

 aerospace-09-00062

aerospace-09-00062

Aerospace 2022, 9(2), 62; doi:10.3390/aerospace9020062

Article

Architectural Process for Flight Control Software of Unmanned Aerial Vehicle with Module-Level Portability

TSogbayar Jargalsaikhan 1[image: Orcid], Keonpyo Lee 2, Yong-Kee Jun 3,*[image: Orcid] and Seongjin Lee 2,*[image: Orcid]

1

Department of Informatics, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Korea

2

Department of AI Convergence Engineering, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Korea

3

Division of Aerospace and Software Engineering, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Korea

*

Correspondence: jun@gnu.ac.kr (Y.-K.J.); insight@gnu.ac.kr (S.L.); Tel.: +82-55-772-1371 (Y.-K.J.); +82-55-772-1378 (S.L.)

Academic Editor: Sergey Leonov

Received: 30 November 2021 / Accepted: 20 January 2022 / Published: 25 January 2022

Abstract

:

To apply UAVs (Unmanned Aerial Vehicle) into different fields, including research and industry, and expand it quickly, reliable but modular software is required. The existing flight control software (FCS) of the UAV consists of various types of modules categorized into different layers, and it is responsible for coordinating, monitoring, and controlling the vehicle during its flight. This paper proposes mpFCS, a structure of UAV flight control software, which provides portability to its modules and is easy to expand. The mpFCS consists of four segments and several modules within the segments. mpFCS provides portability for each module within the segment. Existing software does not provide portability for its modules because of the tight coupling resulting from its different and private interfaces. The mpFCS uses interfaces of the standard airborne software architecture to transfer data between its modules. Moreover, the structure provides portability for its modules to run in the standard airborne software environment. In order to verify the mpFCS, we tested the mpFCS with the conformance test suite of the airborne software that provides the testing environment for the interfaces and modules of the software. The mpFCS passed the test. Test results show that all modules of the mpFCS are portable. Additionally, portable modules can be interoperable with other software, and the structure is expandable with new modules that use standard airborne software interfaces.

Keywords:

unmanned aerial vehicle; flight control software; portability

1. Introduction

UAVs are currently becoming popular due to their high maneuverability, good performance, low cost, and reliability [1,2]. By 2021, the target of the drones market is estimated at 4.5 billion US dollars and will reach 10.4 billion US dollars by 2031 [3]. Controlling a UAV from a ground control station (GCS) provides a new possibility for the UAV to reach the furthest areas with few human resources needed and require minimal energy, time, and effort. Recent technological advances create more new possibilities for UAVs [4,5], and UAVs are employed commonly in tasks such as surveillance [6], search and rescue missions [7] in the disaster area, wildfire, tracking, borderline security [8], remote sensing of the environment [9], etc. This is one of the biggest reasons UAVs are being adopted worldwide, especially by these sectors: personal, commercial, military, academia, and future technology.

Flight control software (FCS) is required to control and monitor UAVs from GCS [10]. Necessary characteristics of the software are (1) navigation, (2) guidance, and (3) control. Navigation is the process of data acquisition, data analysis, and estimation of information about vehicle state and its surrounding environments. Several fundamental sensors are used in the navigation process: an accelerometer, gyroscope, magnetometer, GPS, and other peripheral sensors such as airspeed sensor, barometer, etc. Guidance is the process concerned with user input, such as path planning, mission planning, flight mode changing, etc. The control component ensures that the flying vehicle follows the desired path and altitude by manipulating control surfaces. Employing UAVs in different fields requires modular and portable software that can expand quickly based on increased functionality. When functionalities and requirements of the software increase, the software can fulfill new functionalities and requirements by developing (or porting) a new module (from other software).

Software (or software module) portability is an important feature of the software, as it enables the software (or software module) to be reused in other software tools and/or operating environments [11]. When the design of a software does not consider portability and was not developed in modules, it is not possible to adopt the software in a new environment. This is because the software must be redesigned, reconfigured, and modified significantly to be able to run in a new system. Converting non-portable software to portable software is very costly because most of the conversion needs to be processed manually, and it also has to be tested for conformity [12,13]. By porting the software (or expanding with modules of other software) from one environment to another, major economic savings can be achieved by dropping out the development and modification costs of the software [14].

In order to be portable, the software must satisfy the portability requirements such as layered and modular structure, loosely coupled and high cohesion on its modules, standard interfaces, and hardware abstraction layer (HAL) [15]. These requirements result in easy expandability of the software. In order to be expandable and portable, many UAV software followed a layered structure with different modules and centralized all message-passing services between its modules as a middleware. The structure of existing UAV software [6,7,8,9,10,16,17,18,19,20,21,22,23] consists of common layers that contain different modules, such as

	
a hardware layer responsible for interface to the device,

	
a middleware layer, which works as a bridge between the hardware layer and application layer, and

	
an application layer that contains various functional modules, including navigation, guidance, and control modules.

Unfortunately, existing software does not satisfy all requirements and fulfills only some of them. Each software provides unique interfaces for communication between modules. These unique interfaces introduce a barrier to the portability of the modules and provide more complexity to the software and bring tight coupling into modules.

Due to its tightly coupled modules, the existing software cannot provide portability into its modules, and it is not easy to extend the software with new modules and transfer its modules to a different environment. Despite the technical advances, many software today result in the tightly coupled integration of software modules without regard to portability. This lack of focus on portability results in software modules that are unable to be reused from one software to another without significant modification.

This paper proposes a new structure of the flight control software of UAV named mpFCS (module-level portable Flight Control Software) that can provide portability to the software and each software module. In order to eliminate tight couplings and provide portability for its modules, we isolated its modules and designed the structure of the software. To design a new structure, we analyzed the structure of existing software at its module level. To do this, we used the standard FACE (Future Airborne Capability Environment) architecture for airborne software, and a new structure is based on specifications and requirements of the architecture that provides portability to the software. The FACE standard architecture [24] defines interfaces intended to develop software made up of portable components. The mpFCS consists of different portable modules in different segments, which can send and receive a message between its modules and between the software and GCS. We implemented a new structure with its core modules: flight mode, attitude, position, servo control, sensor, communication, transmitter, and IO module. Each module uses the FACE standard interfaces to transfer data between its modules. We evaluated the software with the FACE conformance test suites.

The result shows that each module of our software is portable to the different software that runs in the FACE environment, and they are also interoperable with the different software modules that use the same interfaces. Furthermore, to prove its expandability, we developed a sample module and ported it into our software. The result shows that the structure is expandable with a new module.

The main contributions of the work are as follows:

	
Framework for providing module-level portability for the software: we propose the framework that can provide portability to the software. The framework not only provides portability to the software, but also provides its modules.

	
Portable and expandable software with module-level portability: The proposed structure mpFCS provides portability for the software as well as portability for its modules to run in the standard FACE environment. The software based on the structure can expand with any new user-defined module or previously well-developed module that uses the standard FACE interfaces.

	
The software can be used as a prototype of actual FACE software. It means developers can test their software or module with actual FACE-based software.

	
Guideline for creating a portable module or converting the current module into a portable module. The guideline provides steps of analysis and how to do it.

The remainder of this paper is organized as follows. Section 2 explores related work, and Section 3 introduces a problem of the existing software and its causes. The solution for the problem and the proposed structure mpFCS are described in Section 4. Then, Section 5 explains the overall design of the mpFCS and its modules. Section 6 discusses the implementation of mpFCS. Section 7 provides experiments, results, and discussion. Finally, we conclude the paper in Section 8.

2. Related Work

UAVs are growing rapidly, and their software functionalities are increasing. Applying UAVs in different fields requires portable and modular software that can expand quickly based on increased functionality and is transferable to different platforms. Nowadays, various types of software are developed by academia, industry, and hobbyists, including open source and commercial software. First, this section explores the definition of portability and its characteristics. Then, the section continues with an analysis of existing software and summarizes how developers enable portability to their software.

2.1. The Portability and Its Characteristics

According to ISO/IEC 25010 [25], portability is the “degree of effectiveness and efficiency with which a system, product or component can be transferred from one hardware, software or other operational or usage environment to another.” Additionally, Mooney, J.D described [11,26] portability as a desirable attribute of the software and is typically concerned with reusing complete software (or part of the software) on new platforms. In other words, if the software is written without regard to hardware implementations and other dependencies, the software can be called portable [27]. As a view of Mooney, J.D, the primary goal of software portability “is to facilitate the activity of porting” of software from the “environment in which it currently operates to a new or target environment” before allowing “reuse of the complete existing application in the new environment” [11].

For achieving portability into software and its modules, software needs to fulfill requirements. Within the European standards for the aerospace industry (ECSS) [28], IEEE-830 [29], and ISO 2382-1 [30], and several other concepts are provided to describe various types of requirements of portability. There are similar requirements such as independence of (1) the operating system, (2) the middleware, and (3) the programming language. Haile [31] mentioned that the software could not provide portability to itself and its module due to (1) different types of programming framework, (2) proprietary application programming interface (API), and (3) its data format. Thus, Haile [31] listed up requirements as (1) common programming framework, (2) standardized API, and (3) data format for the standard API. In this paper, we followed characteristics of the portability described by Beningo, J. [15], which can be summarized as follows:

	
Simple and understandable structure (layered structure).

