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Abstract: Spacecraft need to be able to reliably slew quickly and rather than simply command-
ing a final angle, a trajectory calculated and known throughout a maneuver is preferred. A fully
solved trajectory allows for control based off comparing current attitude to a time varying desired
attitude, allowing for much better use of control effort and command over slew orientation. This
manuscript introduces slew trajectories using sinusoidal functions compared to optimal trajectories
using Pontryagin’s method. Use of Pontryagin’s method yields approximately 1.5% lower control
effort compared to sinusoidal trajectories. Analysis of the simulated system response demonstrates
that correct understanding of the effect of cross-coupling is necessary to avoid unwarranted control
costs. Additionally, a combination of feedforward with proportional derivative control generates a
system response with 3% reduction in control cost compared to a Feedforward with proportional
integral derivative control architecture. Use of a calculated trajectory is shown to reduce control cost
by five orders of magnitude and allows for raising of gains by an order of magnitude. When control
gains are raised, an eight orders of magnitude lower error is achieved in the slew direction, and rather
than an increase in control cost, a decrease by 11.7% is observed. This manuscript concludes that
Pontryagin’s method for generating slew trajectories outperforms the use of sinusoidal trajectories
and trajectory generation schemes are essential for efficient spacecraft maneuvering.

Keywords: space trajectory optimization; autonomous systems; artificial intelligence; adaptation;
learning; slew; trajectory generation; optimization; Pontryagin; attitude dynamics and control

1. Introduction

The James Webb telescope depicted in Figure 1 is an example of the paramountcy
of attitude trajectories of angular momentum to space mission accomplishment. The
James Webb Space telescope (JWST) will study the formation of stars, galaxies, and planets
100–250 million years after the Big Bang. To see the first stars and galaxies of the early
universe, JWST must look deep into space, necessitating a need for fine pointing accuracy,
one of the reasons JWST is positioned so far away from Earth and the perturbations of
the atmosphere. Due to the incredible distance between the JWST and potential imaging
targets, pointing errors of mere arcseconds can lead to the telescope field of view not
including the intended target, and any spacecraft jitter results in blurry, unusable images.
Additionally, the control cost of pointing maneuvers must be considered carefully. Lower
control costs result in “cheaper” maneuvers, which can allow for less expensive spacecraft
launch, due to mass savings, more possible maneuvers over the spacecraft lifetime due to
energy savings, or simply greater error tolerances and recovery capabilities.
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Figure 1. James Webb telescope positions in the second Lagrange point, L2 from which attitude 

maneuvers point the telescope towards distant targets in outer space. [1] Image used consistent with 

NASA policy, “NASA content (images, videos, audio, etc.) are generally not copyrighted and may 

be used for educational or informational purposes without needing explicit permissions” [2]. 

The same holds true for near Earth observational satellites. While satellites such as 

Landsat-9 [3] image targets much closer than JWST does, the increase in magnification 

power and resolution of such satellites warrants the same need for fine pointing accuracy. 

Understanding and application of trajectory generation and solution optimality leads to 

even lower control cost and greater pointing accuracy than has been possible. As pointing 

accuracy needs increase, attitude trajectories and the provided decrease in pointing error 

and control cost are vital in making future missions possible. 
This manuscript describes two methods of formulating spacecraft attitude slew tra-

jectories and compares various control architectures in performing the generated maneu-

vers. Rather than the classical formulation of feedback control of a single desired value 

subtracted from the current state, attention has shifted to more intelligent schemes where 

the slew trajectory is mapped out for the entire maneuver. Not only does a solved maneu-

ver trajectory allow for more control, customization, and confidence in a control architec-

ture, but also pointing conditions and restraints can be imposed and validated. For exam-

ple, for a spacecraft to keep a sun-sensor pointed at the sun as best as possible throughout 

a maneuver. The entire trajectory can be simulated, visualized, and checked ahead of time 

with a much lower degree of randomness than classical control methods based on final 

conditions rather than trajectories, might allow. Using trajectories also introduces possi-

bilities for finding optimal solutions, in fuel use, time or distance. One such manner of 

generating optimal trajectories is by use of Pontryagin’s method. In this manuscript, 

Pontryagin’s principle of using necessary conditions of optimality to solve for optimal 

trajectories in terms of control cost will be examined and contrasted with simpler trajec-

tory generation techniques. Additionally, progress has been generated in the develop-

ment of deterministic artificial intelligence, a control scheme based on a statement of self-

awareness, and optimal parameter learning, to determine the optimal control to follow a 

desired trajectory [4–6]. Naturally, the question arises of the effects of applying optimal 

trajectory optimization methods to such adaptive feedforward methods of optimal con-

trol, as well as other control architectures. This manuscript will derive trajectories to per-

form a given slew maneuver of 30 degrees yaw, as well as present the formalism behind 

adaptive control techniques and deterministic artificial intelligence. Section 2 describes 

the materials and methods used to reveal the results presented in Section 3. Section 4 pro-

vides a brief discussion on the results in Section 3.  

Figure 1. James Webb telescope positions in the second Lagrange point, L2 from which attitude
maneuvers point the telescope towards distant targets in outer space. [1] Image used consistent with
NASA policy, “NASA content (images, videos, audio, etc.) are generally not copyrighted and may be
used for educational or informational purposes without needing explicit permissions” [2].

The same holds true for near Earth observational satellites. While satellites such as
Landsat-9 [3] image targets much closer than JWST does, the increase in magnification
power and resolution of such satellites warrants the same need for fine pointing accuracy.
Understanding and application of trajectory generation and solution optimality leads to
even lower control cost and greater pointing accuracy than has been possible. As pointing
accuracy needs increase, attitude trajectories and the provided decrease in pointing error
and control cost are vital in making future missions possible.

