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Abstract: The satellite cluster formation reconfiguration has received considerable attention in recent
years. However, the traditional centralized control methods are challenging to apply to satellite
clusters because of the enormous fuel consumption, and few studies have addressed the mathematical
characterization of satellite clusters. This research aims to propose a mathematical characterization
method for satellite clusters and investigate the formation reconfiguration control of satellite clusters.
This study provided the five-element characterization method to represent the cluster characteristics
and internal correlation characteristics of orbiting satellite clusters. In addition, a control method
based on bifurcating potential fields was proposed to realize satellite cluster formation’s dynamic
migration and rapid reconfiguration. A cluster with 50 satellites was simulated to verify the feasibility
and effectiveness of the proposed formation control algorithm. The results show that various
formation topologies were achieved by simply changing the bifurcation parameter and configuration
adjustment parameters. The five descriptive elements of the satellite cluster can intuitively and
effectively reflect the running state of the satellite cluster.

Keywords: satellite cluster; formation reconfiguration; bifurcating potential field; mathematical
characterization

1. Introduction

In recent years, the application of low-cost micro-nano satellite clusters with good
expansibility and flexibility to perform space missions has received considerable attention.
A satellite cluster is a satellite system composed of several micro-nano satellites to complete
space missions. The satellites in the cluster operate loosely in close proximity within a
bounded space area and do not need to maintain strict spatial geometry configuration. Most
satellite clusters are heterogeneous, relying on local information interaction to maintain the
relative motion bounded [1–3], which are loose clusters that accomplish space tasks through
autonomous cooperation. At present, the National Aeronautics and Space Administration
(NASA), European Space Agency (ESA), and other space agencies have developed or
planned several satellite cluster systems for detection, remote sensing, communication, and
surveillance. Among them, the KickSat project, the Flock earth observing constellation, the
Starlink constellation, the BlackJack program, the Starling mission, the SWIFT project, the
ANTS mission, the OLFAR project, the Tiantuo-3 mission, and the SULFRO mission are
more representative [4–13].

Mathematical characterization is fundamental to the study of satellite clusters. The
basic formation configurations in traditional satellite formation flying (SFF), such as accom-
panying formation and flying-around formation, can be accurately represented by relative
motion equations. Satellite cluster is derived from the traditional SFF, and its operation is
based on the relative movement of satellites within the cluster. However, unlike the conven-
tional SFF, satellite cluster does not need to maintain strict spatial geometry configuration.
The cluster has some characteristics, which are different from the individual. Therefore,
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the description of a large-scale satellite cluster should not be limited to the relative motion
between two satellites. At present, an effective mathematical characterization method is
needed to describe the overall state of the satellite cluster and the relationships among
satellites within the cluster.

Formation reconfiguration is the crucial technique for the application of satellite clus-
ters. Given the volume and power limitation of micro-nano satellites [14] and the loose
characteristic of satellite clusters, some traditional centralized control methods are chal-
lenging to apply to satellite clusters because of the enormous fuel consumption. Although
distributed control methods, such as the artificial potential field (APF) method and the
behavior-based control method, have achieved good results in robots and Unmanned
Aerial Vehicles (UAVs), these methods cannot be directly applied to satellite formation
control. It is relatively easy to control the UAV in three axes. However, the satellite operates
in an exceptional space environment, so it is necessary to consider the difference in fuel
consumption between in-plane and out-of-plane orbit controls.

The primary purpose of this research is to propose a mathematical characterization
method for satellite clusters and investigate the formation reconfiguration control of satellite
clusters based on the bifurcating potential field.

The APF method was first introduced by Khatib for mobile robot path planning
and obstacle avoidance [15]. The basic principle of the APF method is to build artificial
potential functions according to the surrounding environment of the controlled object while
making the expected state of the managed object located at the global minimum point of
the system’s potential field. By setting the control law, the managed object can move along
the negative gradient direction of the potential field until it converges to the expected state.
The APF method is very close to the sliding mode control and the Lyapunov function-based
feedback control. All of them can guide the system to be stable in the desired state and
have strong robustness. However, the APF method focuses more on path planning, which
can easily maintain the relationship between satellites, as well as between satellites and
the environment, such as collision avoidance and obstacle avoidance. At present, the APF
method has been successfully applied to the multi-robot system and multi-UAV system and
is gradually used for spacecraft rendezvous, in-orbit self-assembly, and spacecraft obstacle
avoidance [16–24]. The name “bifurcation” was first introduced by Henri Poincaré and
later commonly applied to the mathematical study of dynamical systems [25]. A bifurcation
occurs when a small smooth change made to the bifurcation parameter values causes a
sudden qualitative or topological change in its behavior [26]. The mathematical expression
of the bifurcation function is generally straightforward. However, the system properties can
be changed by the simple change of bifurcation parameters, which fit in with the formation
reconfiguration of satellite clusters. Therefore, we consider combining the APF method
with bifurcation theory to achieve satellite cluster formation reconfiguration.

The paper proceeds as follows. In Section 2, the five-element characterization method
is proposed to describe the characteristics of orbiting satellite clusters. The satellite cluster
is modeled, explaining the APF method and bifurcation theory. Section 3 shows the
simulation results of satellite cluster formation reconfiguration, using the novel control law
based on bifurcating potential field, and analyzes the regulating effect of the parameters
in the formation control algorithm. Section 4 presents the conclusions and applications of
this research.

