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Abstract: The guidance problem of a confrontation between an interceptor, a hypersonic vehicle,
and an active defender is investigated in this paper. As a hypersonic multiplayer pursuit-evasion
game, the optimal guidance scheme for each adversary in the engagement is proposed on the basis
of linear-quadratic differential game strategy. In this setting, the angle of attack is designed as the
output of guidance laws, in order to match up with the nonlinear dynamics of adversaries. Analyt-
ical expressions of the guidance laws are obtained by solving the Riccati differential equation de-
rived by the closed-loop system. Furthermore, the satisfaction of the saddle-point condition of the
proposed guidance laws is proven mathematically according to the minimax principle. Finally, non-
linear numerical examples based on 3-DOF dynamics of hypersonic vehicles are presented, to vali-
date the analytical analysis in this study. By comparing different guidance schemes, the effective-
ness of the proposed guidance strategies is demonstrated. Players in the engagement could improve
their performance in confrontation by employing the proposed optimal guidance approaches with
appropriate weight parameters.

Keywords: hypersonic vehicle; guidance law; differential game; pursuit-evasion

1. Introduction

In recent decades, the technology of hypersonic vehicles (HVs) developed rapidly
and has drawn considerable attention among researchers. The generally accepted defini-
tion of hypersonic flight is a flight through the atmosphere between 20 km and 100 km at
a speed above Mach 5. The advantage of complete controllability of the whole flight pro-
cess indicates great potential in terms of the military (hypersonic weapon) and civil (hy-
personic airliner) applications of HVs. Nevertheless, the disadvantages of HVs are obvi-
ous, one of which is easily detected by infrared detectors. Since violent friction with the
atmosphere heats the vehicle surface during flight, it will generate intensive infrared ra-
diation. Moreover, the maneuver of HVs relies on aerodynamic force only, which means
that their overload and maneuverability are limited. As a result, HVs face serious threats
of new interceptors with the development of endoatmosphere interception technology.

In order to reduce the risk of being intercepted, there are two methods to improve
HVs' ability of confrontation: developing guidance laws for one-on-one competition, or
carrying defender vehicles and transforming the one-on-one confrontation into a multi-
player game. As for the former, the one-on-one scenario has been researched extensively.
The classical guidance laws such as proportional navigation (PN), augmented propor-
tional navigation (APN), and optimal guidance laws (OGLs) were proposed for pursuers
[1-4]. From the perspective of evader, one-on-one pursuit-evasion games can be formu-
lated as two types of problems: a one-side optimization problem or differential game
problem. A key assumption of a one-side optimization problem is that the player could
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obtain maneuvering and guidance information of its rival [5-7]. This tight restriction was
relaxed by introducing the multiple model adaptive estimator in Ref. [8]. Information
sharing and missile staggering were exploited to reduce the dependency of prior infor-
mation in one-side optimization problems [9]. On the other hand, the differential game
approach makes no assumption on the rival’'s maneuver but requires each adversary’s
state information [10,11]. The results in Ref. [10] demonstrated that PN is actually an op-
timal intercept strategy. Air-to-air missile guidance laws based on optimal control and
differential game strategy were derived in Ref. [11], where the guidance laws based on
differential game strategy were proven to be less sensitive to errors in acceleration esti-
mation. Other guidance laws using sliding-mode control, formation control, heuristic
method, and artificial neural network were investigated in Refs. [12-17]. It is worth noting
that HVs are prone to meet saturation problem and chattering phenomenon when using
the aforementioned guidance laws, because of their limited overload and maneuverabil-
ity.

