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Abstract: Model-based predictive maintenance using high-frequency in-flight data requires digital
twins that can model the dynamics of their physical twin with high precision. The models of the twins
need to be fast and dynamically updatable. Machine learning offers the possibility to address these
challenges in modeling the transient performance of aero engines. During transient operation, heat
transferred between the engine’s structure and the annulus flow plays an important role. Diabatic
performance modeling is demonstrated using non-dimensional transient heat transfer maps and
transfer learning to extend turbomachinery transient modeling. The general form of such a map
for a simple system similar to a pipe is reproduced by a Multilayer Perceptron neural network. It
is trained using data from a finite element simulation. In a next step, the network is transferred
using measurements to model the thermal transients of an aero engine. Only a limited number
of parameters measured during selected transient maneuvers is needed to generate suitable non-
dimensional transient heat transfer maps. With these additional steps, the extended performance
model matches the engine thermal transients well.

Keywords: transfer learning; heat transfer; aero engine; neural network; digital twin; performance
modeling; machine learning

1. Introduction

Today, more data sampled at higher frequency is available from engine in-flight
operation. To use this data for predictive maintenance, online fault diagnostics, and fleet
management, digital twins are of paramount importance. By their definition, digital
twins fully describe their physical twin using so-called virtual information constructs [1].
Therefore, digital twins need to model their physical twin and dynamically update the
model as new data becomes available [2,3]. To perform model-based analysis using high-
frequency in-flight data, the model needs to represent the engine’s dynamics with high
precision [4]. Additionally, the transient calculations need to be fast, as potentially hundreds
of different operating scenarios of hundreds of engines have to be simulated.

During aero gas turbine engine transient operation, significant amounts of heat are
transferred between the engine structure and the annulus flow [5,6]. These heat flows
change the heat balance of the components and the engine. They affect tip clearances,
as well as seal clearances, and result in changes of the component characteristics, the
secondary air system, and the power delivered by the engine [7,8]. Today’s aero gas
turbine engines compensate these detrimental effects by over-fueling, which leads to the
well-known temperature overshoots [9], reduced temperature margins, and a reduction in
on-wing life.

Early approaches to model the transient heat transfer reduce the involved engine
structures to equivalent flat plates of uniform temperature [10]. Further discretization of
the substitute structures improved the approximation of the engine’s time response [11,12].
Using more complex substitute structures increases the computational efforts and requires
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measured or computed data of high spatial and time resolution to derive the local heat
transfer parameters [13,14]. State space modeling of heat transfer and tip clearances al-
lows the direct identification of the model parameters either by test or by using calibrated
finite element models [15]. Yet, the identified parameters are difficult to interpret and
data from a comprehensive set of maneuvers is required for the identification. Riegler [16]
proposed modeling the heat transfer from the flow to the engine’s structure using non-
dimensional heat transfer maps. Those maps can be implemented as look-up tables into the
underlying performance program to facilitate fast calculations while keeping the required
accuracy. Furthermore, the maps can be well interpreted as they use a reduced number of
non-dimensional variables describing the problem while still reflecting the fundamental
physics [17]. However, the maps must be generated using an extensive amount of exper-
imental data or higher-order computations, such as simulations using the finite element
method (FEM).

In our previous work [18], the steady state heat transfer map of a pipe was adapted
to accurately model the heat transfer of a small turboshaft engine. Hence, less data is
needed to accurately predict the thermal response of the engine. Consequently, the same
approach is proposed to model the transient heat transfer between the engine’s fluid flow
and its structure. To derive the necessary non-dimensional variables, the substitute system
is introduced, and a dimensional analysis is performed. Then, the map representing the
transient heat transfer of a pipe is generated. This data is used to train a neural network.
Using transfer learning, this map can be transferred to match the thermal transients of a
small turboshaft engine using measurements from a limited amount of transient maneuvers.