This manuscript describes two methods of formulating spacecraft attitude slew trajec-
tories and compares various control architectures in performing the generated maneuvers.
Rather than the classical formulation of feedback control of a single desired value sub-
tracted from the current state, attention has shifted to more intelligent schemes where the
slew trajectory is mapped out for the entire maneuver. Not only does a solved maneuver
trajectory allow for more control, customization, and confidence in a control architecture,
but also pointing conditions and restraints can be imposed and validated. For example,
for a spacecraft to keep a sun-sensor pointed at the sun as best as possible throughout a
maneuver. The entire trajectory can be simulated, visualized, and checked ahead of time
with a much lower degree of randomness than classical control methods based on final con-
ditions rather than trajectories, might allow. Using trajectories also introduces possibilities
for finding optimal solutions, in fuel use, time or distance. One such manner of generating
optimal trajectories is by use of Pontryagin’s method. In this manuscript, Pontryagin’s
principle of using necessary conditions of optimality to solve for optimal trajectories in
terms of control cost will be examined and contrasted with simpler trajectory generation
techniques. Additionally, progress has been generated in the development of deterministic
artificial intelligence, a control scheme based on a statement of self-awareness, and optimal
parameter learning, to determine the optimal control to follow a desired trajectory [4–6].
Naturally, the question arises of the effects of applying optimal trajectory optimization
methods to such adaptive feedforward methods of optimal control, as well as other control
architectures. This manuscript will derive trajectories to perform a given slew maneuver of
30 degrees yaw, as well as present the formalism behind adaptive control techniques and
deterministic artificial intelligence. Section 2 describes the materials and methods used to
reveal the results presented in Section 3. Section 4 provides a brief discussion on the results
in Section 3.
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Attitude trajectory adaptation was developed and proposed in [4], but the parameter-
ization suffered from expression in inertial coordinates leading to a high computational
burden (thus evaluation of techniques on this basis will remain important). Within just a
couple of years, development of the identical technique parameterized in the body frame [5]
proved to eliminate a large part of the computational burden. Several years later the burden
was reduced still further [6] by 33% and 66% parameter reduction with subsequent experi-
mental validation in [7]. Adaptability is often desirable, but results are sometimes difficult
to prove as optimal, minimizing some prescribed cost function. Position and attitude
constraints have been simultaneously considered [8] and inherent disturbance rejection
as well. Limited control actuation has also been treated [9,10], while optimization has
been presented when control moment gyroscopes are used [11], as gyroscope singularity is
enormously concerning. Guidance trajectories were derived using only attitude trajecto-
ries [12] near small bodies. In 2018, trajectories began to be presented [13] to support the
newly proposed deterministic artificial intelligence [14], while at the same time, constrained
optimization problems of attitude trajectories were proposed in [15]. Following the former
deterministic thread of thinking, deterministic optimal assertion of self-awareness and
optimal learning were formulated in [16]. With a renewed focus on attitude trajectory opti-
mization [17], disturbance minimizing trajectories for space robots was just proposed [18].
Finally, convex optimization for trajectory generation [19] was presented amidst a focus on
rapid maneuvering agile satellites in constellations [20]. Garcia, et al. [8] highlighted the
complicated complexity of optimization of space trajectories generated by the nonlinear,
coupled governing equations of motion. Sanyal, et al. [21] emphasized the desirability of
analytic, continuous trajectory equations over discontinuous ones from the perspective of
proof-of-stability. Walker [15,22] utilized genetic-algorithm-tuned fuzzy controller solu-
tions compared to a similar linear quadratic regulator solution (as opposed to nonlinear
solutions presented here).

Chen, et al., [17] illustrated that attitude trajectory optimization can simplify control
system design and improve relative performance. In this most recent resurgent strand
of research, this manuscript examines convex trajectory optimization using Pontryagin’s
methods for control minimization [23] and compares several instantiations to comparable
variants utilizing the sinusoidal trajectory generation ubiquitously presented in avenues of
research in deterministic artificial intelligence expanded in this present treatment.

This work proposes to:

1. Present and derive two methods of autonomous slew trajectory generation, sinusoidal
and Pontryagin based generation.

2. Compare the performance of the derived trajectories when combined with various
feedforward and feedback control schemes.

3. Present two iterations on Pontryagin based trajectory generation and compare
the instantiations.

4. Validate the strength of trajectory-based control schemes over single-state feedback
control methods.

The manuscript begins in Section 2 with a re-introduction of sinusoidal trajectory
generation before deriving control minimizing (analytic) optimal trajectories using Pon-
tryagin’s method of imposing necessary conditions of optimality followed by solution of
boundary value problems for families of solutions. A brief presentation of each of the con-
trol methods follows. Section 3 presents the results of simulations of the control methods
and lastly Section 4 discusses and interprets the results of Section 3.

2. Materials and Methods
2.1. Autonomous Trajectory Generation

Given an end state, the goal is for the system to autonomously generate a trajectory to
follow. Two methods of doing so will be examined, trajectory generation by examining the
structure of the problem and solution to efficient spacecraft slews, and trajectory generation
using Pontryagin’s method, which consists of imposing necessary conditions of optimality



Aerospace 2022, 9, 135 4 of 22

to solve for the boundary values of the boundary value problems of optimal state rate and
trajectory. The trajectory shall be composed of an initial quiescent period, followed by a
slew, and ending in a final quiescent period.

2.1.1. Sinusoidal Trajectories

In response to a commanded slew, a spacecraft should quickly snap to the desired
attitude, where the definition of quick is determined by the human controller. If attitude
maneuvering were instantaneous, the plot of the spacecraft’s attitude representation would
appear as a step function in the commanded maneuver channel. However, step functions
are not smooth, represent discontinuities, and cannot be easily differentiated. Recognizing
an instantaneous slew is impossible and a smooth, differentiable trajectory is optimal, we
turn to an analysis of the structure of the problem.

Simple ordinary differential equations of the form
.
z = Az, such as a state space

representation of spacecraft rotational dynamics, can be recognized as a harmonic oscillator,
which has the solution of an exponential function of the form z = A exp λt, and can be
written as a sinusoidal, z = A sin(ωt) [6]. Given the structure of the solution to the
dynamics, an idea is for the commanded slew to follow the sinusoidal structure. Studying
the sine wave in Figure 2 demonstrates how a square wave can be approximated by a
piecewise trajectory of an initial quiescent period, a sine wave with period approaching
zero, and a final quiescent period. As sine waves are smooth and differentiable, sinusoidal
structure readily lends itself to a sinusoidal trajectory generation scheme
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Figure 2. (a) Piecewise sinusoidal trajectory with a slew time/maneuver time of 5 s and a quiescent
time of 5 s before and after the slew (b) A nominal sine wave used to reveal relationship between
points on the curve’s time and phase angle.

A nominal sine curve is depicted above, note the abrupt start at time t = 0. A smooth
initiation is preferable to avoid sudden impulsive maneuvers and undesirable resonance
of flexible structures such as solar panels. In Figure 2b, at time t = 3T

4 , where T is the
sine wave period, we note the smooth ramp up, indicating the derivative is zero and
slowly increases rather than an initial derivative demanding immediate velocity. A non-
instantaneous derivative reduces strain on the system. Thus time t = 3T/4 is desirable for
the slew start. Choosing the quiescent time, ∆tquiescent, the maneuver time, ∆tmaneuver, the
sinusoidal trajectory is designed in the following steps.

z = sin(ωt) (1)

1. The maneuver time, ∆tmaneuver, determines the period of the sine wave. A sine wave
takes half the period to go from the lowest value to the highest so the desired period
should be twice the slew time. Thus,

ω =
2π
T

=
2π

2∆tmaneuver
=

π

∆tmaneuver
(2)

2. Phase shift the sine wave such that the desired low point at time t = 3T
4 , is at the

desired maneuver start time after the initial ∆tquiescent, recalling a positive phase shift
translates the sine wave in the negative direction and a negative phase shift translates
the sine wave in the negative direction. We would like to translate the sine wave to
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the left by t = 3T
4 , resulting in the low point at time t = 3T

