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Abstract: The guidance problem of a confrontation between an interceptor, a hypersonic vehicle, 
and an active defender is investigated in this paper. As a hypersonic multiplayer pursuit–evasion 
game, the optimal guidance scheme for each adversary in the engagement is proposed on the basis 
of linear-quadratic differential game strategy. In this setting, the angle of attack is designed as the 
output of guidance laws, in order to match up with the nonlinear dynamics of adversaries. Analyt-
ical expressions of the guidance laws are obtained by solving the Riccati differential equation de-
rived by the closed-loop system. Furthermore, the satisfaction of the saddle-point condition of the 
proposed guidance laws is proven mathematically according to the minimax principle. Finally, non-
linear numerical examples based on 3-DOF dynamics of hypersonic vehicles are presented, to vali-
date the analytical analysis in this study. By comparing different guidance schemes, the effective-
ness of the proposed guidance strategies is demonstrated. Players in the engagement could improve 
their performance in confrontation by employing the proposed optimal guidance approaches with 
appropriate weight parameters. 
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1. Introduction 
In recent decades, the technology of hypersonic vehicles (HVs) developed rapidly 

and has drawn considerable attention among researchers. The generally accepted defini-
tion of hypersonic flight is a flight through the atmosphere between 20 km and 100 km at 
a speed above Mach 5. The advantage of complete controllability of the whole flight pro-
cess indicates great potential in terms of the military (hypersonic weapon) and civil (hy-
personic airliner) applications of HVs. Nevertheless, the disadvantages of HVs are obvi-
ous, one of which is easily detected by infrared detectors. Since violent friction with the 
atmosphere heats the vehicle surface during flight, it will generate intensive infrared ra-
diation. Moreover, the maneuver of HVs relies on aerodynamic force only, which means 
that their overload and maneuverability are limited. As a result, HVs face serious threats 
of new interceptors with the development of endoatmosphere interception technology.  

In order to reduce the risk of being intercepted, there are two methods to improve 
HVs’ ability of confrontation: developing guidance laws for one-on-one competition, or 
carrying defender vehicles and transforming the one-on-one confrontation into a multi-
player game. As for the former, the one-on-one scenario has been researched extensively. 
The classical guidance laws such as proportional navigation (PN), augmented propor-
tional navigation (APN), and optimal guidance laws (OGLs) were proposed for pursuers 
[1–4]. From the perspective of evader, one-on-one pursuit–evasion games can be formu-
lated as two types of problems: a one-side optimization problem or differential game 
problem. A key assumption of a one-side optimization problem is that the player could 
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obtain maneuvering and guidance information of its rival [5–7]. This tight restriction was 
relaxed by introducing the multiple model adaptive estimator in Ref. [8]. Information 
sharing and missile staggering were exploited to reduce the dependency of prior infor-
mation in one-side optimization problems [9]. On the other hand, the differential game 
approach makes no assumption on the rival’s maneuver but requires each adversary’s 
state information [10,11]. The results in Ref. [10] demonstrated that PN is actually an op-
timal intercept strategy. Air-to-air missile guidance laws based on optimal control and 
differential game strategy were derived in Ref. [11], where the guidance laws based on 
differential game strategy were proven to be less sensitive to errors in acceleration esti-
mation. Other guidance laws using sliding-mode control, formation control, heuristic 
method, and artificial neural network were investigated in Refs. [12–17]. It is worth noting 
that HVs are prone to meet saturation problem and chattering phenomenon when using 
the aforementioned guidance laws, because of their limited overload and maneuverabil-
ity. 

Carrying an active defense vehicle is efficient to reduce the maneuverability require-
ment of a target in confrontation, as well as to alleviate the problem of control saturation. 
Other than the high requirement of maneuverability in one-on-one games, the number of 
adversaries covers the inferiority of maneuverability [18–23]. As indicated in Ref. [18], 
optimal cooperative evasion and pursuit strategies for the target pair and the pursuer 
were derived. It should be noted that cooperative differential strategies could reduce ma-
neuverability requirements from the target pair but bring difficulties to parameter choice 
and induce complicated calculations. Shima [19] derived optimal cooperative strategies of 
concise forms for aircraft and its defending missile by using Pontryagin minimum princi-
ple. However, the laws are calculated by a signum function, which causes a chattering 
phenomenon in control signals. Shaferman and Shima [20] considered a novel scenario in 
which a team of cooperating interceptors pursue a high-value target, and a relative inter-
cept angle index was introduced to improve the performance of interceptors. In Ref. [21], 
cooperative guidance laws for aircraft defense were performed in a nonlinear framework 
by using the sliding-mode control technique. In addition to the above studies, Qi et al. [22] 
discussed the infeasible and feasible region of initial zero-effort-miss distance in a multi-
player game and provided evasion–pursuit guidance laws for the attacker. Garcia et al. 
[23] exploited the multiplayer game in a three-dimensional case and derived optimal strat-
egies from the perspective of geometry. 

