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Abstract: An efficient maintenance plan is an important aspect for aeronautical companies to increase
flight safety and decrease costs. Modern technologies are widely used in the Engine Health Monitor-
ing (EHM) discipline to develop intelligent tools capable of monitoring the health status of engines.
In this work, Artificial Neural Networks (ANNs) and in-detail Feed-Forward Neural Networks
(FFNNs) were exploited in addition to a Kernel Principal Component Analysis (KPCA) to design
an intelligent diagnostic tool capable of predicting the Performance Parameters (PPs) of the main
components used as their health index. For this purpose, appropriate datasets containing information
about degraded engines were generated using the Gas Turbine Simulation Program (GSP). Finally,
the original datasets and the reduced datasets obtained after the application of KPCA to the original
datasets were both used in the training and testing process of neural networks, and results were
compared. The goal was to obtain a reliable intelligent tool useful for diagnostic purposes. The study
showed that the degraded component detection and estimation of its performance achieved by using
the hybrid KPCA–FFNNs were predicted with accurate and reliable performance, as demonstrated
through detailed quantitative confusion matrix analysis.

Keywords: engine health monitoring; diagnostics; artificial neural network; principal component
analysis; artificial intelligence

1. Introduction

Diagnostics is nowadays a key concept used to ensure flight safety and cost reduction.
Engine Health Monitoring is a discipline that takes care of keeping the state of health
of the engine under control. Such a strategy leads to a health-based maintenance plan
that stops the engine only when necessary, unlike a maintenance plan based on flight
hours, as used in the past [1]. Degradation is a phenomenon caused by various factors that
have a more or less serious impact on engine performance. Degrading phenomena that
impact gas turbines (industrial and aeronautical) are numerous, such as fouling, erosion,
abrasion, corrosion, increase in blade tip clearance, object ingestion (foreign object damage
or domestic object damage), and exhaustive explanations are available in [2,3]. The effect
on engine performance varies according to the component affected by the degradation
and the phenomenon that has occurred. Compressors and turbines are the most impacted
components by fouling and erosion, and their degradation is most investigated in the
literature. Fouling is predominant in compressors, and it is the most prevalent degradation
problem [4]. Fouling results in a decrease in the flow of both capacity and efficiency if
it occurs on compressors and turbines. Erosion has the same effect of fouling on the
compressor, while in the case of turbine erosion, efficiency continues to decrease but flow
capacity increases [5]. For example, as reported in [6], a compressor fouling on an industrial
gas turbine leads to a drop of 5% in mass flow and of 1.8% in compressor efficiency,
respectively, in turn resulting in a 7% reduction in output power and 2.5% increase in
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heat rate. Meanwhile, [5] reported an increase in flow capacity of 4% and a decrease in
efficiency of 2% due to turbine erosion. Erosion damage on compressors and turbines
blades can be reduced by applying a coating. The results reported in [7], where a study
has been conducted on the protective capabilities of various coatings against erosion and
corrosion on compressor blades, show how coatings obtained by physical vapor deposition,
especially the (Ti, Al)N coatings, provide the best results both in erosion and corrosion
protection. In works [8,9], an Ingested Debris Monitoring System (IDMS) and an Engine
Distress Monitoring System (EDMS) are used to monitor the debris present in the airflow
ingested by a jet engine. The environmental impact on engine degradation is studied
in [10,11], where the effect of sand and dust and the effect of volcanic ash on engines are
illustrated, respectively. In the former, two experiments on the effect of sand ingestion are
illustrated, one considering an “accelerate” approach, in which a big amount of sand is
injected into the engine inlet in a short time, and the other considering an amount of sand