Carrying an active defense vehicle is efficient to reduce the maneuverability require-
ment of a target in confrontation, as well as to alleviate the problem of control saturation.
Other than the high requirement of maneuverability in one-on-one games, the number of
adversaries covers the inferiority of maneuverability [18-23]. As indicated in Ref. [18],
optimal cooperative evasion and pursuit strategies for the target pair and the pursuer
were derived. It should be noted that cooperative differential strategies could reduce ma-
neuverability requirements from the target pair but bring difficulties to parameter choice
and induce complicated calculations. Shima [19] derived optimal cooperative strategies of
concise forms for aircraft and its defending missile by using Pontryagin minimum princi-
ple. However, the laws are calculated by a signum function, which causes a chattering
phenomenon in control signals. Shaferman and Shima [20] considered a novel scenario in
which a team of cooperating interceptors pursue a high-value target, and a relative inter-
cept angle index was introduced to improve the performance of interceptors. In Ref. [21],
cooperative guidance laws for aircraft defense were performed in a nonlinear framework
by using the sliding-mode control technique. In addition to the above studies, Qi et al. [22]
discussed the infeasible and feasible region of initial zero-effort-miss distance in a multi-
player game and provided evasion—pursuit guidance laws for the attacker. Garcia et al.
[23] exploited the multiplayer game in a three-dimensional case and derived optimal strat-
egies from the perspective of geometry.

It can be seen that most of the above studies are based on ideal scenarios in which the
response of adversaries is rapid, and the dynamics are assumed to be linear. These partic-
ular assumptions will cause potential problems in practical application, since the respond-
ing speed of HVs, whose overload is generated by aerodynamic force, is commonly low.
Thus far, there are few studies focusing on hypersonic, pursuit-evasion games. Chen et
al. [24] proposed a fractional calculus guidance algorithm based on nonlinear proportional
and differential guidance (PDG) law for a hypersonic, one-on-one pursuit-evasion game.
However, the adversaries in multiplayer games commonly have more than one objective,
so the family of PID controllers is difficult to be utilized in a multiplayer game. To the best
of the authors” knowledge, research on guidance laws of hypersonic, multiplayer pursuit-
evasion games has not been explored in the available literature.

In this paper, we consider a hypersonic multiplayer game in which an HV carrying
an active defense vehicle is pursued by an interceptor. In order to match up with nonlinear
dynamics, the output of the proposed strategy is set up as the angle of attack (AOA). The
main contribution of this paper is proposing linear-quadratic optimal guidance laws
(LQOGLs) for adversaries in the game by simultaneously considering energy cost, control
saturation, and chattering phenomenon. The optimal guidance strategies are derived
through solving the linear-quadratic differential game problem with the aid of the Riccati
differential equation. In addition, the satisfaction of the saddle-point condition of the pro-
posed guidance laws is proved analytically. Simulations based on nonlinear kinematics
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and dynamics are presented, to validate that each adversary can benefit most within its
ability by employing the proposed strategies.

This paper is organized as follows: In Section 2, a description of the multiplayer sce-
nario and mathematical model is presented. In Section 3, the linear-quadratic differential
strategies are derived and analyzed. In Section 4, simulation analysis is presented. Finally,
some conclusions are provided in Section 5.

2. Engagement Formulation

In this section, an engagement is considered in which an HV carrying an active de-
fense vehicle is pursued by an interceptor. In this engagement, the HV plays as a maneu-
vering target (M), the HV interceptor plays as an interceptor (I), and the active defense
vehicle plays as a defender (D). The defender is launched sometime during the end game
to protect the HV by destroying the interceptor. The engagement is analyzed in a plane.
The three-dimensional version of optimal guidance laws can be obtained by extending the
optimal guidance laws in the plane to three-dimensional models [25,26] and, thus, will
not be discussed here.

2.1. Problem Statement

A schematic view of the planar engagement geometry is shown in Figure 1, where
X-0-Y is the Cartesian reference system. There are two collision triangles in the en-
gagement. One is between the interceptor and the HV (I-M collision triangle), and the
other is between the interceptor and the defender (I-D collision triangle). The altitude,
velocity, flight path angle, and lift coefficient are represented by %, V', ¢ and CI, re-
spectively. The distance between each adversary is represented by p,, and p,,, while
the angle between the light of sight (LOS) and X axis is represented by A.

