires high computational effort, so it should be as simple as possible. 

These differences with air traffic lead to the conclusion that the above method is not 

fully suitable for RPr computation in this case. Nevertheless, evaluation of RPr as a func-

tion of ownship maneuvers can still be performed using the same procedure above de-

scribed, i.e., using a grid in the ownship possible maneuvers and computing the RPr for 

fixed obstacles on the resulted predicted trajectory. 

Based on the above, the proposed algorithm assumes the following simple relation 

for surrounding areas and obstacles: 

𝑅𝑃𝑟𝑘
𝛾
(𝑦𝑖

𝑗
) = {

1,   𝑖𝑓 𝑷𝐴(𝑦𝑖
𝑗
) 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑖𝑛 [𝑡𝑘, 𝑡𝑘 + 𝑎 ∙ 𝑇]

0, 𝑖𝑓 𝑷𝐴(𝑦𝑖
𝑗
) 𝑑𝑜 𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑖𝑛 [𝑡𝑘, 𝑡𝑘 + 𝑎 ∙ 𝑇]

. (13) 

where γ is the subset of the fixed obstacles within the ν hazard set and 𝑷𝐴(𝑦𝑖
𝑗
) is the own-

ship trajectory that resulted from applying a potential collision avoidance maneuver. 

Equation (13) assumes that RPr can assume only two values: a maximum and a min-

imum probability, here valued one and zero, respectively. Adopting only two values al-

lows computation of the RPr by evaluating geometrical intersections between boundaries 

of the fixed obstacles and the ownship trajectory, with an affordable computational effort. 

In this respect, it can be argued that this method could over-simplify the problem with a 

resulting low accuracy. Indeed, because the position and shape of fixed obstacles and the 

ownship’s trajectory are typically known with good accuracy, it can be easily verified that 

the collision probability with a fixed obstacle changes very rapidly from zero to one so the 

approximation of Equation (13) can be considered adequate for our scope. On the other 

hand, increasing the size of fixed obstacles with a suitable safety margin can conserva-

tively account for the current navigation total system error of the ownship and accuracy 

of the position and shape of the obstacle. 

Note that using one as the maximum value of the RPr implies that these hazards are 

always assumed as ‘hard’ path constraints, i.e., the vehicle is not allowed to enter the re-

lated forbidden areas. Anyway, in case ‘soft’ path constraints are enforced (such as bad 

weather areas that can be entered for some time/distance assuming a certain risk), a risk 

level lower than one can be specified in the Equation (13) to account for this possibility. 

Finally, the parameter a ≥ 1 in Equation (13) specifies that RPr for fixed obstacles is 

performed over a time horizon equal to or greater than the one used for air traffic. Actu-

ally, this parameter is set to one when computing the ORPr functions used for deciding 

whether an avoidance maneuver is needed and is above one (and typically equal to two) 

when computing the optimal maneuver. This allows enough clearance from any obstacle 

to avoid alerts from other safety modules (such as Terrain Awareness Systems) and easing 

the return back to the original flight path after the conflict has been resolved. 

In order to evaluate the geometrical intersections between the ownship trajectory and 

the obstacle, a dedicated computation procedure is implemented depending on the shape 

of the obstacle or area [20]. Note that this procedure is also used to evaluate the time in-

stant at which the intersection is detected so as to easily compute RPr in both T and a·T 

intervals. In detail, let us denote the predicted position of the ownship vehicle in the 

North-East-Up (NEU) reference frame along the i-th maneuver of the j-th type as follows: 
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𝑷𝐴𝑚
𝑗,𝑖

= (𝑃𝐴𝑚𝑁

𝑗,𝑖
, 𝑃𝐴𝑚𝐸

𝑗,𝑖
 , 𝑃𝐴𝑚𝑈

𝑗,𝑖
). (14) 

The following methods can be used for the types of surrounding obstacles considered 

in this paper. 

