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Abstract: In this article the procedure and method for the ice accretion prediction for different airfoils
using artificial neural networks (ANNs) are discussed. A dataset for the neural network is based on
the numerical experiment results—obtained through iceFoam solver—with four airfoils (NACA0012,
General Aviation, Business Jet, and Commercial Transport). Input data for neural networks include
airfoil and ice geometries, transformed into a set of parameters using a parabolic coordinate system
and Fourier series expansion. Besides input features include physical parameters of flow (velocity,
temperature, droplets diameter, liquid water content, time of ice accretion) and angle of attack. The
novelty of this work is in that the neural network dataset includes various airfoils and the data
augmentation technique being a combination of all time slices. Several artificial neural networks
(ANNs), fully connected networks (FCNNs), and convolutional networks (CNNs) were trained
to predict airfoil ice shapes. Two different loss functions were considered. In order to improve
performance of models, batch normalization and dropout layers were used. The most accurate results
of ice shape prediction were obtained using CNN and FCNN that applied batch normalization and
dropout layers to output neurons of each layer.

Keywords: aircraft icing; airfoil; ice shape; CFD solver; simulation; dataset; loss function; neural
network; CNN

1. Introduction

The study of the ice accretion is an important process for different aspects of people’s
life, management of technical transportation and energy devices such as aircraft, helicopters,
Unmanned Aircraft Systems, wind turbines, and power electrical lines.

The mass of accreting ice can reach critical values and become the reason for the
various technical problems or disasters.

Ice accretion on aircraft wing and helicopter rotor blades impairs aerodynamic perfor-
mance thereof, which can lead to an aircraft crash. A detailed analysis of different aircraft
crashes was presented in [1]. One of the recent aircraft accidents due to icing in Russia is
the case of An-148 aircraft of Russian Saratov Airlines, which was flying from Moscow to
Orsk (Orenburg region), which crashed on 11 February 2018 a few minutes after takeoff
from Moscow’s Domodedovo airport. The Interstate Aviation Committee noted that the
problems could have been caused by icing of sensors of total pressure probes that measure
the aircraft velocity [2].

The ice shape on the airfoil significantly depends on the icing regime or ice type. The
latter could be glaze ice (low water content and temperature), rime ice (high water content
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and temperature), and mixed ice (transitional from rime to glaze and vice versa). This fact
is well demonstrated by NASA experiments on the NACA0012 airfoil icing cases 421–424,
in which all parameters are the same, except for the temperature [3]. According to the
results of the study [3], one can see that a temperature decrease causes the ice shape to
change its form from a rather complex one with the presence of a pronounced horn (glaze
ice mode) to a simpler one that repeats the shape of the airfoil (rime ice mode).

Currently, research projects on aircraft icing are underway in the United States, Europe,
Canada, Japan, and the Russian Federation to develop the concept of new models of
regional and supersonic passenger aircraft. The most famous projects are Aerion AS2,
SpikeAerospace, Low Sonic Boom Configuration. Such an aircraft should be designed
based on flight safety requirements, including those in difficult climatic conditions of the
northern territories. The issues of studying the processes of formation of various forms
of ice (rime, mixed, glaze, ridge) on different airfoils, changes in aerodynamic coefficients
using experiment and mathematical modeling are relevant. The physical parameters of flow
with water droplets up to 40 µm in diameter are defined in Aviation Rules, Appendix C of
Part 25 [4] (Russia) or in FAA report [5] (USA).

A detailed overview of the topic with aircraft icing is given in the following scientific
works [1,6–9]. There are different approaches to the study of the ice accretion process
(experimental, field, mathematical modeling with special codes, Machine Learning and
Neural Networks). Some research teams have used approaches with Computational Fluid
Dynamics (CFD) codes and artificial neural networks. Different numerical solvers for the
ice accretion process have been developed since 1980s.

Among these codes are LEWICE, CANICE, AEROMSICE-2D, PoliMICE, NSCODE-
ICE, ICECREMO, FENSAP-ICE, CLORNS, IGLOO2D.

The research teams from different organizations develop their codes for ice accretion
modeling: Beijing University of Aeronautics and Astronautics, China [10], Nanjing Uni-
versity of Aeronautics and Astronautics, China [11], Politechnico di Milano, Italy [12,13],
Polytechnical Montreal University, Canada [14], University of Nottingham, UK [15], MCGill
University, Canada [16], ONERA, France [17].

Over the past 10 years, a large number of articles have been published that are devoted
to the application of machine learning methods, deep neural networks in the field of
fluid dynamics and calculating aerohydrodynamic coefficients, and terms in the original
equations reflecting conservation laws [18]. Among them are the aerodynamic drag and
lift coefficients [19], the heat transfer coefficient, the induced mixing efficiency in stratified
flows [20], the coefficients in engineering turbulence models [21], the Reynolds stress
tensor [22], turbulent scalar flux [23], the rate of physical and chemical reactions [24].

Previously, studies for research of ice accretion process were carried out using com-
putational fluid dynamics and neural networks to simulate the ice formation process on
the airfoils. A study was carried out of two architectures of neural networks that are best
suited for this task [25]:

• A multilayer neural network with a learning algorithm using the back propagation of
an error;

• A network of radial-basis functions.

To study the change in the airfoil shape during icing in [26], an algorithm was used
that involved two conformal mappings, namely the investigated airfoil into a parabolic
coordinate system and the Prandtl transposition to transform clean airfoil into a straight
line. In this case, the shape of the frozen ice was presented as a perturbation of this line.
The shape of the disturbance was set by the Fourier series or using wavelet functions [26].
The number of coefficients in the expansion and their values were the objects of prediction
of the neural network. The following parameters were used as input parameters for the
neural network:

• Atmospheric conditions (temperature T and pressure p);
• Flight parameters (velocity ~U);
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• Droplet diameter d;
• Density or water content of drops;
• Drop time or time ice accretion t.

The results of the NASA experiment were used for validation. CFD simulations were
performed using the NASA LEWICE package [3].

When studying the coefficients of the function approximating the shape of frozen ice,
it was taken into account that their number should not greatly exceed the number of input
parameters, otherwise the training time of the neural network would increase and the
accuracy of the predicted results would decrease. The architecture of the neural network,
which is based on dense neural network and it has one hidden layer, also provided a
statistical inference of the relative significance of the input parameters in training.

The work [27] considered the blade of the Sikorsky SC2110 helicopter. Using the
PoliMIce library, the flows under icing conditions were calculated for different liquid water
content (LWC) water conditions and median volume diameter (MVD) droplet sizes for
101 cases of airfoil. The data for the calculation were selected based on the data of the
flight experiment.

Deep Neural Network, Bayesian Neural Network together with CFD calculation
results in SU2 code together with Ffowcs–Williams–Hawkings acoustic analogy to calculate
far-field acoustic noise spectrum were used to calculate six aerodynamic coefficients (three
coefficients for force, three coefficients for torque) [27]. Based on the results of the performed
comparative analysis, it can be concluded that the finite volume method is more preferable,
since the basic equations reflecting the conservation laws are written in integral form. This
method works effectively with structured and unstructured meshes.

The authors of [28] introduced a purely data-driven approach to find the complex
pattern between different flight conditions and aircraft icing severity prediction. The
Extreme Gradient Boosting Supervised Learning (XGBoost) algorithm has been applied to
create a prediction framework that makes a prediction based on any set of observations.

The input flight conditions for the proposed prediction framework are liquid water
content, droplet diameter and exposure time. The proposed approach was demonstrated
in three cases: maximum ice thickness prediction, icing area prediction and icing severity
level evaluation.