2. Materials and Methods
2.1. The Five Descriptive Elements of Satellite Cluster

Satellite cluster formation control needs to consider constraints such as collision
avoidance, obstacle avoidance, and maximum communication range. Since the satellites
in the cluster operate nearby, the collision probability is closely related to the distribution
within the cluster. The maximum communication range of the cluster is closely related to
the scale and outer boundary of the cluster. The inter-satellite relationship within the cluster
and the overall motion state of the whole cluster should be considered. This paper proposes
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the five-element characterization method to describe the characteristics of orbiting satellite
clusters. In this method, a set of five basic characteristic parameters with specific geometric
significance are used to intuitively characterize the satellite cluster from the aspects of
cluster size, cluster movement, spatial cluster structure, and internal cluster distribution.

2.1.1. Cluster Size

A satellite cluster is a satellite system composed of several satellites, which operate
in a bounded space area to complete space missions. Similar to the characteristics of the
biological cluster, satellite clusters of different sizes show different clustering capabilities.
Therefore, the cluster size parameter is defined as the number of member satellites in the
satellite cluster from a macro perspective, denoted as N, which reflects the size of the
satellite cluster to a certain extent.

2.1.2. Cluster Movement

Each member satellite in the cluster operates in its orbit, but the satellite cluster as a
whole appears as a bounded cluster. Each member satellite’s running state determines the
group motion state of the cluster. The satellite cluster can be regarded as a sizeable virtual
satellite, as shown in Figure 1. The satellite’s position vector and velocity vector in the
earth-centered inertial frame correspond to the six orbital elements, which can accurately
describe the spatial geometric characteristics of the satellite’s orbit and the satellite’s current
position in orbit. Therefore, the cluster movement parameter is defined as the average
value of all member satellites’ position vector and velocity vector in the earth-centered
inertial frame, denoted as (ro, vo), which reflects the current spatial orientation and orbital
operation of the whole satellite cluster. The cluster movement parameter is mathematically
defined as:

ro =

n
∑
1

ri

N
, (1)

vo =

n
∑
1

vi

N
, (2)

where ri and vi are the position and velocity of any member satellite in the earth-centered
inertial frame in units of km and km/s.
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Figure 1. Analyze the movement of the satellite cluster. (a) Member satellites in the satellite cluster 

run on their orbit; (b) Regard the satellite cluster as a sizeable virtual satellite. 
Figure 1. Analyze the movement of the satellite cluster. (a) Member satellites in the satellite cluster
run on their orbit; (b) Regard the satellite cluster as a sizeable virtual satellite.

2.1.3. Outer Boundary of the Cluster

The ro in the cluster movement parameter describes the geometric center position of
the cluster. On this basis, it is also necessary to determine the outer boundary of the satellite
cluster, which can be understood as determining the space volume of the large virtual
satellite, since the maximum communication range constraint is closely related to the outer
boundary of the cluster, which is determined by the satellite farthest from the geometric
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center of the cluster. The outer boundary of the cluster is defined as the maximum distance
between each member satellite and the geometric center of the satellite cluster, denoted as
dmax, which reflects the space range occupied by the cluster. The member satellites remain
in the spherical region with this parameter as the radius. A schematic diagram of the outer
boundary is shown in Figure 2. This parameter can intuitively judge whether the cluster
meets the expected communication range constraint. The outer boundary of the cluster is
mathematically defined as:

dmax = max(dio) (1 ≤ i ≤ n), (3)

where dio is the distance from any member satellite to the geometric center of the satellite
cluster in units of km.
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Figure 2. Schematic diagram of the outer boundary of the cluster.

2.1.4. Inner Boundary of the Cluster

The description of satellite cluster configuration needs to consider the overall behavior
of the cluster and the individual behavior within the cluster. Due to the member satel-
lites being close to each other, it is necessary to pay attention to the inner boundary to
make collision avoidance warnings in time and ensure the safe operation of the satellite
cluster. The inner boundary of the cluster is defined as the minimum distance between
any two satellites in the satellite cluster, denoted as dmin, which reflects the distance rela-
tionship between satellites in the cluster. A schematic diagram of the inner boundary is
shown in Figure 3. This parameter can intuitively judge whether the cluster meets the ex-
pected collision avoidance constraint. The inner boundary of the cluster is mathematically
defined as:

dmin = min(dij − ai − aj) (1 ≤ i ≤ N, 1 ≤ j ≤ N, i 6= j), (4)

where dij is the distance between the centroids of any two member satellites in the satellite
cluster, in units of km, and ai, aj are the space radius of satellite i and satellite j respectively,
in units of km.
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2.1.5. Distribution Uniformity of the Cluster

In the non-mission state, the satellite cluster runs loosely within a specific space
like bees or birds. In the mission state, the satellite cluster forms unique formation con-
figurations to improve the efficiency of mission execution. Under different formation
configurations of the same satellite cluster, the distribution of member satellites is different
and has specific rules to follow. For example, when the outer boundary of the cluster
remains constant, the distribution uniformity of the linear configuration is generally lower
than that of the disk configuration. Distribution uniformity of the cluster, denoted as
L, is equal to the total volume of each member satellite’s monopolized sphere divided
by the volumes of the cluster’s monopolized sphere. L is mainly defined to judge the
formation configuration of the satellite cluster based on its current distribution uniformity,
representing the uniformity of the cluster in most situations. The distribution uniformity of
the cluster is mathematically defined as:

L =

n
∑
1

Vi

V
, (5)

where Vi is the volume of any member satellite’s monopolized sphere, and V is the volume
of a circumscribed sphere of all satellites’ monopolized spheres.