Terrain 

With reference to the terrain, Equation (15) guarantees that the trajectory altitude is 

always greater than the local elevation data provided by the function H(𝑃𝐴𝑚𝐸

𝑗,𝑖 , 𝑃𝐴𝑚𝑁

𝑗,𝑖 ). 

𝑃𝐴𝑚𝑈

𝑗,𝑖
> H(𝑃𝐴𝑚𝐸

𝑗,𝑖 , 𝑃𝐴𝑚𝑁

𝑗,𝑖 ). (15) 

In other terms, given the predicted trajectory of the ownship with a specific maneu-

ver, the problem is simply to interrogate a terrain elevation database for checking that 

altitude of the aircraft is above the terrain elevation on the given trajectory. In this imple-

mentation, the Digital Terrain Elevation Data (DTED) Level 1 is used for modelling the 

terrain elevation map. Nevertheless, other terrain elevation databases can be used. More-

over, the availability of an elevation database of an urban area would also allow consid-

eration of the presence of buildings and other similar obstacles so as to support Urban Air 

Mobility applications. 

Cylindrical Forbidden Area 

Given xs, ys, rs, hs and Hs are the East and North positions of the center, the radius, the 

starting height and the ending height, respectively, of the s-th cylindrical forbidden area, 

the following equation defines such constraints: 

𝑟𝑠
2 − (𝑃𝐴𝑚𝐸

𝑗,𝑖
− 𝑥𝑠)

2
− (𝑃𝐴𝑚𝑁

𝑗,𝑖
− 𝑦𝑠)

2
≤ 0 

when:  ℎ𝑠 ≤ 𝑃𝐴𝑚𝑈

𝑗,𝑖
≤ 𝐻𝑠, ∀ 𝑠 = [1, 𝑆] 

(16) 

Equation (16) expresses that the ownship horizontal path does not intersect the cy-

lindrical area, while the vehicle altitude is within the height interval of the forbidden area. 

Right Prismatic Forbidden Area 

Assuming that xl,m, yl,m are the East and North positions of the m-th vertex and hl, Hl 

the initial and final altitudes, respectively, of the l-th right prismatic forbidden area, the 

following relations define the condition for non-intersection these constraints. 

|
𝑦𝑙,𝑚𝑜𝑑(𝑚+1,𝑀𝑙) − 𝑦𝑙,𝑚
𝑥𝑙,𝑚𝑜𝑑(𝑚+1,𝑀𝑙) − 𝑥𝑙,𝑚

(𝑃𝐴𝑚𝐸

𝑗,𝑖
− 𝑥𝑙,𝑚) + 𝑦𝑙,𝑚 − 𝑃𝐴𝑚𝑁

𝑗,𝑖
| > 0 𝑤ℎ𝑒𝑛:

{
|𝑥𝑙,𝑚𝑜𝑑(𝑚+1,𝑀𝑙) − 𝑃𝐴𝑚𝐸

𝑗,𝑖
| + |𝑥𝑙,𝑚 − 𝑃𝐴𝑚𝐸

𝑗,𝑖
| ≤ |𝑥𝑙,𝑚𝑜𝑑(𝑚+1,𝑀𝑙) − 𝑥𝑙,𝑚|        

ℎ𝑙 ≤ 𝑃𝐴𝑚𝑈

𝑗,𝑖
≤ 𝐻𝑙

∀ 𝑙 = [1, 𝐿] 𝑎𝑛𝑑 ∀ 𝑚 = [1,𝑀𝑙]

 
(17) 

where the function mod(a,b) provides the remainder after division of a by b. 

Equation (17) simply expresses that the ownship horizontal path does not intersect 

any side of the right prismatic area, while the vehicle altitude is within the height interval 

of the forbidden area. 