2. Substitute System and Dimensional Analysis

As described in Reference [18], a generalized flow-through system with input or
output of shaft power P is used as a base substitute system for a turbomachine. It is
characterized by the dimensional parameters shown in Figure 1 and Table 1. The inner heat
flow Q̇i(t) and the outer heat flow Q̇o(t) differ in a time-dependent way in the present case
of transient heat transfer. As shown in Equation (1), they are related by the rate of change
in internal heat energy of the pipe structure,

Q̇i − Q̇o = ρcp
∂Tmat

∂t
. (1)

Figure 1. Model of generalized turbomachine.

The thermal properties of the substitute system are characterized by the inner and
outer heat transfer coefficients hi and ho, the thermal conductivity of the material kmat, the
volumetric heat capacity ρcp, and the volume of the structure V. The input or output of
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shaft power is reflected by differing values of Tmin and Tmax. As in Reference [16], the inner
heat flow Q̇i(t) is divided into a steady state and a transient component,

Q̇i(t) = Q̇i,total(t)− Q̇i(t→ ∞). (2)

Consequently, the transient component of the inner heat flow can be expressed as a function
of the dimensional parameters as:

Q̇i = f
(
t, Tmin, Tmax, T0, δ, Ai, Ao, hi, ho, kmat, ρcp, V

)
. (3)

In Equation (3), the surface areas Ai and Ao are directly related to ri and ro, respectively, as
well as the length l. The characteristic thickness δ of an arbitrary structure is the ratio of its
volume to its surface area relevant to heat transfer [19].

Using the dimensional matrix shown in Table 1, the non-dimensional inner heat flow
becomes a function of the non-dimensional parameters defined in Equations (4)–(8).

Q̇i

(Tmax−T0)lref kmat
= f
(

Fo, Bii, Bio, ϑchar,
Ao

Ai
,

Ai

δ2 ,
V
δ3

)
, (4)

Fo =
kmat t
ρcpδ2 , (5)

Bii =
hi δ

kmat
, (6)

Bio =
ho δ

kmat
, (7)

ϑchar =
Tmin − T0

Tmax − T0
. (8)

The non-dimensional temperature difference ratio ϑchar represents the operating point
of the machine [18]. Since the Biot numbers can be expressed using the engine’s mass
flow [16,18] and surface temperatures [18], they depend on the engine’s operating point,
too. Hence, ϑchar, Bii, Bio are time-dependent parameters. The parameters Ao

Ai
, Ai

δ2 , V
δ3

describe the geometry. The reference length lref is defined as

lref =
Ai

δ
. (9)

The basic form of the resulting non-dimensional transient heat transfer maps is derived
assuming a straight pipe as a simple structural element.
Table 1. Dimensional matrix used to derive the non-dimensional heat flow.

Q̇i Tmin − T0 Tmax − T0 δ Ai Ao hi ho kmat ρcp V t

L 2 0 0 1 2 2 0 0 1 −1 3 0
T −3 0 0 0 0 0 −3 −3 −3 −2 0 1
M 1 0 0 0 0 0 1 1 1 1 0 0
Θ 0 1 1 0 0 0 −1 −1 −1 −1 0 0

3. Simulation

A two-dimensional finite element model is set up to derive the non-dimensional
transient heat transfer maps based on the parameters shown in Figure 2. Assuming
rotational symmetry, the simulation is carried out using MATLAB’s partial differential
equation toolbox. For the simulation, a triangular mesh was generated. It consists of
25 470 elements with six nodes per element. The nodes are located at the corners and
edge midpoints. To generate the mesh, the growth rate was set to 1.5, the target minimum
element size to 0.05, and the target maximum element size to 0.1.
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Figure 2. Non-dimensional parameters used for FEM simulation of the diabatic pipe flow.

The non-dimensional flow temperature Θ describes the temperature of the fluid flow
at a given position within the pipe. It is formed using the ambient temperature T0 and the
initial maximum temperature Tmax,ini as references:

Θ =
T − T0

Tmax,ini − T0
. (10)

To verify the simulation setup, the results were compared to the heat transfer of
a lumped capacitance, for which an analytical solution exists [19]. To do so, uniform
temperature around the system was assumed, and a unit-step was simulated by setting

t = 0 : Θmin = Θmax = Θ0 = 0, (11)

t > 0 : Θmin = Θmax = Θ0 = 1. (12)

Furthermore, the Biot numbers Bii and Bio are set equally. The material properties and
the non-dimensionals describing the geometry are kept constant. The Root Mean Squared
Percentage Error of the verification was smaller than 0.1 %. This indicates a good match
between the predicted heat transfer of the FEM simulation and the lumped capacitance.