4 instead occurring at time
t = 0, and to the right by ∆tquiescent, shifting the low point to the start of the slew.

z = sin(ω(t +φ)) (3)

3. Next, we would like to manipulate the amplitude of the sine wave to match the
desired change in attitude.

A = (Af −A0) (4)

where Af is the final attitude desired, and A0 the initial attitude.
4. Amplitude-shift the curve up for smooth initiation at A0 by adding A0.

z = (Af −A0)

[
1 + sin

(
ωt +

3∆tmaneuver

2
− ∆tquiescent

)]
(5)

5. Craft a piecewise continuous trajectory with an initial quiescent period of ∆tquiescent,
followed by the sinusoidal function formed in the preceding steps occurring during
∆tmaneuver, and ending in a quiescent period of constant final attitude.

for


t < ∆tquiesant

∆tquiescant ≤ t < ∆tmaneuver + ∆tquiescant
t ≥ ∆tmaneuver + ∆tquiescant

→
z = A0

z = (Af −A0)
[
1 + sin

(
ωt + 3∆tmaneuver

2 − ∆tquiescent

)]
z = Af

(6)

Equation (6) can then be easily differentiated to solve for the state, rate, and acceleration.

2.1.2. Optimal Trajectory Using Pontryagin’s Method

Another technique of formulating the trajectory is by use of Pontryagin’s principle.
Pontryagin’s principle forms a boundary value problem of the trajectory and makes use
of necessary conditions of optimality to solve for the boundary values. The result is an
optimal trajectory with respect to the cost function used.

Defining the Problem

The system consists of the 3 degree-of-freedom rotational motion of a rigid body,
which when the angular velocity is measured in a non-inertial frame, is represented as

T︸︷︷︸
External
torque

= I
..
θ︸︷︷︸

Double
integrator

+ ω× I︸ ︷︷ ︸
Transport
theorem

(7)

where I is the moment of inertia of the body,
..
θ is the second derivative of the state θ, which

represents the three body angles, and T is the applied torque in the body frame. The initial
states were initialized at zero, and the system was commanded to reach a final state of θd,
or a desired attitude, with a final angular velocity of zero,

.
θ(tf) = 0. The model was built

in Matlab Simulink and the block diagram can be found in Appendix A Figure A1.
The trajectory optimization problem begins with the dominant double-integrator

dynamics as a quadratic control (DQC) problem, and can be summarized as Equation (8),
whose result will yield optimal trajectories that are subsequently utilized to control the
transport theorem terms.

Minimize J[x(·), u(·)] = 1/2
∫ tf

t0
τ2dt (8)
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Subject to
.
θ = ω
.
ω = τ/I

(θ0,ω0) = (0, 0)
(θf,ωf) = (1, 0)

t0 = 0
tf = 1

The state is given by [θ,ω], the angle of rotation and angular velocity respectively.
The value τ is the control torque applied, and I, the inertia of the system, J, the cost func-
tion, is the quadratic cost, computed by integrating the square of the applied torque. The
quadratic cost represents the amount of work or energy needed to control the system and
thus translates readily to quantities such as fuel used and real-world dollars. Note the sim-
plification from Equation (7). In Equation (8), the acceleration should be

.
ω = τ/I−ω× I,

however, the cross-coupling makes the boundary value problem tricky to solve. Instead,
the trajectory of each Euler angle can be solved for individually, under the assumption
disregarding the cross-coupling effects does not affect optimality. To do so, the inertia
matrix must also be manipulated, as the off-axis products of inertia complicates things as
well. Three methods were used and compared, one where the principal axes and principal
moments of inertia were found and the Euler trajectories found in the principal frame and
then converted to the body frame, one where the principal moments of inertia were used
but the trajectories not converted from principal to body frame, i.e., of the form

.
ω1 = τ1/I1,

where the 1 subscript indicates the first Euler angle and the principal moment of inertia
corresponding to the principal axis best aligned with the first body axis. Lastly, the off-axis
products of inertia were simply ignored, and the body frame moments of inertia used
in calculating the trajectories. These techniques result in independently solvable Euler
angle trajectories.

Principles of Pontryagin: Optimal States, Rates, and Controls

Pontryagin’s principle consists of forming a boundary value problem by first forming a
Hamiltonian function from the given cost function and dynamics, secondly minimizing the
Hamiltonian with respect to the states, thirdly taking the derivative of the Hamiltonian with
respect to the states to solve for the derivatives of the co-vectors of the states, and if needed,
using the transversality of the endpoint Lagrangian to solve for the final values of the
co-states and generate enough boundary conditions to solve the boundary value problem.

H: Form the Hamiltoninan

H = F + λTf(x, u) (9)

where F, is the running cost function, in general the part of the cost function being con-
tinuously integrated, in Equation (8), 1/2τ2, λ is the costate vector, given by [λθλω], one
costate per state, and f(x, u) represents the dynamics of the system,

.
x. In Equation (8) the

state derivatives are f(x, u) =
[
ω τ

I
]
.

H = 1/2τ2 + [λθ λω]

[
ω

τ/I

]
(10)

Minimize the Hamiltonian

Pontryagin’s principle states the optimal solution can be found by taking the derivative
of the Hamiltonian with respect to the control and setting the result equal to zero. Applying
the derivative to Equation (10) and setting it equal to zero results in

dH/du = dH/dτ = τ+ λω/I = 0 (11)

which gives τ = −λω/I.
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Adjoint Equation

The next step is to take the derivative of the Hamiltonian with respect to the states and
set the result equal to the negative derivative of the co-states. Differentiating Equation (10)
with respect to θ andω results in

dH/dθ = −
.
λθ = 0⇒ λθ = a (12)

dH/dω = −
.
λω = −λθ ⇒ λω = λθt + b = at + b (13)

Terminal Transversality of the Endpoint Lagrangian

Conditions necessitating the use of terminal transversality of the endpoint Lagrangian
are generally present when there are not enough boundary conditions to solve the boundary
value problem formed in the previous steps. The method consists of forming a modified
final cost function, E, from the final cost function, (in the problem of DQC, 0), plus the
boundary conditions multiplied by unknown Lagrangians. The derivative of E, with
respect to the endpoints xf, equals the final values of the co-states. Luckily, for this problem
terminal transversality is not required as the boundary value problem can already be solved.