Area of Operation 

With reference to the area of operation (not limited in height), assuming that xp and 

yp are the East and North positions of the p-th vertex of the area of operations, (18) ex-

presses the non-intersecting constraints in this case. 
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|
𝑦𝑚𝑜𝑑(𝑝+1,𝑃) − 𝑦𝑝

𝑥𝑚𝑜𝑑(𝑝+1,𝑃) − 𝑥𝑝
(𝑃𝐴𝑚𝐸

𝑗,𝑖
− 𝑥𝑝) + 𝑦𝑝 − 𝑃𝐴𝑚𝑁

𝑗,𝑖
| > 0 𝑤ℎ𝑒𝑛

|𝑥𝑚𝑜𝑑(𝑝+1,𝑃) − 𝑃𝐴𝑚𝐸

𝑗,𝑖
| + |𝑥𝑝 − 𝑃𝐴𝑚𝐸

𝑗,𝑖
| ≤ |𝑥𝑚𝑜𝑑(𝑝+1,𝑝) − 𝑥𝑝|

∀ 𝑝 = [1, 𝑃]

   (18) 

The above methods deal only with some limited shapes. This is not limiting because 

more general obstacle shapes can be either obtained by merging the above ones or derived 

from more complex data using some dedicated software modules. For instance, bad 

weather areas can be included using one of the above shapes provided by dedicated soft-

ware that evaluates the level of the hazard of the surrounding areas based on the available 

meteorological information and some processing [21]. 

5.5. Computation of the Optimal Avoidance Maneuver 

As mentioned, the ORPr functions in Equation (10) return the level of collision risk 

for each type of maneuver (left/right turn, climb/descend) in a pre-fixed grid of the possi-

ble commands (i.e., the track angle for the horizontal plane and the vertical rate for the 

other axis). 

Therefore, for each type of ownship maneuver, the minimum value of this ORPr 

gives the velocity change that shall be required to minimize the conflict risk level: 

𝑦𝑜𝑝𝑡𝑘
𝑗

= min
𝑖
{𝑂𝑅𝑃𝑟𝑘

𝑗
(𝑦𝑖

𝑗
)}. (19) 

Then, the optimal collision avoidance maneuver yoptk can finally be chosen as the one 

that leads to the minimum conflict risk level and, in case of equal risks, the minimum 

change of the own aircraft nominal velocity among the four possible maneuver types, ac-

cording to Equation (3). Note that, as pointed out in the previous sub-section, the ORPr 

functions to be used in Equation (19) shall consider an extended time horizon a·T for fixed 

obstacles. With this optimal maneuver, avoidance of a conflict is guaranteed (under a 

probabilistic sense) only if the value assumed in the minimum point is below the thresh-

olds on the RPr that translate the constraints of the original problem (3). 

In this way, the original CDA problem (3) is solved including constraints (3.1) and 

(3.2) in the cost function, with the remaining constraints enforced by the assumptions of 

Section 5.1 and intruder track processing described in Section 5.2. Finally, note that the 

solution can be found executing only (N + M) · ΣjZj evaluations of the RPr so obtaining a 

polynomial computational complexity that increases with the number of maneuver grid 

points, intruders and fixed obstacles. 

5.6. Decision Making Process 

Having computed the optimal avoidance commands and the ORPr functions that de-

scribe the conflict risk level related to the current scenario and its possible evolutions, a 

decision is taken whether a collision alarm should be issued and which of the four optimal 

avoidance commands should be automatically executed. Before describing the proposed 

solution, it is necessary to compute two simple indexes that would easily support this 

decision-making process, no matter how many intruders or fixed obstacles are being con-

sidered and which one of these actually poses the major risk of conflict. 

The first index, named Margin of Maneuver (MM), is defined as the ratio between 

the range of possible avoidance maneuvers and the full maneuver range given by the cur-

rent ownship flight envelope limits. This index indicates whether the current situation is 

safe, i.e., the own aircraft has sufficient possibilities of performing some escape maneu-

vers. MM can be written as: 

𝑀𝑀𝑘 =
‖𝐼𝑘

𝑗
‖

‖𝑌𝑘‖
 , (20) 
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where 𝐼𝑘
𝑗 is the set of possible resolution maneuvers and Yk is the full set of available ma-

neuvers at tk. Having discretized the range of possible maneuvers, Equation (20) can 

simply be computed as the ratio between the number of commands that have an ORPr 

below a given safety threshold and the number of all possible commands in any axis. In 

this case, the ORPr functions for fixed obstacles are evaluated over the same time horizon 

T of air traffic, differently from the ORPr used in Equation (19). 