After verifying the model, it is now used to derive the non-dimensional transient
heat transfer maps. The material properties and the non-dimensionals describing the
geometry are kept constant for the following steps. The non-dimensional flow temperature
is assumed to vary inside the system linearly from Θmin to Θmax. The non-dimensional
temperature difference ϑchar is the ratio of the non-dimensional flow temperatures Θmin to
Θmax,

ϑchar =
Θmin

Θmax
=

Tmin−T0
Tmax,ini−T0

Tmax−T0
Tmax,ini−T0

. (13)

The transient response of the system is identified by simulating step changes in Θmax
of different sizes Θstep:

t = 0 : Θmax = 1, (14)

t > 0 : Θmax = 1 + Θstep = 1 +
Tmax − Tmax,ini

Tmax,ini − T0
. (15)
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This approach maps step changes in thermal load of different sizes. The temperature Θmin
follows according to Equation (13). With constant ambient temperature T0, the outside
temperature ratio stays constant at Θ0 = 0.

Bii, Bio, and ϑchar are kept constant during the step changes. They are varied for the
individual step changes such that the operating ranges of the compressor and the turbine of
the investigated engine are well covered by the simulation. Consequently, the Biot numbers
are chosen to be distributed evenly in the logarithm to base 10 ( lg ) space,

−3.8 ≤ lg(Bii) ≤ −0.8, (16)

−5.4 ≤ lg(Bio) ≤ −2.4. (17)

ϑchar is selected from an interval from −0.05 to 0.15 and from 0.65 to 1 to reflect possible
values for the investigated compressor and turbine, respectively.

The data is sampled for each simulation at different Fourier numbers. The rationale
behind the distribution of the sample points is based on the transient response of a lumped
capacitance, which can be expressed as [19]:

Q̇ = f (exp(−BiFo)). (18)

At constant Biot number Bi, the heat flow Q̇ reduces with increasing Fourier number
Fo. As indicated in Figure 3, sampling the transient response at constant intervals of Fourier
number Fo would cluster the sampling points at low heat flows. Consequently, the part of
the step response featuring significant change in heat flow rates would be underrepresented
in the data. Hence, the data points were sampled linearly with respect to 1− exp(−BiFo).

Fostart Foend

Fo −→

0.0 0.2 0.4 0.6 0.8 1.0

1− exp (−BiFo) −→
Figure 3. Effect of linearly spacing Fo.

The non-dimensional transient heat transfer map derived from FEM simulation for a
given step change of Θstep = 1.0 is shown in Figure 4 for sets of parameters Bii, Bio, and
ϑchar. It becomes obvious that the variation of the non-dimensional heat transfer map as a
function of these parameters is relevant.

The shapes of the non-dimensional heat transfer maps resulting from different step
responses are shown in Figure 5a. A change of sign of the step change results in a different
shape of the maps. As shown in Figure 5b, these lines collapse with variation due to the
parameters Bii, Bio, and ϑchar remaining, if the non-dimensional heat flow is referred to the
size of the non-dimensional temperature step. This normalizing step leads to

Q̇i

Θstep(Tmax − T0) lref kmat
=

Q̇i

(Tmax − Tmax,ini) lref kmat
, (19)

which is in accordance with the approach shown in Reference [16,20]. Furthermore, the
heat transfer map shown in Figure 5b is insensitive to variation in geometry.

The maps obtained from the FEM simulation are used to train a neural network. This
is the basis for transient heat transfer modeling of turbomachines using transfer learning.
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ϑchar = 0.7, lg (Bio) = −4.2

ϑchar = 0.8, lg (Bio) = −4.6

Figure 4. Non-dimensional transient heat transfer map for a given step change of Θstep = 1.