The Boundary Value Problem

The boundary value problem can now be summarized as

.
θ = ω
.
ω = τ/I
τ = −λωI
λθ = a

λω = at + b
(θ0,ω0) = (0, 0)
(θf,ωf) = (1, 0)

t0 = 0
tf = 1

(14)

Solving the problem gives an optimal solution for the state, rate, acceleration, and
torque. Substituting the equation for λω into the equation for the torque and integrating
twice to find the optimal state and rate trajectories,

τ =
(

I−1
)
(−at − b) =

(
I−1
)
(at + b)

.
ω =

(
I−1
)2

(1/2at2 + bt + c
)

θ =
(

I−1
)2(

1/6at3 + 1/2bt2 + ct + d
) (15)

Finally, the final values are used to solve for the coefficients and the solution for the
optimal state, rate, and torque is as follows

θ∗ =
(

I−1
)2(

3t2 − 2t3)
ω∗ =

(
I−1
)2(

6t− 6t2)
τ∗ =

(
I−1
)
(6− 12t)

(16)

where * denotes the optimal solution. These optimal solutions to the trajectory are plotted
in Figure 3 for a 30-degree yaw maneuver.
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(a) angular acceleration

.
ω(t) on the ordinate, (b) angular velocityω(t) on the ordinate, (c) angular

displacement θ(t) on the ordinate. Note the similarity in the (c) to Figure 2a.

2.2. Feedback Controllers

A summary of the utilized controllers will be given in Section 2.2 beginning with
Section 2.2.1, a standard proportional plus derivative (PD) controller establishing a classical
performance benchmark, followed by a proportional plus integral plus derivative (PID)
controller. A proportional plus derivative plus integral (PDI) control is introduced next in
Section 2.2.3 followed by an enhanced PDI in Section 2.2.4. Feedforward controllers are
introduced in Section 2.3 beginning with classical, ideal feedforward control in Section 2.3.1
followed by adaptive feedforward control in Section 2.3.2.

2.2.1. Proportional, Derivative (PD)

Given the desired final conditions are a function of the angle θ and the angular velocity
.
θ, which is being driven to zero, a proportional derivative or PD controller is a logical
choice. The PD controller computes the input to the plant, or the control as

τ = ufb = −Kd
( .
q− .

qd
)
−Kp(q− qd) = −Kd

.
q̃−Kpq̃ (17)

where τ is the control torque composed of the feedback control, Kd and Kp are the derivative
and proportional gains respectively, q and

.
q are the state and state derivative, qd and

.
qd

are the desired state and state derivative and the tilde represents the tracking errors, the
error between the state and the desired state.

2.2.2. Proportional, Integral, Derivative (PID)

Another classical control choice is the proportional integral derivative controller. The
PD controller computes the input to the plant, or the control as

τ = ufb = −Kp(q− qd)−Kd
d
dt

(q− qd)−KI

∫
(q− q− d)dt (18)

where τ is the control torque, composed of the feedback control, Kp, KI and Kd, are the
proportional, integral, and derivative gains respectively, q is the state, and qd

.
qd is the

desired state.

2.2.3. Proportional, Derivative, Integral (PDI)

The proportional derivative integral controller differentiates itself from the PID con-
troller by not differentiating the state to get the rate for calculation of the rate error. Instead,
the PDI uses the rate from the state estimates directly. Eliminating the differentiation results
in less noise in the error signal and smoother control. The PDI controller computes the
input to the plant, or the control as displayed in Equation (19).

τ = ufb = −Kp(q− qd)−Kd
( .
q− .

qd
)
−KI

∫
(q− qd)dt (19)
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2.2.4. Enhanced PDI

Given the non-linearities imposed by the transport theorem cross product in the
system dynamics, a proposed improvement is the addition of a cross product term in the
feedback control to account for the coupled motion [13]. The Enhanced PDI controller then
has the form displayed in Equation (20)

τ = ufb = −Kp(q− qd)−Kd
( .
q− .

qd
)
−KI

∫
(q− qd)−

( .
q− .

qd
)
× I
( .
q− .

qd
)

(20)

2.3. Feedforward Controllers

Feedback controllers are ubiquitously applicable to control systems from initial points
to desired final points, utilizing a particular strength of feedback to imbue robustness. On
the other hand, particularly when the goal is tracking a prescribed trajectory, tracking
controllers are often of the feedforward nature lacking feedback, but instead emphasizing
the analytic expressions of the controlled system dynamics and the prescribed desired tra-
jectory. This section describes classical feedforward controllers first followed by nonlinear
adaptive feedforward controllers (with a few disparate instantiations including various
regression models and deterministic artificial intelligence).

2.3.1. Classical Feedforward Controller

Given the desired state, rate, and accelerations have been solved for, the feedforward
control can be defined from an understanding of the system dynamics, and the feedforward
control is displayed in Equation (21).

τ = uff = I
.
ωd +ωd × Iωd (21)

Where the subscript refers to the desired trajectory. The control is formed by plugging
in the desired states, rates, and accelerations, into equations of motion in Equation (7),
giving us the control that should produce the desired states, rates, and accelerations, given
perfect system modeling.

2.3.2. Adaptive Feedforward Development

If the dynamics were exactly always known, given a desired state trajectory, an ideal
control could always be formulated and commanded, as in Equation (21), to accomplish
the desired maneuver. However, in practicality, determining the inertia dyadic perfectly is
very difficult, at best a close estimate is made, resulting in imperfect feedforward control.
To better estimate the system and the ideal control, a method of updating the system model
based off feedback error is proposed. For inertia matrix [I], Coriolis matrix [C], and applied
external torque τ, the equations of motion are

{τideal} = [I]
{ ..

q
}
+ [C]

{ .
q
}
= [I]

{ ..
qd
}
+ [C]

{ .
qd
}

(22)

where q is the state, and qd the desired state. In more common terms

{τideal} = I
.
ω+ω× Iω = [I]

{ ..
qd
}
+ [C]

{ .
qd
}
=
[
Φ
(
ωd,

.
ωd
)]
{θ} (23)

The goal is to break the feedforward torque command into a regression model of a
product of a matrix of knowns, [Φ], times a vector of unknowns, {θ}. There are several
choices available for the parameterization of {θ}, discussed in Section 2.3.3.

The adaptive aspect is an adaptation of the vector of unknowns, in response to error
of the state with respect to the desired trajectory. The rate is defined in Equation (24).

.
Θ = −ΓΦT

( .
q̃ + λq̃

)
(24)
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where Γ > 0 and
.
q̃ is the error in the state derivative with respect to the desired state

derivative
.
q− .

qd, as defined above. Equation (24) can be integrated starting from an initial
estimate of Θ, to form a continuously learning, adaptive system.

Another choice is to form [Φ] using reference trajectories is in Equation (25):

.
qr =

.
qd − λ(q− qd) =

.
qd − λ(q̃),

..
qr =

..
qd − λ

( .
q− .

qd
)
=

..
qd − λ

( .
q̃
)

(25)

for λ > 0, at which point qd in Equation (23) would be replaced with qr. Reference
trajectories serve to compensate for the error in trajectory by giving a “boost”. For instance,
if the state is lower than the desired state, to ensure the end conditions are still met, the
state derivative should be slightly boosted, e.g., if the desired final state is five radians at
time, t = 1, the desired state derivative a constant four radians per second, and rather than
being at one radian, at time t=0 the state is at zero, then to arrive at the desired final state of
five radians, the state derivative will need to be five radians per second assuming linear
motion. The reference trajectory should in theory help ensure the final conditions are better
met without the need for classical feedback control.