approaching the one typical of a real case. In each case, experiments result in a decrease
in thrust and an increase in specific fuel consumption. In the second, fan blade erosion
due to volcanic ash is investigated using computational fluid dynamics tools considering
two different approaches, one in which the erosion rate is considered constant and the
other in which it was updated over time. In both cases, the results show an increase in
material removed when moving from the midspan toward the tip. Furthermore, on the
suction side, for regions close to the hub the highest material removal is located around
the leading edge, this then moves toward the midchord for the outer midspan sections
while the pressure side experiments with a lower amount of erosion, which is focused near
the midchord of the tip. EHM techniques widely exploit computer algorithms for their
purposes, which are efficient diagnostic tools based on information from sensors installed in
the engine itself, such as temperatures or pressures. In [12], Remaining Useful Life (RUL) is
predicted by means of genetic algorithms, decision trees, and fuzzy logic to create a hybrid
model. Findings show good results in RUL prediction of a few time series. The authors
underline how the performances start to be good around the 150th cycle and state that the
result is expected because, as stated in [13], RUL prediction becomes accurate after some
cycles have already been performed by the units, allowing the degradation to accumulate.
In [14], MultiGene Genetic Programming (MGGP) is used to obtain a relationship between
Exhaust Gas Temperature (EGT) and other variables characterizing an engine, and in
the same work, Nonlinear AutoRegressive with eXogenous inputs neural network are
exploited for a one-step-ahead prediction tool. The authors also investigated the effect
of the number and the nature of the parameters used in the input for MGGP and ANN
algorithms, showing the network’s ability to deliver accurate results even with fewer input
parameters. Two Nonlinear AutoRegressive neural networks are used in [15] for specific
fuel consumption estimation. In particular, the first network was used to predict fuel flow
rate, compressor rotational speed, turbine inlet temperature, and compressor pressure ratio,
providing in input ambient conditions, Mach number, and Power Lever Angle (PLA), while
the second network was used to predict the target performance parameter, i.e., specific
fuel consumption, providing in input the parameters predicted by the first network plus
ambient condition and Mach number. Predictions were performed with the engine in
healthy condition and simulating a compressor degradation. In each case, results showed
good behavior of the developed system, with an adaption process in the case of compressor
degradation. In [16], Auto-Associative Neural Networks (AANNs) are used to implement
a nonlinear Principal Component Analysis (PCA) for early warning of impending gas
turbine failure, and results are compared with the one obtained by applying a standard
linear PCA. Results show that although the training of an AANN model takes more time
than it takes for a linear PCA, the former is more suitable to be applied in nonlinear systems.
PCA was exploited for feature extraction purposes in [17] to develop a PCA–ANN fault
classifier for diagnostic purposes. Results show very good performance compared with
other algorithms, at the cost of higher computation times. Finally, neural networks are
used in [18,19] to distinguish between different degradation conditions, i.e., the compressor
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fouling and the turbine erosion, with good results. In particular, in [18], results show
component degradation and health condition identification EGT seems more accurate than
fuel flow rate to be used as the input of the neural network, and as also evident in [19],
results are better when the networks are trained with more information related to the
engine (at least for the cases analyzed in these works).

Hence, Artificial Neural Networks are among the data-driven methods most widely
used and very promising in the field of component degradation and fault diagnosis thanks
to the solid ability in learning non-linear changes between a set of inputs and a set of
outputs, as in the case of an aeronautical engine.