Modeling a turbulent fluid flow around aircraft, taking into account the formation of
ice of various shapes in a 3D setting, is an expensive computational procedure, especially
when it is necessary to perform parametric studies. Approaches based on approximation
with a decrease in the dimension of the system under study referred to as the methods of
dimension reduction by means of Proper Orthogonal Decomposition (POD) are a good
alternative for reducing computer time.

Reduced Order Modeling (ROM)—the approach uses the results or labeled snapshots
obtained under specified conditions to construct basis vectors (modes) that reliably repro-
duce the main features of the flow. A linear combination of these modes can be used to
obtain new solutions when specifying new input parameters that differ from previously
obtained solutions (labeled snapshots). To obtain a system of reduced dimensions, various
methods can be used, including the POD [29,30].

In this approach, a global POD and a local POD can be used. Global POD uses all avail-
able solutions or labeled snapshots. In the case of icing simulation, different forms of ice
are possible (rime ice—loose ice, glaze ice—smooth ice) when the initial parameters change.
For external aerodynamics problems, different flow regimes are possible (shock waves,
flow separation) when the Mach number changes for subsonic and transonic flow modes.

The local POD method handles different physical characteristics in different ways.
The local approach requires dividing the solution space into separate subdomains, each
of which ideally contains solutions characterized by similar or sufficiently close physical
structures. With solutions from each solution cluster, POD’s linear approach allows for a
generic solution using multiple modes. In several papers, the k-means algorithm, one of
the machine learning methods, has been used to develop the local POD method.
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As a rule, a software implementation of libraries for machine learning is done in
Python programming language, using numerical libraries and the open frameworks such
as Keras, scikit-learn, PyTorch, TensorFlow [31].

A significant disadvantage of many solvers for modeling icing is high computational
costs: it takes several hours to several days to calculate a two-dimensional airfoil involving
supercomputer resources.

The main goal of the current research is to build a model based on artificial intelligence
(neural networks) to accelerate numerical calculations obtained using CFD solvers. The
combination of two approaches: machine learning and numerical simulation, will speed
up the prediction of the icing shape and significantly reduce computational costs.

The main part of this paper has the following structure. Section 2 contains a description
of the mathematical model for ice accretion simulation. Section 3 describes the Definition
of the problem for 2D airfoil. Section 4 describes Materials and Methods. Section 5 contains
the results of simulations with neural networks. Section 6 contains Discussion. Section 7
concludes the paper.

2. Mathematical Model for Ice Accretion Simulation

The mathematical models for ice accretion may include Euler–Euler and Euler–
Lagrangian models, a hybrid method with panel and integral Boundary Layer meth-
ods. To calculate the ice shape iceFoam CFD solver is used which was developed in ISP
RAS, and which is based on the Euler–Lagrangian method and the SWIM model for ice
and fluid film simulation [32].

The iceFoam solver is being developed on the basis of OpenFOAM package [33]. To
describe the gas-droplet medium, the Euler–Lagrange model is used, which is based on a
system of continuity, momentum, and energy equations, and the finite volume method for
solving the government equations [34].

The iceFoam solver uses the PIMPLE algorithm to solve the velocity and pressure
equations. When the gas-droplet flow interacts with the irregularities and the roughness of
the solid surface of the body, an ice film and a liquid water film may appear and grow.

This approach requires a separate unstructured mesh for the thin film area. As for the
particles, the right-hand side of the equations for mass and energy contains source terms
that characterize the processes of particles melting, splashing, convective heat transfer. The
ice accretion leads to a change in the initial shape of the body. The boundary of the body
moves in space along the normal.

At the same time, it is necessary to ensure the simultaneous movement of borders
for two different grids in the calculation program and recalculation of the position of grid
nodes using the solution of the Laplace equation. To characterize the ability of the curved
surface of the body to capture liquid drops, the water collection efficiency coefficient β is
used, and to describe thermal processes, the coefficient of heat transfer is applied.

The medium under consideration is a non-reacting equilibrium mixture of gases
with a total temperature T, density ρ, and partial pressures pi for various components of
the mixture.

In the framework of the selected mixture approximation, it is assumed that the mass,
momentum and energy of the entire flow is transferred by the mass-averaged velocity ~U
and the mass fraction of the mixture components of the flow incident on the body under
study does not change with time.

The mutual motion of the mixture components is taken into account in the diffusion
approximation. The effect of the dispersed phase on the continuous one is introduced as
additional terms in the equations.

The mass conservation equation for the mixture:

∂ρ

∂t
+∇ · (~Uρ) = ρ̇v, (1)
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The momentum balance equation for the mixture:

∂ρ~U
∂t

+∇ ·
(
~Uρ~U

)
+ ∑

i
ρ0

i
~Wi ~Wi = ρ̇v ~Uv +∇ · σ̂−∇p. (2)

The energy balance equation with specific enthalpy for the mixture:

∂ρh
∂t

+∇ ·
(
~Uρh

)
+

∂ρK
∂t

+∇ ·
(
~UρK

)
+ ∑

i
∇ · ~Wiρ

0
i ei −

∂ p
∂t

=

= −∇ · (σ̂ · ~U)−∇ ·~q + ρ̇vev, (3)

where ρ is the density of the mixture, ρ0
i is the density of the i-th component, ρ̇v is a source

term describing the mass transfer between the gas and droplet phases, ~Wi is the relative
speed, ρ̇v ~Uv is the exchange of momentum between the environment and drops of particles,

p is the ambient pressure, σ̂ = µ
(
∇~U + (∇~U)

T)− 2
3 µI∇ · ~U is the viscous stress tensor; µ

is the coefficient of viscosity of the mixture, I) is the identity tensor, e is the internal energy
of the mixture, h is the specific enthalpy of the mixture, K is the turbulence kinetic energy,
ρ̇vev is the exchange of energy between the environment and drops the particles.

The heat flux vector is calculated following Fourier’s law~q = −λ∇T, where λ—the
thermal conductivity of the mixture:

Cp =

(
∂h
∂T

)
p
, ∇T =

∇h
Cp

.

The specific enthalpy of a mixture is the weighted sum of the enthalpies of its compo-

nents: h = ∑i Yihi, where Yi =
ρ0

i
ρ

is the mass fraction of the i-th component.

The mass balance equation of i-th component:

∂ρYi
∂t

+∇ ·
(
~UρYi

)
+∇ · ~Wiρ

0
i = 0. (4)

The closing ratio for mass fractions of the mixture: ∑i Yi = 1.
The average mass velocity ~U and relative velocities ~Wi are entered so that:

~U =
∑i ρ0

i
~Ui

ρ
, ~Wi = ~U − ~Ui, ∑

i
Yi ~Wi = 0.

To calculate the relative velocities of the gas components, the diffusion approximation
is used:

ρ0
i
~Wi = −Di∇ρ0

i ,

where Di is the diffusion coefficient of the component: Di =
νi
Sc

(the values of the number Sc
are calculated from the tables of medium properties depending on the temperature and
composition of the mixture).

All components of the gaseous mixture are a perfect gas with a constant molar mass:

p = ρR ∑
i

Yi
Mi

T,

where R is the gas constant, Mi is the molar mass of the i-th component.
The OpenFOAM particle cloud model sprayCloud is used as the base model. A cloud

of spherical droplets–particles is determined by the position of its center of mass ~xp, the
diameter of the incoming drops Dp, the speed of the drops ~Up, and the density of the
substance ρp.
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Then the mass of single particle:

mp =
1
6

ρpπD3
p.

The particles with similar parameters are represented by a cloud, since simulating
all real droplet particles separately is expensive for computing resources. The clouds of
particles do not interact with each other.