	
Separated into different and independent modules (modular structure).

	
Loosely coupled and high cohesion on its modules.

	
Standard interfaces between its modules to transfer data.

	
Hardware abstraction layer (HAL), the standard function set that can be used to access hardware functions without a detailed understanding of how hardware works.

	
Well-organized and detailed documentation for developers to understand its structure easily.

2.2. General Structure of the Existing Software

In this subsection, we summarized the structure of UAV software. In order to be portable, many software follows a layered structure with different modules and use different messaging mechanisms between its modules [15]. Figure 1 shows the most common layers and their modules in the structure of the existing UAV software. The software runs on different operating systems, such as open-source real-time operating systems including NuttX, Free RTOS, and ChibiOS. Most of them are open-source software, but some of the open-source software in academic work uses commercial operating systems such as VxWorks. Each software uses its message mechanism in the middleware layer. The software has various types of modules in the application layer. Figure 1 included the most common modules of existing software, such as control, position, attitude, motor, sensor, navigation, and communication modules.

Hedge et al. [10] developed flight control software for UAVs with two primary layers and four primary modules. Chong et al. [2] designed and developed flight control software for small UAVs based on the real-time operating system. The software is divided into three layers and consists of six application modules: navigation, control, fault manage, sensor, servo, and communication module. He et al. [16] created an open-source and lightweight flight control software for a UAV, consisting of two layers and main flight modules for initialization, sensing, PID control, and PID actuating. Ying et al. [17] designed and developed a distributed flight control software for UAVs. The software architecture is divided into four layers according to its functions.

There are many open-source flight control software for UAVs [32]. We list the popular software for completeness of the paper: ArduPilot [18] started by Chris Anderson, PX4 [19] created by Lorenz Meier, PaparazziUAV [20] from ENAC (École Nationale de l’Aviation Civile, France), MultiWii series [21], including Baseflight, Betaflight, INAV, Hackflight, and Cleanflight, developed by Alexandre Dupus [33], dRonin [22] and OpenPilot series [34] from TauLabs. Among these open-source software, we choose the most popular software: ArduPilot, PX4, PaparazziUAV, and dRonin.

2.3. Enabling Portability in the Software

The messaging mechanism in the middleware layer decreases the coupling of the modules and increases the portability capability. Additionally, it provides independent and separate modules and expands the software with a new module [15]. Table 1 compares the existing flight control software based on their documentation and shows its general structure, messaging mechanism, written language, and supported operating system. Chong et al. [2] and Ying et al. [17] use message bus in the middleware layer. Theile et al. [23] provide a modular autopilot framework named uavAP for UAVs. As the core functionality of the uavAP, cpsCore is responsible for managing its modules through its propriety interface, which is defined in the framework.

The popular open-source software PX4 [19] uses its messaging API named uORB for its internal communication to transfer data between modules. uORB is automatically started on the bootup, and many modules depend on it. Messages are defined as separate .msg files in the msg/folder. For its communication module, to connect UAV to GCS, it uses the MAVLink protocol. PaparazziUAV [20] uses proprietary middleware named ABI (AirBorne Ivy) to transfer data between modules. ABI gives an easy way to allow the software modules to exchange data. Messages are defined in the XML file with a unique name and id. For its communication module, to connect UAV to GCS, it uses PPRZLINK. dRonin [22] defines the data representation named UAVObject, and it is used for inter-module communication. Different functions are used to transfer data defined in UAVObject. UAVObjects are generated dynamically from XML definitions. For its communication module, to connect UAV to GCS, it uses the UAVTalk protocol.

3. Portability Issues of the Current Software

Due to the increase of tasks and functionalities of UAVs, its software is becoming more complex. The general structure of the existing UAV software is divided into common layers that contain various types of different modules. However, each software uses different interfaces to transfer data between its modules, resulting in tight couplings of modules. Due to the tight coupling of the modules, the software does not provide portability for its modules. This section discusses the status of existing UAV software and explains the problem related to portability and its cause.

3.1. Current Status of the Software

In order software to be portable, the software must satisfy the characteristics mentioned in Section 2. First, the general structure of existing UAV software follows a simple structure that [2,6,7,8,9,10,11,12,13,14,15,16,17,18,19] consists of common layers. Those common layers include (1) the hardware layer (the main IO device module), (2) the middleware layer that is responsible for connecting the application and hardware layers, and (3) the main flight application layer with different modules that control UAV’s movement. The software consists of different and separated modules based on their functionalities located in the application layer. To decrease the tight coupling and increase the high cohesion of the modules, the software uses different types of middleware that we explained in Section 2, which centralizes all message passing in one place. Nevertheless, each software uses its proprietary interfaces between its modules when it transfers data. Additionally, only Ying [17], ArduPilot [18], PX4 [19], and dRonin [22] have HAL. One of the non-functional requirements of being portable is its documentation. Academic works do not provide any documentation. Open-source software provides documentation, but because of its complex functionality and huge numbers of source lines of code, it is not easy to understand its documentation, and it takes much time. Only the main source code contains more than the following source lines of codes (SLOC): ArduPilot 350K, PX4 290K, PaparazziUAV 240K, dRonin 300K.

3.2. Portability Issue

The existing software does not fulfill the main requirements of portability that we mentioned in Section 2. A comparison of the existing software based on portability requirements and its summary is shown in Table 2. Each software followed a simple (layered) and modular structure, and most of them centralized their messaging in the middleware layer. Nevertheless, each software uses different types of messaging mechanisms that have proprietary interfaces in its inter-module communication. These different interfaces introduce a barrier to the portability of the modules and software modules between different software. Due to proprietary interfaces, expanding the software is becoming more complex, and it requires understanding the structure of each software to port the user-defined module to the software and run the software on the different platforms. Some modules use direct call of functions of other modules. A few of them provide hardware abstraction layers (HAL). The comparison result shows that each software cannot satisfy the portability requirements, thus it cannot provide portability not only to the software, but also to its modules.

Figure 2 shows proprietary interfaces between modules and layers that cause tight coupling of its modules. The module-level portability provides the easiest way to expand the software by porting a new module. Using the standard architecture reduces the coupling of the modules and brings portability into the software and its modules.

4. Solution

This section introduces a new structure of the software named mpFCS that provides portability to its modules. First, the section describes the main specification of the common modules, and then the section continues our design strategy for bringing portability to modules. We analyzed the structure of the existing flight control software, its modules, and connection methods between its modules and then segmented it into the FACE architecture [24], which provides airborne software’s standard interfaces and architecture. Bringing the standard architecture into the UAV flight control software provides portability to the module.

4.1. Standard for the Portability Problem

Owing to the software’s tightly coupled modules in the different layers, it is not easy to port the software and its modules in a different environment without modifying the source code. In order to solve this problem and enable portability to the software, we choose the FACE (Future Airborne Capability Environment) architecture. Figure 3 explains the overall design of the FACE architecture, which can provide portability into the software modules.

The FACE architecture from the Open Group provides portability to airborne software that can be redeployed on different computing hardware and/or the standard airborne software environment. The FACE architecture is composed of five logical segments:

	
The Operating System Segment (OSS): It provides and controls access to the computing platform for the other FACE segments.

	
Input/Output Services Segment (IOSS): It is a bridge for data from the device drivers to the PSSS.

	
Platform-Specific Services Segment (PSSS): It creates an infrastructure unique to the platform that provides device data to the components located in the Portable Component Segment.

	
Transport Services Segment (TSS): It provides movement of data between PCS and PSSS.

	
Portable Components Segment (PCS): It is a set of portable components.

The architecture defines a set of standardized interfaces providing connections between the FACE architectural segment such as Operating System Segment Interface (OSS Interface), the Input/Output Services Interface (IOS Interface), the Transport Services Interfaces, and Component-Oriented Support Interfaces. Additionally, the architecture defines the Unit of Portability (UoP), a set of components that provides one or more mission-level capabilities. The main characteristic of UoPs is portability to the other software that follows the FACE architecture. In this paper, we use the word module instead of the abbreviation UoP, which means the word module and UoP are interchangeable and have the same meaning in our work [24].

4.2. Restructuring Process

To follow the FACE architecture, first, we need to understand the structure of the existing software and its module’s dependencies and design its structure via following the specification and requirements of the FACE architecture. To achieve the above specification, we analyzed various UAV software and matched similar software layers into the FACE segments depending on each segment’s functionality and requirements. Figure 4 shows the matching process of the existing software into the FACE architecture. We called this process the AMR-Process (Analyze, Match, Restructure Process). It consists of two phases: analyzing the structure phase and redesigning the structure phase.

In the phase of analyzing the structure, we followed the steps below to analyze the structure of the existing software.

	
Analyze the software layers.

	
Recognize the modules and detect their dependencies.

	
Identify the functions and interfaces between modules.

	
Trace data between the functions to match the data for the next phase.

In the restructuring phase, we match the modules with the FACE segments based on analyzed data from the previous phase, the main requirements of the FACE architecture segments, and interfaces. Due to functions, dependencies, interfaces between modules, and input/output data, modules in the application layer match the PCS of FACE architecture. The modules in the middleware layer are divided into the TSS and PSSS, depending on their functionality and dependencies. The device driver layer matches with IOS because of its role in the software.