In this research, the satellite’s monopolized sphere is defined as follows. Denote the
distance between satellite i and its nearest neighbor as di. Then, the center of satellite
i’s monopolized sphere is itself, and the radius of that monopolized sphere is di/2. A
schematic diagram of the monopolized sphere of each satellite in the satellite cluster is
shown in Figure 4.

Aerospace 2022, 9, x FOR PEER REVIEW 5 of 21 
 

 

 

Figure 3. Schematic diagram of the inner boundary of the cluster. 

2.1.5. Distribution Uniformity of the Cluster 

In the non-mission state, the satellite cluster runs loosely within a specific space like 

bees or birds. In the mission state, the satellite cluster forms unique formation configura-

tions to improve the efficiency of mission execution. Under different formation configu-

rations of the same satellite cluster, the distribution of member satellites is different and 

has specific rules to follow. For example, when the outer boundary of the cluster remains 

constant, the distribution uniformity of the linear configuration is generally lower than 

that of the disk configuration. Distribution uniformity of the cluster, denoted as L , is 

equal to the total volume of each member satellite’s monopolized sphere divided by the 

volumes of the cluster’s monopolized sphere. L  is mainly defined to judge the formation 

configuration of the satellite cluster based on its current distribution uniformity, repre-

senting the uniformity of the cluster in most situations. The distribution uniformity of the 

cluster is mathematically defined as: 

1 ,

n

iV

L
V

=


 
(5) 

where iV  is the volume of any member satellite’s monopolized sphere, and V  is the 

volume of a circumscribed sphere of all satellites’ monopolized spheres. 

In this research, the satellite’s monopolized sphere is defined as follows. Denote the 

distance between satellite i  and its nearest neighbor as id . Then, the center of satellite 

i ’s monopolized sphere is itself, and the radius of that monopolized sphere is 2id . A 

schematic diagram of the monopolized sphere of each satellite in the satellite cluster is 

shown in Figure 4. 

  

(a) (b) 

Aerospace 2022, 9, x FOR PEER REVIEW 6 of 21 
 

 

 
 

(c) (d) 

Figure 4. The monopolized sphere of each member satellite in the satellite cluster. (a) The monopo-

lized sphere of each member satellite when the satellite cluster is randomly distributed; (b) The 

monopolized sphere of each member satellite when the satellite cluster is evenly distributed in three 

dimensions; (c) The monopolized sphere of each member satellite when the satellite cluster is evenly 

distributed in two dimensions ( - -x y z  plane); (d) The monopolized sphere of each member satellite 

when the satellite cluster is evenly distributed in three dimensions ( -x y  plane). 

The specific calculation steps of L  are as follows: 

1. The radius of each member satellite’s monopolized sphere is calculated according to 

the distance between each member satellite: 

1
min( )(1 , )

2
i ijm d j N i j=     (6) 

2. Calculate the volume of each member satellite’s monopolized sphere: 

34

3
i iV m=  (7) 

3. Calculate the radius of circumscribed sphere of all satellites’ monopolized spheres: 

1
max( )(1 ,1 , )

2
ij i jM d m m i N j N i j= + +       (8) 

4. Calculate the volume of the circumscribed sphere: 

34

3
V M=  (9) 

5. Finally, the distribution uniformity of the cluster is calculated by Equation (5). 

2.2. Formation Control Algorithm 

2.2.1. Dynamic Model of Satellite Cluster 

Consider a satellite cluster composed of n  satellites, the motion equation of mem-

ber satellite i  in the satellite cluster can be expressed as: 

,

,

i i

i i i ic if v im k

=


= = + −

x v

v F F F v
 (10) 

where ix  and iv  are the position and velocity of satellite i  in the earth-centered iner-

tial frame, 
im  is the mass of satellite i , and 

iF  is the resultant force on satellite i . 
iF  

is composed of collision avoidance control force icF , formation control force ifF , and 

velocity feedback v ik− v , where 
vk  is a positive control gain to control the amplitude of 

the dissipation in units of kg s . 

Figure 4. The monopolized sphere of each member satellite in the satellite cluster. (a) The monop-
olized sphere of each member satellite when the satellite cluster is randomly distributed; (b) The
monopolized sphere of each member satellite when the satellite cluster is evenly distributed in three
dimensions; (c) The monopolized sphere of each member satellite when the satellite cluster is evenly
distributed in two dimensions (x-y-z plane); (d) The monopolized sphere of each member satellite
when the satellite cluster is evenly distributed in three dimensions (x-y plane).
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The specific calculation steps of L are as follows:

1. The radius of each member satellite’s monopolized sphere is calculated according to
the distance between each member satellite:

mi =
1
2

min(dij)(1 ≤ j ≤ N, i 6= j) (6)

2 Calculate the volume of each member satellite’s monopolized sphere:

Vi =
4
3

πm3
i (7)

3 Calculate the radius of circumscribed sphere of all satellites’ monopolized spheres:

M =
1
2

max(dij + mi + mj)(1 ≤ i ≤ N, 1 ≤ j ≤ N, i 6= j) (8)

4 Calculate the volume of the circumscribed sphere:

V =
4
3

πM3 (9)

5 Finally, the distribution uniformity of the cluster is calculated by Equation (5).

2.2. Formation Control Algorithm
2.2.1. Dynamic Model of Satellite Cluster

Consider a satellite cluster composed of n satellites, the motion equation of member
satellite i in the satellite cluster can be expressed as:{ .

xi = vi,
mi

.
vi = Fi = Fic + Fi f − kvvi,

(10)

where xi and vi are the position and velocity of satellite i in the earth-centered inertial
frame, mi is the mass of satellite i, and Fi is the resultant force on satellite i. Fi is composed
of collision avoidance control force Fic, formation control force Fi f , and velocity feedback
−kvvi, where kv is a positive control gain to control the amplitude of the dissipation in
units of kg/s.