The trajectory of the particle cloud is determined by integrating the kinematics equation:

d~xp

dt
= ~Up. (5)

The particle velocity is determined from the solution of the force balance equation.
The force acting on a particle is the sum of all the forces acting. Examples of such forces are
the environmental drag force, gravity, buoyancy, and pressure force:

mp
d~Up

dt
= ∑~Fi = ~FD + ~FG =

3
4

mpµCDRep

ρpDp
2 (~U − ~Up) + mp~g(1−

ρ

ρp
), (6)

where ~FD is the pressure force and ~FG is the gravity force.
The CDRep complex is calculated depending on the selected model for calculating

the drop drag coefficient using a function that depends on the Reynolds number of the
particle Rep.

There are available models: Putnam; Habashi; Prikhodko; Gent; Ochkov; Schiller–Neumann.

The Reynolds number for particle: Rep =
ρ|~U − ~Up|Dp

µ
.

The drop model also includes a drop mass balance equation:

dmp

dt
= ṁp = 0, (7)

and the heat balance equation for the drop:

mpCpp
dTp

dt
= QT (8)

where Cpp is the specific heat capacity at constant drop pressure; Tp is the average volume
temperature of the drop.

As a result of convective interaction with the main flow, the droplet jets take or give
away part of the internal energy of the gas flow. Heat flow from the environment:

QT = htcp × Sp × (Tsp − T), (9)

where Sp = πD2
p is the surface area of the drop; T is the ambient temperature.

The surface temperature drops Tsp:

Tsp =
2
3

Tp +
1
3

T. (10)

Heat transfer coefficient htc:

htcp =
Nu× λ

Dp
, (11)

where λ is the coefficient of thermal conductivity of the environment.
There are four models to choose from for calculation of heat transfer between the drop

and the surrounding gas: Clift; Feng; Ranz–Marshall and Whitaker. The most widely used
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model is the Ranz–Marshall model, which uses coefficients to calculate the Nusselt number
Nu for a spherical drop:

Nu = 2 + 0.6
√

Rep × 3√Pr. (12)

The Prandtl number of the gas Pr =
cpµ

λ
where cp is the specific heat capacity of the

environment at constant pressure; µ is the dynamic viscosity of the surrounding gas.
To model film layers in OpenFOAM, one needs to select a special outer area of the

grid from the aerodynamic region [35].
All parameters of the thin film are calculated in this selected area of the grid. This

grid area can be created using two OpenFOAM utilities. First, the topoSet utility is used
to extract all the cell faces of a section of the airfoil from the existing aerodynamic grid,
and the extracted set of cell faces is used to extrude a new area of the grid using the
extrudeToRegionMesh utility. The extrudeToRegionMeshDict dictionary sets parameters
such as the set of cell faces to use, the number of layers, and the extrusion thickness.

To model the film layer, the so-called thin-film approximation is used, which means
that the velocity normal to the grid on the wall is assumed to be zero. In addition, the
tangential near-wall diffusion is considered insignificant compared to the normal near-
wall diffusion.

2.1. The SWIM Model for Liquid Film

Various models are used to simulate thermodynamic processes of icing on the surface.
Among them are the following models: the Messinger model [36], Iterative Messinger
Model [37], and Myers model [38]. More details about thermodynamic models can be
found in this review [39].

In addition, note that film transport models were developed in NASA LEWICE2D, 3D
code [40,41], in IGLOO2D ONERA code [42,43], in works from Iowa State University [44,45],
in PoliMICE code Politecnico di Milano [12,46].

The SWIM is a Partial Differential Equation (PDE) developed for calculating the ice
accretion process in its original form. It is represented by the following equations. The
SWIM model is given in [47,48].

The flow in the wall film is calculated using the mass conservation equation:

∂ρwhw

∂t
+∇ · (ρwhw~u) = Simp − Sice (13)

where t is time, ρw is the water density, hw is the thickness of the water film layer, ~u is the
water film velocity, Simp is the mass added to the film layer due to particle collisions, and
Sice is the mass change due to water solidification into ice.

The momentum balance equation in the original SWIM model:

~u =
hw

2µw
~τwall (14)

where µw is the dynamic viscosity of water, τwall is the air wall shear stress.
The energy balance equation:

∂ρwhwH
∂t

+∇ · (ρwhw~uH) = Simp

~U2
imp

2
+ Qc −Qwall+

+ SimpCw
(
Timp − T

)
− SiceCice

(
T − Tre f

)
+ SiceL f (15)

where H is the enthalpy of water, Uimp is the impact droplet velocity, Qc is the convective
heat transfer, Qwall is the heat transfer to the airfoil surface, Cw is the specific heat of water,
Timp is the impinging droplets temperature, T is the water film temperature, Cice is the
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specific heat of ice, Tre f is the temperature of the triple point of water, L f is the fusion latent
heat of ice.

The ice thickness hice is determined by the formula:

ρice
∂hice

∂t
= Sice, (16)

where ρice is the density of ice.
The system of equations has 5 unknowns hw,~u, T, Sice, hice and cannot be solved di-

rectly. The main assumption of the SWIM model is that the film temperature is equal to
the temperature of the triple point of water (T = Tre f ). In this case, one can calculate all
the unknowns, including the thickness of the water film and the thickness of the ice. In
particular, the energy equation, assuming that the enthalpy is a function of temperature
only H f = H

(
Tre f

)
, takes the form:

Sice =
SimpH f − Simp

~U2
imp
2 −Qc + Qwall − SimpCw

(
Timp − Tre f

)
H f + L f

(17)

This paper introduces a modification of the SWIM model, and the momentum balance
equation has the form:

∂ρwhw~u
∂t

+∇ · (ρwhw~u~u) = −hw∇p + ~Sρδ~U +~τ, (18)

where p is the pressure, ~Sρδ~U is the contribution from the falling drops, and τ is the stress
from the forces acting on the film.

The heat transfer coefficient (htc) is a very important parameter in the simulation of
ice accretion for airfoils and wings. The predicted ice shape can be quite different from the
actual scenario if the predicted htc is inaccurate.

In our model, the heat transfer coefficient htc is calculated using an empirical formula,
for which the spatial length scale L must be specified. In the presence of turbulence, it is
assumed that the effective values of the corresponding quantities are used. In what follows,
the generally accepted variable notation is used. The local Reynolds and Prandtl numbers
are calculated for the boundary cells.

Re =
ρ|~U|L

µ
, (19)

Pr =
µCp

λ
. (20)

htc =

{
0.664

√
Re 3
√

Pr× λ/L, Re < 5× 105;

0.037
√

Re
0.8 3
√

Pr× λ/L, Re ≥ 5× 105.
(21)

The mathematical model is complemented by Reynolds-averaged Navier–Stokes
(RANS) turbulence models k-ε, k-ω SST, Spalart–Allmaras [49].

When modeling icing, the process of convective heat transfer has a great influence
on the ice shape, on the presence of roughness and is the key to solving the process of
convective heat transfer.

There are several works devoted to heat transfer coefficient determination [41,50–54].
However, because in the SWIM model the temperature of the water film and the temper-
ature of the ice are constant and equal to the temperature of the triple point, it became
possible to use traditional formulas for the transfer coefficient. The results obtained using
this model are in good agreement with the experiment.
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Currently, most icing models use the boundary layer cumulative functions proposed
in the LEWICE model, which take surface roughness and velocity variation into account to
solve the heat transfer coefficient.

The roughness influence problem for ice accretion simulation in the case of Appendix C
of Part 25 of Title 14 in the U.S. Code of Federal Regulations (CFR-25) [5] is relevant and
was studied in several works [55–61].

The effect of ice roughness was taken into account through the roughness parameter
in the RANS SA [59] and k-ω SST [60,61] turbulence models through the near-wall function
model [59–62].