0

Figure 1. Planar engagement geometry.

The HV is required to evade the interceptor with the assistance of the defender. Con-
versely, the mission of the interceptor includes evading the defender and pursuing the
HV. Therefore, the guidance laws for target pairs are designed to converge #,, to zero

and to maximize #,,,, while the guidance laws designed for interceptors should converge
h,, tozero and maximize #,, .

2.2. Equations of Motion

Considering the I-M collision triangle, equations of motion can be given by
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Pt =V
. |
Ay = -
st Pm , )
hy =V, sing, =V, sing,
V,=0
V, =

where V,, is the relative velocity along LOS,, ,and ¥}, is the lateral speed orthogonal
to LOS,,, , which can be calculated by

VH@ =V COS(¢1 + A )+ Vv COS(¢M =y ) 2)
Vie =V, sin (¢, + 4, ) —Vy sin(8y, — ) ®)

Additionally, the relative motion of the interceptor and defender in the I-D collision
triangle can also be described in a similar manner as Equation (1).

P ="V
L
/7.'10 = Lo
21 P (4)
h,, =V,sing, -V, sing@,
/=0
V,=0
where
V/LL) =V, cos(gb, +/1,D)+VD COS(¢D _ﬂ’ID) )
V/t =V, sin(¢, +ﬂ,D)—VM Sin(¢u _ﬂ’ID) (6)
The flight path angles of each adversary can be defined as
. TI')Cl.—gcos¢ .
Qz#M’l={[,M,D} )

i

where g is the gravitational constant, and I', is an operator defined as follows:

i

S
r =42 ;={1 M D} ®)
mi
where g¢; is the dynamic pressure, S, is the reference cross-sectional area of aircraft,
and m, is the mass of aircraft.

2.3. Linearized Equations of Motion

During the endgame, the adversaries can be considered as constant-speed mass
points, since, in most cases, the acceleration generated by thrusters is not significant in the
guided phase of the flight [6]. Therefore, the equations of motion can be linearized around
the initial collision course according to small-perturbation theory, and the multiplayer
game can be formulated as a fixed-time optimal control process.

P ==V V)

Ay =0

Sl:4h,, =T,Cl,-T,CL, (9a)
V,=0
v, =0

M
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/:’m == ( Vi+Vp )
A, =0
S2:44h, =T,Cl, -T,Cl, (9b)
V,=0
V,=0

As a consequence of linearized kinematics, the gravitational force is neglected [6]. Mean-
while, it is reasonable to assume that the dynamics of each agent can be represented by
first-order equations as

L _—(Cl-u)
Cli=————%,i={I,M,D} (10)

i
where u, is the guidance command.

In this engagement, we were concerned more about the miss distances orthogonal to
LOS. Thus, the state variables chosen to represent the engagement are given as

xl:|:th th a, Cle| (11a)

xz:|:hm th Cl, CID] (11b)

The state functions can be expressed as
X =X

X, =Tx, =Ty x,

. —(x,—u
L1:{%, =M (12a)
7;
5614 _ _(x14 _MM)
Ty
Xy =X

Xy =125 =Ty,

) —(x,, —u
L2: szM (12b)
T[
i, = _(xz4_”11)
TD

Accordingly, the state-space representation of the pursuit-evasion game is obtained.

X, =Ax +Bu u, ]T (13a)
X, =A%, +B[u; u, ]T (13b)
where
i 0 0 ] [0 0]
o 1, T, 0 0
1 1
A=/0 0 — 0 |, B={— © (14a)
Tl TI
00 O —L 0 L
L Ty | L Tu |
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[0 0 0 ] [0 0]
00 I, T, 0 0
1 1
A=/0 0 — 0 |, B,=|— O
, z ) z, (14b)
00 O —L 0 L
L 7p | L 7p