The second index, named the Time to Null Maneuver Margin (TNMM) tells how 

much time is remaining until the situation becomes so bad that there will be no possibility 

of performing an escape maneuver (i.e., the MM is nulled). In other terms: 

𝑇𝑁𝑀𝑀𝑘 = 𝑡𝑘
𝑗
,     𝑗: 𝑀𝑀𝑗 = 0 for 𝑗 = 𝑡𝑘 …𝑡𝑘 + 𝑇. (21) 

Note that the TNMM is computed considering only air traffic. This is in line with the 

assumption that the CDA system only aims to avoid air traffic accounting for fixed obsta-

cles, to be managed by other on-board systems. Evaluation of Equation (21) is performed 

by first considering each single intruder and then combining these evaluations to estimate 

an overall TNMM value. 

Considering single intruders, let us first note that TNMM is related to the instant in 

which no more commands are possible for all maneuver types under consideration. 

Therefore, the evaluation should be performed for each type of maneuver and then the 

maximum time chosen. Two different methods are used for the horizontal and vertical 

axes. In Figure 9, the procedure adopted for the evaluation of TNMM in the horizontal 

plane is reported. 

 

Figure 9. Computation of TNMM for horizontal maneuvers. 

The TNMM for horizontal maneuvers should be computed by predicting the intruder 

and own aircraft trajectories (here considered to be straight) and then checking that all the 

maneuvers do not have an RPr below the given safe threshold, at any time in the consid-

ered interval T (see Figure 9, left). Instead of this straightforward but computationally 

intensive method, the evaluation is operated by first performing the maneuver and then 

finding the time instant at which a straight trajectory will have an RPr below the threshold 

(see Figure 9, right). This is more computationally efficient because there is an analytical 

solution for evaluating Equation (12) in the straight trajectory segments. 

TNMM for vertical maneuvers can be estimated with an iterative process that con-

siders the relative altitude variation and a constant (worst case) on set time (see Section 

5.1). The process is depicted in Figure 10, where a finite number of RPr evaluations are 

performed using a bisection search technique. 
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Figure 10. Computation of TNMM for horizontal maneuvers. 

After the evaluation of TNMM for each single intruder, the combined overall TNMM 

can be computed as follows: 

𝑇𝑁𝑀𝑀𝑘 =
𝑀𝑀𝑘

𝑖̅

𝑀𝑀𝑘

∙ 𝑚𝑖𝑛(𝑇𝑁𝑀𝑀𝑘
𝑖 ), (22) 

where i is the index in the set 1…N intruders and 𝑖 ̅ is the index associated to the minimum 

value of the TNMM computed for a single intruder. Equation (22) relates the single in-

truder’s TNMMs to the overall TNMM at tk. Indeed, using the ratio between the MM of 

the worst intruder and the global MM is a way to take into account how much the other 

intruders (and fixed obstacles) contribute to reducing the final TNMM. Indeed, finding 

the TNMM when more than one threat is contributing to the MM reduction is a tricky 

problem that can be very computationally intensive. Relations different from Equation 

(22) or other methods can be adopted, given that they are computationally affordable and 

prove to be sufficiently accurate. To overcome this major limitation of the algorithm, some 

future improvements could include using artificial intelligence techniques directly on the 

ORPr functions so as to predict the possible scenario evolution based on experience, as 

humans normally do. 

Having computed MM and TNMM at the current time step, we have all the elements 

necessary to take an automatic decision. The proposed decision-making process is basi-

cally implemented as a discrete state machine with heuristic rules for state transitions (see 

Figure 11). 

 

Figure 11. Decision making logic.  
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The states and transitions in such decision making logic are as follows: 

• No Threats corresponds to no imminent potential collision. 