In this work, an FFNN is used to predict the PPs of some selected components consti-
tuting a turboshaft engine, i.e., polytropic efficiency and flow capacity for the compressor
and high-pressure turbine, polytropic efficiency for the low-pressure turbine, pneumatic
and combustion efficiencies for the burner, and mechanical efficiencies for shafts (as called
“spools” in the present article). In addition to compressor and turbines, in our work, we also
include burner and shafts transmissions, for which the degradation diagnostic is less inves-
tigated in the literature. GSP software was used to generate datasets containing information
about degraded engines to be used to train neural networks. The just-mentioned datasets
are noise-free. The datasets were obtained performing a series of steady-state simulations,
each characterized by a different degradation condition (fault type) and severity. The
degradation was implemented by changing the value of the PPs in the GSP model used
for simulations. The degraded values of the PPs were obtained by an adequate equation
between a maximum and a minimum value. Finally, the KPCA technique was used to
reduce the amount of data to be supplied to the neural networks. In the past, several
studies have used Principal Component Analysis (PCA). However, this technique has a
reduced performance when applied to strongly non-linear problems, such as in the case
of health monitoring of an aircraft engine. For this reason, Kernel–PCA (KPCA) has been
used in this paper to overcome the limitations of conventional PCA to linear problems.
ANNs were trained both with the original dataset (as obtained from simulations) and with
the reduced datasets (after application of KPCA) and prediction results were compared.
Compressor degradation was stimulated by a decrease in polytropic efficiency and flow
capacity. Turbine degradation was considered a decrease in polytropic efficiency with
both an increase and a decrease in flow capacity. For burner and shafts, degradation was
simulated by a decrease in the efficiencies that characterize them.

2. Engine Block Model

The software exploited to model the engine used in this work was GSP, which has a
drag and drop interface capable of simulating engine performance in various conditions,
both in steady-state and transient conditions. More details about GSP are available in [20].

Modeled Engine: Features and Design Point

The engine used in this work was a double-spool, lightweight turboshaft designed
for helicopter application, derived from the PW200 Pratt & Whitney Canada family. A
high-pressure spool connects a single-stage centrifugal compressor to a single-stage high-
pressure turbine (HPT), while the low-pressure spool is used to power the rotor (with
a nominal speed of 6000 rpm) through a low-pressure turbine (LPT). The model valida-
tion was performed in standard sea-level static condition, i.e., temperature = 288.25 K,
pressure = 1.013 bar, altitude = 0, and Mach = 0. The airflow rate was changed until power
indicated on the engine reference database was obtained. The engine block model is
shown in Figure 1, while Table 1 reports some engine parameters in design conditions.
The indicated stations in Figure 1 are the following: 1—engine inlet; 2—compressor inlet;
3—compressor outlet; 4—HPT inlet; 45—LPT inlet; 46—LPT outlet; 9—exhaust gases.
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Figure 1. Block model of the used engine.

Table 1. Engine parameters in design point.

Parameter Value

Rotor shaft power (Pr) 295 KW
Intake air mass flow rate (w1) 2.05 Kg/s

Compressor pressure ratio (βc) 7.17
Compressor polytropic efficiency (ηc) 0.82

HPT polytropic efficiency (ηHPT) 0.88
LPT polytropic efficiency (ηLPT) 0.88

Burner pneumatic efficiency (ηb,p) 0.96
Burner combustion efficiency (ηb,c) 0.985

Fuel mass flow rate (wf) 0.0314 Kg/s
High-pressure shaft speed (ωHPS) 40,891 rpm
Low-pressure shaft speed (ωLPS) 6000 rpm

3. Dataset Generation: Simulation of Degraded Engines

The degradation scenarios simulated in this work were compressor degradation,
HPT degradation, LPT degradation, burner degradation, shafts degradation, and multi-
component degradation, i.e., a simultaneous degradation of the components previously
analyzed individually. Table 2 describes the variables used as PPs of each component
together with the related values in healthy condition at the design point and the range
of percentage variation from the healthy condition. The dataset used to train ANNs was
generated with GSP through a series of steady-state simulations performed on the working
points described in Table 3, which were taken from the mission profiles present in [21].
For each degradation condition, 4500 steady-state simulations were performed (750 times
each working point). In detail, the results of 1500 of 4500 simulations were used as testing
cases, while the remaining 3000 were used as training cases. However, some simulations
were discharged because they represent extreme conditions in which the software fails
to converge. Each simulation is characterized by a different level of degradation, i.e., a
different percentage variation of the PPs with respect to a healthy condition. The degraded
PPs were obtained using Equation (1), which generates a random value of the PPs between
a maximum and a minimum:

ppd =

[
1 −

(
1 − MIN

MAX

)
RAN3

]
MAX (1)

where ppd is the degraded value of the PP, MIN and MAX are the lower and the upper lim-
its, respectively, and RAN is a randomly generated number between 0 and 1. Equation (1)
was used for each PP. Input and output variables for neural network training were chosen
between the ones present in the datasets obtained from GSP simulations. In detail, as the
goal of the work was to predict the PP of the degraded component (i.e., for each degradation
condition), the neural networks must be trained on the correlation between the PPs and
some characteristics variables of the engine operating status.
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Table 2. Performance Parameters of each degraded component. ηc: compressor polytropic efficiency;
fc: compressor flow capacity; ηHPT: HPT polytropic efficiency; fHPT: HPT flow capacity; ηLPT: LPT
polytropic efficiency; ηb,p: burner pneumatic efficiency; ηb,c: burner combustion efficiency; ηHPS: high-
pressure shaft mechanical efficiency; ηLPS: low-pressure shaft mechanical efficiency.

Component Degraded Performance
Parameters Healthy Condition Range of Percentage

Variation

Compressor ηc 0.82 −20–0%
fc 1 −20–0%

HPT
ηHPT 0.88 −20–0%
fHPT 1 −10–+10%

LPT ηLPT 0.88 −20–0%

Burner
ηb,p 0.96 −20–0%
ηb,c 0.985 −20–0%

Shaft transmissions
ηHPS 0.99 −20–0%
ηLPS 0.99 −20–0%

Table 3. Working point simulated in steady-state simulations.

Working Point Name Speed (m/s) Altitude (m) Power (KW)

START-A 30.6 0 48
START-B 0 1150 173

MAXPOW-A 30.6 0 291
MAXPOW-B 3.96 1154 273
MAXDUR-A 30.6 492 169
MAXDUR-B 0 2550 176

The variables that were chosen as input for ANNs are summarized in Table 4. These
variables represent the input matrix for each neural network used while the output variables
change from case to case, representing the PPs to be predicted for each degradation case,
i.e., the PPs associated with the degraded component. The KPCA technique was used in
this paper to reduce the input matrix dimension. Such a strategy could lead to a more
efficient EHM system because the amount of data to be processed is lower compared to
the case in which a data reduction technique is not used. In detail, for each of the six
degradation cases, two neural networks were trained, one with the dataset consisting of
the simulation results (called original dataset) and the other with the dataset obtained by
applying KPCA to the original dataset (called reduced dataset).

Table 4. Variables used as input for the developed EHM system. Tot. T: Total Temperature; Tot. P.:
Total Pressure.

Inputs

Flight Mach (M) Tot. T. at HPT inlet (TT4)
Ambient Tot. P. (TPa) Tot. P. at HPT inlet (TP4)
Ambient Tot. T. (TTa) Tot. T. at HPT outlet (TT45)

Power lever angle (PLA) Tot. P. at HPT outlet (TP45)
Tot. T. at comp. inlet (TT2) Tot. T. at LPT outlet (TT46)
Tot. P. at comp. inlet (TP2) Tot. P. at LPT outlet (TP46)

Tot. T. at comp. outlet (TT3) LPT torque (TLPT)
Tot. P. at comp. outlet (TP3) Overall Pressure Ratio (OPR)

ωHPS Fuel mass flow rate/power lever angle (ρ)

4. EHM System: Combined KPCA + FFNN Algorithm

In this section, there is a brief description of how KPCA and FFNN work. Subsequently,
the setup that was used is described.
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4.1. Feed_Forward Neural Network: Principle of Operation and Setup