The APF method is widely used in the formation control by building artificial potential
functions to create virtual attraction or repulsion potential fields, similar to the electric
fields in electromagnetics. The superposition of each potential field forms the system’s
potential field. Satellite under the system potential field will move towards the global
minimum point along the negative gradient of the system’s potential field. Two potential
fields are considered in this research. One is collision avoidance potential field aim to create
Fic, and the other is bifurcating potential field used to create Fi f .

Due to the relatively compact structure of the satellite cluster, the relative motion
between the satellites can be described by the Clohessy–Wiltshire (CW) equation. The CW
equation, also known as Hill equation, was first proposed by George William Hill [27] when
studying the motion of the moon. Hill equation studies the motion law of the lunar relative
to the Earth. The CW equation is a linearized equation proposed by Clohessy et al. [28] to
describe the close relative motion of two satellites, which is expressed in the target orbital
frame (defined in Figure 5) as: 

..
x− 2ω

.
z = ux,

..
y + ω2y = uy,
..
z− 3ω2z + 2ω

.
x = uz,

(11)
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where x, y, z are the coordinates of the satellite in the target orbital frame, ω is the mean
angular velocity of the target orbital frame, and ux, uy, uz are the accelerations applied by
the satellite thrusters in the x, y, z directions.
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Figure 5. The target orbital frame o-xyz. (O-XYZ is the earth-centered inertial frame. The origin of
o-xyz frame is located at the satellite centroid. The oz axis points from the satellite centroid to the
geo-center. The oy axis points to the negative normal direction of the orbital plane. The ox axis is along
the satellite’s forward direction, forming a right-handed cartesian frame with the other two axes).

2.2.2. Collision Avoidance Potential Function

The collision avoidance potential field has two effects. One is to disperse satellites
during the formation configuration process, and the other is to avoid collisions when the
inter-satellite distance is less than the safe value. The magnitude of the repulsive force is
related to the inter-satellite distance. The repulsive force is zero when the inter-satellite
distance is within the safe range. When the inter-satellite distance is outside the safe range,
the repulsive force increases as the inter-satellite distance decreases.

The inter-satellite collision avoidance potential function is established based on the
inter-satellite distance as follows:

Uij =

{
−kc

(
xT

ijxij − s‖xij‖
)

i f ‖xij‖ ≤ s,

0 i f ‖xij‖ > s,
(12)

where Uij is the avoidance potential between satellite i and satellite j, kc is a positive control
gain to adjust the amplitude of the potential function in units of kg/s2, s is a constant
describing the desired safe distance between satellite i and satellite j, and xij is the position
of satellite i relative to satellite j in units of km.

The corresponding repulsive force of satellite i by satellite j is:

Fij = −∇xij Uij =

kc

(
1− s

‖xij‖

)
xij i f ‖xij‖ ≤ s.

0 i f ‖xij‖ > s.
(13)

The collision avoidance control force of satellite i is equal to the sum of the repulsive
force of satellite i by all other member satellites in the cluster:

Fic =
n

∑
j = 1
j 6= i

Fij. (14)

The repulsion force Fic, the formation control force Fi f , and velocity feedback −kvvi
together guide satellites toward the goal state. The repulsive force is used to ensure that
satellites do not collide with each other when they are steered towards the goal state. Once
all satellites are driven to the goal equilibrium state, the repulsive force also ensures that
they are equally spaced for symmetric formations.
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Let kc = 1 kg/s2, s = 0.05 km, the collision avoidance potential function and the
collision avoidance control force are shown in Figure 6.
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2.2.3. Bifurcating Potential Function

Bifurcation theory is a mathematical study of qualitative or topological structure
changes of a given family of curves, often used in the mathematical study of dynamical
systems. A continuous-time dynamic system can be described as:

.
x = f (x, µ), (15)

where x is the state variable, x = x(t),
.
x = dx/dt, and µ is the bifurcation parameter. The

independent variable t represents the time, and it is usually omitted as in Equation (15)
for simplicity.

Define a bifurcation according to the requirements of satellite cluster formation recon-
figuration, and its typical form is:

.
x = f (x, µ) = x(µ− |x|). (16)

The equilibrium points of the system are:

xe =

{
0 i f µ < 0.

0,±µ i f µ > 0.
(17)

Linearize the system described by Equation (16) at the equilibrium points:

.
x = Ax. (18)

A =
∂ f
∂x

∣∣∣∣
x=xe

= (µ− 2|x|)|x=xe
. (19)

The eigenvalues of A are:

λ =


µ i f µ < 0, xe = 0.
µ i f µ > 0, xe = 0.
−µ i f µ > 0, xe = ±µ.