• Monitor Threats indicates that at least one potential collision is detected, not consid-

ering any maneuver (i.e., the RPr is below the threshold for the predicted intruder 

and ownship trajectories). This is a pre-alert status that is basically introduced to in-

form the pilot through the ground station display that a potential conflict has been 

detected. 

• Turn Right/Left, Climb, Descend correspond to raising a collision warning alert and 

executing the respective maneuver. Only one of these states is accessed when MM or 

TNMM is below given thresholds (to be tuned). The type of avoidance maneuver is 

selected after performing several considerations, as better described below. During 

the maneuver execution, and until a safe situation is restored, the algorithm contin-

uously evaluates the situation to check whether the current avoidance maneuver is 

still safe. 

• Change Maneuver is accessed if the current avoidance maneuver type is no longer 

safe, and a revision of the current maneuver type or command is required. 

The process of selecting the type of maneuver and the related command considers 

the safety of flight, TCAS-II interoperability and Right of Way (RoW) rules, as specified in 

Section 2. Therefore, the optimal command computed as per Section 5.5 is not always 

used. 

When considering multi-intruder scenarios, the most hazardous intruder is selected 

to comply with TCAS-II interoperability and RoW rules. This intruder is chosen using the 

following criteria: 

(a) Presence of a TCAS-II Resolution Advisory from the intruder; 

(b) Number of maneuver types with a null margin of maneuver; 

(c) Lower time to a null margin of maneuver; 

(d) Lower margin of the maneuver. 

The TCAS-II interoperability implementation is based on the so-called Responsive 

Coordination. Actually, when an intruder is identified as TCAS-II-equipped, the pro-

posed CDA algorithm complies with the Vertical Resolution Advisory Complement 

(VRC) provided by the other aircraft [12], if this has been received from the on-board sen-

sors (see Figure 12). 

 

Figure 12. Interoperability with TCAS-II systems. 

In case no VRC has been received or for aircraft not equipped with TCAS-II aircraft, 

the RoW rules are basically applied using quantitative criteria (with different thresholds), 

as specified by DAA MOPS, App. H [5]. The maneuver type suggested by the RoW rules 
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is selected only if it is not detrimental to safety, i.e., the predicted risk level associated to 

its optimal command is as low as other possible maneuver types. 

Otherwise, or when the ownship has RoW, the maneuver type and the related opti-

mal command are chosen as computed in Equation (19). 

6. Tuning and Numerical Assessment 

Before performing a numerical assessment of the proposed CDA algorithm, a param-

eter tuning process is performed using Fast Time simulations. The simulator environment 

is schematically shown in Figure 13. 

 

Figure 13. Interoperability with TCAS-II systems. 

The simulator comprises, other than the CDA algorithm under test, a generator of air 

traffic trajectories, the surveillance and navigation error models, the data related to the 

fixed obstacles in the surrounding environment and the 6DoF simulation model of the 

unmanned aircraft with its related autopilot. The simulator includes a complete DAA al-

gorithm, integrating a Remain Well Clear (RWC) module (see Section 1) with the pro-

posed CDA algorithm. The aim of the RWC module [5,6,22] is to provide air traffic situa-

tional awareness to the remote pilot, so mitigating the number of NMAC events. 

Using this simulator, the tuning of the thresholds for RPr, MM, TNMM is performed 

using several air traffic scenarios and trajectories mainly extracted from the DO-317B test 

tracks [23]. These test tracks account for real scenarios in different airspaces (controlled 

classes A to C and not controlled classes D to G) and in terminal areas close to airport and 

during approach and take-off procedures. The optimal parameter set is found by mini-

mizing the number of NMAC events in the performed simulations, also taking into ac-

count the RWC alert timing [5,6,22]. In other terms, the CDA thresholds are tuned in order 

to avoid overlapping with the RWC caution alerts, while ensuring that NMAC are 

avoided. 