It can be seen that most of the above studies are based on ideal scenarios in which the 
response of adversaries is rapid, and the dynamics are assumed to be linear. These partic-
ular assumptions will cause potential problems in practical application, since the respond-
ing speed of HVs, whose overload is generated by aerodynamic force, is commonly low. 
Thus far, there are few studies focusing on hypersonic, pursuit–evasion games. Chen et 
al. [24] proposed a fractional calculus guidance algorithm based on nonlinear proportional 
and differential guidance (PDG) law for a hypersonic, one-on-one pursuit–evasion game. 
However, the adversaries in multiplayer games commonly have more than one objective, 
so the family of PID controllers is difficult to be utilized in a multiplayer game. To the best 
of the authors’ knowledge, research on guidance laws of hypersonic, multiplayer pursuit–
evasion games has not been explored in the available literature. 

In this paper, we consider a hypersonic multiplayer game in which an HV carrying 
an active defense vehicle is pursued by an interceptor. In order to match up with nonlinear 
dynamics, the output of the proposed strategy is set up as the angle of attack (AOA). The 
main contribution of this paper is proposing linear-quadratic optimal guidance laws 
(LQOGLs) for adversaries in the game by simultaneously considering energy cost, control 
saturation, and chattering phenomenon. The optimal guidance strategies are derived 
through solving the linear-quadratic differential game problem with the aid of the Riccati 
differential equation. In addition, the satisfaction of the saddle-point condition of the pro-
posed guidance laws is proved analytically. Simulations based on nonlinear kinematics 
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and dynamics are presented, to validate that each adversary can benefit most within its 
ability by employing the proposed strategies. 

This paper is organized as follows: In Section 2, a description of the multiplayer sce-
nario and mathematical model is presented. In Section 3, the linear-quadratic differential 
strategies are derived and analyzed. In Section 4, simulation analysis is presented. Finally, 
some conclusions are provided in Section 5. 

2. Engagement Formulation 
In this section, an engagement is considered in which an HV carrying an active de-

fense vehicle is pursued by an interceptor. In this engagement, the HV plays as a maneu-
vering target (M), the HV interceptor plays as an interceptor (I), and the active defense 
vehicle plays as a defender (D). The defender is launched sometime during the end game 
to protect the HV by destroying the interceptor. The engagement is analyzed in a plane. 
The three-dimensional version of optimal guidance laws can be obtained by extending the 
optimal guidance laws in the plane to three-dimensional models [25,26] and, thus, will 
not be discussed here. 

2.1. Problem Statement 
A schematic view of the planar engagement geometry is shown in Figure 1, where 

X O Y− −  is the Cartesian reference system. There are two collision triangles in the en-
gagement. One is between the interceptor and the HV (I–M collision triangle), and the 
other is between the interceptor and the defender (I–D collision triangle). The altitude, 
velocity, flight path angle, and lift coefficient are represented by h , V , φ  and Cl , re-
spectively. The distance between each adversary is represented by IDρ  and IMρ , while 
the angle between the light of sight (LOS) and X  axis is represented by λ . 

Y

O

D

X

I
DV

IDλ
Dφ

IV
Iφ

M

D -LOSI IDρ

MCl

DCl

Mφ IMλ

Mh

-LOSIM IMρ

MV

ICl

Dh Ih

 
Figure 1. Planar engagement geometry. 

The HV is required to evade the interceptor with the assistance of the defender. Con-
versely, the mission of the interceptor includes evading the defender and pursuing the 
HV. Therefore, the guidance laws for target pairs are designed to converge IDh  to zero 
and to maximize IMh , while the guidance laws designed for interceptors should converge 

IMh  to zero and maximize IDh . 

2.2. Equations of Motion 
Considering the I–M collision triangle, equations of motion can be given by 
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where L
IMV  is the relative velocity along LOSIM , and IMV

⊥  is the lateral speed orthogonal 
to LOSIM , which can be calculated by 

( ) ( )cos cosL
IM I I IM M M IMV V Vφ λ φ λ= + + −  (2) 

( ) ( )sin sinIM I I IM M M IMV V Vφ λ φ λ⊥ = + − −  (3) 

Additionally, the relative motion of the interceptor and defender in the I–D collision 
triangle can also be described in a similar manner as Equation (1). 
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where 

( ) ( )cos cosL
ID I I ID D D IDV V Vφ λ φ λ= + + −  (5) 

( ) ( )sin sinID I I ID M D IDV V Vφ λ φ λ⊥ = + − −  (6) 

The flight path angles of each adversary can be defined as 

{ }cos , , ,i i
i

i

Cl g i I M D
V

φφ Γ −
= =  (7) 

where g  is the gravitational constant, and iΓ  is an operator defined as follows: 

{ } ,  , ,i i
i

i

q S i I M D
m

Γ = =  (8) 

where iq  is the dynamic pressure, iS  is the reference cross-sectional area of aircraft, 
and im  is the mass of aircraft. 