After identifying and analyzing module dependencies, we replace the software’s propriety interfaces with the FACE standard interfaces to transfer data. All the above processes result in portability to the software and its modules on the FACE software environment.

4.3. The Proposed Structure: mpFCS

In order to validate the AMR-Process on different types of software, we choose the software that (1) is open-source, (2) is currently effective, (3) follows a common structure, and (4) has good documentation. The software that fulfill the criteria are PaparazziUAV, ArduPilot, and PX4. The result of the analysis phase is shown in Figure 5a.

Based on the result of the analysis phase, we execute the restructuring process. Our proposed structure resulting from the redesigning phase has different layers and is modular, same as the existing FCS. It uses the FACE standard interfaces to transfer data instead of proprietary interfaces. Due to the standard architecture, it results in portability of the software and its modules. Table 3 shows a general comparison of our solution with the existing FCS.

5. Design of the Proposed Structure: mpFCS

In order to solve the portability problem of modules, we followed the AMR-Process mentioned in the previous section on the structure of different flight control software and designed the structure. This section explains the overall design of the mpFCS based on the result of the analysis. Then, we explain each segment of the structure and its modules. The FACE architecture defines only the segments, interfaces, and requirements of each segment and interface. Thus, we placed modules of the software in the segments based on their requirements and specifications to follow the FACE architecture.

5.1. The General Structure of the mpFCS

Figure 5b shows the overall design of mpFCS that proposed structure of UAV software with module-level portability, which is based on FACE architecture. Figure 6 describes the data flow of all modules in the segments. The IO segment receives data and sends it to the platform-specific service segment via the IO interface. Based on the IO service segment’s output, platform-specific service segments calculate data and send the calculated result to the portable component through the transport service segment. The transport service segment uses transport interfaces to transfer data between the portable component and platform-specific service segments. On the other hand, to send a state message from UAV to GCS, the portable component segment transfers state data (GPS location, altitude, heading, IMU data, mission state) to the platform-specific services segment through the transport service segment. When the platform-specific services segment receives data, it calculates, converts, and sends the data to the IO services module via the IO interface.

Running the common and open source UAV software does not require a specific operating system, such as a real-time operating system (ARINC-653, POSIX, etc.). The software runs on open-source operating systems, including Robot Operating System (ROS), NuttX, ChibiOS, etc. The Operating System Segment of the FACE architecture is not included in our design and is not implemented. Nevertheless, since we use the FACE interfaces between the modules, porting the structure into such operating systems is not a problem.

5.2. IO Service Segment

The IO module in the I/O Service Segment (IOSS) is responsible for interface devices, and it connects hardware drivers with platform-specific modules, which is the basis of information between platform-specific modules and external devices. The module receives command data from the I/O device and passes them to the module in the Platform Specific Service Segment (PSSS). Concurrently, the module receives state data from the module in the PSSS. All input and output data between modules in IOSS and PSSS goes through the IO interface.

5.3. Platform Specific Service Segment

We designed modules in the Platform Specific Service Segment (PSSS) that depend on the IO module data, and all data flow in the PSSS is shown in Figure 7.

The segment consists of three modules: sensor-calculation, communication, and transmitter modules. The segment receives data from the Transport Service Segment (TSS) or IOS and sends them to IOS or TSS.

	
The communication module is responsible for sending and receiving a message between UAV and GCS. It receives a command message from IOSS via the IO interface, then passes a message to TSS using the TS interface. Simultaneously, it receives a state message from TSS through the TS interface and passes it to IOS through the IO interface.

	
The sensor-calculation module is responsible for data from various sensors, and it receives data from IO devices via the IO interface, converts them, and transfers them to the transport module in the TSS via TS-interface.

	
The transmitter module is responsible for converting and transferring data to actuators, which comes from the portable component segment.

5.4. Transport Service Segment

The transport module in the Transport Service Segment (TSS) can transfer data between PSSS and the Portable Components Segment (PCS). Figure 8 shows the data flow between TSS and PSSS. The transport module consists of two submodules which are StateModule and CommandModule.

The StateModule receives a state message from the main flight module and transfers it to the communication module in the PSSS. Additionally, it receives sensor data from the sensor-calculation module. At the same time, the CommandModule receives command data from the communication module, and it checks data and transfers data to the specific module in the main flight module depending on the message-id. Besides, it receives a message from the main flight module and transfers a message to the transmitter module in the PSSS. All data between PSSS, TSS, and PCS are transferred through the FACE TS interfaces.

5.5. Portable Component Segment

The Portable Component Segment, designed at the top of the software structure, is the key to realizing the UAV flight control function. The main functions, such as UAV flight status management, navigation, and control management, sensor and servo management, and peripheral device management are achieved at this segment, and it consists of five modules: flight control, altitude, position, servo-motor, and main control modules. The modules in the PCS receive and send data from/to TSS via the TS interface.

	
Main control module: The main control module in the PCS is responsible for controlling the UAV, managing, and showing the vehicle’s current state.

	
Flight control module: is responsible for changing its flight modes and converting the user’s input into a lean angle, rotation rate, climb rate, etc., that is appropriate for this flight mode.

	
Attitude control module: calculates attitude and target roll, pitch, yaw rotation rates, converts to high-level motor requests.

	
Position control module: calculates path and the position, velocity, and acceleration, and updates position.

	
Servo-motor control module: receives high-level motor request data from modules in the PCS and converts it into individual motor outputs.

6. Implementing the mpFCS

This section explains the implementation steps of the mpFCS stated in Section 5. First, we explain how we implement the structure, and then we continue with verification of the implementation.

To implement modules, we analyzed various types of existing software for UAVs with different layers and modules. We choose ArduCopter, part of ArduPilot flight control software suites, an advanced open-source software autopilot system for multicopters, helicopters, and other rotors vehicles. Internal functionalities of our implementation are based on the open source, flight control software ArduCopter [18].

ArduCopter consists of different layers, and it provides libraries that are responsible for its flight, device drivers, and communication. For example, GCS_Copter and GCS_MAVLink in the application layer are responsible for sending a state message to the communication module and receiving a command message. GCS_MAVLink in the shared library provides a possibility to send and receive messages between GCS and UAV, and it uses MAVLink protocol on its communication. The hardware abstraction layer provides interfaces for various devices, including sensors, boards, etc. The flight codes in the application layer provide possibilities for UAV’s control and management of its movement.

The FACE architecture provides its requirement for each segment and interfaces between segments. To meet the requirements, we follow the matching process described in Section 5. This process provides the matching table of the software with FACE segments. Table 4 shows the codes of ArduCopter and our matching of the software with the FACE segments. We matched the basic modules of the ArduCopter into the proposed structure. PCS consists of five modules (flight mode, position, attitude, motor, and main control) that are the main modules of the ArduCopter. In the PSSS, we choose the most basic modules related to the data of IOSS, which are communication, sensor, and transmitter modules.

6.1. Implementation of the Portable Modules

We implemented the structure with modules that consist of portable component segments (PCS), transport services segment (TSS), platform-specific services segments (PSSS), an input-output services segment (IOSS), and the core functions of each segment, which are responsible for sending and receiving a message.

In order to implement the structure with the FACE segment, we performed the following steps:

	
Identify code dependency and its coupling with different functions in other modules.

	
Match libraries and modules with the FACE segments.

	
Match its proprietary interface with FACE interfaces.

	
Mapping FACE IDL interface files into C++.

We implemented each segment and interface based on the reference implementation guide for FACE architecture [35].

To implement modules, we divided messages between modules into two main categories: internal and external messages. First, the external message is related to GCS, which can be a raw command message sent by GCS (a message from bottom modules to upper modules) to UAV or a UAV real state message sent to GCS (a message from top modules to bottom modules). Second, the internal message is related to the sensors and motors, which can be a real command message that goes to the UAV motor and actuator (a message from top modules to bottom modules) or a raw state message from the sensor, which needs to be calculated (a message from bottom modules to upper modules).

In order to send and receive the internal and the external message, we implemented the following interfaces:

	
IO interfaces such as FACE::IO::Write and FACE::IO::Read to transfer a message between the IO module and modules in the PSSS and

	
FACE::TS::Send_Message and FACE::TS::Receive_Message to transfer a message between modules in the PSSS, TSS, and PCS [35].

For implementing the structure, this paper uses Ubuntu Linux 16.04 64-bit operating system and GCC v7.5.0 as compiler and linker.

6.2. Verification

To prove our implementation works faultlessly and messages between modules and GCS are correct, we traced, collected, and compared the mpFCS and the general FCS data. We tested the following test case: (1) external message test (a message to/from GCS), (2) internal message test (a message to/from motor/sensor). A state message on GCS must be equal to the state data that the main flight module sends, and a command message on the flight module must equal a message that GCS sends.