The own aircraft was modelled as a fixed wing Tactical Unmanned Vehicle with an 

air speed up to 100 knots, a climb/descent rate of about 1000 fpm, a 40 deg maximum bank 

and an altitude ceiling of up to 12,000 ft. On the other hand, different intruder types were 

used: very light aircraft, general aviation, business jets and airliners. 

The intruder aircraft are considered cooperative and equipped with a Mode S-ES 

transponder (i.e., ADS-B Out) working in the standard frequency of 1090 Mhz. This sensor 

is characterized by two levels of measurement errors for air traffic surveillance: 

• Highly accurate, characterized by intruder position and errors modelled by a null 

mean and a standard deviation of [10 10 15] m [5 5 5] m/s, respectively; 
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• Medium accuracy, characterized by intruder position and errors modelled by a null 

mean and a standard deviation of [20 20 30] m [8 8 8] m/s, respectively. 

Regarding ownship navigation errors, they were set as gaussian distributed with null 

mean and standard deviation of [6 6 6] m for position and of [3 3 3] m/s for velocity (typical 

performance of GPS receivers). 

Several different conflict geometries were simulated in levelled or during climb/de-

scend flights, such as: head-on encounters with lateral displacements, lateral convergence 

at low and high speed, overtaking at low and high speed, etc. The encounters were se-

lected with the objective of assessing the robustness of the CDA algorithm in avoiding the 

collision and minimizing nuisance alerts, as also occurs in multi-intruder and maneuver-

ing scenarios. 

These simulated air traffic scenarios are representative of future situations in which 

unmanned and manned aircraft perform their missions at mid/low altitudes in the civil 

airspace where several constraints can be present, such as terrain, bad weather and no-fly 

zones. For instance, setting up no-fly zones could allow considering one or more small, 

unmanned vehicles that are performing operations in a given area of the unmanned traffic 

management (UTM) airspace at very low-level altitudes below 500 ft. 

Once the optimal parameter was set, the CDA algorithm was stress tested in more 

challenging scenarios in order to assess its performance with respect to other CDA algo-

rithms. These scenarios include encounters during the landing or taking off phases with 

the presence of fixed obstacles (terrain, no-fly zones) and geo-fencing constraints. Two 

simulation examples of such scenarios are described below. 

In the first scenario in airspace class G, the ownship (a Tactical Unmanned vehicle) is 

taking-off while the intruder (a General Aviation aircraft) is landing on the same airport 

in presence of a no-fly zone positioned on the right side of the ownship direction of flight 

(Figure 14a). During the encounter, both aircraft are moving with an absolute vertical 

speed of 5 m/s and a ground speed of 45 m/s. 

 
 

(a) (b) 

Figure 14. Ownship climbing while the intruder is descending in the presence of a no-fly zone. (a) 

Trajectories; (b) RPr Time Histories 

In this situation the proposed CDA algorithm, after collision alarm activation, pro-

poses an avoidance maneuver to the remote pilot, giving them five seconds to abort its 

automatic execution. In the analyzed case, the proposed maneuver is automatically exe-

cuted (Figure 14a) considering the geometry of the encounter, the no-fly zone, and the 

terrain. 
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The optimal maneuver is executed at a horizontal distance between the aircraft of 

about 3000 m with a closing speed of 90 m/s. At the minimum horizontal distance, the 

conflicting aircraft are at about 1010 m, therefore widely outside the NMAC volume. The 

RPr for the four optimal avoidance maneuvers at each time step are depicted in Figure 

14b. During the climbing phase the RPr of the right turn and climb maneuvers are equal 

to one due to the no-fly zone and the descending intruder, respectively. After a few sec-

onds, when the ownship is above a minimum height threshold, the terrain constraint is 

accounted for by the CDA algorithm that sets the RPr of the descend maneuver to one. At 

19 s, when the ownship is at an altitude of about 310 m, the RPr of the descend maneuver 

becomes zero. This indicates that there is an optimal descend maneuver that allows avoid-

ance of the intruder and the terrain (the latter evaluated with a look ahead time of 2 × 30 

s). At 21 s, the descend RPr starts increasing again due to the reduced distance from the 

intruder. On the other hand, the RPr of the optimal left turn maneuver is always equal to 

zero with better values of MM and TNMM determining its automatic execution at 27 s. 