A zero-effort-miss (ZEM) method is introduced to reduce the complexity of the math-
ematical model, which is the missed distance if both vehicles in collision engagement
would apply no control from the current time. The ZEM of interceptor and target is rep-
resented by Z,, and that of interceptor and defender is represented by Z,, which can be,

respectively calculated as

Zl(t)=L1¢1(tat/1)x1(t) (15a)

Z,()=L,P, (tatfz )xz (1) (15b)
where f, and 7, represent interception time, L and L, are constant vectors de-
fined as

Additionally, @,(e) is the transition matrix which can be calculated by
1 -1
@ ()= (s1-4)" | i=01,2) 17)

where L[] is the inverse Laplace transformation, and I denotes the identity matrix.
Associated with Equations (13a,b)-(17), @, and @, can be calculated as follows:

1t F1712¢(/1/11) _FMT}%/I¢(ZIM)_
0 1 Trw(x) —Tutuy ()
¢ — %1 17 M M M 1
oo em 0 (182)
00 0 ern |
_1 t r1712¢(121) _FDTé¢(ZZM)—
0 1 Try(x) —Torpy(Xow)
¢ — 1%1 21 DD 2M 1 b
oo e 0 (18b)
0 0 0 e
where ¢(<), w(+) and y; arecomputed as
P& =e*+&-1 (19)
p(&)=—e* +1 (20)
t.—t
Xy =" (21)

Asaresult, Z, and Z, are calculated by

Z,(t)=x, +(tf1 _t)xlz +F1T12¢(Zl1 ) x5 _FMTA2/1¢(ZIM ) X4 (22a)
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Zy()=x, + (tfz - t) Xyt r1712¢(121 )xzz - FDTé¢(IzD )x24 (22b)

The derivative of Z, and Z, can be given as follows:
Z1(t) =T ruy (2,) =Ty TutinV (X)) (23a)
Zz(t) =Tty (X))~ ToTotp¥ (Zon) (23b)

Therefore, the dynamic system corresponding to Equations (13a,b) and (14a,b) is
transformed into

z(t):Gl(l)ul(t)_GE(Z)uE(Z) (24)
where
(t) = Z|(t) )= uM(t) G = An G. = _AMI 0
O z0) O o) ) T 0 -, @
A, =Ty (z,) (26)

Remark 1. According to Equation (22a,b), Z.(t) is independent of guidance laws and only relies
on current states. If the current state is determined, Z,(t) can be determined. It can be seen from
Equation (23a,b) that the derivative Z (t) is state-independent. Corresponding to the new state

space defined by Equations (24)—(26), an optimal control problem with a fixed terminal time in a
continuous system is considered. The objective of the target pair is to design optimal guidance
schemes that can converge Z, to zero as t —1t,, while keeping Z, as large as possible. Con-

versely, the control law of the interceptor is designed to make Z, converge to zero while maintain-
ing Z, as large as possible.

2.4. Timeline

With the linearization assumption, the interception time is fixed and can be calcu-
lated by

— p]MO — pMO
. _
/ P (V1+VM)

(27a)

Pipo Pipo
lyy=——"FT—=7—"""—~ 27b
2 P (V1 +Vp ) (27)

It is reasonable to assume that the engagement of the interceptor and the defender
terminates before that of the interceptor and the target, and thus, 7, <¢,,. The nonnega-

tive time-to-go of the interceptor-defender engagement and the interceptor—target en-
gagement can be, respectively, calculated as follows:

gt t<ty,
tgol -

0, 121, (282)
t.,,—t, t<t
ap — b D
t =
go2 {0’ ;> tﬂD (28b)

3. Guidance Schemes
3.1. Cost Function

The quadratic cost function in this problem is chosen as follows:
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Iy ) =¥ (1) PE(t, )+ 2] [ e (- Rty 0 Ji0 29)
where
| Pu 0 | "2 0
P_{O _pzz] RE_|:0 ”33} 0