Two models are considered in the literature for determining the value of Ks (the
equivalent sand-grain roughness height):

1. Constant roughness models: Equivalent sand-grain models [55–58,63,64];
2. Non-uniform roughness models [65–68].

To calculate the value of the roughness height Ks, we used an approach based on an
empirical model for taking into account the influence of the airfoil chord size C from [55]
and NASA model implemented in LEWICE3D calculation code [56–58].

For non-uniform roughness, the root mean square roughness height is calculated
for each codebook vector using the theoretical Self-Organizing Map—SOM model [67].
The iceFoam solver implements the SA and k-omega SST models, taking into account the
“Equivalent sand-grain” model. Currently, work is underway within the framework of the
European project ICE-GENESIS. A separate scientific group (ONERA, CIRA, TUDA, TUBS,
PoliMI) is developing roughness models for CFR-25 Appendix C [69].

2.2. The Features of Implementing iceFoam Solver in OpenFOAM Package
2.2.1. Implementing a Dynamic Grid

As part of the OpenFOAM package, it is necessary to implement the movement of
grid nodes in two regions, i.e., in the area of the external gas-droplet flow and inside the
film. The actual film grid in OpenFOAM approach is only one cell thick. The film cell
size by thickness does not make physical sense and does not change when the calculated
film thickness is changed. This is explained by the concept of OpenFOAM package, which
always solves 3D equations, even when they are described in 1D or 2D space in the
original formulation. However, one should move the grid nodes according to the changing
ice boundaries.

One of the proven algebraic methods for moving the grid is the bisector method.
Since the nodes to change are located on the border between the two regions, it

is necessary to rebuild the grid in the gas-droplet flow area. To do this, the standard
OpenFOAM procedure based on solving the Laplace equation was used. As a boundary
condition for it, the displacement of the ice boundary nodes is set. The solution gives the
offset of all other nodes in the gas-droplet flow area.

2.2.2. Different Versions of the iceFoam Solver

A total of 3 versions of the iceFoam solver have been developed based on the Euler
approach for the gas phase, the Lagrangian approach for modeling water droplets and a
model of a water film on the surface of an airfoil over an ice layer. All three solvers use a
water film and ice layer model that is linked to a shallow water model.

The first version of the iceFoam solver is intended for initial estimation of icing spots
of an arbitrary 3D airfoil. This solver fully uses all the capabilities of Open-MPI technology
for efficient parallel computations using the open-source package OpenFOAM.

The main limitation of this solver is the assumption that the thickness of the ice layer
is sufficiently small and the change in the airfoil surface during icing can be neglected.
The airfoil with ice and the ice-free airfoil are assumed to be the same. The developed
extrudeToFilmCellDist utility is used to decompose the spatial region of the film. This utility
makes it possible to ensure uniformity of domain decomposition in the gas domain and in
the adjacent film. This version has no restrictions on the number of computational cores.
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The second version of the iceDyMFoam2 solver is designed to simulate icing with both
rime ice and glaze ice, for which the ice surface often takes complex and bizarre shapes.
In this version, the solver quite effectively allows consideration of the effect of changes
in the airfoil surface during icing on the icing process itself. This solver requires the use
of a structured mesh near the airfoil surface and the presence of only one spatial domain
for the film and the adjacent Euler mesh. Computational experience has shown that this
requirement limits the maximum number of computational cores. With a further increase
in the number of computational cores used, the efficiency of parallel ones grows weakly or
even decreases.

To simplify the decomposition of the spatial gas domain, the addTwoLayersTo0 utility
has been developed. This utility allows us to set the computational domain on the zero
processor for the film and for two adjacent layers of the Eulerian grid of the gas phase of
the flow.

The third version of the iceDyMFoam3 solver also allows us to take into account the
effect of changes in the airfoil surface during icing on the icing process itself. Like the
first version, this solver fully uses all the capabilities of the Open-MPI parallel library
technology to perform efficient parallel computations. Parallel implementation of the ice
boundary required the use of low-level functions of the OpenFOAM package. In this case,
there will necessarily be nodes that fall on the border of several domains. In the case of
using the dynamic grid approach, it was necessary to collect information about nodes that
are stored in several domains or on different computational cores. For such nodes, after
local calculations within one domain, an operation was performed to determine the new
position of the node.

Next, averaging over all domains participating in the calculations of this node was
performed. The averaged values of the position of nodes, which were recorded in more
than one domain, were distributed back across all the necessary computational cores. Thus,
the coincidence of moving nodes on different domains was ensured. For the case of icing
with glaze ice, the third version of the iceDyMFoam3 solver is still inferior in its capabilities
to the second version of the solver in terms of reliability. The extrudeToFilmCellDist utility
is also used to decompose the spatial region of the film.

3. Definition of the Problem for the 2D Airfoil

In this paper, the initial boundary value problem for the case of flow around 2D airfoils
is formulated.

The numerical simulations for 2D airfoils (NACA0012, Business Jet, Commercial
Transport, General Aviation) with different angles of attack were performed using domain
with size x = [−1; 2] m, z = [−1; 1] m.

The computational domain had a form of a hemisphere near the inlet boundary and
a rectangle shape at the other borders. The hexahedral grid included several blocks with
clusters of mesh refinement in areas near the airfoil surface and the wake.

To determine the optimal mesh parameters in the context of case 421 of the NACA
0012 airfoil, see Table A1, calculations were carried out for three mesh divisions. For the
first variant, there were 4000, 30, and 15 cells for the entire area, the film area, and the ice
growth zone, for the second, 16,000, 120, and 30, and the third, 20,800, 180, and 60 cells,
respectively. Figure 1 shows the mesh of second option.

A comparison of the calculation results for overgrown ice for the three options is
shown in Figure 1. The figure shows that an increase in the number of nodes has a good
effect on the results of calculating the position of the edges of the ice cover (especially
the upper horn). To achieve the necessary compromise between calculation accuracy
and calculation time, we finally chose the option with 30 calculation cells (second option,
Figure 1) for the leading edge for all airfoil options listed in Table A1.
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Figure 1. Mesh for simulation for the 421 RUN case.

The numerical grid was built using the blockMesh, extrudeMesh and extrudeToRe-
gionMesh OpenFOAM utilities [33]. The y+ average value for coarse mesh for the first
near-wall cells was 5.

The boundary conditions for velocity were the following: for “inlet” it is Dirichlet
boundary condition, for “outlet” it is Neumann boundary condition, for “airfoil” it is
no-slip boundary condition. For pressure the boundary conditions for inlet and outlet
were calculated.

To approximate the terms in the time the Euler scheme is used, to approximate the
inviscid terms the first order upwind scheme is used and to approximate the viscous terms
the second order linear corrected scheme is used.

After discretization of the terms in the basic equations, the linear algebraic equations
were solved numerically. The smoothSolver with smoother symGaussSeidel was used
for calculation of velocity, the GAMG method with smoother GaussZeidel was used for
calculation of pressure, the PBiCGStab method with preconditioner DILU was used for
calculation of enthalpy.

The initial position of spherical particles was set at the entrance to the computational
domain, as well as the frequency with which the particles were introduced into the compu-
tational domain and the total mass of the particles. The temperature of the liquid particles
was set equal to the ambient temperature. Thus, it was possible to calculate the LWC.
The Reynolds equations and the SST k-ω turbulence model with wall functions were used
to describe the gas-droplet medium. The time step was chosen according to the local
Courant number. The Courant number (Co) varied in the range from 0.3 to 0.5 far from
the airfoil, to about 10 in the boundary layer near the airfoil surface. A large value of the
local Courant number (Co = 10) does not lead to loss of stability of the numerical solution,
since the equations in the boundary layer zone are not hyperbolic, and the solution method
is semi-implicit.