2.3. Linearized Equations of Motion 
During the endgame, the adversaries can be considered as constant-speed mass 

points, since, in most cases, the acceleration generated by thrusters is not significant in the 
guided phase of the flight [6]. Therefore, the equations of motion can be linearized around 
the initial collision course according to small-perturbation theory, and the multiplayer 
game can be formulated as a fixed-time optimal control process. 

( )
0
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As a consequence of linearized kinematics, the gravitational force is neglected [6]. Mean-
while, it is reasonable to assume that the dynamics of each agent can be represented by 
first-order equations as 

( ).
, { , , }i i

i

i

Cl u
Cl i I M D

τ
− −

= =  (10) 

where iu  is the guidance command. 
In this engagement, we were concerned more about the miss distances orthogonal to 

LOS. Thus, the state variables chosen to represent the engagement are given as 

1 IM IM I Mh h Cl Cl =  x   (11a)

2 ID ID I Dh h Cl Cl =  x   (11b)

The state functions can be expressed as 

( )
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Accordingly, the state-space representation of the pursuit–evasion game is obtained. 

[ ]1 1 1 1
T

I Mu u= +A x Bx  (13a)

[ ]2 2 2 2
T

I Du u= +A x Bx  (13b)

where 

1
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A zero-effort-miss (ZEM) method is introduced to reduce the complexity of the math-
ematical model, which is the missed distance if both vehicles in collision engagement 
would apply no control from the current time. The ZEM of interceptor and target is rep-
resented by 1Z , and that of interceptor and defender is represented by 2Z , which can be, 
respectively calculated as 

( )1 1 1 1 1( ) , ( )fZ t t t t= LΦ x  (15a)

( )2 2 2 2 2( ) , ( )fZ t t t t= L Φ x  (15b)

where 1ft  and 2ft  represent interception time, 1L  and 2L  are constant vectors de-
fined as 

[ ]1 1 0 0 0=L  (16a)

[ ]2 1 0 0 0=L  (16b)

Additionally, ( )iΦ   is the transition matrix which can be calculated by 

( ) 11( ) , {1, 2}
T

i iL s i−−  = − = Φ I A  (17) 

where 1[ ]L−   is the inverse Laplace transformation, and I  denotes the identity matrix. 
Associated with Equations (13a,b)–(17), 1Φ  and 2Φ  can be calculated as follows: 

( ) ( )
( ) ( )
1

1

2 2
1 1

1 1
1

1
0 1
0 0 0
0 0 0

I

M

I I I M M M

I I I M M M

t

e
e

χ

χ

τ φ χ τ φ χ
τ ψ χ τ ψ χ

−

−

 Γ −Γ
 Γ −Γ =
 
 
  

Φ  (18a)

( ) ( )
( ) ( )
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2

2 2
2 2

2
2 2

2

1
0 1
0 0 0
0 0 0 M

I I I D D M

I I I D D M

t

e
e

χ
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τ φ χ τ φ χ
τ ψ χ τ ψ χ

−

−

 Γ −Γ
 Γ −Γ =
 
 
  

Φ  (18b)

where ( )φ  , ( )ψ   and ijχ  are computed as 

( ) 1e ξφ ξ ξ−= + −  (19) 

( ) 1e ξψ ξ −= − +  (20) 

fj
ij

i

t t
χ

τ
−

=  (21) 

As a result, 1Z  and 2Z  are calculated by 

( ) ( ) ( )2 2
1 11 1 12 1 1 1431( ) f I I I M M MZ t x t t x x xτ φ χ τ φ χ= + − + Γ − Γ  (22a)
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( ) ( ) ( )21 22 23 24
2 2

2 2 2 2( ) f I I I D D DZ t x t t x x xτ φχ τφ χ= + − + Γ − Γ  (22b)

The derivative of 1Z  and 2Z  can be given as follows: 

( ) ( )1 1 1( ) I I I I M M M MZ t u uτ ψ χ τ ψ χ= Γ − Γ  (23a)

( ) ( )2 2 2( ) I I I I D D D DZ t u uτ ψ χ τ ψ χ= Γ − Γ  (23b)

Therefore, the dynamic system corresponding to Equations (13a,b) and (14a,b) is 
transformed into 

( ) ( ) ( ) ( ) ( )I I E Et t u t t t= −x G G u  (24) 

where 

1

2

( )
( )