(20)

The stability of each equilibrium point can be judged based on Lyapunov theory. When
µ < 0, the equilibrium point xe = 0 is stable. When µ > 0, the equilibrium point xe = 0 is
unstable, while xe = ±µ are stable. Based on this bifurcation, the bifurcating potential field
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is constructed to obtain a stable cluster configuration. The bifurcating potential function is
expressed as:

U =
|x|3

3
− µ

x2

2
. (21)

Figure 7 shows the shape of the bifurcating potential when µ = ±5. The minimum
point of bifurcating potential function corresponds to the stable equilibrium point of
bifurcation dynamics.
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Figure 7. The bifurcating potential.

We propose a two-dimensional bifurcating potential function for the in-plane forma-
tion control of satellite clusters:

U f = k f


∣∣∣√b2x2 + a2z2 − abr

∣∣∣3
3

− µ

(√
b2x2 + a2z2 − abr

)2

2
+ σy2

, (22)

where k f is a positive control gain to adjust the amplitude of the potential function in
units of kg/kms2, a, b are dimensionless configuration adjustment parameters, r is another
configuration adjustment parameters in units of km, µ is the bifurcation parameter in
units of km, σ is the out-of-plane potential parameter in units of km, and x, y, z are the
coordinates of satellite i relative to the desired formation center in units of km, denoted
as xi = [ x y z ]. σy2 is the out-of-plane potential used to control the satellite cluster
operates in the orbital plane.

The corresponding formation control force of satellite i under this two-dimensional
bifurcating potential function is:

Fi f = −∇xi Ui f . (23)

According to the two-dimensional bifurcating potential function, a variety of satellite
cluster formation configurations can be formed in the orbital plane. Each configuration
has clear correspondence with the bifurcating parameters. The specific corresponding
relationships are shown in Table 1.

Table 1. In-plane formation configurations and bifurcating parameters.

In-Plane Formation Configuration a b r (km) µ (km)

circle (radius r) 1 1 r < 0
concentric double circle (radius r± µ ) 1 1 r > 0
disk 1 1 0 < 0
ellipse semi-major/minor axis ar/br) a b 1 < 0
concentric double ellipse (semi-major/minor axis ar± µ/br± µ) a b 1 > 0
ellipse disk a b 0 < 0
line (formation along z = 0 ) a 0 r < 0
double line (formation along z = ±µ/a ) a 0 r > 0
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The bifurcating potential field shows different equilibrium states depending on its
varying bifurcating parameters. Let k f = 1 kg/kms2, a = b = 1, three different potential
field surfaces are shown in Figure 8 when r = 0.6 km, µ = −0.1 km, r = 0.6 km, µ = 0.4 km,
and r = 0 km, µ = −0.1 km respectively. Satellites under the bifurcating potential field will
move towards the global minimum point along the negative gradient of the bifurcating
potential field. Under the circle potential field shown in Figure 8a, the satellites finally
converge to the circle with radius r centered on the reference point, forming a circle
configuration. Under the concentric double circle potential field shown in Figure 8b, the
satellites finally converge to the concentric double circle with radius r ± µ centered on
the reference point, forming the concentric double circle configuration. Under the disk
potential field shown in Figure 8c, the satellites finally converge near the reference point
and form a disk configuration under the collision avoidance potential field.
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Figure 8. Bifurcating potential field (k f = 1 kg/kms2, a = b = 1). (a) Circle potential field (r = 0.6 km,
µ = −0.1 km); (b) Concentric double circle potential field (r = 0.6 km, µ = 0.4 km); (c) Disk potential
field (r = 0 km, µ = −0.1 km).

Let k f = 1 kg/kms2, a = 1, b = 0.5; three different potential field surfaces are shown
in Figure 9 when r = 1 km, µ = −1 km, r = 1 km, µ = 0.4 km, and r = 0 km, µ = −1 km
respectively. Satellites under these potential field will move towards the global minimum
point, forming the ellipse configuration with semi-major/minor axis ar/br, the concentric
double ellipse configuration with semi-major/minor axis ar± µ/br± µ, and the ellipse
disk configuration centered on the reference point, respectively.
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Figure 9. Bifurcating potential field (k f = 1 kg/kms2, a = 1, b = 0.5). (a) Ellipse potential field
(r = 1 km, µ = −1 km); (b) Concentric double ellipse potential field (r = 1 km, µ = 0.4 km);
(c) Ellipse disk potential field (r = 0 km, µ = −1 km).

Let k f = 1 kg/kms2, a = 1, b = 0, two different potential field surfaces are shown
in Figure 10 when µ = −1 km and µ = 0.5 km, respectively. In this case, r loses the role
of formation configuration adjustment. Satellites under these potential field will move
towards the global minimum point, forming the line configuration along z = 0 and the
double line configuration along z = ±µ/a, respectively.
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Figure 10. Bifurcating potential field (k f = 1 kg/kms2, a = 1, b = 0). (a) Line potential field
(µ = −1 km); (b) Double line potential field (µ = 0.5 km).

We propose a three-dimensional bifurcating potential function for the stereo formation
control of satellite clusters:

Ui f = k f

(
|d− abcr|3

3
− µ

(d− abcr)2

2

)
(24)

d =
√

b2c2x2 + a2c2y2 + a2b2z2 (25)

where k f is a positive control gain to adjust the amplitude of the potential function in units
of kg/kms2, a, b, c are dimensionless configuration adjustment parameters, r is another
configuration adjustment parameters in units of km, µ is the bifurcation parameter in units
of km, and x, y, z are the coordinates of satellite i relative to the desired formation center in
units of km, denoted as xi = [ x y z ].