The input parameters of the flow velocity correspond for Run case 421 (See Appendix A).
Figure 1 shows the distribution of the thickness of the ice film over the surface and

velocity fields on the dynamic mesh. Figure 2 shows the domain decomposition for
parallel simulations on the high-performance cluster. Figure 3 presents the results of
calculations of flow around NACA0012 for Run case 421 and comparison with experiments
of NASA [70,71]. Figure 4 presents the results of calculations of flow around NACA0012
for Run case 425 and comparison with the experiment of NASA [70,71]. The value of length
scale L for the calculation of htc in case Run 421 was set to 0.4.
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Figure 2. Results of domain decomposition for the 421 RUN case.

Figure 3. Results of ice simulation for the 421 RUN case for different meshes.

Figure 4. Results of ice simulation for the 425 RUN case.

The dotted line shows the results of the NASA experiment, the dashed line denotes
the results obtained using the NASA LEWICE code, the color vector denotes the results
obtained using the iceDyMFoam3 solver. The time step was about 2 × 10−4 s, and the
number of particle packets was about 4000. The 6 min of model icing time calculation takes
about 60 h on a server with 12 computational cores.

The number of particles in the pack was equal to 140,000. All the data for cases are
mentioned in Table A1, Appendix A.
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When the temperature changes, various forms of ice may form on airfoil as rime, glaze
or mixed ices. One of the important requirements for the solver is the ability to run it in
parallel mode. This allows us to significantly reduce the time spent on the simulation.

The numerical calculations of icing require significant resources from the high-
performance cluster. The use of neural networks can significantly reduce the use of the
expensive computer’s time. The issues of choosing the optimal architecture of a neural
network, the choice of input parameters and the required metrics are topical.

4. Materials and Methods
4.1. Generation of Datasets

The ice shape dataset was obtained for 4 different 2D airfoils (NACA0012, Business Jet,
Commercial Transport, General Aviation). The geometry for airfoils is described in [70,71],
the description of considered cases can be seen in Appendix A. The final dataset includes
the ice thickness which was represented by two coordinates x, y, time steps, and 6 physical
parameters which determined the condition of ice accretion.

The shape of the ice on the airfoil can be approximate using a mathematical function.
Further research was conducted related to the analysis of this function and its representation
using the Fourier transform.

4.2. Analysis of Shape Function

Parametrization of the airfoil shape and the ice formed on it is a difficult problem. The
shapes of different airfoils are complex curves that cannot be parametrized with a single
set of coefficients. On the other hand, the grid representation of geometry in the form of a
set of points with coordinates (x, y) also cannot be used as parameters, since, firstly, this set
of parameters strongly depends on the choice of the grid and secondly the number of such
parameters will grow rapidly with decreasing size of the grid cell. To solve this problem,
the approach implemented in [25] was used. The main idea of this approach is to use
the transformation of an airfoil shape into a function, which can then be expanded into a
Fourier series. The Fourier coefficients will unambiguously determine the specified airfoil.

Let us briefly describe the process of transition from an airfoil to a set of Fourier coefficients.
As a result of the calculation, there is a set of ordered points that determines the state of

the airfoil depending on the given moment in time ti: (xj(ti), yj(ti)), j = 1, Ngrid, i = 1, M,
where Ngrid is the number of grid elements that define the airfoil geometry, and M is the
number of time slices.

To transform an airfoil curve into a function, it is necessary to use a parabolic coordi-
nate system. On the other hand, for the points of the investigated airfoils to fit better on the
ground, it is necessary to scale them by dividing them by the leading edge radius (rl):

x′i = xi/rl − 0.5, y′i = yi/rl . (22)

The x-axis shift by 0.5 to the right is necessary so that the leading edge of the airfoil
lies inside the parabola.

The rl value is determined by the airfoil, however for a uniform conversion of all
airfoils, the average value rl = 0.03c was used, where c is the chord length. All airfoils
(except NACA0012) have a chord length of approximately 1 m, so the radius is rl = 0.03 m.

Then the transformation into the parabolic coordinate system (ξ, η) is performed:

ξi = sgn(y′i)

√
x′i +

√
x′i + y′i, ηi =

√
−x′i +

√
x′i + y′i. (23)

Thus, representing the airfoil as a function expressed by a set of points η = f (ξ), one
can write out formulas for determining N coefficients of the Fourier series expansion on
some segments [ξa, ξb], the length of which is Lab = ξb − ξa:
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ak =
2

Lab

∫ ξb

ξa
f (ξ) cos

(
2πkξ

Lab

)
dξ, bk =

2
Lab

∫ ξb

ξa
f (ξ) sin

(
2πkξ

Lab

)
dξ, k = 0, N. (24)

Note that these integrals are calculated numerically, for example, using the Simpson
formula, and using the already given partition (ξi, ηi). This partition can be supplemented
with intermediate points using interpolation to calculate the Fourier coefficients with large
numbers since their integrands oscillate strongly.

Then, summing up the corresponding Fourier series, one can obtain an approximation
of the function f (ξ):

f̃ (ξ) =
a0

2
+

N

∑
k=1

(
ak cos

(
2πkξ

Lab

)
+ bk sin

(
2πkξ

Lab

))
. (25)

It is important to note that the resulting expression (25) is a function that allows
restoration of the shape of the airfoil at any point on the segment [ξa, ξb].

To predict the thickness of accumulated ice, it is not necessary to consider the entire
airfoil. For the studied airfoils, the change in the function representing the displacement of
the geometry due to the ice accretion is localized on the segment [−4; 4] therefore next it is
assumed that

ξa = −4, ξb = 4, Lab = 8.

4.3. Augmentation of Data

One of the novelties of this work is training a neural network on various airfoils. Due
to this fact it is necessary to include in the set of training parameters the geometry of the
original airfoil, which has the form of a set of Fourier coefficients {ain

k , bin
k }. It is not neces-

sary to look for the result in the form of Fourier coefficients required to restore the geometry.
It is enough to obtain the coefficients representing the geometry change {ãout

k , b̃out
k }, then

the resulting airfoil shape can be restored by adding the input and output coefficients:

{ares
k , bres

k } = {a
in
k , bin

k }+ {ã
out
k , b̃out

k }, k = 1, N. (26)

Another novelty is the use of all time slices as input to learning. The main goal of
forecasting using machine learning is to obtain the final ice build-up on a clean airfoil under
given external conditions at time t. Since the source of data in this study is a numerical
calculation, instead of a clean airfoil, one can consider every intermediate time moment as
the initial state. This approach allows us to significantly increase the amount of data for
training a neural network.

Suppose that some calculations case contain M moments in time: t0 = 0, t1, t2,
. . . , tM−1. Let us find the total number of training examples, which will be obtained by
augmentation for this case, i.e., let us count the number of possible pairs defined for two
times {ti, tj}, where ti < tj. For time t0, one can choose M − 1 final icing states, i.e.,
transitions t0 → t1, t0 → t2, . . . t0 → tM − 1. Similarly, with t1 there are M − 2 pairs:
t1 → t2, t1 → t3, . . . t1 → tM−1, for t3 M− 3 pairs, and so on. For a moment in time tM−2
only one transition tM−2 → tM−1, is possible, i.e., one pair. Then the number of pairs
for each point in time forms an arithmetic progression with a step of 1. The sum of this
progression is the total number of training pairs {ti, tj}, the formula for which is a function
of M and has the form

S(M) =
M(M− 1)

2
. (27)

4.4. Features Definition

Besides the main icing parameters: velocity ~U, temperature T, liquid water content
LWC, the droplets diameter MVD, time of icing accretion t and angle of attack AOA, the
airfoil shape are suggested for use as the input feature. This allows us to account for the
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airfoil form changing and to predict ice shape for different airfoils. According to Section 4.2,
the airfoil shape is represented by 2N + 1 coefficients. To find a better value for N many
numerical experiments were conducted. It was shown that, on the one hand, if N ≤ 10, the
function of ice shape will have oscillations due to lack of high-frequency terms in (25). On
the other hand, the contribution of high-frequency terms is significantly decreasing with
increasing N due to the Fourier coefficients properties. In this work, the N = 20 as optimal
value for models performance. Therefore the overall number of the input parameters is 47.