( )
Z t

t
Z t
 

=  
 

x , 
( )

( )
( )

M
E

D

u t
t

u t
 

=  
 

u , 1

2

I
I

I

Λ 
=  Λ 

G , 1

2

0
0
M

E
D

−Λ 
=  −Λ 

G  (25) 

( )ij i i ijτ ψ χΛ = Γ  (26) 

Remark 1. According to Equation (22a,b), ( )iZ t  is independent of guidance laws and only relies 
on current states. If the current state is determined, ( )iZ t  can be determined. It can be seen from 
Equation (23a,b) that the derivative ( )iZ t  is state-independent. Corresponding to the new state 
space defined by Equations (24)–(26), an optimal control problem with a fixed terminal time in a 
continuous system is considered. The objective of the target pair is to design optimal guidance 
schemes that can converge 2Z  to zero as 2ft t→  while keeping 1Z  as large as possible. Con-
versely, the control law of the interceptor is designed to make 1Z  converge to zero while maintain-
ing 2Z  as large as possible. 

2.4. Timeline 
With the linearization assumption, the interception time is fixed and can be calcu-

lated by 

( )
0 0

1
IM M

f
IM I M

t
V V

ρ ρ
ρ

= − =
+

 (27a)

( )
0 0

2
ID ID

f
ID I D

t
V V

ρ ρ
ρ

= − =
+

 (27b)

It is reasonable to assume that the engagement of the interceptor and the defender 
terminates before that of the interceptor and the target, and thus, 2 1f ft t< . The nonnega-
tive time-to-go of the interceptor–defender engagement and the interceptor–target en-
gagement can be, respectively, calculated as follows: 

1

,
0,
fIM fIM

go
fIM

t t t t
t

t t
− <=  ≥

 (28a)

2

,
0,
fID fID

go
fID

t t t t
t

t t
− <=  ≥

 (28b)

3. Guidance Schemes 
3.1. Cost Function 

The quadratic cost function in this problem is chosen as follows: 
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ftT T T
I E f f I I E E Et

J u t t u t r u t t t dt = + − u x Px u R u  (29) 
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11

22

0
0
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p
 
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P , 22

33

0
0E

r
r

 
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R  (30) 

The weights 11p , 22p , 11r , 22r  and 33r  are nonnegative. Let *
Iu , *

Mu , and *
Du  be 

optimal guidance laws for interceptor, target, and defender, respectively. Thus, the guid-
ance laws are issued so as to meet the condition set as follows: 

** *

max min
uu u IM D

J
 
  

 (31) 

3.2. Cost Function 
Let ( )tλ  be the Lagrange multiplier vector, 

1

2

( )
( )

( )
t

t
t

λ
λ

λ
 

=  
 

 (32) 

The corresponding Hamiltonian is given by 

[ ]1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

T T T
I I I E E E I I E EH u t R u t t t t u t t tλ = − + − u R u G G u  (33) 

The costate equations and transversality conditions are given by 

1
1

2
2

0

0

H
Z
H
Z

λ

λ

∂ = − = ∂
 ∂ = − =
 ∂




 (34) 

( ) ( ) ( )

( ) ( ) ( )

1 11 1
1

2 22 2
2

fMM fMM
fMM

fID fID
fID

Jt p Z t
Z t

Jt p Z t
Z t

λ

λ

∂ = = ∂
 ∂ = = −
 ∂

 (35) 

As the Hamiltonian is second-order continuously differentiable with respect to Iu  
and Eu , *

Iu  and *
Eu  satisfy 

( ) ( ) ( ) 0

( ) ( ) ( ) 0

T T
I I I

I

T T
E E E

E

H u t R t t
u
H t t t

λ

λ

∂ = + =∂
 ∂ = + =
∂

G

u R G
u

 (36) 

Therefore, the optimal guidance laws can be calculated by 
* 1

*
1

*

( ) ( ) ( )

( )
( ) ( )

( )

T
I I I

TM
E E

D

u t R t t

u t
t t

u t

λ

λ

−

−

= −

 
= − 

 

G

R G
 (37) 

Considering Equation (35), the linear relationship between ( )fIDtλ  and ( )fIDZ t  
can be obtained immediately. Thus, it is reasonable to assume that 

( ) ( ) ( )t t tλ = K x  (38) 

where ( )tK  is a square matrix of order two and satisfies 
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( )fIDt =K P  (39) 

The derivative ( )tλ  with respect to time can be calculated by 

[ ]

.

.

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )I I E E

t t t t t

t t t t u t t t

λ = +

= + −

K x K x

K x K G G u

 
 (40) 

Substituting the optimal guidance laws (37) into Equation (40), we have 
.