ANNs are artificial intelligence techniques designed to mimic the capacity of the
human nervous system to learn from experience. The FFNN is the network type used in
this work. FFNNs are constituted by layers (input layer, output layer, and hidden layers)
and neurons, connected by links each having their own “weight”. The input layer is the
one in which information given to the network enters and the number of its neurons is
equal to the number of variables given in the input. The output layer is the one from which
the network predictions exit, and the number of its neurons is equal to the number of
variables to be predicted. There are hidden layers between input and output layers, each
constituted by a certain number of hidden neurons. The network performance depends on
the number of hidden layers and hidden neurons. Equation (2) represents the output of
hidden and output neurons, intended as the sum of the information (each characterized by
its connection weight) deriving from the previous neurons and a bias.

y =
n

∑
i=1

WiXi + b (2)

where y denotes the neuron output, Wi is the weight of the connection between the neuron
and the i-th previous neuron sending it information, Xi is the information obtained from
the i-th previous neuron, n is the number of previous neurons, and b is the bias. Finally,
an activation function is applied to normalize the results of Equation (2). To train a neural
network means providing the network with a dataset constituted by input variables and
related output variables and letting the network compute the values of weights and biases
in order to predict the output variables starting from the input ones. In Table 5, the neural
networks trained with the original datasets are described, while in Table 6, the neural
networks trained with the reduced datasets are described. Each neural network used
has only one hidden layer. In the training process, a maximum of 5000 epochs was set.
Figure 2a shows a typical structure of an FFNN. Figure 2b instead reports the neural
networks implemented with MATLAB for each case analyzed, i.e., for each degradation
condition both with original and reduced datasets and having a structure like the one
shown in Figure 2a.

Table 5. Characteristics of neural networks trained with original datasets.

Degradation Condition Input Neurons Hidden Neurons Output Neurons

Compressor degradation 18 26 2
HPT degradation 18 26 2
LPT degradation 18 26 1

Burner degradation 18 26 2
Shaft transmissions degradation 18 26 2
Multi-component degradation 18 34 9

Table 6. Characteristics of neural networks with reduced datasets.

Degradation Condition Input Neurons Hidden Neurons Output Neurons

Compressor degradation 9 26 2
HPT degradation 9 26 2
LPT degradation 9 26 1

Burner degradation 9 26 2
Shaft transmissions degradation 9 26 2
Multi-component degradation 13 34 9
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4.2. KPCA: A Data Reduction Technique

Principal Component Analysis is a data reduction technique used to reduce the di-
mension of datasets to be supplied to appropriate algorithms. However, PCA is more
suitable for application in linear systems. For nonlinear systems, such as an aircraft engine,
better performance is obtainable by KPCA, which combines the linear PCA with the Kernel
method. The linear PCA creates a new dataset containing the same number of variables
(called principal components) and the same amount of information [22] of the dataset of
which is applied (original dataset). The new variables are numerically different from the
ones located in the original dataset but depend on them. The principal components are
ordered in the new dataset from the one containing the most information of the original
dataset to the one containing the least. The strategy of the PCA is to discard the principal
components having the least part of the information (the latest); in this manner, the new
dataset is smaller than the original one, but carries most of the information contained in it.
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The first step of PCA is the standardization of the original dataset. The new dataset Xnew
(formed by the principal components) is obtained from Equation (3):

Xnew = XstdQ (3)

where Xstd is the original dataset after standardization and Q is the matrix formed by the
sorted eigenvectors of the covariance matrix of Xstd. The KPCA approach is to perform a
mapping of the input data into a feature space using nonlinear mapping and subsequently
perform a linear PCA in the feature space [23].