To check and compare the specification of portable modules, we run both the general software and the mpFCS in the simulated environment. Figure 9 shows the process of comparing the general software and the mpFCS in the simulation environment. The simulation environment allows the software to run on the PC without any special hardware. The mpFCS runs on the simulation environment, which runs on the system with Intel i5-10400F 2.9 GHz CPU and 12 GB main memory, and Ubuntu 16.04 LTS-64bit OS. On the other hand, we run the GCS on the second system with Intel i5-4590 3.3 GHz CPU and 8 GB main memory, and Ubuntu 16.04 LTS-64bit OS to control and exchange data between GCS and the mpFCS. The mpFCS connects to GCS via TCP. Simultaneously, we run the general FCS in the simulation environment and connect it to GCS on another system with the exact specification. When communications are established, we make the test for sending and receiving data. GCS sends a command message to both simulators and receives a state message from both simulators.

To verify the external message, first, we traced a state message on the communication module and GCS. A test result of the state and command message through its communication modules is shown in Figure 10. During the flight, the communication module of the software encodes a state message and sends it to GCS. When GCS receives a state message, we compare this message to a message on the communication module. Concurrently, we send a command message to the software. Same as previous steps, when the software receives a command message, we compare this message to a message that we send to the software. The result shows that our solution works appropriately, and its final data between GCS and the simulator are precisely the same.

To verify the internal message, we traced the internal state and command messages between modules. First, we trace the state message from the sensor to the main flight module on both software. During the flight, the sensor module of the software gets a state message and transfers it to the application layer. Second, we traced the command messages among modules. When the main flight module receives a command message, it transfers a message to the motor and actuator. We compare the input and output of each module. The result proves that the mpFCS works correctly, and its final data among modules are correct. The comparison of data flow between the mpFCS and general software is shown in Table 5. This comparison shows that FligtControl from the general FCS depends on the motor, sensor, and communication module and is coupled with them. On the other hand, modules in the PCS of mpFCS depend only on modules of the TSS.

7. Experiments

This section discusses the experiment and its result. To evaluate modules, we made two experiments as (1) A test of the FACE conformance test suite (CTS) [36], for verifying conformance of modules to the FACE standard and testing its interoperability with FACE software and its module portability, (2) a test of adding a new module to the structure, for proving extendibility of the software with different modules from FACE software and other software, (3) a test of running the mpFCS on the Windows system, for verifying portability of the mpFCS. Table 6 shows our experiment environments. In order to perform experiments, we use two systems for the environments of UAV simulation and GCS, which have the same software installed on them.

7.1. The FACE Conformance Test Suite Test

The FACE CTS is a testing suite for checking the FACE standard requirements of units in the FACE segments. It provides the testing environment for the FACE standard conformance, and it can test the comfortability of the FACE segments and their interfaces with the FACE software. The software module must be linked with FACE test interfaces and interfaces to run the test most likely linked against FACE test applications provided by the FACE CTS. If the compiling and linking of the software pass the test, the software code is conformant concerning the requirements tested. If the test result fails, the software is not conformant with the FACE, and the software cannot provide portability to the software. Results that test output will show in the browser.

We tested our modules with the FACE CTS, which can test PCS, PSSS, TSS, IOSS, and interfaces. We run the test on the Linux-based computer system, which can also be Windows. After configuring testing environments, we test each segment with the interfaces. To test modules, we made the following steps and configurations.

	
Create an object file of each module using the makefile,

	
Link the FACE CTS library to the object file of each module,

	
Configure the general settings for the testing environment and specific segment settings on the FACE CTS GUI.

Figure 11 shows how the FACE CTS works and its flow. After following the above steps and configuration, we compile and link each segment with the FACE CTS. The module successfully passed the FACE architecture comfortability test. The process of compiling and linking passed the test, and the test output shows detailed information. Table 7 shows the test results of each module, its interface, and its data in the environment. Each module passed FACE CTS, and the test result on FACE CTS shows that portable modules can be interoperable with the FACE software. Figure 12 shows the test result of FACE CTS. The test result includes passed or failed for each test. The result also includes the code used for the test and the log generated in performing the test. All results are shown on the web browser after the successful test.

7.2. Adding a Module into the mpFCS

The software’s expandability is the ability that increases the software’s functionality by adding or porting new modules. The module extends the software by adding new functionality or modifying existing functionality, and it must extend the software without ever modifying the core base code. Since we focused on the expandability of the software, we adhere the standard architecture and exploit its interfaces on the mpFCS; thus, the mpFCS can expand with any module that uses the same interfaces. In order to port a new module in the PCS, a module needs to use the TS-Interface. Additionally, modules in the PSSS must use TS-Interfaces and IO-Interfaces. Thus, to prove this, we developed a sample module, ported it into the software based on the proposed structure, and extended it to show its expandability. Additionally, we added a module from the existing software and showed how to add the existing module into the structure.

7.2.1. Adding a New Module into the mpFCS

A sample module named distCalc module receives the current navigation data, and it calculates and shows the percentage of the distance between the endpoint and the UAV. Figure 13 shows the general design of the module and its interface to the transport module. In order to work as a portable module, we located the module in the PCS. To port the module into the software and receive navigation data from the transport module, it must use the TS interface. Thus, we added distanceCal in the distCalc module, and it invokes FACE::TS::Send_Message from the stateModule in the transport module to receive a message. The module receives data from the transport module in every set of time intervals and calculates the distance. Table 8 shows the specification of the module and sample data collected during its running. To execute and port the module, first, we run the mpFCS in the simulated environment. When the software runs, the distCalc receives data and calculates it. At first, the module receives the coordination of the starting point that is S (x , y) (S —the starting point, x—longitude, y—latitude) and endpoint data: E (x , y) (E —the endpoint) from TSS. Then, the module calculates the distance between two points. Second, the module calculates and shows the percentage between the endpoint and the current location when the UAV moves. In order to calculate this, the module collects the current navigation data that is a new starting point data S i (x , y) , which changes in a set of time intervals from TSS.

After developing the module, we tested it on the FACE CTS. To test a module, we followed the steps mentioned in the FACE CTS test. The distCalc module must pass the test of the TS interface, and its data must be portable with the FACE standard. The module passed the conformance test, and its result is shown in Table 9.

Same as adding distCalc into the structure, the mpFCS can expand with any different modules that use the standard FACE interfaces.

7.2.2. Adding an Existing Module into mpFCS

The mpFCS can be expanded by adding a module from existing software. In order to add an existing software module to the structure, its proprietary interfaces must be replaced with the FACE interfaces. However, due to different data structures and functions, this process requires manual work for each module. Thus, we created a manual process named Interface and Data Translator, which analyzes a module from existing software and provides it for the mpFCS. Figure 14 shows a flow of the process. This process consists of two phases: (1) analyzing phase, which analyzes the module from the existing software, and (2) translating phase that replaces interfaces and changes data structure. The result of this process can provide a new module for the structure from the existing software. We followed the above process, converted the module to the mpFCS, and added the module into the structure.

7.3. Running the mpFCS in a Different Environment

Since our approach follows the standard FACE architecture and its interfaces along with programming interfaces, the compiler guarantees portability. It also allows the implemented structure to run on different environments seamlessly. The process of deploying of a FACE-compatible software to any environment is shown in the Figure 15.

We implemented the mpFCS in Ubuntu Linux 16.04 64-bit operating system. To verify the portability of the mpFCS, we recompile and deploy the mpFCS on a Windows system that has the same hardware specifications we used in our experiments. Figure 16 illustrates the running of the mpFCS on a Windows system without any issues. Additionally, the distCalc module is successfully ported into the mpFCS that runs on the Windows system. The distCal module works correctly, and its data is the same as on the Ubuntu system. We only present the result acquired in Linux system because the results are the same on both environments.

7.4. Analysis

This subsection discusses a comparison of the mpFCS and the existing flight control software on their module level. This comparison is based on its expandability, interoperability, and portability.

In order to make software portable, expandable, and interoperable, we need to use standard interfaces. Thus, we use the standard interfaces in each module of segments to send and receive a message between them. In the experimentation, a new module uses the TS interface to receive a message from the transport module in TSSS.

7.4.1. Analysis of Portability

Figure 17 compares layers and interfaces between the existing software and our structure experimentation. The existing software uses its proprietary interfaces for its internal communication to transfer data between modules. PaparazziUAV uses functions from the ABI middleware, which has prefixes such as abiSendMsg and abiBindMsg depending on the message types. dRonin also uses proprietary UAVObj interfaces, and depending on message types, different interfaces of UAVObj are used for transferring messages. uORB messaging API is used in PX4 for internal communication. On the other hand, the mpFCS uses the FACE standard interfaces in its modules, such as IO interfaces (FACE::IO::Write() and FACE::IO::Read()) and TS interfaces (FACE::TS::Send_Message() and FACE::TS::Receive_Message()) to transfer data between its modules. It brings portability not only to software, but also to the software modules.

7.4.2. Analysis of Expandability

Expandability allows the addition of new capabilities or functionality to the software. The existing software uses its interfaces defined by the software. To expand the software with a user-defined module, the developer needs to understand the structure of the software. To add a new module to PX4 [19], the developer needs to know how its middleware uORB works and its data structure. However, a module works only on the chosen software. Expanding the software with another module from different software takes time, and a large amount of work is required to modify its source code to expand the software with that module. We expand our structure with a user-defined module named distCalc that calculates the distance between the current point and endpoint. The distCalc can expand any other software that runs in the same environment. On the other hand, the mpFCS can be expanded by different modules from different FACE software because of the same interfaces. In order to expand the mpFCS by adding a module from existing software, we created a manual process named Interface and Data Translator, as shown in Figure 14.