* *

.
1 1

.
1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

I I E E

T T
I I I E E E

T T
I I I E E E

t t t t t u t t t

t t t t R t t t t

t t t t R t t t t t

λ

− −

− −

 = + − 

 = − − 

 = − − 

K x K G G u

K x K G G G R G λ

K x K G G G R G K x



 (41) 

According to Equations (34) and (41), since ( ) 0tλ =  is satisfied for any ( )tx , we 
have 

.
1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T T

I I I E E Et t t R t t t t− − − − = K K G G G R G K  (42) 

Equation (42) is a well-known Riccati differential equation. Considering the follow-
ing equation: 

( )
( )

1
1 1

1 1 1 1

1 1

T T
I I I E E E

T T
I I I E E E

d d
dt dt

R

R

−
− −

− − − −

− −

= −

 = − − 

= − −

K KK K

K K G G G R G K K

G G G R G

 (43) 

Then, by integrating Equation (43) from t  to fIDt  and considering Equation (39), 
the analytical expression of ( )tK  is derived as follows: 

1
1 1 1( ) ( ) ( ) ( ) ( )

t T T
I I I E E Et

t t R t t t dt
−

− − −  = + −   K P G G G R G  (44) 

Substituting Equation (44) into Equation (38), the LQOGL *
Iu , *

Du  and *
Mu  can be 

calculated by 
* 1

*
1

*

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )

T
I I I

TM
E E

D

u t R t t t

u t
t t t

u t

−

−

= −

 
= − 

 

G K x

R G K x
 (45) 

Now, the solution of optimal guidance laws is presented completely. By using the 
interpolation method, the desired AOA can be obtained, and this completes the design of 
the guidance laws. 

3.3. Proof of Saddle-Point Condition 

The proposed guidance laws *
Iu , and *

Eu  are functions of state vector ( )tx , which 
form closing-loop feedback controls of ( )tx . It should be proven that the optimal guid-
ance laws given by Equation (45) satisfy the saddle-point condition. Considering Equa-
tions (24) and (42), it can be derived that 
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[ ]

( ) ( ) ( ) ( )1 1
11

1 1
11 11 11

1 1

11

1 1 1 1
2 2 2 2

1 1
2 2
1
2
1
2
1
2
1
2

T T T T

T T T T T
I I E E I I E E

T T T
I I E E E

T

I I I I

T

E E E E E E E

T T
I I E E E

d
dt

u u

t r t t t

u r r u r

u r u

− −

− −

− −

= + +

 = − + − 

 + − 

   = + +   

   − + +   

− −

x Kx x Kx x Kx x Kx

G u G Kx x K G G u

x K G G G R G Kx

G Kx G Kx

u R G Kx R u R G Kx

u R u

 

  

 (46) 

Integrating Equation (46) from 0t  to fIDt  and taking Equation (29) into account, the 
cost function can be derived as follows: 

( ) ( ) ( )

( ) ( )
0

0

0

11

1 1
0 0 0 11 11

1 1

1 1, = ( ) ( ) ( ) ( ) ( )
2 2
1 1( )
2 2

1
2

fID

fID

fID

tT T T
I E fID fID fID I I E E Et

t TT
I I I I It

t T

E E E E E E Et

J u t t t u t r u t t t dt

t t t u r u r dt

dt

− −

− −

 + − 

   = + + +   

   − + +   







u x K x u R u

x K x G Kx R G Kx

u R G Kx R u R G Kx

 (47) 

If ( ) ( ) ( ) ( ) ( )* 1
11I I Iu t u t r t t t−= = − G K x , we have 

( ) ( ) ( )
0

* 1 1
0 0 0

1 1, = ( )
2 2

fIDt TT
I E E E E E E E Et

J u t t t dt− −   − + +   u x K x u R G Kx R u R G Kx  (48) 

It is obvious that ( ) ( ) ( ) ( ) ( )* 1
E E E Et t t t t−= = −u u R G K x  yields the minimum of J , 

which means 

( ) ( )* * *, ,I E I EJ u u≤u J u  (49) 

Similarly, if ( ) ( ) ( ) ( ) ( )* 1
E E E Et t t t t−= = −u u R G K x , we have 

( ) ( ) ( )
0

* 1 1
0 0 0 11 11

1 1, ( )
2 2

fIDt TT
I E I I I I It

J u t t t u r u r dt− −   = + + +   u x K x G Kx R G Kx  (50) 

Thus, ( ) ( ) ( ) ( ) ( )* 1
I I I Iu t u t R t t t−= = − G K x  yields the maximum of J , which means 

( ) ( )* * *, ,I E I EJ u J u≤u u  (51) 

Combined with two situations (49) and (51), *
Iu  and *

Eu  satisfy the saddle-point 
condition as follows: 

( ) ( ) ( )* * * *, , ,I E I E I EJ u J u J u≤ ≤u u u  (52) 

4. Simulation and Analysis 
In this section, the performance of the proposed guidance algorithms is investigated 

through nonlinear numerical examples. A scenario, consisting of an HV as the target (M), 
an active defense vehicle as the defender (D), and an HV interceptor as the interceptor (I), 
is considered. The interceptor is assigned the task of capturing the HV and evading the 
defender. Perfect information for the adversaries’ guidance laws is assumed. 