5. Results and Discussion

Here, the results obtained from the network predictions, both with and without the
use of KPCA, are exposed. Figure 3 shows the comparison between the network predictions
and the target values of the PPs obtained from GSP simulations for the first five degradation
cases, i.e., for the single-component degradation cases. In more detail, the just-mentioned
results are related to the predictions obtained from ANNs trained with the original datasets.
Figure 4 reports the related percentage errors. From these first two figures, it is evident how
the EHM system developed using only FFNNs shows very good results as R2 (coefficient
of determination) values are higher than 0.95; in particular, the lowest R2 is equal to 0.9582,
related to fc. The high quality of the prediction is confirmed by the low values of the
percentage errors reported in Figure 4. For the compressor case, for which the related
PPs are ηc and fc, a peak in error for a well-defined set of points is present at the working
conditions MAXPOW-B, i.e., flight in altitude at high power. Percentage errors remain,
however, below 6% for these two PPs. The remaining PPs are predicted with percentage
errors all below 0.6%. In Figures 5 and 6 instead, the predictions of the same variables
by the KPCA + FFNN EHM system are reported. In this case, the results are slightly
worse than the previous ones but are still acceptable. The lowest R2 is again related to fc
and is equal to 0.9869; therefore, the prediction of fc is even better with the application
of KPCA. Peak errors related to the MAXPOW-B working condition are still evident and
remain below 6%. The remaining predictions have shown a percentage error below 0.5%.
Figures 7–10 are related to the prediction of the PPs for the multi-component degradation
case and report in more detail the comparison between predictions of FFNN without
KPCA reduction and targets, the percentage errors for the predictions of FFNN without
KPCA reduction, the comparison between the prediction of FFNN with KPCA reduction
and targets, and the percentage errors for the predictions of FFNN with KPCA reduction,
respectively. In this case, results are worse than those obtained in the prediction of the PPs
in the single-component scenario. This is an unsurprising result because, in this case, the
neural networks must predict the nine variables instead of two or only one, as in the case
of LPT degradation. However, results for the prediction of FFNN without KPCA remain
above 0.92 with an R2 value related to fc equal to 0.9211, which remains the lowest value.
The percentage errors related to this case all remain above 5%, except for fc, for which errors
remain below 30%. However, it is important to note from Figure 8b that only some points
are characterized by a high percentage error. Figures 9 and 10 show the performance for the
prediction of the PPs from the KPCA + FFNN system in the multi-component degradation
case. Additionally in this case, the lower performance in fc prediction is confirmed with an
R2 value equal to 0.9211. Percentage errors of the case do not exceed 4%, except for the fc
prediction, whose percentage errors remain below 20%. However, also in this case, only
some points are characterized by a higher percentage error.
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The performance of the implemented system in the classification of the degraded
component was evaluated. For both single-component and multi-component degradation
cases, a damage class was associated with each observation based on the percentage
variation of PPs with respect to the healthy condition. The classification was carried out
both for the actual PPs, obtained using Equation (1) (and used to carry out the simulations),
and for the PPs predicted by the machine learning system. Confusion matrices were
used to establish the accuracy of the prediction method to identify the degradation status
of the different engine components. Table 7 shows the damage classes for the different
components based on the two PPs that were used for the compressor (ηc, fc), HPT (ηHPT,
fHPT), burner (ηb,p, ηb,c), and shaft transmissions (ηHPS, ηLPS), while Table 8 shows the
classes for LPT, for which only one PP (ηLPT) was considered.

Table 7. Degradation classes used for compressor, HPT, burner, and shaft transmissions.

PP1
PP1 < 5% 5% < PP1 < 10% 10% < PP1 < 15% 15% < PP1

PP2

PP2 < 5% 1 2 3 4
5% < PP2 < 10% 2 3 4 5
10% < PP2 < 15% 3 4 5 6

15% < PP2 4 5 6 7

Table 8. Damage classes used for LPT.