Through formulation of a Lyapunov function [4] and Barbarat’s lemma [6], control of
the form of Equation (23) in conjunction with feedback control of the form of Equation (17),
is proven stable, and the state error proven to tend to zero. The proof is omitted here for
brevity but can be found in [6].

2.3.3. Regression Modeling
9-Parameter Regression

Parameter regression seeks to write the governing dynamics equations, Equations (2)
and (3), as products of a matrix of knowns and a vector of unknowns. While the governing
equations of motion are messy and nonlinear in the state, they are linear in terms of the
inertia dyadic [I]. Noting the state is already known for control purposes, and the inertia
dyadic is the most difficult to estimate, Equation (3) can be separated into a matrix of
knowns as a function of the state, and a vector of unknowns, a function of the inertia dyadic
and the angular momentum H. The presented 9-parameter regression model is derived in
Slotine [4].

[
Φ
(
ωr,

.
ωr
)]

3×9

{
Θ̂
}

9×1 =

 .
ωx

.
ωy

.
ωz 0 0 0 0 −ωz ωy

0
.
ωx 0

.
ωy

.
ωz 0 ωz 0 ωx

0 0
.
ωx 0

.
ωy

.
ωz −ωy ωx 0





Ĵxx
Ĵxy
Ĵxz
Ĵyy
Ĵyz
Ĵzz
Ĥx
Ĥy
Ĥz


(26)

Multiplying out the expression, Equation (26) is equivalent to Equation (3).

6-Parameter Regression

Recalling H = Iω, the nine-parameter model can be simplified to an equivalent six
parameter model [6]:

[
Φ
(
ωr,

.
ωr
)]

3×6

{
Θ̂
}

6×1 =

 .
ωx

.
ωy

.
ωz −ωyωz 0 ωzωy

ωxωz
.
ωx 0

.
ωy

.
ωz −ωzωy

−ωxωy 0
.
ωx ωyωx

.
ωy

.
ωz




Ĵxx
Ĵxy
Ĵxz
Ĵyy
Ĵyz
Ĵzz


(27)
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2.3.4. Deterministic Artificial Intelligence

Deterministic Artificial Intelligence begins with the same regression modeling as
Adaptive Control, which can be portrayed as a statement of self, as the model is learning
the system dynamics that govern itself. However, the crucial difference is the optimal
learning of DAI. DAI uses the standard solution to the batch least squares regression
problem [14,16]

θ̂ =
(

ΦTΦ
)−1

ΦTu (28)

where Θ̂ is estimated using feedback control, and the estimated states in Φ are provided by a
Luenberger Observer. Equation (28) represents optimal learning of the state. Differentiating
Equation (28) results in Equation (29).

δΘ̂ =
(

ΦTΦ
)−1

ΦTδu (29)

which allows for the change in Θ̂ to be estimated and then integrated to get a smoother
estimation of Θ̂. optimal learning expressed in Equations (28) and (29), with the declaration
of self-awareness, learns the system parameters and can then be used to make an optimal
feedforward control, uff = ΦΘ̂.

2.4. Luenberger Observer

A Luenberger Observer is used to estimate the control observed to act on the system.
Given errors in the estimation of the inertia matrix, the control commanded will not result
in the state and rate expected. Therefore, the Luenberger Observer examines the actual
state and rate outputted by the plant and uses them to estimate the control responsible
for the system response given the estimate of the inertia matrix, resulting in a simulated
observer estimation of the control torque. The Luenberger Observer is of the form

θ̂ =
∫ [

J−1
∫ (

Kpe + Ki

∫
edt
)

dt + Kd
.
e
]

dt (30)

where e is the error of the observed state. The torque can be extracted as

τ = Kpe + Ki

∫
e dt (31)

And δu in Equation (29) is found by subtracting the result of Equation (31) from the
commanded torque outputted by the chosen controller.

2.5. Simulation

A simulation was developed in MATLAB Simulink to examine the difference between
feedback control, adaptive feedforward control and feedback plus adaptive feedforward
control. A timestep of 0.001 s was used in combination with a fourth-ordered Runge–Kutta
integration solver.

3. Results

The various controllers and generation techniques were compared. For all controllers
the gains were KP = 100, 000, KD = 1000, KI = 10, Γ = 30, λ = 100.

3.1. Comparison of Sinusoidal and Pontryagin Based Trajectory Generation

All the control methods presented in Section 2 were run, as well as all combinations
of feedforward and feedback control techniques. Table 1 shows the system responses
when a sinusoidal trajectory was used, and Table 2 shows when Pontryagin’s method
was used. For both tables a symmetric inertia matrix of [16.67 0 0; 0 16.67 0; 0 0 16.67],
representing a small cube sat was used. Due to the symmetry, there were no complications
due to cross-coupling.
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Table 1. System responses for various controller architectures in response to sinusoidal trajectory for
a symmetric spacecraft.

Controller Final Roll Error Final Pitch Error Final Yaw Error Control Measure Run Time

Classical Feedforward (FF) 1.1611× 10−4 1.8036 ×10−5 1.4804 ×10−1 7.4211 10.6987
PID 1.7617×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.7718 11.0032
PD 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.5121 10.3543

PDI 1.7592 ×10−10 −1.783 ×10−11 −4.9919 ×10−11 7.5121 11.5215
Enhanced PDI 1.7592 ×10−10 −1.783 ×10−11 −4.9919 ×10−11 7.5121 10.9573

Adaptive Feedforward 1.18×10−10 1.8098 ×10−5 −2.124 ×10−2 7.3325 11.9128
DAI 1.1761 ×10−10 1.8684 ×10−5 1.4849 ×10−1 7.4212 10.2718

Classical FF + PID 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.7004 10.8363
Classical FF + PD 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.452 10.6769

Classical FF + PDI 1.7592 ×10−10 −1.783 ×10−11 −3.2875 ×10−10 7.452 10.7868
Classical FF + Enhanced PDI 1.7592 ×10−10 −1.783 ×10−11 −3.2875 ×10−10 7.452 10.7328

Adaptive FF + PID 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.7004 11.038
Adaptive FF + PD 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.452 11.4322

Adaptive FF + PDI 1.7592 ×10−10 −1.783 ×10−11 −3.2954 ×10−10 7.452 10.9991
Adaptive FF + Enhanced PDI 1.7592 ×10−10 −1.783 ×10−11 −3.2954 ×10−10 7.452 10.9991

DAI + PID 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.7004 12.2044
DAI + PD 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.452 10.4896

DAI + PDI 1.7592 ×10−10 −1.7829 ×10−11 −3.2945 ×10−10 7.452 11.211
DAI + Enhanced PDI 1.7592 ×10−10 −1.7829 ×10−11 −3.2945 ×10−10 7.452 10.6421

Table 2. System responses for various controller architectures in response to Pontryagin based
trajectory for a symmetric spacecraft.