The corresponding formation control force of satellite i under this three-dimensional
bifurcating potential function is:

Fi f = −∇xi Ui f . (26)

According to the three-dimensional bifurcating potential function, a variety of satellite
cluster formation configurations can be formed, and each configuration has clear corre-
spondence with the bifurcating parameters. The specific corresponding relationships are
shown in Table 2.

Table 2. Stereo formation configurations and bifurcating parameters.

Stereo Formation Configuration a b c r (km) µ (km)

spherical surface (radius r) 1 1 1 r < 0
concentric double spherical surface (radius r± µ ) 1 1 1 r > 0
spherical space 1 1 1 0 < 0
ellipsoidal surface (semi-axis ar/br/cr) a b c 1 < 0
concentric double ellipsoidal surface (semi-axis ar± µ/br± µ/cr± µ) a b c 1 > 0
ellipsoidal space a b c 0 < 0

3. Results and Discussion

Several cases of satellite cluster formation configuration and reconfiguration are simu-
lated to test the bifurcating control law. The satellite cluster is composed of 50 satellites
with a weight of 100 kg. In this paper, the control law was designed based on the CW
equation because the satellites move in close proximity (tens to hundreds of meters). In
the numerical simulation, the Runge–Kutta Fehlberg 78 method is used to propagate the
satellite orbit, and the influence of J2 term is considered.
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3.1. Formation Configuration
3.1.1. Line and Double Line Formation

A satellite cluster composed of 50 satellites with a weight of 100 kg initially operates
in spherical airspace with a radius of 0.1 km. The cluster center runs on a nearly circular
orbit with an altitude of 600 km, an inclination of 98◦, and an eccentricity of 0.0002. At the
initial time, the satellite cluster receives the control command. It is required to establish
an in-plane line formation along z = 0 km. When a 6= 0, b = 0, µ < 0, the satellite cluster
can establish a line formation along z = 0 km. The simulation control parameters were set
as follows:

kc = 0.25 kg/s2, k f = 10 kg/kms2, kv = 2000 kg/s, a = 1, b = 0, r = 1 km, s = 0.2 km, µ = −1 km.

When a 6= 0, b = 0, µ > 0, the satellite cluster can establish a double line formation
along z = ±µ/a. Change the control command to establish an in-plane double line
formation along z = ±0.5 km. The simulation control parameters were set as follows:

kc = 0.25 kg/s2, k f = 10 kg/kms2, kv = 2000 kg/s, a = 1, b = 0, r = 1 km, s = 0.2 km, µ = 0.5 km.

Figure 11 shows the motion trajectory of the satellite cluster to establish the line
formation along z = 0 km and the double line formation along z = ±0.5 km in the target
orbital frame. The satellites gather in spherical airspace with a radius of 0.1 km at the initial
time. Under the formation control law, each satellite can spontaneously choose its motion
path according to its relative state in the potential field.
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3.1.2. Circle Formation

A satellite cluster composed of 50 satellites with a weight of 100 kg initially operates
in spherical airspace with a radius of 0.1 km. The cluster center runs on a nearly circular
orbit with an altitude of 600 km, an inclination of 98◦, and an eccentricity of 0.0002. At the
initial time, the satellite cluster receives the control command. It is required to establish an
in-plane circle formation with a radius of 0.5 km, taking the cluster center as the formation
center. The simulation control parameters were set as follows:

kc = 0.25 kg/s2, k f = 3 kg/kms2, kv = 2000 kg/s, a = b = 1, r = 0.5 km, s = r, µ = −5 km.

Figure 12 shows the motion trajectory of the satellite cluster to establish an in-plane
circle formation with a radius of r in the target orbital frame. The satellites gather in
spherical airspace with a radius of 0.1 km at the initial time. Under the formation control
law, each satellite can spontaneously choose its motion path according to its relative state
in the potential field. In 0–1000 s, the in-plane circle formation is primarily established by
the bifurcating potential function, and in 1000–2000 s, the formation configuration is evenly
distributed by the collision avoidance potential function.
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Figure 12. The in-plane circle formation (r = 0.5 km, µ = −5 km). (a) Relative motion trajectory in
0-1000 s; (b) Relative motion trajectory in 1000–2000 s.

Figure 13 shows the three-axis velocity increments of each satellite in the process of
establishing an in-plane circle formation. The velocity increment of each satellite is con-
strained within 1 m/s, which is in line with the actual application of micro-nano satellites.
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Figure 13. The three-axis velocity increments of each satellite during formation control (in-plane
circle formation, µ = −5 km).

Figure 14 shows that when the target formation is established and evenly distributed,
the distribution uniformity of the cluster, L, tends to the steady-state value of 0.01.
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According to the definition of L, for the evenly distributed in-plane circle formation
with a radius of r, the monopolized sphere radius of each satellite is equal, which is
approximate as follows:

mi =
2πr
2N

=
πr
N

, (27)

where N is the cluster size.
The distribution uniformity of the cluster is:

L =

n
∑
1

Vi

V
=

N ×Vi
V

=
N × 4/3πm3

i

4/3π(r + 2mi)
3 = N

(
π

N + 2π

)3
. (28)

When N = 50, the distribution uniformity of the cluster L ≈ 0.01. The simulation
results show that the control law designed in this research can control the satellite cluster
to establish the desired evenly distributed in-plane circle formation.