4.1. Simulation Setup 
In the simulated scenarios, 3-DOF point mass planetary flight mechanics [27] are em-

ployed in each adversary. All players use rocket engines to achieve hypersonic speed; the 
target and the defender are launched by the same rocket, while each interceptor is 



Aerospace 2022, 9, 97 11 of 18 
 

 

launched by a separate small rocket. The target and the defender have higher speeds than 
the interceptor since the target has a higher range requirement and is launched by a more 
powerful rocket. Hence, the initial horizontal velocities of the three players are set as 

3000 m/sD MV V= = , and 2000 m/sIV = , respectively. The altitudes are set as 40.5 kmIh =
, 40 kmMh = , and 40.1 kmDh = , respectively. The endgame starts when the horizontal 
distance between the target and the interceptor reaches 150 km. The defender is assumed 
to be launched 20 km in front of the target at the beginning of the scenario. During the 
endgame, all players are in the glide phase and perform maneuvers, mainly relying on 
aerodynamic force. The HV is considered as a plane-symmetric lifting-body shape with 
one pair of air rudders, which can provide high L/D up to 3.5 [28]. Hence, the HV is re-
quired to employ bank-to-turn control. The active defense vehicle is a companion vehicle 
launched by HV whose aerodynamic performance is slightly worse than HV. Conversely, 
the interceptor is designed as an axisymmetric structure, with two pairs of air rudders, 
and employed skid-to-turn control for high agility. The desired roll rate of the interceptor 
can be expected to be much smaller than the HV since the interceptor can reorient the 
aerodynamic acceleration by changing the ratio of the AOA to the angel of sideslip [29]. 
This means that the interceptor sacrifices the aerodynamic performance in exchange for 
mobility and control stability. To compensate for the shortcoming of aerodynamic maneu-
verability, the interceptor was equipped with a rocket-based reaction-jet system (RCS), to 
obtain instant lateral acceleration. The RCS can only be turned on for a short time around 
the collision, due to limited fuel cost. The instantaneous overload of the interceptor is ex-
pected to be 9 g when exhausting the RCS. For these practical factors, the AOAs are as-
sumed to be bounded as max max max 35I D Mα α α= = = ° with bounded changing rates as 

6 deg/sIα =   , 5 deg/sDα =    and 3 deg/sMα =   , respectively. Time constant of each player is 
5 msIτ =  and 10 msD Mτ τ= = , respectively. The simulation parameters of all adver-

saries are listed in Table 1. 

Table 1. Simulation parameters. 

Parameters 
Adversary 
Interceptor Defender Target 

Latitude 0 0 0 
Longitude 0 deg 0.0031 deg 0.023 deg 
Altitude 40.5 km 40.1 km 40 km 
Horizonal velocity −2000 m/s 3000 m/s 3000 m/s 
Vertical velocity 0 0 0 
Maximum AOA 35 deg 35 deg 35 deg 
Rate of AOA change 6 deg/s 5 deg/s 3 deg/s 
Time constant 0.005 s 0.01 s 0.01 s 
Killing radius 0.3 m 0.5 m 0.5 m 

4.2. Numerical Examples 
In this subsection, the effectiveness of the proposed LQOGL in Equation (45) is vali-

dated through the following three cases: 
1. The interceptor adopts PN guidance law, the defender adopts PN guidance law, and 

the target adopts LQOGL (PNvPNvLQOGL); 
2. The interceptor adopts PN guidance law, the defender adopts LQOGL, and the target 

adopts LQOGL (PNvLQOGLvLQOGL); 
3. The interceptor adopts LQOGL, the defender adopts LQOGL, and the target adopts 

LQOGL (LQOGLvLQOGLvLQOGL). 
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Generally, high L/D HVs are required for the capabilities of large downrange and 
cross-range [30]. Thus, unnecessary maneuvers of HV should be avoided since it will in-
crease drag forces and cause kinetic energy cost and range loss. Thus, the LQOGL for the 
target can be expressed as follows: 

( ) ( ) ( )* 1
11

*

 

0  

T
M E E IM

M IM

u t t t for Z

u for Z

ρ

ρ

−  = − ≤  
= >

R G K x
 (53) 