Controller Final Roll Error Final Pitch Error Final Yaw Error Control Measure Run Time

Classical Feedforward (FF) 1.1611 ×10−4 1.8452 ×10−5 −1.8 ×10−1 7.3137 10.7324
PID 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.6889 10.6961
PD 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.4272 10.7384

PDI 1.7592 ×10−10 −1.783 ×10−11 −4.9919 ×10−11 7.4272 10.5332
Enhanced PDI 1.7592 ×10−10 −1.783 ×10−11 −4.9919 ×10−11 7.4272 11.5323

Adaptive Feedforward 1.18 ×10−4 1.8098 ×10−5 −2.124 ×10−2 7.3325 11.9128
DAI 1.1761 ×10−4 1.8684 ×10−5 1.4849 ×10−1 7.4212 10.2718

Classical FF + PID 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.6132 11.2188
Classical FF + PD 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.3721 10.5145

Classical FF + PDI 1.7592 ×10−10 −1.783 ×10−11 −3.9984 ×10−10 7.3721 11.6424
Classical FF + Enhanced PDI 1.7617 ×10−10 −1.7788 ×10−11 −3.9984 ×10−10 7.3721 10.9332

Adaptive FF + PID 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.6132 10.9133
Adaptive FF + PD 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.3721 11.4322

Adaptive FF + PDI 1.7592 ×10−10 −1.783 ×10−11 −3.9918 ×10−10 7.3721 11.1862
Adaptive FF + Enhanced PDI 1.7592 ×10−10 −1.783 ×10−11 −3.9918 ×10−10 7.3721 10.8416

DAI + PID 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.6132 11.821
DAI + PD 1.7617 ×10−10 −1.7788 ×10−11 5.3291 ×10−14 7.3721 10.9259

DAI + PDI 1.7592 ×10−10 −1.7829 ×10−11 −3.9918 ×10−10 7.3721 11.8363
DAI + Enhanced PDI 1.7592 ×10−10 −1.7829 ×10−11 −3.9918 ×10−10 7.3721 10.5461

3.2. Non-Symmetrical Inertia Matrix

The analysis in Section 3.1 was repeated with a non-symmetric inertia matrix of
[90 10 10; 10 100 −20; 10 −20 250] with results displayed in Table 3. To eliminate the
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cross-coupling, the method of solving for the trajectory in the principal frame and then
converting to the body frame was used.

Table 3. System responses for various controller architectures in response to sinusoidal trajectory for
a non-symmetric spacecraft.

Controller Final Roll Error Final Pitch Error Final Yaw Error Control Measure Run Time

Classical Feedforward −7.8465 ×10−3 07.4289 ×10−3 1.4755 ×10−1 1683.1175 11.3062
PID 7.02999 ×10−8 −1.4242 ×10−3 3.2021 ×10−7 1859.8548 11.0474
PD 4.6554 ×10−8 4.2169 ×10−3 −1.2343 ×10−7 1856.8902 11.1187
PDI 1.2405 ×10−7 8.0862 ×10−8 −1.2423 ×10−7 1856.8949 12.1823

Enhanced PDI −7.7385 ×10−5 −3.8538 ×10−5 −1.2461 ×10−7 1854.5367 10.8186
Adaptive Feedforward −46.2241 12.0051 0.91503 1691.4834 11.3136

DAI −23.5631 −6.9415 4.4973 1682.6394 11.4354
DAI + PID 5.2592 ×10−8 2.7825 ×10−8 −1.0617 ×10−8 1683.4428 12.3925
DAI + PD 5.1693 ×10−8 2.9962 ×10−8 −2.7428 ×10−8 1683.1285 11.1785
DAI + PDI −1.2907 ×10−7 6.8226 ×10−8 −3.2272 ×10−8 1683.1286 11.3506

DAI + Enhanced PDI −7.738 ×10−5 −3.8551 ×10−5 −3.2648 ×10−8 1680.7742 12.0274

3.3. Pontryagin Cross-Coupling Techniques

Noting the large spikes in cost in Table 4, the analysis of Table 4 was repeated, with
Pontryagin trajectory solved by using the principal moments of inertia but not converting
from the principal frame to the body and instead assuming the control could be taken to be
the same in either frame. The results are in Table 5.

Table 4. System responses for various controller architectures in response to Pontryagin derived
trajectory for a non-symmetric spacecraft.

Controller Final Roll Error Final Pitch Error Final Yaw Error Control Measure Run Time

Classical Feedforward 5.7025 ×10−1 −3.9878 −4.671 ×10−1 1685.6928 10.9308
PID 6.2024 ×10−7 −1.3186 ×10−6 1.0581 ×10−5 6,039,807.0998 11.1978
PD −1.4968 ×10−7 5.0851 ×10−7 −3.7909 ×10−6 2,308,873.8017 10.7945
PDI −7.6111 ×10−7 4.6852 ×10−6 −3.6072 ×10−6 2,308,895.124 12.1382

Enhanced PDI −7.6111 ×10−7 4.6852 ×10−6 −3.6072 2,308,895.125 10.7405
Adaptive Feedforward −41.5959 7.5133 −1.8841 1661.3028 10.8365

DAI −16.6137 −5.5011 1.1828 1576.6269 11.0189
DAI + PID 6.022 ×10−7 −1.2758 ×10−6 1.0244 ×10−6 6,039,357.2503 12.3928
DAI + PD −1.3938 ×10−7 4.8404 ×10−7 −3.5984 ×10−6 2,307,705 10.6427
DAI + PDI −7.5074 ×10−7 4.6608 ×10−6 −3.408 ×10−6 2,307,726.8977 12.251

DAI + Enhanced PDI −7.5074 ×10−7 4.6608 ×10−6 −3.408 ×10−6 2,307,726.8977 11.9634

Table 5. Controller analysis for Pontryagin generated trajectory without principal to body
frame conversion.