When the avoidance maneuver ends, all the RPr values move to zero as shown in Figure 

14b. 

In a different scenario, a head-on encounter between a Tactical UAV and a business 

jet in airspace class D is simulated, during a level flight close to the boundaries of the area 

of operation with a no-fly zone on the left of the ownship direction. During the encounter, 

the ownship and the intruder have groundspeeds of 50 m/s and 150 m/s, respectively. 

The proposed maneuver is automatically executed at a horizontal distance between 

the aircraft of about 6500 m with a closing speed of 200 m/s (see Figure 15a). At the mini-

mum horizontal distance, the conflicting aircraft are at about 2560 m, and therefore are 

widely outside the NMAC volume. 

  

(a) (b) 

Figure 15. Head-on scenario in the presence of a no-fly zone near the border of the area of operation. 

(a) Trajectories; (b) RPr Time Histories 

Figure 15b shows the behavior of the RPr for the four optimal avoidance maneuvers. 

The RPr of the left turn maneuver rapidly saturates to one due to the no-fly zone, while the 

RPr of the climb and descend maneuvers first starts increasing, due to the intruder relative 

distance, and then steps to one because the border of operation’s area is approaching. The 

RPr of the optimal right maneuver is always zero, determining its execution at 76 s. 

7. Real Time Validation 

In order to verify that the proposed CDA algorithm can be executed in real time and to 

assess human pilot judgment about its behavior, a prototype software was implemented and 
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then integrated in a detailed HW-in-the-Loop real time simulator of a tactical unmanned air-

craft. The unmanned simulator is part of a real-time simulation facility where experimental 

tests can be performed with the presence of expert pilots and air traffic controllers. The real 

time facility used for the subject validation of the CDA algorithm involved: 

• An HW-in-the-loop real-time simulator of a tactical RPAS; 

• A simulation scenario generating the air traffic and the conflicting intruder together 

with other agents of the scenario such as: weather hazards, no-fly zones, navaids and 

GPS time and satellite constellations; 

• A pseudo-pilot station for on-line modification of the traffic trajectories generated by 

the scenario simulator, based on air traffic controller instructions; 

• An emulator of a controller working position implementing the advanced function-

alities needed to support the controller in its air traffic monitoring and control tasks. 

The real time implementation of the proposed CDA algorithm comprises the devel-

opment of a dedicated display in the ground control station, named the Cockpit Display 

of Traffic Information (CDTI). The CDTI basically displays the air traffic to the remote 

pilot with different colors based on the associated conflict risk level. Moreover, it displays 

the Conflict Bands that are the maneuvers to be avoided because they can cause a conflict 

and the avoidance maneuvers suggested by the CDA algorithm. The conflict bands gen-

erated by the CDA algorithm are obtained by applying a suitable threshold to the ORPr 

functions and are shown in red. 

Several real time validation tests were performed to assess the capability of the pro-

posed CDA algorithm to also behave correctly in case of complex encounter scenarios. In 

this paper, we describe only one of the performed tests to demonstrate the ability of the 

proposed CDA algorithm to solve complex conflict situations. 

The sample simulated scenario foresees a level head-on encounter in the airspace 

class G between a fixed wing tactical unmanned aircraft (see Section 6 for its perfor-

mances) flying under the Instrumental Flight Rules (IFR) and a cooperative General Avi-

ation manned aircraft flying under Visual Flight Rules (VFR), equipped with an ADS-B 

OUT transponder without TCAS-II. The encounter was located close to a no-fly zone 

placed on the right side of the unmanned aircraft flight plan (Figure 16a). In this situation, 

the air traffic controller provides only flight information, leaving the conflict resolution 

responsibility to the remote and manned pilots. 

During the conflict, the DAA system first shows to the remote pilot the presence of 

the no-fly zone (red box in Figure 16a) on the right of the own aircraft by displaying a red 

band (see Figure 16b) that indicates not to turn right. 