Since the defender is designed to sacrifice itself to protect the HV, there is no need to 
take into account the range loss and control saturation for the defender. Unlike the HV 
and the defender, endoatmosphereic interceptor missile is generally steered by dual con-
trol systems of aerodynamic fins and reaction jets [31]. Thus, fuel cost should be taken into 
account for the interceptor, and the switching time of the jet engines should be strictly 
controlled. Inspired by Ref. [31], the maximum duration of the engine is assumed up to 1 
s, and the engine is turned on when 10.5 s 1.5 sgot< <  and 20 s 1 sgot< < . Additionally, 
the dynamic of the divert thrust generated by jet engines can be assumed to be presented 
by a first-order equation, 

J J
J

I

L uL
τ
−

= −  (54) 

The JL  herein is considered as a complement to lift force in Equation (53). The op-
timal guidance laws based on Pontryagin minimum principle for a reaction-jet system can 
be given by 

[ ]* max
2 2sgn , 0 1J J gou u Z s t s= < <  (55) 

[ ]* max
1 1sgn , 0.5 1.5J J gou u Z s t s= − < <  (56) 

where max
Ju  is the maximum thrust that the engines can provide, which is assumed to be 

seven times of gravitational force. 
The simulation results are concluded in Table 2. 

Table 2. Simulation results. 

Engagements 
Case 1 Case 2 Case 3 

PNvPNvLQOGL PNvLQOGLvLQOGL LQOGLvLQOGLvLQOGL 
IDZEM  15.01 m −15.03 m 15.01 m 
IMZEM  −0.17 m −28.07 m −0.17 m 

Result Target is intercepted by 
interceptor 

Interceptor is expelled by the 
defender. 

Target is intercepted by the 
interceptor. 

Case 1. The performance of the guidance strategies in multiplayer engagement, PNvPNvLQOGL, 
is investigated in this case. Based on the linear-quadratic differential game, LQOGL for the target 
is calculated by Equation (53), corresponding to weight parameters. 

{ }8 8
11 22 11 22 331 10 , 1 10 , 1.95, 12.54, 10.13 , for target p p r r r= × = × = = =  (57) 

Simulation results of case 1 are shown in Figure 2, which include the trajectory, ZEM, 
and AOA of each adversary. It can be seen from Figure 2a,b that the interceptor is pursued 
tightly by the defender but evades the defender depending on thrust during 

20 s 1 sgot< <  and then turns its head to the target. The maximum acceleration of the in-
terceptor reaches 10 g when the exhaust pipe is burning. Although the target has a higher 
L/D, the interceptor is able to intercept the target. The ZEM between the target and the 
interceptor and the ZEM between the defender and the interceptor both converge to zero 
swiftly. An interesting situation is observed in which even the target is pursued tightly by 
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the interceptor, and it hardly maneuvers in the middle of the endgame. This situation can 
be understood as the scenario in which the interceptor is also tightly caught by the de-
fender, which is considered safe by the target according to LQOGL. However, the key is 
that the jet engines on the interceptor can help it evade the defender when 20 s 1 sgot< < . 
The ZEM between the interceptor and the defender rises suddenly to 15.01 m when 

2 0 sgot = , which is larger than the killing radius of the defender obviously. After that, the 
engagement is transformed into a one-on-one game, and the target has no time to enlarge 
the missing distance. Referring to Figure 2c–e, both the target and the interceptor face to 
control saturation. However, the target is not able to evade the interceptor since the rate 
of AOA change of the target is limited, while the interceptor can respond quickly by 
switching on the jet engines when 10.5 s 1.5 sgot< < . As can be seen in Figure 2b, the ZEM 
between the target and the interceptor converges to −0.17 m when 1 0 sgot = , which is 
smaller than the killing radius of the interceptor. 

These results demonstrate that the interceptor is able to evade the defender using PN 
guidance law and successfully intercept the target. Additionally, the accelerations of the 
three adversaries do not reach the limit in the middle process of this engagement. 

 
Figure 2. Simulation results of Case 1: (a) trajectory; (b) ZEM; (c) target’s AOA; (d) defender’s AOA; 
(e) interceptor’s AOA. 
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Remark 2. Inspired by Ref. [19], guidance laws for target based on norm differential strategy can 
be derived from the cost function 

{ }8 8
11 22 11 22 331 10 , 1 10 , 1.95, 12.54, 10.13 , for target p p r r r= × = × = = =  (58) 

The guidance scheme for the target is calculated by 

( )*
2 1 1sgnM fIM Mu Z tα = Λ   (59) 

It can be seen from Equation (59) that the guidance laws based on norm differential strategy are 
calculated by a signum function. 