Figure 5. (a) Non-dimensional heat transfer map for varying step changes; (b) non-dimensional heat
transfer map after referring heat flow to step size.

4. Encoding the Non-Dimensional Maps Using Neural Networks

In a first step a suitable type of neural network is selected. With the thermal transients
representing a time series possible choices for the networks are:

• Feedforward Networks, e.g., Multilayer Perceptron (MLP);
• Recurrent Neural Networks:

- Shallow Networks, e.g., Non-linear Autoregressive Network with Exogenous
Inputs (NARX);

- Deep Networks, e.g., Long Short-Term Memory (LSTM).

Both shallow and deep recurrent neural networks directly model the time dependency
in their architecture. However, transfer learning using a recurrent neural network is
challenging. Using a feedforward neural network, such as a Multilayer Perceptron, follows
the principle of directly modeling the non-dimensional transient heat transfer maps. They
cover the step responses of the non-dimensional heat flow

Q̇par =
Q̇i

Θstep(Tmax − T0) lref kmat
(20)
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at constant Bii, Bio, and ϑchar and varying Fourier numbers Fo. Since a Multilayer Perceptron
can approximate any function [21], the transient heat transfer map of the pipe can be
modeled by an MLP. Therefore, an MLP was chosen with Fo, lg(Bii), lg(Bio), and ϑchar as
features, and Q̇par as target, for the following steps.

A total of 4096 different step responses were simulated. Sixty percent of the data was
used for training, and 20% for test and validation, respectively.

Random sampling of training and test data sets generally guarantees that the trained
network can interpolate points on the maps. However, if the trained network is able to
predict a whole step response, which it has previously not seen, it can be assumed that the
network captures the underlying physics.

Without an additional transformation, the data is clustered towards small values
of Q̇par, as can be seen in Figure 6a. To approximate a normal distribution of the data,
the Box-Cox transform, as implemented in SciPy [22], is used on the training data. It is
defined as

Q̇par,trans =

{
Q̇par−1

λ if λ 6= 0,
log
(
Q̇par

)
if λ = 0.

(21)

The value of the parameter λ was estimated, using maximum likelihood estimation,
to be λ = 0.053. Additionally, the targets are standardized to zero mean and unit variance
to facilitate better training. The histogram of the transformed Q̇par is shown in Figure 6b.
The features Fo, lg(Bii), lg(Bio), and ϑchar are all normalized to fall in the interval [0, 1].

Figure 6. Histogram of targets in training set (a) before scaling and (b) after scaling.

A grid search was carried out to obtain a good architecture. For this purpose the
number of hidden layers was varied from one to three. The number of neurons per layer
was varied, too. For all architectures, the number of neurons decreases the deeper the layer,
resulting in a pyramid-shaped architecture. This is done to compress the information from
hidden layer to hidden layer to predict Q̇par. All hidden layers feature rectified linear units
as activation functions.

Training was performed using PyTorch [23] and fastai v1 [24]. The 1-cycle policy [25,26]
was applied to training, where the learning rate is first increased and then decreased during
training, while the opposite is done for momentum. The maximum value for the learning
rate was set using a learning rate finder as described in Reference [24]. Weight decay
was chosen to achieve the highest learning rates [26]. A total number of 120 epochs was
sufficient to achieve good results.
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The performance of the different architectures was evaluated using the Root Mean
Squared Error (RMSE) on the validation data. Table 2 shows results of investigated archi-
tectures.

Table 2. Root Mean Squared Error (RMSE) of different architectures. The architecture with the lowest
RMSE is marked in bold font.

Architecture
No.