  

(a) (b) 

Figure 16. Simulated scenario (a) and CDTI conflict band due to the no-fly zone (b). 
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Then, while the flight of both aircraft continues with the intruder moving closer to 

the own aircraft, the DAA system first activates the RWC alerts (orange colored) and then 

the collision alert (Figure 17a). The situation evolves up to the activation of the automatic 

maneuver (Figure 18) that performs a left turn avoiding the NMAC volume with a result-

ing minimum horizontal distance of 600 m (Figure 19). 

  

(a) (b) 

Figure 17. The CDTI before (a) and after (b) the avoidance maneuver. 

 

Figure 18. Horizontal trajectory of the head-on encounter. 
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(a) (b) 

Figure 19. Relative distance (a) and time to the closest point of approach (b) during the encounter. 

At the end of the collision avoidance maneuver, the unmanned aircraft is still in a 

loss of well-clear condition without any possibility of its recovery due to the low relative 

distance with respect to the intruder (orange conflict bands in Figure 17b). 

This scenario also shows that, due to the presence of the no-fly zone, the CDA algo-

rithm executes a left turn that is contrary to the RoW rules that would require a right turn. 

8. Conclusions 

This paper merges and extends the results of [14,15], providing a comprehensive and 

detailed description of a Collision Detection and Avoidance algorithm that is able to cope 

with complex conflict situations in the presence of multiple intruders, terrain, no-fly 

zones, fixed obstacles and bad weather areas. Moreover, the tuning process and the nu-

merical assessment performed with a fast-time detailed simulator is also described by re-

porting some simulation results. Finally, the real time implementation of the proposed 

algorithm is demonstrated by performing HW-in-Loop and Human-in-the-Loop tests in 

a laboratory test facility. 

Further work will expand the algorithm capabilities by using a suite of cooperative 

and non-cooperative sensors and will exploit machine learning and/or deep learning tech-

niques to replace the current decision logic state machine with an artificial intelligence 

module to manage even more complex scenarios characterized by several interacting 

multi-intruder conflicts and path constraints. 
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Acronyms 

3DOF 3 Degree-of-Freedom 

6DOF 6 Degree-of Freedom 

ACAS-X Airborne Collision Avoidance System—X 

ADAPT Advanced Detect and Avoid ProTotype 

ADS-B Automatic Dependent Surveillance—B 

CA Collision Avoidance 
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CDA Collision Detection and Avoidance 

CDTI Cockpit Display of Traffic Information 

CIRA Italian Aerospace Research Center 

CPA Closest Point of Approach 

DA Detect and Avoid 

DCPA Distance at the Closest Point of Approach 

DTED Digital Terrain Elevation Data 

EUDAAS EUropean Detect And Avoid System (the project) 

EUROCAE European Organisation for Civil Aviation Equipment 

FAA Federal Aviation Administration 

FMS Flight Management System 

GPS Global Positioning System 

HW Hardware 

ICAO International Civil Aviation Organization 

IFR Instrumental Flight Rules 

LAT Look-Ahead Time 

MDP Markov Decision Process 

MIDCAS MID Air Collision Avoidance System 

MM Margin of Maneuver 

MOPS Minimum Operational Performance Standards 

NASA National Aeronautics and Space Administration 

NEU North-East-Up 

NM Nautical Mile 

NMAC Near Mid Air Collision 

NP Non-Polynomial 

ORPr Overall Relative Probability 

OSED Operational Services and Environment Description 

RoW Right of Way 

RPAS Remotely Piloted Aircraft Systems 

RPr Relative Probability 

RTCA Radio Technical Commission for Aeronautics 

TAS True Air Speed 

TCAS-II Traffic Collision Avoidance System—II 

TNMM Time to Null Maneuver Margin 

UAS Unmanned Aerial Vehicle 

USA United States of America 

UTM Unmanned Traffic management 

VFR Visual Flight Rules 

VRC Vertical Resolution Advisory Complement 
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