. . * * *
The weights p,,, p,,, %, , and r,; are nonnegative. Let u,, u,,, and u, be

optimal guidance laws for interceptor, target, and defender, respectively. Thus, the guid-
ance laws are issued so as to meet the condition set as follows:

max min J

[idwp] i (G2
3.2. Cost Function
Let A(¢) be the Lagrange multiplier vector,
A @)
At) = { 32
ZA0) 2
The corresponding Hamiltonian is given by
1
H= E[MIT (ORu, (t)—uy ()R, u, (t)} + A7 [G, (), (1) - G, (H)u, (1)] (33)
The costate equations and transversality conditions are given by
, oH
=———=0
4 dZ, .
Lo, (34)
0z,
aJ
A (t‘fMM ) = m ol A (t‘fMM )
3 J‘ (35)
A (t/ID) = ) =-p,Z, (tﬂD)

Z, (t

As the Hamiltonian is second-order continuously differentiable with respect to u,

* * .
and u,, u, and u, satisfy

oH _ ul (OR, + A" ()G, (1) =0
u
S (36)
=u' (OR, + A" ()G, (1) =0
du,
Therefore, the optimal guidance laws can be calculated by
u; () ==R;'G[ (HA(1)

(37)

{uM (t)} —_RG(0)A)
up(2)

Considering Equation (35), the linear relationship between ﬂ(t‘,m) and Z(tﬂD)

can be obtained immediately. Thus, it is reasonable to assume that
At)=K()x(1) (38)

where K (t) isasquare matrix of order two and satisfies
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K (tﬂD) =P (39)
The derivative A(7) with respect to time can be calculated by
At) = K(0)x(@) + K()x(t)
. (40)
= K(OX(0)+KO)[G, (0O, ()= G (Du, (1)]
Substituting the optimal guidance laws (37) into Equation (40), we have
At = K@O)X(0)+ KO G, (0 (1)~ G (uy (1) |
= KO- K(O[ G,(OR;'G! (1)~ G, ()R; GL(1) | (1) (41)

= K(OX()- K1) G, (DR, 'G] ()~ G, ()R, G} (1) | K (1)x(0)

According to Equations (34) and (41), since A(¢)=0 is satisfied for any ¥(¢), we

have
KO-KO[G,(0)R,'G! (1)-G,()R;'G1 (1) | K(1) =0 (42)

Equation (42) is a well-known Riccati differential equation. Considering the follow-
ing equation:

_dKil =—K! d_KK*1
dt dt
=—K"'| K(G,R'G] -G, RG] ) K | K" (43)

= _(G1R;IGIT - GER;G£ )

Then, by integrating Equation (43) from ¢ to 7,, and considering Equation (39),

the analytical expression of K (¢) is derived as follows:

K0 =[ P +]"[6,08'6] 06,0 GE )]t | (44)

Substituting Equation (44) into Equation (38), the LQOGL u,, u, and u,, can be
calculated by
u (1) ==R;'G! (K (D)% (1)
{u;; 0
(1)
Now, the solution of optimal guidance laws is presented completely. By using the

interpolation method, the desired AOA can be obtained, and this completes the design of
the guidance laws.

}—R;G; (KO0 )

3.3. Proof of Saddle-Point Condition
The proposed guidance laws u,, and u, are functions of state vector x(¢), which
form closing-loop feedback controls of X (). It should be proven that the optimal guid-

ance laws given by Equation (45) satisfy the saddle-point condition. Considering Equa-
tions (24) and (42), it can be derived that
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ixTKle*TKﬂlfTKﬂlfTK;
dt 2 2 2

N | —

:%[uerIT —ugGETJK)_c+%)_cTK[G1u1 —G,u,]

XK [G, (056 (1) -G, (1) RG] (1) | K
) , (46)
:E[MJ +HIIG1K§:| i |:”1 +7111G1K"_‘7:|

—%[uE +R;'G.Kx | R,[u, +R;'G,Kx |

_%[u;’i]ul _”gRE”E:I

Integrating Equation (46) from ¢, to 7,, and taking Equation (29) into account, the
cost function can be derived as follows:
1 1