7.4.3. Analysis of Interoperability

Interoperability allows the capability of two or more functional units to process data cooperatively. A new user-defined module needs to interoperate with other modules of the software. Same as expandability, interoperability with other modules from different software requires lots of modification on the software’s source code. A new module, distCalc, expands the mpFCS and uses the FACE standard interfaces (FACE::TS::Receive_Message) to interoperate stateModule in the Transport Service Segment (TSSS). The current capability of the distCalc is only receiving data from TSSS, but capability can increase by sending data to TSS. Due to the FACE interfaces in a new module, the module can interoperate with any software that runs on the FACE environment.

We compared the interfaces, expandability, interoperability, and portability of mpFCS with other software, and Table 10 shows the comparison result. The existing software [2,6,7,8,9,10,11,12,13,14,15,16,17,18,19] is not portable, and its modules are tightly coupled due to its unique interfaces. Expanding the existing software with a new module requires understanding its structure and interfaces. However, a new module only expands the chosen software and interoperates its modules.

The experiment result shows that each module of the mpFCS can be ported to other FACE software, which means modules can be ported to any software that runs on the FACE software environment. After porting a module to another software, it can exchange data with them, which means it is interoperable with another software. Compared with the related work (Table 10), our structure not only provides portability for its module but also provides the expandability of the software and interoperability with different software.

7.5. Discussion

The verification result shows that the mpFCS works correctly, and experiments show it can provide portability for its software modules to run in the standard FACE environment. Furthermore, experiment results show that it can interoperate with other FACE software and expand with new modules that use FACE interfaces.

Currently, we designed and implemented only the basic modules of the software, but these modules are enough to control the UAV by sending/receiving a message to/from GCS. Additionally, other payloads in the message or an increase of commands will not affect the structure. Since we use the FACE architecture in our solution, more work would be required to port the module with different software types that run in a different environment.

8. Conclusions

UAV flight control software handles the movement of UAVs and is responsible for controlling and monitoring it. Unfortunately, the software does not provide portability for its module due to the tight coupling with different modules. This paper proposes mpFCS, a new structure of UAV flight control software, which can provide portability to its modules in the environment of standard airborne software. To evaluate the structure and modules, we redesigned existing UAV flight control software and tested them on the FACE CTS. Then, we compared their specification and functionalities with the original software. Redesigned modules passed FACE CTS testing, and the comparison shows that they are working correctly. Additionally, we developed a sample module named distCalc and ported the module into our implementation of the proposed structure. The experimentation shows that the software based on the proposed structure provides portability to its modules, and it can interoperate with the software that runs on the standard airborne software environment. The software is expandable as long as a new module uses standard airborne software interfaces. Health monitor and fault management is a critical software module for UAV which detects, reports, and handles faults in the system and its modules. Based on these standardized methods, developers can create their health and fault management system module to cover fault tolerance of the system. The Interface and Data Translator is required to port the module with different types of software in the standard airborne software environment. Future works are needed to focus on running the structure implementation on the actual UAV and bringing the automatic process to Interface and Data Translator.

Author Contributions

Conceptualization, T.J.; data curation, T.J.; methodology, T.J. and K.L.; supervision, Y.-K.J.; writing—original draft preparation, T.J.; writing—review and editing, S.L. All authors have read and agreed to the published version of the manuscript.

Funding

This study was carried out with the support of ’R&D Program for Forest Science Technology (Project No. 2021344A00-2123-CD01)’ provided by Korea Forest Service (Korea Forestry Promotion Institute), and this work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program, 20005378, Open Avionics System Architecture and Software Development for Small to Medium Aircraft Class), funded By the Ministry of Trade, Industry, & Energy (MOTIE, Korea). Additionally, this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A2C1014163).

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Cai, G.; Dias, J.; Seneviratne, L. A survey of small-scale unmanned aerial vehicles: Recent advances and future development trends. Unmanned Syst. 2014, 2, 175–199. [Google Scholar] [CrossRef]

	

Chong, M.; Chuntao, L. Design of flight control software for small unmanned aerial vehicle based on VxWorks. In Proceedings of the 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, 8–10 August 2014; pp. 1831–1834. [Google Scholar] [CrossRef]

	

Research and Markets. Report, Target Drone Market-A Global and Regional Analysis: Focus on End-User, Application, Platform, Mode of Operation, Speed, Target Type, Payload, and Country-Analysis and Forecast; Research and Markets: Dublin, Ireland, 2021. [Google Scholar]

	

Bolkcom, E.B.A.C. Unmanned Aerial Vehicles: Background and Issues for Congress; Library of Congress, Congressional Research Service: Washington, DC, USA, 2011. [Google Scholar]

	

Battsengel, G.; Geetha, S.; Jeon, J. Analysis of technological trends and technological portfolio of unmanned aerial vehicle. J. Open Innov. Technol. Mark. Complex. 2020, 6, 48. [Google Scholar] [CrossRef]

	

Darwante, S.; Kadam, A.; Talele, H.; Ade, O.; Bankar, A. Border Surveillance Monitoring Application. In Proceedings of the 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA), Pune, India, 19–21 September 2019; pp. 1–6. [Google Scholar] [CrossRef]

	

Quigley, M.; Goodrich, M.A.; Griffiths, S.; Eldredge, A.; Beard, R.W. Target acquisition, localization, and surveillance using a fixed-wing mini-UAV and gimbaled camera. In Proceedings of the 2005 IEEE international conference on robotics and automation, Barcelona, Spain, 18–22 April 2005; pp. 2600–2605. [Google Scholar] [CrossRef]

	

Beard, R.W.; McLain, T.W.; Nelson, D.B.; Kingston, D.; Johanson, D. Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. Proc. IEEE 2006, 94, 1306–1324. [Google Scholar] [CrossRef]

	

Iscold, P.; Pereira, G.A.; Torres, L.A. Development of a hand-launched small UAV for ground reconnaissance. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 335–348. [Google Scholar] [CrossRef]

	

Hegde, M.; Raveendra, M. Development of flight control software for Unmanned Aerial Vehicle. Int. J. Emerg. Technol. Comput. Sci. Electron. 2015, 14, 661–664. [Google Scholar]

	

Mooney, J.D. Portability and reusability: Common issues and differences. In Proceedings of the 1995 ACM 23rd Annual Conference on Computer Science, Nashville, TN, USA, 28 February–2 March 1995; pp. 150–156. [Google Scholar]

	

Singh, C.; Sharma, N.; Kumar, N. Analysis of software maintenance cost affecting factors and estimation models. Int. J. Sci. Technol. Res. 2019, 8, 276–281. [Google Scholar]

	

Ren, Y. Research on Software Cost Estimation and Its Expert System. Ph.D. Thesis, Liaoning Technical University, Fuxin, China, 2008. [Google Scholar]

	

Hopsu, A. Portability of IEC 61499 Compliant Software; Aalto University: Espoo, Finland, 2019. [Google Scholar]

	

Beningo, J. A Practical Approach to Code Reuse. In Reusable Firmware Development; Springer: Berlin/Heidelberg, Germany, 2017; pp. 277–299. [Google Scholar]

	

He, Z.; Chen, Y.; Shen, Z.; Huang, E.; Li, S.; Shao, Z.; Wang, Q. Ard-mu-copter: A simple open source quadcopter platform. In Proceedings of the 2015 11th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Shenzhen, China, 16–18 December 2015; pp. 158–164. [Google Scholar] [CrossRef]

	

Ying, F.; Xiujuan, L.; Chuntao, L.; Zhenyu, J. Design of distributed flight control software based on software bus. In Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 12–14 August 2016; pp. 725–729. [Google Scholar] [CrossRef]

	

ArduPilot. Available online: https://ardupilot.org/ (accessed on 20 January 2021).

	

DroneCode. PX4. Available online: https://px4.io (accessed on 20 January 2021).

	

ENAC. PaparazziUAV. Available online: https://wiki.paparazziuav.org/wiki/Main_Page (accessed on 20 January 2021).

	

MultiWii. Available online: http://www.multiwii.com/ (accessed on 20 November 2021).

	

dRonin. Available online: https://dronin.org (accessed on 14 January 2021).

	

Theile, M.; Dantsker, O.; Nai, R.; Caccamo, M.; Yu, S. uavAP: A Modular Autopilot Framework for UAVs. In Proceedings of the AIAA Aviation 2020 Forum, Virtual Event, 15–19 June 2020; p. 3268. [Google Scholar] [CrossRef]

	

OpenGroup. The FACE Technical Standard. Available online: https://www.opengroup.org/face (accessed on 20 February 2020).

	

ISO/IEC 250102011 Systems and Software Engineering@ Systems and Software Quality Requirements and Evaluation (SQuaRE)@ System and Software Quality Models. 2013; ISO: Geneva, Switzerland. Available online: https://www.iso.org/standard/35733.html(accessed on 14 June 2021).