Number of
Hidden Layers

Number of
Neurons in the
Hidden Layers

Number of
Parameters RMSE

1 1 250 1501 0.0527
2 1 450 2701 0.0627

3 2 300, 100 31 701 0.0133
4 2 250, 200 51 651 0.0112
5 2 400, 200 82 401 0.0143
6 2 500, 250 128 001 0.0169

7 3 50, 25, 10 1796 0.0212
8 3 100, 50, 25 6851 0.0524
9 3 150, 100, 50 20 951 0.0136

10 3 200, 100, 50 26 201 0.0104
11 3 250, 100, 10 27 371 0.0117
12 3 200, 150, 50 38 751 0.0126
13 3 250, 150, 10 40 421 0.0120
14 3 250, 150, 50 46 501 0.0095
15 3 200, 200, 50 51 301 0.0106
16 3 250, 200, 50 61 551 0.0115
17 3 300, 200, 100 81 901 0.0124
18 3 500, 200, 100 122 901 0.0120

Since all layers in the network are fully connected, the number of trainable parameters
can be calculated using the number of inputs nin and the number of outputs nout of each
layer by

nparam =
k

∑
j=1

(
nin,j · nout,j

)
+

k

∑
j=1

nout,j. (22)

In Equation (22), k is the number of layers in the architecture, which includes the output
layer. The first sum reflects the trainable weights, and the second sum reflects the trainable
bias. The same total number of neurons in the hidden layers can result in a different
number of trainable parameters. This becomes obvious by comparing, e.g., architecture No.
2 with architecture No. 14, shown in Table 2. For three-layer architectures the RMSE of the
validation data shown in Table 2 falls to a minimum and then increases with increasing
number of parameters. This indicates that there is an optimum for the number of neurons
per layer. Furthermore, three hidden layers perform better than two hidden layers with a
similar amount of trainable parameters. Overall, good performance was achieved using
a three-layer MLP with 250, 150, and 50 neurons in the first, second, and third hidden
layer, respectively. The quality of the achieved prediction is documented in Figure 7, where
four step responses that are all part of the test set are shown. As can be seen, the network
approximates the results from the FEM simulation well.
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Map from FEM

Network prediction

Figure 7. Quality of transient heat transfer map prediction using Multilayer Perceptron.

5. Measured Data Used for Transfer Learning

The test rig as described in Reference [18] is used to provide measured data for transfer
learning, as well as testing and validation, of the model. It comprises the engine, whose
transient thermal response will be modeled using transfer learning. Temperatures are
measured using Typ K thermocouples, while Netscanner pressure sensor were used to
measure the gas path pressures. The engine’s mass flow ṁ is measured using an inlet
nozzle. Flow around the engines is blocked by the bulkhead. This ensures that only
natural convection and thermal radiation have to be considered when calculating Bio.
The transmission system features a dedicated torque sensor. The experimental setup, the
instrumentation, and the systematic parts of the sensor uncertainties are shown in Figure 8.

Figure 8. Experimental setup, instrumentation, and systematic part of sensor uncertainties.

To use the measurements from this rig for transfer learning, a total of 20 different
maneuvers were carried out. The maneuvers were designed to cover the operating range
of the engine. As mentioned earlier, the Biot numbers are a function of the engine’s mass
flow and the temperatures. Additionally, ϑchar is directly related to the temperatures
present in the engine (see Equation (8)). Hence, varying acceleration and deceleration
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maneuvers were carried out along the operating line with low shaft power output PBrk. The
minimum rotational speed was at 60 000 min−1, while the maximum rotational speed was
at 94 000 min−1. This varies the engine’s mass flow and, also, moderately, the temperatures.
For this particular engine, the temperatures vary significantly when the engine is loaded.
Therefore, the engine was loaded or unloaded transiently at maximum rotational speed
during some maneuvers by varying the shaft power output PBrk using the test rig’s eddy
current brake. The power level at the end of the loading maneuvers was varied, as well
as the the time to load or unload the engine. All of the measured maneuvers resemble
step responses. Since the maps obtained from the FEM simulation represent the unit step
response of a pipe, data obtained from these maneuvers is well suited for transfer learning.

The time series of parameters measured during a typical acceleration maneuver is
shown in Figure 9. The acceleration is started at t = 9 s. At t = 26.5 s, the compres-
sor has reached steady state non-dimensional speed n/

√
RTt2 and mass flow parameter

ṁ
√

RTt2/pt2. Until t = 140 s, the compressor exit temperature Tt3 keeps creeping towards
its steady state level Tt3,∞. This indicates continuing heat transfer, since tip clearance effects
are assumed to be negligible for this type of engines [27].