I )= % (1) K )R (135 )+ [ (1] O, (1) = (O R (1)

1 — p— 1D 1
=¥ (1) K)¥ (1) + j" E[u, +1'G,Kx | R [u, +1,'G,Kx |di  (47)

0

- %[uE +R;'G,Kx| R, [u, +R;'G,Kx |di
If u,(t)=u,(t)=-rG, (1)K (t)x(t), we have
J(u:,u5)=%)_cT (ro)K(ro)f(to)—j;””a[ug +R;GEK7;]T R.[u,+R,'G.Kx]|dt (48)
It is obvious that w, (t)=u, (t)=-R;'G,(¢)K (t)x(¢) yields the minimum of J,
which means
J (g, uy )< T (uy,uy,) (49)
Similarly, if u, (t)=u, (t)=-R;'G, (1)K (t)x(¢), we have
J(u,uy) = %ET (1,) K (1,)%(1,) +j['0”” %[u, +r1;IG,K§]T R [u,+7r,'G Kx]dt  (50)
Thus, u,(t)=u, (t)=-R,'G,(t)K(¢)x(t) yields the maximum of J, which means
J(u,,u*E)SJ(u:,u*E) (51)

Combined with two situations (49) and (51), u, and u, satisfy the saddle-point
condition as follows:

(g uy )< T (u) 0 ) < T () m,) (52)

4. Simulation and Analysis

In this section, the performance of the proposed guidance algorithms is investigated
through nonlinear numerical examples. A scenario, consisting of an HV as the target (M),
an active defense vehicle as the defender (D), and an HV interceptor as the interceptor (I),
is considered. The interceptor is assigned the task of capturing the HV and evading the
defender. Perfect information for the adversaries” guidance laws is assumed.

4.1. Simulation Setup

In the simulated scenarios, 3-DOF point mass planetary flight mechanics [27] are em-
ployed in each adversary. All players use rocket engines to achieve hypersonic speed; the
target and the defender are launched by the same rocket, while each interceptor is
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launched by a separate small rocket. The target and the defender have higher speeds than
the interceptor since the target has a higher range requirement and is launched by a more
powerful rocket. Hence, the initial horizontal velocities of the three players are set as
V, =V, =3000 m/s, and ¥V, =2000 m/s, respectively. The altitudes are setas #, =40.5 km

, h,=40km, and h, =40.1km, respectively. The endgame starts when the horizontal

distance between the target and the interceptor reaches 150 km. The defender is assumed
to be launched 20 km in front of the target at the beginning of the scenario. During the
endgame, all players are in the glide phase and perform maneuvers, mainly relying on
aerodynamic force. The HV is considered as a plane-symmetric lifting-body shape with
one pair of air rudders, which can provide high L/D up to 3.5 [28]. Hence, the HV is re-
quired to employ bank-to-turn control. The active defense vehicle is a companion vehicle
launched by HV whose aerodynamic performance is slightly worse than HV. Conversely,
the interceptor is designed as an axisymmetric structure, with two pairs of air rudders,
and employed skid-to-turn control for high agility. The desired roll rate of the interceptor
can be expected to be much smaller than the HV since the interceptor can reorient the
aerodynamic acceleration by changing the ratio of the AOA to the angel of sideslip [29].
This means that the interceptor sacrifices the aerodynamic performance in exchange for
mobility and control stability. To compensate for the shortcoming of aerodynamic maneu-
verability, the interceptor was equipped with a rocket-based reaction-jet system (RCS), to
obtain instant lateral acceleration. The RCS can only be turned on for a short time around
the collision, due to limited fuel cost. The instantaneous overload of the interceptor is ex-
pected to be 9 g when exhausting the RCS. For these practical factors, the AOAs are as-

max

sumed to be bounded as o™ =a," =" =35° with bounded changing rates as
¢, =6deg/s, ¢, =5deg/s and ¢,, =3deg/s, respectively. Time constant of each player is
7,=5ms and 7, =7, =10 ms, respectively. The simulation parameters of all adver-

saries are listed in Table 1.