A controlled experiment is performed by replacing the target’s LQOGL with the 
norm optimal guidance law proposed in Equation (59). The results are shown in Figure 3, 
showing the trajectory, ZEM, and AOA of the target. It can be seen in Figure 3b that the 
ZEM between the target and the interceptor is kept around a safe distance. However, as 
shown in Figure 3c, the target meets with the control saturation problem and severe chat-
tering phenomenon. This is consistent with the expression of norm optimal guidance law. 
Under the bank-to-turn control mode, the desired roll rate of the target will be very large. 
Additionally, large-amplitude maneuvering will lead to kinetic energy loss as far as range 
loss. 

 
Figure 3. Simulation results of controlled experiment: (a) trajectory; (b) ZEM; (c) target’s AOA. 

Case 2. The performance of guidance strategies in engagement, PNvLQOGLvLQOGL, is investi-
gated in this case. LQOGLs for target pair are calculated through Equations (45) and (53), corre-
sponding to parameters chosen as follows: 

{ }8 8
11 22 11 22 331 10 , 1 10 , 1.95, 12.54, 10.13 , for target pairp p r r r= × = × = = =  (60) 

Simulation results of case 2 are shown in Figure 4, which include trajectory, ZEM, 
and AOA of the target pair. The effectiveness of the proposed guidance laws is confirmed 
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by this case. Figure 4a,b show that the interceptor evades from being intercepted by the 
defender but fails to catch the target. The ZEM between the interceptor and the defender 
is −15.03 m when 2 0got = , and the ZEM between the interceptor and the target vehicle is 
−28.07 m when 1 0got = , which are larger than the killing radius of the defender and the 
interceptor, respectively. It can be seen from Figure 4a,b that the interceptor is driven 
away from the target by the defender when 20 1gos t s< <  and cannot catch up with the 
target even the interceptor can accelerate by jet engines. Compared with the simulation 
result of case 1, smooth dynamics of the target and the defender are evident in Figure 4c,d. 
Moreover, the guidance laws of target pairs are not saturated, and the kinetic energy cost 
is considerably saved. The chattering phenomenon is also alleviated, which is beneficial 
to control stability. 

 
Figure 4. Simulation results of Case 2: (a) trajectory; (b) ZEM; (c) target’s AOA; (d) defender’s AOA. 
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Case 3. The performance of guidance strategies in engagement, LQOGLvLQOGLvLQOGL, is in-
vestigated in this case. LQOGLs for three adversaries are calculated through Equations (45), (53), 
(55) and (56). Weight parameters are chosen as follows: 

{ }8 8
11 22 11 22 331 10 , 1 10 , 1.95, 12.54, 10.13 , for target pairp p r r r= × = × = = =

 (61) 

8 8
11 22 11 22 33{ 1 10 , 1 10 , 25, 2.22, 17.03},  for interceptorp p r r r= × = × = = =  (62) 

Figure 5 presents the simulation results of case 3 in order similar to the above cases. 
As Figure 5a shows, the guidance laws proposed for the target pair are effective. Instead 
of evading the interceptor persistently, the target acts similar to a bat and lures the inter-
ceptor close to the defender. It allows the defender to catch the interceptor more easily. 
However, contrary to the result of case 2, the interceptor skims the defender without 
changing heading violently and turns its head to the target. Obviously, it can be seen from 
Figure 5b that the interceptor is able to attack the target vehicle without being intercepted 
by the defender. The ZEM between the interceptor and the defender is 15.01 m when 

2 0got = , and the ZEM between the interceptor and the target vehicle is −0.17 m when 

1 0got = . 

 
Figure 5. Simulation results of Case 3: (a) trajectory; (b) ZEM. 
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5. Conclusions 
• In this research, a set of guidance laws for a hypersonic multiplayer pursuit–evasion 

game is derived based on linear-quadratic differential strategy. The energy cost, con-
trol saturation, chattering phenomenon, and aerodynamics were considered simul-
taneously. The satisfaction of saddle-point condition in a differential game was also 
proven theoretically. 

• Nonlinear numerical examples of the multiplayer game were presented to validate 
the analysis. The advantage and efficiency of the proposed guidance were verified 
by the results. The LQOGLs exactly reduce the maneuverability requirement of the 
target in the pursuit–evasion game. Compared with the norm differential strategy, 
the proposed guidance strategy reduces the energy cost, alleviates the saturation 
problem, and avoids the chattering phenomenon, which guarantees task accomplish-
ment and increases guidance phase stability. 

• The performance of the interceptor showed that the proposed optimal guidance ap-
proach is able to complete the intercept mission if the interceptor possesses superior 
maneuverability. It is important to note that the saturation problem cannot be 
avoided completely when all the adversaries employ the LQOGL, since maneuvera-
bility is the most important factor in determining whether they will win or lose in the 
game. The interceptor or the target pair should make their best effort to attack or 
defend by exhaustedly performing maneuvers. 
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