The output parameters for prediction are the 2N + 1 Fourier coefficients, which repre-
sent the form of the airfoil with accumulated ice.

4.5. Metric Definitions

There are two different metrics for error estimation. The first one is the Mean Squared
Error (MSE)

errMSE =
1

N f

N f

∑
k=1

(
cp

k − ct
k

)2
, N f = 2N + 1, (28)

where ck denotes both sine bk and cosine ak Fourier coefficients from (24). Hereinafter, upper
indexes p and t mean prediction and target, respectively. An errMSE is applied directly to
the Fourier coefficients, unlike the error ˜err which is usually used to estimate the ice shape
prediction error [25,26] and applied to the function deduced from the Fourier series (25):

˜err =

∫ ξb
ξa
| f p − f t|dx∫ ξb
ξa

f tdx
. (29)

In this paper, the intersection over union (IoU) error errIoU is suggested, which is the
ratio of the ice shape difference area and the total area of the predicted and target ice shapes:

errIoU =

∫ ξb
ξa
| f p − f t|dx

2
∫ ξb

ξa
(| f p|+ | f t|)dx−

∫ ξb
ξa
| f p − f t|dx

(30)

4.6. Neural Networks

The development of ice on airfoils using models with two different architectures of
neural networks, FCNN and CNN, is studied. The choice of such architectures was based
on the classical concepts of neural networks. The training procedure is the optimization
of the coefficients of connections between neurons. The training algorithm is various
modifications of the gradient descent are usually used to train models. According to the
division of the complete dataset into training, validation, and test sets, training was carried
out in batches, each batch containing 32 examples from the training set. Splitting into
batches is needed to stabilize training.

A fully connected neural network (FCNN) is the simplest concept of architecture. Each
neuron connects with each neuron in a subsequent layer, see Figure 5. Input and output
layers are determined by the problem. The number of hidden layers and neurons on them
is not defined and can be arbitrary. FCNN has a disadvantage in the curse of dimension,
even a small increase in the number of layers and neurons leads to a significant increase in
learning parameters.

In addition to the fully connected neural network, Convolutional Neural Networks
were used. CNN is very popular today to use in image analysis for unsolved problems in
medicine and in satellite imagery analysis for rapid response to natural hazards (Floods,
Landslide, Water Pollution) on Earth [72–74].

Convolutional layers have significantly fewer training parameters, which gives finer
possibilities for determining the complexity of the model. Filters are considered to general-
ize spatial structures, Figure 6. The use of convolutional neural networks in this task is due
to the hypothesis of the influence of ice accretion on each other during their formation.
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Figure 5. FCNN architecture.

Figure 6. CNN architecture.

In the past few years, convolutional neural networks have been actively used to study
climate. Examples of using CNN include publications on the prediction of SIC (Sea Ice
Concentration) and SIT (Sea Ice Thickness) in the Arctic and the North Seas [75]. A team
of authors from the UK used a CNN modification of U-Net to develop the IceNet library.
IceNet was an ensemble of 25 CNNs. The CNN architecture adopted for each member of
the IceNet ensemble was a U-Net neural network. U-Net is a CNN encoder–decoder in
which a network feature extraction encoding path downsamples input data followed by a
decoding path that upsamples the data.

The neural network was trained on initial data calculated from the dynamic climate
model of the European Center for Medium-Range Weather Forecasts (ECMWF). The IceNet
neural network was trained to predict monthly mean sea ice concentration for the next
6 months on 25 km maps based on climate modeling data spanning 1850–2100 and obser-
vations from 1979 to 2011.

IceNet has outperformed the leading physical model ECMWF in seasonal forecasts of
sea ice conditions in the Arctic, especially for extreme summer ice events.

CNN was used in the publication of authors from the University of Utrecht, the
Netherlands [76]. Using the CNN-LSTM model, predictions of the shape of ice in the Arctic,
in the Barents Sea, were made using satellite data and a weather forecast model for up to
several months.

CNN was used to predict SIC and SIT in the Barents and Kara Seas in [77]. The spatial
scope of this study was the Arctic Ocean region (180◦ W–180◦ E/40◦ N–90◦ N), and the
temporal coverage was 30 years between 1988 and 2017.

CNN has been used to solve computational mechanics problems. For example, to
predict the shape of the flame from the results of the calculation data by the solver in
OpenFOAM [78], to predict the dynamic modes in the model combustion chamber [79] and
to predict the structure of the flame in the cavity according to the experimental data [80].

The deep-architecture-based methods (CNN and MLP) show better performance on
the test set than the shallow one (SLFNN) and traditional machine learning methods (kNN
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and SVM). The proposed CNN-based method achieves the highest accuracy on the test set
and shows excellent capacities of feature extraction and generalization.

Recently, a convolutional neural network (CNN)-based autoencoders (AE) has also
widely been used thanks to the concept of filter sharing in CNN, which enables us to handle
high-dimensional fluid datasets efficiently.

The CNN-AE and the POD were applied to a wake of NACA0012 airfoil to reduce the
dimension and examined the temporal behavior in the latent space [81].

A customized CNN-AE was applied to extract and visualize the nonlinear AE modes
by considering a two-dimensional periodic cylinder wake and its transient [82].

They demonstrated that the CNN-AE is similar to POD but a single nonlinear AE mode
contains multiple POD modes thanks to the nonlinear activation function. A similar idea
has also been extended in paper [83], utilizing a hierarchical CNN-AE to present ordered
AE modes following the energy contributions aiming at more efficient and interpretable
compression of turbulence [84].

CNN has been utilized in image processing and classification tasks. Moreover, the use
of CNN has also emerged in the fluid dynamics field because of the compatibility of the
filter sharing idea to high-dimensional fluid data.

The convolutional neural network was used to predict the vortex structure of the fluid
flow in the wake of a cylinder [83].

To improve the prediction performance, several neural networks have been tested
along with their modifications. Besides using two types of neural networks, FCNN and
CNN, and applying them with two different loss functions, see Section 4.5, two additional
methodologies: batch normalization and neurons dropout, are used. Thus, there are 12 NN:
FCNNIoU, FCNNB

IoU, FCNNB,D
IoU , FCNNMSE, FCNNB

MSE, FCNNB,D
MSE, see Table 1 and CNNIoU,

CNNB
IoU, CNNB,D

IoU , CNNMSE, CNNB
MSE, CNNB,D

MSE, see Table 2. Here a lower index means the
error type (MSE and IoU for mean squared error and intersection over union respectively),
and the upper index denotes whether the model applies a batch normalization layer to
every output neuron (B) or drops out 50% of output neurons (D).

Table 1. Architecture for different FCNN models.

Output Number
Layer Type of Trainable FCNN FCNN B FCNN B,D

Shape Parameters

Dense 64 3136 contains contains contains
Batch Normalisation 64 256 - contains contains

Activation (ReLu) 64 0 - contains contains
Dropout 50% (ReLu) 64 0 - - contains

Dense 128 8320 contains contains contains
Batch Normalisation 128 512 - contains contains

Activation (ReLu) 128 0 - contains contains
Dropout 50% (ReLu) 128 0 - - contains

Dense 256 33,024 contains contains contains
Batch Normalisation 256 1024 - contains contains

Activation (ReLu) 256 0 - contains contains
Dropout 50% (ReLu) 256 0 - - contains

Dense 128 32,896 contains contains contains
Batch Normalisation 128 512 - contains contains

Activation (ReLu) 128 0 - contains contains
Dropout 50% (ReLu) 128 0 - - contains

Dense 64 8256 contains contains contains
Batch Normalisation 64 256 - contains contains

Activation (ReLu) 64 0 - contains contains
Dropout 50% (ReLu) 64 0 - - contains

Dense 41 2665 contains contains contains

Total parameters: 88,393 89,673 89,673
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Table 2. Architecture for different CNN models.