Table 1. Simulation parameters.

Adversary
Parameters

Interceptor Defender Target
Latitude 0 0 0
Longitude 0 deg 0.0031 deg 0.023 deg
Altitude 40.5 km 40.1 km 40 km
Horizonal velocity -2000 m/s 3000 m/s 3000 m/s
Vertical velocity 0 0 0
Maximum AOA 35 deg 35 deg 35 deg
Rate of AOA change 6 deg/s 5 deg/s 3 deg/s
Time constant 0.005s 0.01s 0.01s
Killing radius 0.3 m 0.5 m 0.5 m

4.2. Numerical Examples

In this subsection, the effectiveness of the proposed LQOGL in Equation (45) is vali-
dated through the following three cases:

1. The interceptor adopts PN guidance law, the defender adopts PN guidance law, and
the target adopts LOOGL (PNvPNvLQOGL);

2. Theinterceptor adopts PN guidance law, the defender adopts LQOGL, and the target
adopts LQOGL (PNvLQOGLvLQOGL);

3. The interceptor adopts LQOGL, the defender adopts LQOGL, and the target adopts
LQOGL (LQOGLvLQOGLVLQOGL).
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Generally, high L/D HVs are required for the capabilities of large downrange and
cross-range [30]. Thus, unnecessary maneuvers of HV should be avoided since it will in-
crease drag forces and cause kinetic energy cost and range loss. Thus, the LQOGL for the
target can be expressed as follows:

{ =[-RIGL (K ()F(1)], for |2,]<p
u,, =0 Jor |Zy > p

Since the defender is designed to sacrifice itself to protect the HV, there is no need to
take into account the range loss and control saturation for the defender. Unlike the HV
and the defender, endoatmosphereic interceptor missile is generally steered by dual con-
trol systems of aerodynamic fins and reaction jets [31]. Thus, fuel cost should be taken into
account for the interceptor, and the switching time of the jet engines should be strictly
controlled. Inspired by Ref. [31], the maximum duration of the engine is assumed up to 1
s, and the engine is turned on when 0.5s<7,, <1.5s and 0s<t?,, <ls. Additionally,

go2
the dynamic of the divert thrust generated by jet engines can be assumed to be presented
by a first-order equation,

(33)

(54)

The L, herein is considered as a complement to lift force in Equation (53). The op-

timal guidance laws based on Pontryagin minimum principle for a reaction-jet system can
be given by

max

uy =uy™sgn[Z,], 0s<t,, <ls (55)

uj = _u'f]““x Sgn[zl], 0.5s < tg()l <1.5s (56)

where u;"™ is the maximum thrust that the engines can provide, which is assumed to be

seven times of gravitational force.
The simulation results are concluded in Table 2.

Table 2. Simulation results.

Engagements Case 1 Case 2 Case 3
PNvPNVLQOGL PNvLQOGLvVLQOGL LQOGLvVLQOGLvVLQOGL
ZEM,, 15.01 m -15.03 m 15.01 m
ZEM,, —0.17m -28.07 m —0.17 m
Result Target is intercepted by Interceptor is expelled by the Target is intercepted by the
interceptor defender. interceptor.

Case 1. The performance of the guidance strategies in multiplayer engagement, PNoPNvLQOGL,
is investigated in this case. Based on the linear-quadratic differential game, LQOGL for the target
is calculated by Equation (53), corresponding to weight parameters.

{p,, =1x10%, p,, =1x10%,1;, =1.95,1,, =12.54,r,, =10.13}, for target (57)

Simulation results of case 1 are shown in Figure 2, which include the trajectory, ZEM,
and AOA of each adversary. It can be seen from Figure 2a,b that the interceptor is pursued
tightly by the defender but evades the defender depending on thrust during
0s<t,,<ls and then turns its head to the target. The maximum acceleration of the in-

terceptor reaches 10 g when the exhaust pipe is burning. Although the target has a higher
L/D, the interceptor is able to intercept the target. The ZEM between the target and the
interceptor and the ZEM between the defender and the interceptor both converge to zero
swiftly. An interesting situation is observed in which even the target is pursued tightly by
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the interceptor, and it hardly maneuvers in the middle of the endgame. This situation can
be understood as the scenario in which the interceptor is also tightly caught by the de-
fender, which is considered safe by the target according to LOOGL. However, the key is
that the jet engines on the interceptor can help it evade the defender when 0s<7,, <ls.