0 20 40 60 80 100 120 140

4

5

n
/√

R
T

t2
in

m
−

1
−→

0 20 40 60 80 100 120 140

3.0

3.5

4.0

4.5

ṁ
√
R
T

t2
/p

t2
in

10
−

4 m
2
−→

0 20 40 60 80 100 120 140
Time in s −→

340

360

T
t3

in
K
−→

Thermal stabilization

Tt3,∞

Figure 9. Compressor data for a typical acceleration maneuver.

At a given point in time t, the heat flow from the fluid to the compressor structure is
computed using

Q̇(t) = ṁ(t) (ht3(t)− ht3(t→ ∞)). (23)

The total enthalpies in Equation (23) are calculated using the respective total temperatures
and a fluid model typical for today’s gas turbine engine performance programs. The
temperatures used to calculate ht were measured directly. The temperature readings
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are corrected to account for the thermal inertia of the thermocouples [28]. The actual
temperature Tactual is related to the reading Treading by

Tactual = t63.2 %
dTreading

dt
+ Treading. (24)

The time constant t63.2 % is calculated according to Reference [28] using the values
of the time constants given in the data sheet of the thermocouples. Only the part of the
maneuvers during thermal stabilization, as indicated in Figure 9, is used to calculate the
heat flow.

The characteristic non-dimensional temperature difference ϑchar directly results from
the measurements. According to Equation (13), it is zero for the investigated compressor,
since the entry temperature into the compressor Tt,min ≈ T0.

Calculation of the Biot numbers follows the same principles as described in Refer-
ence [18]. For Bio of the compressor, only free convection is considered, due to the special
setting at the test bed [18].

The two parts of the centrifugal compressor’s casing feature different radii. The
casing is, therefore, modeled as an equivalent pipe (see Figure 10). This approach ensures
consistency with the assumptions underlying the non-dimensional transient heat transfer
maps. This equivalent radius requ is calculated by requiring that the heat flow due to free
convection stays the same for the equivalent pipe,

Q̇equ, free = Q̇in, free + Q̇out, free. (25)

Assuming a constant temperature difference and constant kmat, Equation (25) can be writ-
ten as

Nuequ Aequ

lequ
=

Nuin A1

lin
+

Nuout Aout

lout
. (26)

Finally, Equation (27) is derived using the Nusselt correlation for an isothermal horizontal
cylinder [29],

r−0.25
equ =

r0.75
in lin + r0.75

out lout

rinlin + routlout
. (27)

The inner and outer Biot numbers both vary in a limited range for the example radial
compressor (see Figure 11).

Figure 10. Modeling the compressor casing as an equivalent pipe.
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Figure 11. Scatter plot of experimentally-identified Biot numbers in the compressor.

The Biot numbers of the turbine are identified as described in Reference [18]. The heat
flow Q̇ is derived indirectly since the combustor exit temperature Tt4 cannot be measured
with adequate accuracy. Tt4(t) is synthesized as a function of time t from the combustor
heat balance reflecting the compressor heat transfer,

ṁ(t)ht3(t) + ṁ f uel(t)LHVηCC = ṁ4(t)ht4(t), (28)

ṁ4(t) = ṁ(t) + ṁ f uel(t). (29)

It becomes obvious that Tt4 only depends on the transient performance of the com-
pressor and, hence, is not influenced by the thermal transient of the turbine. Consequently,
the heat flow of the turbine can be calculated using

ṁ4(ht4 − ht5)dia Comp = ṁ4(ht4 − ht5)dia + Q̇, (30)

Q̇ = ṁ4

(
ht5,dia. Comp. − ht5,measured

)
. (31)

The temperature measurements used to calculate ht5,measured are again corrected to
account for the thermal inertia (see Equation (24)). Both Tt5,dia. Comp. and Tt5,measured were
filtered to reduce the high amount of noise. Additionally, Tt5,measured was shifted, so that

Tt5,dia. Comp.(t→ ∞) = Tt5,measured(t→ ∞). (32)

This is done to account for deviations in the stationary performance model, thereby ensuring
that Q̇(t→ ∞) = 0. The experimentally-identified data is now used to transfer the non-
dimensional heat transfer maps encoded by the MLP from the pipe to the engine.