PP1
PP1 < 5% 5% < PP1 < 10% 10% < PP1 < 15% 15% < PP1

1 2 3 4

The percentages refer to the variation with respect to a healthy condition. For example,
considering the compressor, if one of the two associated PPs (ηc and fc) has a percentage
variation with respect to the healthy case of 6% (column 2 in Table 7) and the other has
one of 3% (row 1 in Table 7), the associated damage class is 2. The confusion matrices
for the different components are shown in Figures 11–15. Regarding the compressor, the
application of KPCA both in single-component and multi-component degradation cases
leads to a slight drop in performance that is still acceptable. The difference between single-
component and multi-component cases instead is more marked, passing from 96.7% to
88.7% and from 96.4% to 87.6% of well-classified results for FFNN and KPCA + FFNN
methods, respectively. For HPT, LPT, burner, and shaft transmissions, results have a slight
difference both in single and multi-component degradation and both using FFNN and
KPCA + FFNN methods. Lower classification performance results are reported from the
prediction of the burner’s PPs in multi-component degradation using KPCA + FFNN, equal
to 96.3%. Best results are obtained for LPT, for which there is a perfect classification in
the single-component degradation case, both with FFNN and KPCA + FFNN. Based on
these findings, further development of the present work would be achieved by the use
of multiple single-output ANNs; in this way, it will be possible to better optimize the
ANNs’ settings to reduce the prediction errors in the case of multi-component degradation.
Hence, it will be useful to combine the ANNs with KPCA to reduce the computational time,
which increases switching from the multi-outputs single ANN approach to the multiple
single-output ANNs.
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6. Conclusions

The goal of the study presented here was to obtain a valid EHM system capable of
predicting the so-called Performance Parameters of some of the principal components
constituting a turboshaft, i.e., compressor, high-pressure turbine, low-pressure turbine,
burner, and shafts. Artificial intelligence has been used to reach the target. FFNNs were
exploited and trained to predict the values of the PPs starting from the values of flight
mission data and some state engine variables, which could be measured in a real engine
by installed sensors. The input parameters included the flight Mach number, ambient
total pressure and temperature, total pressures and total temperatures in various engine
stations, high-pressure spool speed, low-pressure spool torque, overall pressure ratio and
fuel flow-PLA ratio. In the present work, the datasets used to train neural networks were
obtained from a series of steady-state GSP simulations, implementing the six different
analyzed degradation cases. Each simulation was characterized by a different degradation
level and condition. The degradation was implemented by changing the values of the
PPs in the GSP block model of the simulated engine. The degraded values of the PPs
were obtained using an adequate equation useful for obtaining a random value between
a maximum and a minimum. The maximum and minimum acceptable values of the PPs
were dictated by the considered range of percentage variation with respect to the healthy
condition. The prediction of PPs by means of neural networks was performed in two ways;
first by training the networks with the original datasets (as obtained from the simulations)
and next by training the networks with the reduced datasets (obtained applying KPCA to
the original datasets). The results were compared. The prediction of PPs in the case without
the use of KPCA produced very good results, both for single-component degradation cases
and for multi-component degradation cases. Application of the KPCA technique does
not lead to a serious lowering of the reliability, both in the case of single-component and
multi-component degradation. Finally, based on values of the PPs, a degraded component
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class was associated with each observation point in the datasets, both for the datasets
obtained from the GSP simulations and for the one obtained from networks prediction. The
results were shown using the confusion matrices. A data reduction technique is a valid
method to reduce the number of computational efforts required, but if the use of these
techniques compromises the efficiency of the system, it may be preferable not to use it.
However, multiple single-output ANNs would be implemented to improve the prediction
of multi-component degradation predictions; in this case, the use of KPCA will be useful
to reduce the time of computations and should not impact the prediction performance, as
shown in the single-component degradation case that presents few outputs (one or two) for
each condition to be predicted. In the future, we will evaluate the robustness of the method
in the presence of measurement uncertainty via input data corrupted by Gaussian noise.

Author Contributions: Conceptualization, M.G.D.G.; methodology, M.G.D.G. and L.S.; software,
N.M. and L.S.; validation, N.M.; formal analysis, N.M.; investigation, N.M. and L.S.; resources, A.F.;
data curation, L.S.; writing—original draft preparation, N.M. and M.G.D.G.; writing—review and
editing, M.G.D.G.; supervision, M.G.D.G. and A.F.; project administration, A.F.; funding acquisition,
A.F. All authors have read and agreed to the published version of the manuscript.
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