Output Number
Layer Type of Trainable CNN CNN B CNN B,D

Shape Parameters

Batch Normalisation 48 4 contains contains contains
Activation (ReLu) 48 0 contains contains contains

Convolution 45× 32 160 contains contains contains
Batch Normalisation 45× 32 128 - contains contains

Activation (ReLu) 45× 32 0 - contains contains
Dropout 50% (ReLu) 45× 32 0 - - contains

Convolution 42× 32 4128 contains contains contains
Batch Normalisation 42× 32 128 - contains contains

Activation (ReLu) 42× 32 0 - contains contains
Dropout 50% (ReLu) 42× 32 0 - - contains

Convolution 39× 32 4128 contains contains contains
Batch Normalisation 39× 32 128 - contains contains

Activation (ReLu) 39× 32 0 - contains contains
Dropout 50% (ReLu) 39× 32 0 - - contains

Convolution 36× 32 4128 contains contains contains
Batch Normalisation 36× 32 128 - contains contains

Activation (ReLu) 36× 32 0 - contains contains
Dropout 50% (ReLu) 36× 32 0 - - contains

Convolution 30× 32 4128 contains contains contains
Batch Normalisation 30× 32 128 - contains contains

Activation (ReLu) 30× 32 0 - contains contains
Dropout 50% (ReLu) 30× 32 0 - - contains

Convolution 27× 32 4128 contains contains contains
Batch Normalisation 27× 32 128 - contains contains

Activation (ReLu) 27× 32 0 - contains contains
Dropout 50% (ReLu) 27× 32 0 - - contains

Convolution 24× 32 4128 contains contains contains
Batch Normalisation 24× 32 128 - contains contains

Activation (ReLu) 24× 32 0 - contains contains
Dropout 50% (ReLu) 24× 32 0 - - contains

Pooling 12× 32 0 contains contains contains
Flatten 384 0 contains contains contains
Dense 41 15,785 contains contains contains

Total parameters: 44,543 45,355 45,355

The main aim of model training is empirical risk minimization—calibrating the coeffi-
cients of the model so as to minimize the average error on the training sample [85]. The
first attempts to build approximation models based only on dense layers for FCNN or
using filters and pooling layers for CNN led to strong overfitting. This is clear from the
high spread of errors in the training and test samples (see results for FCNNIoU, FCNNMSE,
CNNIoU and CNNMSE, Figures 7 and 8). This NN does not give the desired performance.
These results are due to a high variance of training data or excess model complexity. On
the other hand, simplifying the model entails the other extreme is underfitting and results
between these two architectures are unsatisfied.

Figures 7 and 8 demonstrate the comparison of model performance for two metrics.
To compare two sets of models the MAE error was computed, see Figure 9.

To solve the overfitting problem one can use approaches such as batch normalization
or regularization with dropout. The neural network design guidelines state that the batch
normalization layer must follow the fully connected layer prior to activation [86].

In Figure 9 one can see that batch normalization layers significantly improved results
and decrease the test error for the IoU metric, but not for MSE. One of the possible reason
for this is that the MSE is an absolute error, while IoU is relative. That means that the model
trains faster and there is overfitting even for models with batch normalization and dropout.
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The next modification of the NN is adding D layers, which drops out 50% of neurons.
These models demonstrate better performance, see Figure 9.
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Figure 7. Comparison of the losses in the IoU metric for different neural network modifications.
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Figure 9. Comparison of the losses in the MAE metric for different neural network modifications.

5. Results

According to the MAE metric, Figure 9, one can see that the convolutional neural
network with batch normalization and dropout layers demonstrates the best performance.
Moreover, the results in Figure 9 demonstrate that there is almost no difference between
the metrics IoU and MSE.

To train the models, the cases (see Table A1) were randomly divided into three groups:

• Train: (15 cases) 421, 73,195.02, 642, 645, 424, 128, 422, 423, 425, 214, 625, 622, 629,
632, 122;

• Validation: (3 cases): 129, 621, 124;
• Test: (4 cases): 407, 613, 222, 626.
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The number of cases ratio for datasets is 68%/14%/18% for Training/Validation/
Testingrespectively. The total number of pairs in format {input, target} is 147,679.

The results for FCNNB,D
IoU and FCNNB,D

IoU are presented in Figure 10–13.
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Figure 14 demonstrates the dynamic of losses on the training and validation datasets
over training epochs.
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Figure 14. Loss per epoch for FCNNB,D
IoU and CNNB,D

IoU .

Compared to the CFD packages’ computational time, which is from several hours to
a few days, the neural network prediction process takes about 3–5 min, including time
for training.

The final result of the presented work is the specific library development for ice shape
prediction using neural networks—iceMPLNet.

6. Discussion

It is worth paying attention to Figures 7–9, which portray error function comparison
for different neural networks and metrics. The results for all FCNN variations, as well as
for pure CNN, (without additions) are quite predictable. For CNN and FCNN, regardless
of the chosen metric for a pure neural network, one can observe the effect of overfitting:
an extremely small error on the training set, more on the validation set, and an order
of magnitude more on the test set. In the case of FCNN, the overfitting effect slightly
decreases with the introduction of batch normalization and is absent for models with
batch normalization and dropout, which one can see in Figure 9. However, the cases of
CNNs to which batch normalization and dropout are applied look somewhat anomalous
(strange). In these cases, the error on the test set is less than on the validation and training
sets, which are of the same order. This result can be explained by the fact that the use of
normalization and dropout methods is controversial regarding CNN; in addition, there
are various combinations of these methods, including those in which their joint use is
excluded. On the other hand, such results in Figures 7–9 which could mean that there was
an insufficient number of examples and their quality (which was described above), as a
result of which the effect of network undertraining appears. It is also possible that a revision
of the CNN neural network architecture is necessary. Nevertheless, the authors considered
it important to present these results here. More detailed research on the application of
CNNs for ice formation forecasting will be carried out in further work.

The main reasons for the difference between the results of the neural network and
iceFoam are the data scarcity and the heterogeneity of ice formation regimes. The machine
learning model reproduces one of the modes well, while adapting worse to the other. To
solve this problem in the future it is planned to use clustering, i.e., identifying characteristic
ice formation modes and using its machine learning model for each regime.

Numerical modeling of glaze ice and mixed ice regimes requires consideration of
many parameters. For example, in the case of glaze ice, a water film is formed, which
can accumulate, flow down the airfoil, and freeze, forming a complex ice shape, and also
partially detach from the airfoil. At present, the iceFoam solver allows cosnideration of
various icing parameters; however, not all features of the described physical process are
included in the model. For example, droplet separation is not taken into account, the
heat transfer coefficient model (htc) needs to be improved, and only one film model has
been implemented. Nevertheless, the obtained numerical results for the rime ice regime
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and glaze ice (for some cases) are in good agreement with the experiment and with the
simulations results of other numerical packages.

The computational cases presented in Figures 10–13 are examples of the glaze ice
mode, so the numerical simulation by the iceFoam solver strongly depends on the heat
transfer coefficient and the film model, which also needs to be taken into account. It is
assumed that neural networks overtrain a certain pattern and then poorly reproduce ice
formation in another case. Insufficient numerical calculations were carried out in the glaze
ice mode, as a result of which the neural network was undertrained to predict the shape of
ice in this mode. It is also possible that, for some training cases, the ice shape is determined
by the structure and detail of the mesh, which can also affect the results.