	

Mooney, J.D. Developing portable software. In Information Technology; Springer: Berlin/Heidelberg, Germany, 2004; pp. 55–84. [Google Scholar]

	

Kaindl, H. Portability of software. ACM SIGPLAN Not. 1988, 23, 59–68. [Google Scholar] [CrossRef]

	

ECSS-E-40-Part-1B, Space Engineering: Software—Part 1 Principles and Requirements. 2003. Available online: https://ecss.nl/standard/ecss-e-40-part-1b-space-engineering-software-part-1-principles-and-requirements/ (accessed on 14 June 2021).

	

IEEE-Std-830IEEE Recommended Practice for Software Requirements Specifications, IEEE Press: New York, NY, USA, 1998.

	

ISO 2382–1Information Technology—Vocabulary—Part 1: Fundamental Terms. 1993; ISO: Geneva, Switzerland. Available online: https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-1:ed-3:v1:en(accessed on 14 June 2021).

	

Haile, N.; Altmann, J. Evaluating investments in portability and interoperability between software service platforms. Future Gener. Comput. Syst. 2018, 78, 224–241. [Google Scholar] [CrossRef]

	

Ebeid, E.; Skriver, M.; Terkildsen, K.H.; Jensen, K.; Schultz, U.P. A survey of open-source UAV flight controllers and flight simulators. Microprocess. Microsyst. 2018, 61, 11–20. [Google Scholar] [CrossRef]

	

Dupus, A. Multiwii Source Code. Available online: https://code.google.com/archive/p/multiwii/ (accessed on 20 December 2020).

	

OpenPilot. Available online: https://opwiki.readthedocs.io/en/latest/ (accessed on 15 December 2020).

	

OpenGroup. Reference Implementation Guide for FACE™ Technical Standard, Edition 2.1. Available online: https://www.opengroup.org/face/docsandtools (accessed on 20 September 2020).

	

OpenGroup. The FACE Conformance Test Suite. Available online: https://www.opengroup.org/face/conformance-testsuites (accessed on 11 November 2020).

[image: Aerospace 09 00062 g001 550]

Figure 1. The most common structure of the existing software, which consists of layers and modules.

Figure 1. The most common structure of the existing software, which consists of layers and modules.

[image: Aerospace 09 00062 g001]

[image: Aerospace 09 00062 g002 550]

Figure 2. The proprietary interface between layers and its modules.

Figure 2. The proprietary interface between layers and its modules.

[image: Aerospace 09 00062 g002]

[image: Aerospace 09 00062 g003 550]

Figure 3. The overall design of the FACE architecture.

Figure 3. The overall design of the FACE architecture.

[image: Aerospace 09 00062 g003]

[image: Aerospace 09 00062 g004 550]

Figure 4. The AMR-Process of matching the existing FCS into the FACE architecture.

Figure 4. The AMR-Process of matching the existing FCS into the FACE architecture.

[image: Aerospace 09 00062 g004]

[image: Aerospace 09 00062 g005 550]

Figure 5. The analysis of the modules of open-source software and the mpFCS. (a) Open Source (PaparazziUAV, PX4, ArduPiolot). (b) mpFCS.

Figure 5. The analysis of the modules of open-source software and the mpFCS. (a) Open Source (PaparazziUAV, PX4, ArduPiolot). (b) mpFCS.

[image: Aerospace 09 00062 g005]

[image: Aerospace 09 00062 g006 550]

Figure 6. Data flow of the mpFCS.

Figure 6. Data flow of the mpFCS.

[image: Aerospace 09 00062 g006]

[image: Aerospace 09 00062 g007 550]

Figure 7. Data flow in the PSSS.

Figure 7. Data flow in the PSSS.

[image: Aerospace 09 00062 g007]

[image: Aerospace 09 00062 g008 550]

Figure 8. Data flow between TSS and PSSS.

Figure 8. Data flow between TSS and PSSS.

[image: Aerospace 09 00062 g008]

[image: Aerospace 09 00062 g009 550]

Figure 9. The process of the compared running of original FCS and mpFCS.

Figure 9. The process of the compared running of original FCS and mpFCS.

[image: Aerospace 09 00062 g009]

[image: Aerospace 09 00062 g010 550]

Figure 10. A test result of the state and command message through the communication module.

Figure 10. A test result of the state and command message through the communication module.

[image: Aerospace 09 00062 g010]

[image: Aerospace 09 00062 g011 550]

Figure 11. Specification of the FACE CTS.

Figure 11. Specification of the FACE CTS.

[image: Aerospace 09 00062 g011]

[image: Aerospace 09 00062 g012 550]

Figure 12. The test result of CTS is shown in the web browser. (1) results of the FACE CTS, (2) the code used for the test, and (3) test log file generated in performing the test.

Figure 12. The test result of CTS is shown in the web browser. (1) results of the FACE CTS, (2) the code used for the test, and (3) test log file generated in performing the test.

[image: Aerospace 09 00062 g012]

[image: Aerospace 09 00062 g013 550]

Figure 13. distCalc module and its location in the mpFCS.

Figure 13. distCalc module and its location in the mpFCS.

[image: Aerospace 09 00062 g013]

[image: Aerospace 09 00062 g014 550]

Figure 14. The flow of the Interface and Data Translator.

Figure 14. The flow of the Interface and Data Translator.

[image: Aerospace 09 00062 g014]

[image: Aerospace 09 00062 g015 550]

Figure 15. The deploying process of the mpFCS into any environment.

Figure 15. The deploying process of the mpFCS into any environment.

[image: Aerospace 09 00062 g015]

[image: Aerospace 09 00062 g016 550]

Figure 16. The running of the mpFCS on the Windows system in a simulated environment.

Figure 16. The running of the mpFCS on the Windows system in a simulated environment.

[image: Aerospace 09 00062 g016]

[image: Aerospace 09 00062 g017 550]

Figure 17. A comparison on layers and interfaces of related work and the mpFCS.

Figure 17. A comparison on layers and interfaces of related work and the mpFCS.

[image: Aerospace 09 00062 g017]

[image: Table]

Table 1. Comparison of the flight control software and its features.

Table 1. Comparison of the flight control software and its features.

	
Features

	
He [16]

	
Ying [17]

	
Chon [2]

	
Hegde [10]

	
Theile [23]

	
AP [18]

	
PX4 [19]

	
P-UAV [20]

	
dRonin [22]

	
General Structure

	
Layered

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Modules

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Messaging

	
Direct Calls

	
Middle-ware

	
Middle-ware

	
Direct Calls

	
Middle-ware

	
Direct Calls

	
Middle-ware

	
Middle-ware

	
Middle-ware

	
Language

	
C++

	
N/A

	
N/A

	
N/A

	
C++

	
C++

	
C

	
C

	
C++

	
OS supported

	
Linux, ChibiOS

	
VxWorks

	
VxWorks

	
Free RTOS

	
Arch-Linux

	
Linux, ChibiOS

	
NuttX, ROS

	
ChibiOS

	
PiOS

	
Is it Portable?

(Based on its documentation)

	
N

	
N

	
N

	
N

	
N

	
Y

	
Y

	
N

	
N

AP—ArduPilot, P-UAV—PaparazziUAV, N/A—Information not available, Y—Yes, N—No.

[image: Table]

Table 2. Comparison on requirements of the portability of the existing software.

Table 2. Comparison on requirements of the portability of the existing software.

	
Requirements

	
He [16]

	
Ying [17]

	
Chon [2]

	
Hegde [10]

	
Theile [23]

	
AP [18]

	
PX4 [19]

	
P-UAV [20]

	
dRonin [22]

	
Simple structure

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Modular

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Y

	
Centralized Messages

	
N

	
Y

	
Y

	
N

	
Y

	
N

	
Y

	
Y

	
Y

	
Standard interface

	
N

	
N

	
N

	
N

	
N

	
N

	
N

	
N

	
N

	
HAL

	
N

	
Y

	
N

	
N

	
N

	
Y

	
Y

	
N

	
Y

	
Well Documented

	
N/A

	
N/A

	
N/A

	
N/A

	
N/A

	
Y *(ab)

	
Y *(ab)

	
Y *(abcd)

	
Y *(abc)

	
Analysis

(Does it satisfy the requirements of portability?)

	
Software Level

	
N

	
N

	
N

	
N

	
N

	
N

	
N

	
N

	
N

	
Module Level

	
N

	
N

	
N

	
N

	
N

	
N

	
N

	
N

	
N

AP—ArduPilot, P-UAV—PaparazziUAV, N/A—Information not available, Y—Yes, N—No; * Documented, but it (a) is partially outdated, (b) is complicated to understand, (c) has an incomplete description, (d) has anomitted description.

[image: Table]

Table 3. Comparison of the existing FCS and the mpFCS.

Table 3. Comparison of the existing FCS and the mpFCS.

	
Characteristics

	
Existing FCS

	
mpFCS

	
Layered

	
Yes

	
Yes

	
Modular

	
Yes

	
Yes

	
Centralized Messages

	
Yes *

	
Yes

	
Data Transfer

	
Interface

	
Proprietary Interfaces

	
Standard Interfaces

	
Direct Call of Functions

	
Yes

	
No

	
Portability

	
Software

	
No *

	
Yes

	
Module Level

	
No

	
Yes

* some FCS does not centralize messages.