Controller Final Roll Error Final Pitch Error Final Yaw Error Control Measure Run Time

Classical Feedforward 1.94649 ×10−2 1.6969 ×10−2 −1.7869 ×10−1 1658.712 11.9093
PID 7.3164 ×10−8 −2.1048 ×10−8 3.7374 ×10−7 1914.5126 12.5761
PD 4.4187 ×10−8 4.7793 ×10−8 −1.6766 ×10−7 1910.2443 11.9447
PDI 1.1956 ×10−7 8.5436 ×10−8 −1.6847 ×10−7 1910.2511 11.6654

Enhanced PDI −7.5271 ×10−5 −3.7483 ×10−5 −1.689 ×10−7 1908.3834 13.7759
Adaptive Feedforward −43.7245 11.2064 7.9855 ×10−1 1667.4484 12.5086

DAI −22.9724 −6.3489 3.938 1658.4612 12.3755
DAI + PID 5.4829 ×10−8 2.2512 ×10−8 3.1165 ×10−8 1665.493 12.0513
DAI + PD 5.4538 ×10−8 2.3202 ×10−8 2.5734 ×10−8 1665.1394 11.874
DAI + PDI 1.2938 ×10−7 6.1282 ×10−8 3.192 ×10−8 1665.1394 11.6999

DAI + Enhanced PDI −7.5261 ×10−5 −3.7507 ×10−5 3.1499 ×10−8 1663.2691 12.6906
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Lastly the three techniques for eliminating the cross-coupling in Pontryagin generation
of optimal trajectories were compared for several different maneuvers. The maneuvers
consisted of [θf,φf,ψf] where the final desired value for each maneuver was specified. Note
KP and KD had to be raised to 100,000 and 10,000 respectively, to eliminate ringing in the
second and third maneuvers. DAI + PD was used as the controller; the results are displayed
in Table 6.

Table 6. Comparison of various methods of cross-coupling elimination in Pontryagin trajectory
generation versus sinusoidal trajectory generation for different maneuvers.

Trajectory Generation Maneuver Final Roll Error Final Pitch Error Final Yaw Error Control Measure Run Time

Sinusoidal [0;0;30] 5.1819 ×10−8 2.9662 ×10−8 −2.5066 ×10−8 1681.0949 11.687
Pontryagin in principal

frame [0;0;30] −1.3882 ×10−7 4.8269 ×10−7 −3.5878 ×10−6 2,304,236.6321 11.941

Pontryagin in non-principal
frame with principal

moments
[0;0;30] 5.4792 ×10−8 2.26 ×10−8 3.0474 ×10−8 1662.3456 11.7472

Pontryagin in non-principal
frame with non-principal

moments
[0;0;30] 5.4792 ×10−8 2.26 ×10−8 3.0474 ×10−8 1662.3456 12.62

Sinusoidal [30;0;0] 1.9871 ×10−8 3.1413 ×10−9 −1.8097 ×10−9 227.4904 11.4441
Pontryagin in principal

frame [30;0;0] 7.5466 ×10−8 1.1922 ×10−9 −6.9042 ×10−10 5.1764 ×109 11.6651

Pontryagin non-principal
frame with principal

moments
[30;0;0] 1.9871 ×10−8 3.1413 ×10−9 −1.8097 ×10−9 225.2765 11.6865

Pontryagin in non-principal
frame with non-principal

moments
[30;0;0] 1.9871 ×10−8 3.1413 ×10−9 −1.8097 ×10−9 225.2765 11.952

Sinusoidal [30;0;30] 1.9872 ×10−8 3.1322 ×10−9 −1.8096 ×10−9 1921.2983 11.3724
Pontryagin in non-principal [30;0;30] 1.2193 ×10−8 1.9152 ×10−9 −1.1148 ×10−9 4.7500 ×109 11.4976

Pontryagin principal [30;0;30] 1.9872 ×10−9 3.1322 ×10−9 −1.8096 ×10−9 1896.2548 11.5732
Pontryagin in non-principal

frame with non-principal
moments

[30;0;30] 1.9872 ×10−8 3.1322 ×10−9 −1.8096 ×10−9 1896.2548 11.4064

3.4. Constant Trajectory Feedback Control

For comparison, feedback control with a constant trajectory consisting of the desired
end-state, was simulated. A PD controller was used with the same gains as in the previous
simulations, KP = 100, 000, KD = 1000. The non-symmetric inertial-dyadic presented in
Section 3.2 was used. The system response is given in Figure 4.
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maneuver. Roll is solid blue, pitch is thick dashed red, yaw is thin dashed yellow (b) Characteristics
of the response. * Note, this run time was found to be much lower due to differences in available
processing power and when compared to re-simulations of some of the above methods, found to
be comparable.
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4. Discussion

Looking at Tables 1 and 2, note the addition of feedforward decreases the control
effort by 0.8% on average. Additionally, the three feedforward techniques seem to perform
equally well. Comparing Table 2 with Table 1, Pontryagin trajectory generation lowers
control cost by about 1–1.5%.

Looking at Tables 3 and 4, Pontryagin techniques with feedback incur a lot of control
cost. Examining the control torques and trajectories in Figure 5, reveals the Pontryagin
method of converting from the principal frame to the body, commands motion in all three
axes (see Figure 5e) due to the cross-coupling. Comparing Figure 5e with Figure 5f,d reveals
the sinusoidal does not command motion in all three axes.
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Figure 5. Comparison of system response to Pontryagin generated trajectory and Sinusoidal trajectory.
Roll angle in degrees is displayed as a solid, blue line; pitch angle as a dashed red line, and yaw angle
as a dotted gold line. The top row displays results using Pontryagin, while the bottom row displays
results using Sinusoidal. (a) Feedback Control Pontryagin, (b) Feedforward Control Pontryagin,
(c) Acceleration Trajectory Pontryagin, (d) Rate Trajectory Pontryagin, (e) State Trajectory Pontryagin,
(f) Feedback Control Sinusoidal, (g) Feedforward Control Sinusoidal, (h) Acceleration Trajectory
Sinusoidal, (i) Rate Trajectory Sinusoidal, (j) State Trajectory Sinusoidal.

Looking at the tracking of the Euler angles in Figure 6, there is significant change
in the non-slew directions. Once the slew is over, the error in commanding undesirable
motion in the non-slew directions manifests itself in a spike of feedback control, making the
control cost abnormally high. When Pontryagin is used without converting back into the
body frame from the principal, essentially deriving a trajectory in the non-principal frame,
undesirable motion in the non-slew directions was eliminated. In the formulation used
in Figure 6 and by virtue of non-zero cross-products of inertia, principal axes were mis-
aligned with the body axes, and while a seemingly fine idea, solving for the trajectory in the
principal frame and then converting to the body frame introduces error. The misalignment
causes undesired rotation in the body frame when the trajectory is converted, via cross-
coupled terms in the inertia dyadic.