The presented results indicate that machine learning for ice prediction based on
numerical calculations is a promising area for research. ML has a significant advantage over
numerical simulation—speed, but accuracy is still a weak point. Within the framework of
this work, it was possible to achieve a qualitative agreement between the results. However,
a strong deviation of the parameters from the training sample can give unpredictable results
and probably incorrect ones. Therefore, the applicability of the presented model is limited.
To improve the accuracy of forecasts, it is necessary to significantly rework the training
output, carry out additional calculations, and upgrade iceFoam.

It is important to note that changing training, validation, and test set configuration
does not significantly affect the numerical results. There are a lot of possible combinations,
but it was decided to focus on the case that represents the most representative cases
for various airfoils. However, the authors agree that the particular configuration may
influence the results obtained. In this case, it is necessary to note the great heterogeneity
of the presented computational cases for training, since all these cases are taken from
real experiments [71,87], which is the main limitation. As the results showed, there were
not enough data for training, despite the method of increasing the training sample—data
augmentation. This is also due to the limitation of the range of experimental values
(specific values of temperature, velocity, angles of attack, etc.), as well as the fact that not
all experiments from [71,87] were considered (due to the complexity of individual cases).

Perhaps, in this case, it would be more optimal to use a homogeneous grid of com-
putational cases with a given step of changing parameters and the formation of a kind of
decision space, based on which a neural network could be trained. However, such work
incurs large computational and time costs. The authors consider this work as one of the
promising directions for the future.

The iceFoam solver, developed to calculate the icing process of a 3D airfoil, was used
in this work in a 2D formulation for comparison with experimental data. Important factors
that determine the accuracy of ice surface calculations are the water film model and the
value of the heat transfer coefficient when convective heat transfer is taken into account.
We believe that the SWIM model is quite successful. In particular, it provides a natural
process to calculate the flow of water over the film with its subsequent freezing in those
parts of the airfoil where drops do not fall at all. A rather primitive formula was used to
calculate the heat transfer coefficient. However, for the needs of the tasks being solved,
it showed quite satisfactory results. The empirical spatial scale was calculated using the
simple formula L = C × 0.75 × 10−3, where C is the airfoil chord length. In the future, it is
necessary to develop a model of convective heat transfer taking into account the roughness
of ice.

Future research directions are to study the effects of icing on different parts of 3D
aircraft wings. The future development of iceMPLNet is aimed to ice mass and main aero-
dynamic coefficient prediction. Another possible direction of iceMMLNet development is
“Transfer Learning”, which could allow modeling of 3D wings icing using neural networks
trained on 2D cases.
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7. Conclusions

The iceFoam solver has been developed as part of the OpenFOAM package to simu-
late the process of airfoil icing. Its features are the use of the Euler–Lagrangian approach
to describe the behavior of the gas-droplet flow, the possibility of using various models
of the water film on the ice surface, a dynamic computational grid, and the possibil-
ity of using parallel calculations. The solver allows us to flexibly implement various
approaches and algorithms (film models, mesh movement, turbulence models, particle
behavior models) without additional programming or, in extreme cases, using classical
object-oriented programming.

The ice accretion flow was simulated using the iceFoam solver, the unsteady RANS
mathematical model with the k-ω SST turbulence model and two different neural networks.
The error in the computation of the ice thickness on the cylinder and airfoils with rime ice
was less than 5%.

The initial datasets were generated based on data for four different airfoils and initial
physical values of flow. The airfoil shape of ice was represented with a function using
parabolic coordinate system’s transformation. For the function approximation the corre-
sponding Fourier series is used. As a result, Fourier coefficients were received which were
selected as features. The approach with augmentation of data was used to enhance the
volume of data using data from intermediate time moments.

In this study, a framework of a deep-learning-based solver for ice accretion simulation
was established, which was realized by integrating an optimized deep convolutional
neural network, iceMPLNet. A case with a 2D airfoil in gas-droplet flow was used as an
example to demonstrate the performance of the proposed method in terms of both accuracy
and efficiency.

By training FCNN and CNN with different metrics and data from the flow around an
airfoil at several different parameters (inlet velocities, LWC, diameter of droplets, tice, angle
of attack), CNN demonstrated the feasibility of simulating results both within and even
beyond the range of the inlet velocity of training data.

Our approach included some new features, such as training a neural network on
various airfoils, using all time slices as input for learning. Several neural networks with
batch normalization and dropout layers are also used. The intersection over union (IoU)
error errIoU is used, which is the ratio of the ice shape difference area and the total area of
the predicted and target ice shapes.

In terms of efficiency, CNN is characterized by bringing the huge amount of computa-
tion forward to the training phase, while reducing the cost of simulations hundred-fold.

To the best of the author’s knowledge, this is the first application of deep learning to
reconstruct ice accretion using a combined approach with CNN and iceFoam. Generally
speaking, our study can be seen as a proof of concept, demonstrating that the prediction
of turbulent flow and species distributions can be reformulated as a machine learning
problem. The application of this framework will make real-time numerical simulation
possible, thus accelerating the development of technologies such as digital twins, rapid
prototyping with applications to complex systems such as aircraft and wind turbines. The
robustness and versatility of the proposed CNN framework will be further tested for a
wide range of ice accretion problems in follow-on research with “Transfer Learning”.

The neural network was defined as FCNN with five hidden layers and CNN with
pooling layers. The datasets were split into train, validation and test parts. The two error
metrics were defined for both neural networks.

The most accurate result of ice shape prediction is received with FCNN and CNN
that applied batch normalization and dropped out 50% of layers to output neurons of
each layer.
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Table A1. This is a table caption of physical parameters for airfoils.

Number Airfoil T (K) AOA. LWC (g/m3) MVD t (min) V, (m/s)

122 CT 263.65 1.6 0.563 21 4.9 130.15
124 CT 263.65 0.7 0.563 21 4.9 130.15
128 CT 258.55 0.6 0.341 21 2 128.6
129 CT 263.65 0.7 0.563 21 2 130.15
214 BJ 262.61 6 0.6 15 6 90
222 BJ 262.5 1.5 0.43 20 6 128.6
407 NACA0012 256.32 4 0.4 20 9.8 102.8
421 NACA0012 268.4 4 1 20 6 67.1
422 NACA0012 266.74 4 1 20 6 67.1
423 NACA0012 265.07 4 1 20 6 67.1
424 NACA0012 259.51 4 1 20 6 67.1
425 NACA0012 244.51 4 0.9 20 6 67.1
613 GA 263.15 −0.2 0.56 15 6 92.6
621 GA 268.15 1.9 0.54 20 2 66.87
622 GA 268.15 1.8 0.54 20 6 66.87
625 GA 263.15 1.8 0.66 40 0.9 66.87
626 GA 263.15 0.3 0.44 20 2 66.87
629 GA 258.15 0.3 0.44 20 1.4 66.87
632 GA 263.15 0.3 0.6 15 2 66.87
642 GA 263.15 −1.7 0.44 20 5.9 66.87
645 GA 263.15 2.4 0.44 20 5.9 66.87

73,195.02 BJ 258.15 1.5 0.31 20 5.8 129
CT—Commercial Transport airfoil, BJ—Business Jet airfoil, NACA—National Advisory Committee for Aeronau-
tics, GA—General Aviation airfoil. T—Temperature, AOA—Angle of Attack, MVD—Median Volume Diameter,
LWC—Liquid Water Content, t—Time of Ice Accretion, V—Velocity.
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