Adjust the value of µ, but keep it negative while leaving the rest of the parameters
unchanged. The value of µ does not change the position of the minimum potential field but
will affect the gradient of the potential field. The satellite cluster can still spontaneously
establish a circle formation, but the time and energy consumption are different. The
simulation control parameters were set as follows:

kc = 0.25 kg/s2, k f = 3 kg/kms2, kv = 2000 kg/s, a = b = 1, r = 0.5 km, s = r, µ = −20 km.

Figure 15 shows the motion trajectory of the satellite cluster to establish an in-plane
circle formation in the target orbital frame when µ = −20 km. Compared with µ = −5, the
time required to establish the in-plane circle formation is reduced by about half. From the
relative motion trajectory of 0–500 s, it can also be seen that the control force is too large,
resulting in unnecessary fuel consumption.
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Figure 15. The in-plane circle formation (r = 0.5 km, µ = −20 km). (a) Relative motion trajectory in
0-500 s; (b) Relative motion trajectory in 500–2000 s.

By adjusting the value of r, the radius of circle formation can be easily changed.
Figure 16 shows the motion trajectory to establish an in-plane circle formation with a radius
of 5 km, and the simulation control parameters were set as follows:

kc = 0.25 kg/s2, k f = 3 kg/kms2, kv = 2000 kg/s, a = b = 1, r = 5 km, s = r, µ = −5 km.

3.1.3. Concentric Double Circle Formation

When µ > 0, the satellite cluster can establish a concentric double circle formation
with the radius of r± µ. At the initial time, satellites randomly operate in certain airspace
and receive the control command to establish an in-plane concentric double circle formation
with the radius of 1.5 km and 0.5 km, taking a target spacecraft as the formation center. The
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target spacecraft runs on a nearly circular orbit with an altitude of 600 km, an inclination of
98◦, and an eccentricity of 0.0002. The simulation control parameters were set as follows:

kc = 0.25 kg/s2, k f = 3 kg/kms2, kv = 2000 kg/s, a = b = 1, r = 1 km, µ = 0.5 km.
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Figure 16. The in-plane circle formation (r = 5 km, µ = −5 km). (a) Relative motion trajectory in
0-1000 s; (b) Relative motion trajectory in 1000–2000 s.

Figure 17 shows the motion trajectory of the satellite cluster to establish in-plane
concentric double circle formation with the radius of 1.5 km and 0.5 km in the target
orbital frame.
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Figure 17. The in-plane concentric double circle formation (r = 1 km, µ = 0.5 km). (a) Relative
motion trajectory in 0–2000 s; (b) Distribution of satellite cluster at 2000 s.

3.1.4. Disk Formation

In particular, when a = b = 1, r = 0 km, µ < 0, the satellite cluster can establish a disk
formation. The radius of the disk formation is proportional to the inter-satellite repulsive
force. Figure 18 shows the motion trajectory of satellite cluster to establish an in-plane
disk formation in the target orbital frame, and the simulation control parameters were
set as follows:

kc = 0.25 kg/s2, k f = 3 kg/kms2, kv = 2000 kg/s, a = b = 1, r = 0 km, s = 1 km, µ = −1 km.
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Figure 18. The in-plane disk formation (r = 0 km, µ = −1 km). (a) Relative motion trajectory in
0-2000 s; (b) Distribution of satellite cluster at 2000 s.

3.1.5. A Variety of Formations

The formation control algorithm based on bifurcating potential field was verified by
simulation of several cases of satellite cluster formation. A variety of formation topologies
were achieved by simply changing the bifurcation parameter and configuration adjustment
parameters, as shown in Figure 19.
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Figure 19. A variety of satellite cluster formations. (a) Ellipse (a = 1, b = 0.6, r = 1 km, µ = −5 km);
(b) Concentric double ellipse (a = 1.5, b = 1, r = 1 km, µ = 0.5 km); (c) Ellipse disk (a = 1, b = 0.6,
r = 0 km, µ = −1 km); (d) Ellipsoidal surface (a = 1, b = 0.8, c = 0.6, r = 1 km, µ = −5 km);
(e) Spherical surface (a = b = c = 1, r = 1 km, µ = −5 km); (f) Spherical space (a = b = c = 1,
r = 0 km, µ = −1 km).

Furthermore, these formations can be analyzed by the five-element characterization
method. When the cluster size N = 50 and the outer boundary of the group dmax = 1 km,
the distribution uniformity of the cluster corresponding to various evenly distributed
formations is shown in Table 3.
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Table 3. The distribution uniformity of the cluster corresponds to different formations.

Evenly Distributed Formation (km) L

Ellipse (semi-major/minor axis 1/0.6) 0.005165486521583
Circle (radius 1) 0.010232661152041
Concentric double circle (radius 0.7 ± 0.3) 0.024920907802092
Ellipse disk (semi-major/minor axis 1/0.5) 0.050473947816051
Disk (radius 1) 0.071896892978728
Ellipsoidal surface (semi-axis 1/0.8/0.6) 0.202119553694005
Spherical surface (radius 1) 0.341012298531677
Ellipsoidal space (semi-axis 1/0.8/0.6) 0.482978703021702
Spherical space (radius 1) 0.765401006065638

The distribution uniformity of the cluster can reflect the running state of the satellite
cluster to a certain extent. These data suggest that:

1. The distribution uniformity of in-plane formation is lower than that of stereo formation;
2. Among in-plane formations, the distribution uniformity of linear formation is lower

than that of disk formation;
3. The distribution uniformity of monolayer formation is lower than that of bilayer formation.