The ZEM between the interceptor and the defender rises suddenly to 15.01 m when
t» =08, which is larger than the killing radius of the defender obviously. After that, the

engagement is transformed into a one-on-one game, and the target has no time to enlarge
the missing distance. Referring to Figure 2c—e, both the target and the interceptor face to
control saturation. However, the target is not able to evade the interceptor since the rate
of AOA change of the target is limited, while the interceptor can respond quickly by
switching on the jet engines when 0.5s<¢?,, <1.5s. As can be seen in Figure 2b, the ZEM

between the target and the interceptor converges to —0.17 m when ¢, =0s, which is

smaller than the killing radius of the interceptor.

These results demonstrate that the interceptor is able to evade the defender using PN
guidance law and successfully intercept the target. Additionally, the accelerations of the
three adversaries do not reach the limit in the middle process of this engagement.
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Figure 2. Simulation results of Case 1: (a) trajectory; (b) ZEM; (c) target’s AOA; (d) defender’s AOA;
(e) interceptor’s AOA.
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4.1

Remark 2. Inspired by Ref. [19], guidance laws for target based on norm differential strategy can
be derived from the cost function

{p,, =1x10%, p,, =1x10%,1;, =1.95,1,, =12.54,r,, =10.13}, for target (58)

The guidance scheme for the target is calculated by
”;4 = Sgnl:azzl (tﬂM )AMI:I (59)

It can be seen from Equation (59) that the guidance laws based on norm differential strategy are
calculated by a signum function.

A controlled experiment is performed by replacing the target’s LOOGL with the
norm optimal guidance law proposed in Equation (59). The results are shown in Figure 3,
showing the trajectory, ZEM, and AOA of the target. It can be seen in Figure 3b that the
ZEM between the target and the interceptor is kept around a safe distance. However, as
shown in Figure 3c, the target meets with the control saturation problem and severe chat-
tering phenomenon. This is consistent with the expression of norm optimal guidance law.
Under the bank-to-turn control mode, the desired roll rate of the target will be very large.
Additionally, large-amplitude maneuvering will lead to kinetic energy loss as far as range
loss.

(a) Trajectory 00 (b) ZEM
Interceptor o ——ZEM of I and M
- = —=ZEMofland D
B
=
o
N
: : -500 : : :
5 10 15 0 10 20 30 40
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(€) AOA of Target
40 ; : :
20
3 I
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3 ||
-20 |1 Realistic |
(! = = =Ideal
-40 : : :
0 10 20 30 40

t(s)

Figure 3. Simulation results of controlled experiment: (a) trajectory; (b) ZEM; (c) target’s AOA.

Case 2. The performance of guidance strategies in engagement, PNvLQOGLvLQOGL, is investi-
gated in this case. LQOGLSs for target pair are calculated through Equations (45) and (53), corre-
sponding to parameters chosen as follows:

{p,, =1x10°, p,, =1x10°,5;, =1.95,r,, =12.54,r,, =10.13}, for target pair (60)

Simulation results of case 2 are shown in Figure 4, which include trajectory, ZEM,
and AOA of the target pair. The effectiveness of the proposed guidance laws is confirmed
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by this case. Figure 4a,b show that the interceptor evades from being intercepted by the
defender but fails to catch the target. The ZEM between the interceptor and the defender
is -15.03 m when ¢,,, =0, and the ZEM between the interceptor and the target vehicle is

-28.07 m when 7, =0, which are larger than the killing radius of the 