Table 5 proves not converting between principal and body frames fixes the error.
Table 5 also demonstrates the flexibility of the control architecture, with low error indepen-
dent of which axis was being rotated around. The disparity between principal moments
of inertia and moments of inertia in the body frame, 81.5970, 105.326, 253.0783, compared
with 90, 100, 250, is worth noting. Using the moments of inertia in the body frame to solve
for the optimal trajectory in Pontryagin’s method applied in the non-principal frame, was
predicted to have a detrimental effect, as the control might not be scaled properly. However,
Table 6 shows no difference between using principal or non-principal moments of inertia.
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Figure 6. Comparison of True Euler angles during slew, (a,d) roll, (b,e) pitch, and (c,f) yaw. Top
row (a–c) using Pontryagin derivation in principal frame, bottom row (d–f) using Pontryagin deriva-
tion in non-principal frame. (a) roll using principal frame, y-axis [−1,1.5] (b) pitch in principal
frame, y-axis [−4,2], (c) yaw using principal frame, y-axis [0,30], (d) roll using non-principal, y-axis
[−1.5 × 10−3,1 × 10−3], (e) pitch using non-principal axis, y-axis [−3 × 10−3, 4 × 10−3], (f) yaw
using non-principal, y-axis [0,30].

Figure 4 shows the stark contrast between using a calculated trajectory and not.
Comparing Figure 4b to the PD control in Table 5, note similar final errors in roll pitch
and yaw channels, and five orders of magnitude worse control cost. In Table 7, the PD
controller gains were raised revealing that use of a calculated trajectory results in better
final state error as compared to control without a calculated trajectory. Additionally, in
response to elevated gains, control cost rose by a factor of ten in the non-trajectory case
(between Figure 4b and the second row of Table 7), however when using Pontryagin
optimal trajectory, the control cost actually decreased in response to elevated gains, by
11.7% (comparing the third row of Table 5 and the first row of Table 7) while the error
decreased by an order of magnitude in the roll and pitch channels, and seven orders of
magnitude in the yaw channel. The use of a calculated trajectory is thus shown to allow for
higher gains that result in significantly lower error, and lower control cost. Additionally,
the plotted system response with no calculated trajectory in Figure 4a, shows significant
overshoot and significant oscillatory motion as compared to using a calculated trajectory.

Table 7. Comparison of PD control with and without Pontryagin Optimal Trajectory in non-principal
frame with elevated gains of KP = 1, 000, 000 and KD = 10, 000.

Controller Final Roll Error Final Pitch Error Final Yaw Error Control Measure Run Time

PD w/Trajectory 5.3161 ×10−9 2.6474 ×10−9 3.5527 ×10−15 1687.5 9.0155
PD w/o Trajectory 2.8341 ×10−8 1.416 ×10−8 3.5527 ×10−15 3.4862×109 8.648

As for a computational burden analysis, run time was recorded in each of the trials.
Unfortunately, run-time was found to be dependent on the hardware the simulation was
run on and how much of the CPU was available, resulting in an inability to compare run
time across different tables. However, looking at each table individually, no run time
different of more than 20% was observed, and no observable patterns found. With more
detailed analysis it could be concluded whether any of the control methods used were
more computationally demanding than the others, however for the purpose of this study,
all control methods were deemed relatively similar in terms of computational burden.

4.1. Conclusions

Trajectory generation demonstrates significant decrease in control cost and attitude er-
ror as well as allowing for more versatile gain tuning. Pontryagin’s method shows promise,
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lowering control cost slightly over Sinusoidal generation and lays the groundwork for
more sophisticated autonomous trajectory generation, by modification of the Hamiltonian
(Equations (9) and (10)), such as imposition of pointing restraints, not possible with the
sinusoidal method. Proper understanding of cross-coupling dynamical effects proved
crucial in the formulation of Pontryagin’s method, however proving simple to deal with.
Lower pointing errors make missions focused on objects further away, or requiring higher
magnification and object resolution, possible, and lower control costs improve the efficiency
of such missions, increasing viability.

4.2. Future Work

RTOC was not implemented and studied. RTOC inherently uses the trajectory solved
for in Pontryagin’s method and a comparison of RTOC to control using sinusoidal trajectory
generation would be interesting. Additionally, the assumption to solve for each Euler angle
trajectory separately using Pontryagin’s method, inherently introduces some error. The
amount of error in this formulation should be examined. A better approach would be to
solve Pontryagin’s method for the full coupled dynamics. While there do exist methods to
do so, they lie outside of the scope of this work were not attempted.

Of note, results are possible with higher gains and modest increases in cost. However,
the investigation of this work was not into achieving the lowest error possible.

The true power of Pontryagin’s method lies in the ability to parameterize desired
trajectories and solve for optimal solutions. For instance, during a slew a requirement might
be specified declaring the spacecraft shall never point in a certain direction. With sinusoidal
trajectory generation, there is no way to enforce a requirement on pointing restrictions
without analysis of the sinusoidal trajectory and careful design of piecewise maneuvers
around restrictions. However, Pontryagin’s method allows for such specifications in the
formation of the Hamiltonian. Pontryagin’s method could significantly reduce control
efforts of more complicated maneuvers with pointing restriction.
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Appendix A

Table A1. Table of variable definitions for Section 2.1.1.

Variable Definition

z,
.
z,

..
z Arbitrary motion states variables used to formulate autonomous trajectories

A, A0, Af Arbitrary motion state amplitude, initial and final amplitude used to formulate autonomous trajectories
t Time
λ Eigenvalue associated with exponential solution to ordinary differential equations
ω Frequency of sinusoidal functions
T Period of sinusoidal functions

∆tquiescent User-defined quiescent period (no motion should occur during the quiescent period)
∆tmeanuever User-defined duration of maneuver (often established by time-optimization problems)

φ Phase angle of sinusoidal functions
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Table A2. Table of variable definitions for Section 2.1.2 through 4.1.

Variable Definition

T, τ Torque
I Inertia Matrix

θ,
.
θ,

..
θ

Three body angle representation of attitude, its derivative and second
derivative

ω,ωd,
.
ω,

.
ωd

Angular velocity, desired angular velocity, derivative, and desired
derivative of angular velocity

J Control cost
H Hamiltonian function
F Running cost function

λ
Vector of the co-states (Section 2.1.2) and reference trajectory gain

(Section 2.3.2 on)

x,
.
x,

..
x

Arbitrary state space representation of the state, its derivative and its
second derivative

u, δu,
uff, ufb

Control and control derivative in state space form, feedforward, and
feedback control

f(x, u) State space dynamics
a, b, c, d Arbitrary constants used in solving of trajectory

Kd, Kp, KI Derivative, Proportional, and Integral gains

q, qd,
.
q,

.
qd

Arbitrary representation of state, state derivative, desired state, and
desired state derivative

q̃,
.
q̃

Error between state and desired state, error between state derivative
and desired state derivative

[C] Coriolis Matrix
Φ, Φ̂ Matrix of knowns, learned matrix of knowns
θ, θ̂ Vector of unknowns, learned vector of unknowns
Γ Learning rate gain
e Error of Luenberger observed state

Table A3. Consolidated table of acronyms.

Acronym Definition

PD Proportional Derivative Controller
PID Proportional, Integral, Derivative Controller
PDI Proportional, Derivative, Integral Controller
FF Feedforward
FB Feedback

DAI Deterministic Artificial Intelligence
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