3.2. Formation Reconfiguration

A satellite cluster composed of 50 satellites with a weight of 100 kg randomly operates
in certain airspace. At the initial time, the satellite cluster receives the control command to
establish an in-plane disk formation with a radius of 0.5 km, taking a target spacecraft as
the formation center. The target spacecraft runs on a nearly circular orbit with an altitude
of 600 km, an inclination of 98◦, and an eccentricity of 0.0002. With the transformation of
the space mission, the satellite cluster formation is successively reconfigured to the circle
formation with a radius of 0.5 km, the line formation along z = 0 km, the double line
formation along z = ±0.5 km, the ellipse formation with a semi-major axis of 1 km and a
semi-minor axis of 0.6 km, and the concentric double circle formation with the radius of
1.5 km and 0.5 km. The simulation control parameters are shown in Table 4.

Table 4. Formation reconfiguration control parameters.

Formation Reconfiguration (km) a b r (km) µ (km)

Disk (radius 0.5) 1 1 0 −1
Circle (radius 0.5) 1 1 0.5 −5
Line (along z = 0 ) 1 0 1 −1
Double line (along z = ±0.5 ) 1 0 1 0.5
Ellipse (semi-major/minor axis 1/0.6) 1 0.6 1 −5
Concentric double circle (radius 1 ± 0.5) 1 1 1 0.5

Figure 20 shows the relative motion trajectory of satellite cluster formation reconfigu-
ration based on the bifurcating potential field. The satellite cluster formation can be easily
reconfigured by adjusting the bifurcation and configuration parameters. This method does
not need to set the desired target state of each satellite in the cluster. After receiving the
command to switch formation configuration, each satellite can spontaneously approach
the target formation according to its current relative state. For example, in the process
of satellite cluster switching from the ellipse formation to the concentric double circle
formation, the satellites closer to the inner circle are finally evenly distributed on the inner
circle, while the satellites closer to the outer circle are evenly distributed on the outer circle.
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Figure 20. Satellite cluster formation reconfiguration. (a) The initial disk formation; (b) Switch from
disk formation to circle formation; (c) Switch from circle formation to line formation; (d) Switch from
line formation to double line formation. (e) Switch from double line formation to ellipse formation;
(f) Switch from ellipse formation to concentric double circle formation.

The five-element characterization method can represent the characteristics of the
orbiting cluster at any time. In the process of switching from disk formation with a radius
of 0.5 km to circle formation with a radius of 0.5 km, the cluster’s characteristic parameters
at several selected moments are shown in Table 5.
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Table 5. The cluster’s characteristic parameters.

Parameters 0 s 1000 s 1050 s 1100 s 1500 s 2000 s

N 50 50 50 50 50 50

(ro, vo)/
(km, km/s)

(−443.54295 (5850.6303 (6037.1365 (6205.9070 (6869.2879 (5917.3955
899.34186 1530.4312 1517.0148 1499.1419 1204.6086 533.21440
−6898.0861 −3471.9062 −3143.3833 −2805.6007 106.34651 3654.0846
7.4271828 3.9039044 3.5545128 3.1946381 0.069789521 −3.7823796
1.3587345 −0.22348015 −0.31304389 −0.40170255 −1.0478601 −1.5714632
−0.29933858) 6.4713810) 6.6663189) 6.8416710) 7.4884619) 6.3527428)

dmax/km 0.9234 0.9214 0.9661 1.004 1.003 1.003

dmin/km 0.09163 0.09440 0.05093 0.003256 0.02745 0.04681

L 0.06967 0.07092 0.02099 0.004614 0.006609 0.008613

Figure 21 shows the change of cluster’s distribution uniformity during the process
of switching from disk formation to circle formation. At 0–1000 s, the satellite cluster
maintains the disk formation configuration, and the distribution uniformity of clusters
remains at 0.7. At 1000 s, the cluster receives the control command to transform into a
circle formation. When the target formation is established and evenly distributed, the
distribution uniformity of the cluster tends to the steady-state value of 0.01.
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4. Conclusions

Aiming at the mathematical characterization of large-scale satellite clusters, we pro-
vide the five-element characterization method to represent the cluster characteristics and
internal correlation characteristics of orbiting satellite clusters. We also propose a satellite
cluster formation control method based on bifurcating potential field, which solves the
problems of multiple formation configuration control and realizes the dynamic migration
and rapid reconfiguration of satellite cluster formation. According to the bifurcating po-
tential function, a variety of satellite cluster formation configurations can be formed, and
each configuration has clear correspondence with the bifurcating parameters a, b, c, r, µ.
The feasibility and effectiveness of the proposed formation control algorithm were verified
by simulation with a cluster composed of 50 satellites. The results show that multiple
formation topologies can be realized by simply changing the bifurcating parameters. The
proposed five-element characterization method can describe the operation state of orbiting
satellite clusters.

At present, the control parameters kc, k f , kv are assigned according to the resultant
force limit, but they are not optimal. Future work will focus on the automatic optimal
selection of kc, k f , kv by considering the total fuel consumption, the equilibrium of fuel
consumption or actual mission constraints. More quantitative analysis of fuel consumption
is also needed for real satellite cluster missions.
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