[image: Table]

Table 4. Modules of flight control software and their matching of the FACE segments.

Table 4. Modules of flight control software and their matching of the FACE segments.

	
FCS

	
Segment

	
mpFCS

	
File/Library Name

	
Name

	
Module Name

	
Flight mode

	
PCS

	
Flight Mode Control

	
Position

	
Position Control

	
Attitude

	
Attitude Control

	
Motors

	
Motor Control

	
Main Flight Code

	
Main Control

	
Main Flight Code

	
TSS

	
Transport Module

	
MAVLink

	
MAVLink

	
PSSS

	
Communication Module

	
Sensor

	
Sensor Module

	
RC

	
Transmitter Module

	
HAL

	
IOSS

	
IO Module

[image: Table]

Table 5. A comparison of data flow between two software.

Table 5. A comparison of data flow between two software.

	
Message Type

	
General FCS

	
mpFCS

	
External

	
State

	
FlightControl → Communication → HAL

	
PCS → TSS → PSSS → IOS

	
Command

	
HAL → Communication → FlightControl

	
IOS → PSSS → TSS → PCS

	
Internal

	
State

	
Sensor → FlightCode

	
IOS → PSSS → TSS → PCS

	
Command

	
FlightControl → Motor

	
PCS → TSS → PSSS → IOS

→ arrow indicates the direction of the data flow.

[image: Table]

Table 6. Software and hardware environment of experiments.

Table 6. Software and hardware environment of experiments.

	
Software

	
Operating System

	
Ubuntu Linux 16.04 64-bit and Windows 10 64-bit

	
Compiler/Linker

	
GCC v7.5.0 (GNU Compiler Collection)

	
Testing Tool

	
FACE CTS v2.1.1

	
Hardware

	
PC1: GCS for UAV

	
CPU

	
i5-4590 3.30 GHz

	
Memory

	
16 GB

	
GPU

	
GeForce GTX 650

	
PC2: UAV simulator

	
CPU

	
i5-10400F 2.90 GHz

	
Memory

	
12 GB

	
GPU

	
GeForce GTX 1660

[image: Table]

Table 7. A test result of the FACE CTS.

Table 7. A test result of the FACE CTS.

	
Segment

	
Module

	
Conformances

	
Interface

	
Data

	
TS

	
IO

	
IOSS

	
IO

	
N/A

	
N/A

	
Passed

	
PSSS

	
Communication

	
Passed

	
Passed

	
Passed

	
Transmitter

	
Passed

	
Passed

	
Passed

	
Sensor

	
Passed

	
Passed

	
Passed

	
TSS

	
StateModule

	
N/A

	
N/A

	
Passed

	
CommandModule

	
N/A

	
N/A

	
Passed

	
PCS

	
Main

	
Passed

	
N/A

	
Passed

	
Flight

	
Passed

	
N/A

	
Passed

	
Position

	
Passed

	
N/A

	
Passed

	
Attitude

	
Passed

	
N/A

	
Passed

	
Servo-motor

	
Passed

	
N/A

	
Passed

[image: Table]

Table 8. A specification of distCalc and sample data.

Table 8. A specification of distCalc and sample data.

	
Specification

	
Input

	
Output

	
Main Specification

	
Starting Point

	
Percentage to the endpoint from current location

	
Navigation Data

	
Endpoint (constant data)

	
Endpoint E (x , y)

	
47.9222,106.9183

	
Starting point S (x , y)

	
47.9178, 106.9192

	
100%

	
A New Starting Point (it changes in a set of time intervals)

 S i (x , y)

	
47.9182, 106.9191

	
90%

	
47.9186, 106.9191

	
80%

	
47.9193, 106.9189

	
70%

	
47.9200, 106.9188

	
60%

	
47.9201, 106.9187

	
50%

	
47.9203, 106.9187

	
40%

	
47.9205, 106.9187

	
30%

	
47.9212, 106.9185

	
20%

	
47.9217, 106.9184

	
10%

	
47.92225,106.9183

	
0% Reached

 E : Endpoint, S : Starting Point, S i : Current Location, x —Longitude, y —Latitude.

[image: Table]

Table 9. The test result of distCalc module on the FACE CTS.

Table 9. The test result of distCalc module on the FACE CTS.

	
Segment

	
Module

	
Conformance

	
TS Interface

	
Data

	
PCS

	
distCalc

	
Passed

	
Passed

[image: Table]

Table 10. Comparison of the existing FCS and the mpFCS.

Table 10. Comparison of the existing FCS and the mpFCS.

	
FCS Name

	
Data Transfer

(Interface)

	
Expandability

	
Interoperability

	
Portability

	
SW

	
ML

	
PaparazziUAV [20]

	
ABI

	
Yes *

	
Yes *

	
No

	
No

	
PX4 [19]

	
uORB

	
Yes *

	
Yes *

	
No

	
No

	
dRonin [22]

	
UAVObject

	
Yes *

	
Yes *

	
No

	
No

	
He [16]

	
N/A

	
No

	
No

	
No

	
No

	
Yi [17]

	
N/A

	
N/A

	
N/A

	
No

	
No

	
Chon [2]

	
N/A

	
N/A

	
N/A

	
No

	
No

	
Hedge [10]

	
N/A

	
No

	
No

	
No

	
No

	
Theile [23]

	
cpsCore

	
Yes *

	
Yes *

	
No

	
No

	
mpFCS

	
The FACE interface

	
Yes **

	
Yes **

	
Yes

	
Yes

*—A new module works only on that software; **—mpFCS can expand and interoperate with different modules of the FACE software.

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
Platform Specific Service Segment

Transmitter Module

Sensor Module

Communication Module

C

L%
i

Input Output Service Segment Transport Service Segment

Command Message

———————— State Message

media/file4.png
Application Layer

Proprietary Interface

Middleware Layer

Proprietary Interface

Device Driver Layer

media/file30.png
source _ the mpFCS
code the programming for the environment

\ i

language compiler
in the environment

media/file18.png
=

general FCS

Simulator

{

A Command Message

A State Message

=

mpFCS

Simulator

A Command Message

A State Message

—

media/file21.jpg
CTS Configuration —— CTS builder

Source Code of = N . Result of Test
Each Module O Cealaiti _O (Pass or Fail)
oo

Conformant
TescCode ~O

media/file26.png
distCalc module

distanceCal()
distCalc module

Navigation
Data

— - Data Flow
----------- » Control Flow

distCalc

PCS

mmgm

stateModule

TSS

media/file27.jpg
1 Anaging Phase Translating Phase
H
H
i ooty T
H Functions [
X viodun
s] |
g =
Seae” | 1 wuesrs
H Check oo
Repace
i e
H E intetaces
H

media/file3.jpg
Application Layer

M m—m————————— M,

onpne(ary Interface

Middleware Layer

Propne(ary Interface

Device Driver Layer

media/file22.png
CTS Configuration

CTS builder
Source Code of _’|A p Fail >O Result of Test
Each Module > O assorral =O
OO

(Pass or Fail)

Conformant
Test Code

media/file19.jpg
Reall

acs

mptcs

A Command Message

media/file7.jpg
The Existing FCS | mpFcs

Analyze

Recognize/Detect

Verify and Validate

Test for the Requirements

Mtching
Gotegorizing
Relocating

Modes/ e -
A\ I s
AN N Conform the Requirements,
% Functions/ i

Interfaces = Interfaces

Trace Trace

‘Match

media/file28.png
1 Analyzing Phase | Translating Phase |

[i i

i i i

[. i i

1 |dentify _ I Match i

: Functions o i - Data :
A Module I I I AfMOtCIiUIe

from Existing 1 — Sor e

Software I I I tructure

1 i Y i

1 Check Data i 1

I Structure | Rep_lace I

I I Interfaces I

i i i

media/file10.png
PaparazziUAV

ArduPilot

mpFCS

Guidance Flight Mode
J Flight Position
. Mode Control 3
Navigation Navigator v
— Attitude Motor
GPS osition Control Control
Attitude .
MU | Atiude | Attitude [vancomor |
Motors
State Command
AirBorne Ivy | message bus | — — Module Module
. v
sensors | MAVLink | § a . P
RC 8 wn Sensor Transmitter 4
w
datalink
| FastRTPS | | Communication I
| Penp era | | Drivers | | HAL | | 10 Module I
Drivers

(a)

(b)

media/file33.jpg
paparazsuav atonin mprcs
=

pr
D km mm e -
T |
|
—]] o]
prran
| 2
| TR
O — II*I -
device driver fevice driver device driver 10 Module st
devce d 10 Modul il

media/file32.png
70069 149.16241131 (-35°21'52.92" 149°09'44.68") (S 55 696459 6084365) Dist

ance: 352.699m 0.

m Bearing 262.4

Vehicle Link N | e

ARM GPS: OK6 (10) Vec5.00 Rad INS MAG
Batt: 95%/12.59V 30.3A Link 1 OK 100.0% (64899 pkts, 0 lost, 0.00s delay)
Hdg 353/292 Alt34m AGL 34m/33m AirSpeed Om/s SSpeed Om/s
WP 0 DistanceOm Bearing0 AltError Om(H) AspdError Om/s(H) Flig
VUL CWUIVIIVIAIND_ AL UV _DC 1 _IVIVUL ALLCF ICY o

Mode GUIDED
Got COMMAND_ACK: COMPONENT_ARM_DISARM: ACCEPTED

" JAP: Arming motors

ARMED
Got COMMAND_ACK: NAV_TAKEOFF: ACCEPTED
pr

U1 MAGO in-fli lignment complete
KF3 IMUO MAGO in-fli v alignment complete

media/file14.png
Platform Specific Service Segment

Transmitter Module

Sensor Module

Communication Module

N A U

1) D C @
Y

Input Output Service Segment Transport Service Segment

Illllllll'lllllllll’ Command Message

P State Message

media/file11.jpg
Platform-Spedfic Service Segment

Portable Components Segment

T tignivode || poston
¥ ¥
[

T

Input Output Sevice
Segment

10 module

Transport Service Segment

State Module Command Module

= Command Message

media/file6.png
Portable components segment Platform Specific segment
(main flight modules) (modules related to platform)

TS interface

Transport Service Segment IOS Segment
(transport module) (hardware related)

media/file15.jpg
Transport Service Segment

State Module Command Module

:

i Y
Senso»l Communication Transmitter
Calculation
Platform Specific Service Segment

> State Message

> Command Message

nav.xhtml

 aerospace-09-00062

 		
 aerospace-09-00062

media/file16.png
Transport Service Segment

State Module

Command Module

.llll»—

4-....-..

Y

Sensor
Calculation

Communication Transmitter

Platform Specific Service Segment

P> State Message

llllll.lllllll> Command Message

media/file2.png
Application Layer (software functional layer)

Control Position Attitude Motor Sensor Navigation Comm
Middleware Layer
CSP Message
Passing

OS Layer

(NuttX, Linux, VxWorks, Free RTOS, ChibiOS, etc,)

Device Driver Layer

GPS

Sensors

Barometer

Servo

media/file20.png
=

mpFCS

ATTITUDE ({

0

roll: 0.00012523¢,
pitch: -1.7975%-05,
yaw:-0.268164,
rollspeed: 0.000169844,
pithspeed: -3.8657e-05,
yawspeed:0.000359203

}

ATTITUDE ({

0

roll: 0.000126826,
pitch: -4.22736e-05,
yaw:-0.238176,
rollspeed: 0.000181326,
pithspeed: 0.00021017,
yawspeed:-0.000107823

}

A State Message

MAV_CMD_COMPONENT_ARM_DISARM (400)

A Command Message

e B AN e

| ATTITUDE {
time boot ms: 3296
roll: 0.00012523e,
|pitch: -1.7975%e-05,
| yaw:-0.268164,
| rollspeed: 0.000169844,
| pithspeed: -3.8657e-05,
:yawspeed:0.000359203
}
I

IATTITUDE {

| time_boot ms: 4296

| roll: 0.000126826,

| pitch: -4.22736e-05,

| yaw:-0.238176,

| rol1speed: 0.000181326,
pithspeed: 0.00021017,

| Yawspeed:-0.000107823
}

APM: Arming motors

ot COMMAND_ACK: COMPONENT_ARM_DISARM: ACCEPTED

ARMED

rm throttle

e e ———— —— — —— — — —

media/file23.jpg
FACE Conformance Test Results

+TestConfiguraion
+ Data Mode Tests PASSED
+ Transport Services Segment Segment Tests — PASSED. °

s et FACE s e duinnd conacty PASSED.
[——————

retsgre "‘“':M._.,.«Q
T i eSS, S TP corrmnc -~ PASSED Lo

Tt Tesing FACE-MESSAGE TYPE QU comomance — PASSEO.
Tt Tesing FACE-COMMECTION DRECTION TYPEcofermance

Tk Testing FACE-COMNECTION 0. TYPE conformance — PAESED

media/file5.jpg
Portable components segment
(main fiight modules)

Platform Sp
(modules rela

ic segment
ted to platform)

(transport module)

Transport Service Segment 108 Segment

(hardware related)

media/file24.png
~Test: Testing FACE::MESSAGE _TYPE_GUID conformance —* PASSED

Please see st Code and) Ne for Getads

FACE Conformance Test Results EEm Collapse Al

+ Test Configuration —Test Code
/home/ts) /Oocument 8 /TACECTS/confornancelnter faceTes s/ Cos /TSS/TACE TS/ Test 1l cpp
+ Data Model Tests — PASSED 7 Testiy

/7 user Includes . hpp 1s generated every test run and contains all hed
/7 specified in the configuration file for the segeent under test

+ Transport Services Segment Segment Tests — PASSED

/7 Used to Catch assertions at cospile time

/7 Static assert maqic tree exists but false does not (and should nott)
templatechool> struct FaceStaticAssert;
tesplate«as strect FacesStaticAssertatroes ();
—Test: Testing FACE types are defined correctly — PASSED at main()
(
Please see test code and log file for details (8 SO R

F/7 PACE: :MESSAGE TYPE OUID sire test (FACE::Losglong)
FaceStaticAsserte sireof (FACE: :MESSAGE TYPE QUID) == sirzeof(FACK: :Lenglong) »();
)

+ Test c°de | 12 BOPE . . MEPE RIS PHRE PP Beene Basl I00P0 . o) aaal aca)
) —Test Log File
+ Test Log File
/home/ts)/Documents/FACECTS/logFiles/conformanceln aceTest
command :
+ Test: Testing FACE::MESSAGE_SIZE_TYPE conformance — PASSED make Testll _
working directory: /home/tsj/Documents/FACECTS/conformancelnt

return code:

0
0 -
+ Test: Testing FACE::MESSAGE_TYPE_GUID conformance — PASSED qf:p‘.':m.cgg -fno-builtin -nostdinc -I/home/tsj/Documents/F.

include -I../../../../qoldStandardLibraries/C++/src/0S5/11ibs
«./../../g0ldStandardLibraries/C++/src/0SS/P0SIX/general -I..
compilerSpecific/C++/systealibraryDefinitions -0 Testll.o -¢
+ Test: Testing FACE::CONNECTION_DIRECTION_TYPE conformance — PAS cclplus: warning: command line option ‘-std=c99’ is valid for
= = gcc -0 Testll Testll.o /home/ts)/Documents/FACECTS/sample/C++
oof oo/ /. /Q0ldStandardLibraries/C++/posixGeneralGoldLib.a .
coupxlerSptc1f1(/(v0/conpxlerSpe§1t1cﬁoldL1b.a sal silsil el DD
: s C++/hmfmGoldLib.a ../../../../g9oldStandardLibraries/C++/
+ Test: Tes“"g FACE::CONNECTION_ID_TYPE conformance — PASSED Libstdc++GeneralGoldLib.a ../../../../compilerSpecific/Ces/
compilerSpecificGoldLib.a -nodefaultlibs -nostartfiles

media/file29.jpg
source

code

the programming
language compiler
in the environment

the mpFCS

for the environment

media/file1.jpg
Application Layer (software functional layer)

Control | [position | [Attitude |["Motor | [sensor | [Navigation | [*comm
Middleware Layer
csp Message
Passing
05 Layer

(Nuttx, Linux, VsWorks, Free RTOS, ChibiO, etc)

Device Driver Layer

GPs|

Sensors

Barometer

Servo

media/file31.jpg

media/file25.jpg
distCalc module

distanceCal()
distCalc module

distCalc

Navigation
Data

—— = DataFlow
> Control Flow

media/file12.png
Platform-Specific Service Segment Portable Components Segment
| Transmitter Module | _ o
g Flight Mode Position
1 - Module Control
| Sensor Module o
=
A -
: ‘© : M and S
: | Communication Module I = étotlr::‘(cj)? Control
:)
: : A
IO interface .
: Y Y
Input Output Service Transport Service Segment
Segment
| 005 il | State Module I | Command Module

» Command Message

» State Message

media/file9.jpg
PaparazziUAV.

G

hnigaion

mesage b

ArduPilot

mpFCS.

T | [Foreer
e || ot

=T

e o Corl

T |G

=

s

3

)

Ferprer
i

o

0 vadie

@)

(b)

media/file0.png

media/file8.png
The Existing FCS mpFCS

Analyze Verify and Validate

Matchin
Layers - i -> Segments
Categorizing

Relocating

Recognize/Detect
Modules/

Test for the Requirements

Modules/UoPs

Layers and
Modules

-————

Dependencies

Identify |

Replace
Functions/ i R
Interfaces -

Trace Trace

Match

media/file34.png
PaparazziUAV dRonin PX4 mpFCS
— Portable
p"Z;C‘Z’O” module module module module campapent
4 segment
ABlInterface UAVODbj Interface FACE TS Interface
transport
Transport service
Middleware ;
ABI UAVObject uORB FACE TS Interface
platform
Platform Based speq‘ﬁc
Modules service
segment
ABLEInterface UAVODbj Interface FACE 10 Interface
/10
Hardware)) .) . _ service
Layer device driver device driver device driver IO Module

segment

media/file17.jpg
Beatll Reatl

general FCs mpfcs.
Simulator Simulator
A Command Message| A Command Message
A state Message[|5 | | A state Message
- |«