6. Transfer Learning

First, a constant scaling factor representing the circumference of the equivalent pipe is
introduced at the end of the network to consider three-dimensional effects not covered by
the simulation. This enabled easier and faster training.

In general, transfer learning is done in three steps. In the first step, additional hidden
layers are added to the end of the network. For both the compressor and the turbine, one
additional layer consisting of 25 neurons and rectified linear unit activations was sufficient.
In the second step, only the additional hidden layers are trained using the experimentally-
identified data. In the third step, the rest of the network is unfrozen, and all the layers are
trained with a low learning rate. This third step is often referred to as fine tuning.

Since there are only 20 maneuvers, 16 were used for training, while 4 were used as
test set. It was made sure that maneuvers from similar operating conditions were grouped
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together. This prevents data leaking from the training set into the test set and ensures that
the network properly generalizes.

Following Equations (28)–(31), the thermal transient of the compressor is required to
derive the thermal transient of the turbine. Hence, results achieved for the compressor are
discussed first. The measurements did not show large variation in the non-dimensional
parameters, as shown for the Biot numbers in Figure 11.

One experimentally-identified step response of the compressor’s non-dimensional
transient heat flow is shown in Figure 12a. It features significant noise. This is attributed
to the correction of the temperature readings, as described in Equation (24). In Figure 12a,
the prediction of the original network, that represents the thermal transient of a pipe, is
compared to the prediction of the transferred neural network. The prediction of the original
network needs to be scaled to meet the range of the measured data. The scaling factor is
displayed in the legend of Figure 12. However, the thermal transient of the compressor is
slower due to the large thermal mass of the compressor’s impeller and its bladed diffuser.
Hence, it is the step of transfer learning which improves the prediction by matching not
only the measured range but also the time constant. This is visible by comparing the rise
times of the two different predictions shown in Figure 12a.

Figure 12. Comparison of experimentally-identified non-dimensional transient heat flow to scaled
non-transferred network, that encodes the thermal transient of a pipe and to transfer-learned network
for (a) compressor and (b) turbine, experimentally-identified step response filtered.

The thermal transient of the turbine is identified based on these results. Despite
filtering the temperatures, the scatter of the experimentally-identified step response of the
turbine shown in Figure 12b is still clearly visible. Again, the introduction of a constant
scaling factor ensures the prediction using the thermal transient of a pipe meet the measured
range. The time constant is better matched if transfer learning is applied.

7. Application to Gas Turbine Prediction

The neural networks representing the non-dimensional transient heat transfer maps of
compressor and turbine were implemented into a state of the art gas turbine performance
program to model the investigated shaft power engine. As shown in Equation (19), the
transferred maps refer the heat flow to a jump in temperature. Therefore, the total heat
flow of a component is modeled by superposing the heat flows resulting from their re-
spective temperature jumps at the different time steps. This follows the same approach
used in Reference [16]. The performance model is run to the measured fuel flow, which
eliminates potential uncertainties in the modeling of the gas turbine control system. The
changes in shaft power are measured on the testbed. They are an input to the performance
model. The achieved quality of prediction is demonstrated for two exemplary maneuvers:
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- Deceleration from 94 000 min−1 to 70 000 min−1;
- Acceleration from 80 000 min−1 to 94 000 min−1, followed by a change in shaft power

of 1 s duration to a load of 1000 W.

The comparison of the predicted and measured total temperature at compressor exit
Tt3 indicates the quality of the diabatic compressor modeling achieved by the transferred
maps. The comparison of the predicted and measured total temperatures at turbine exit
Tt5 is used to indicate the quality of diabatic turbine modeling. It further embraces the
quality of diabatic compressor modeling and the quality of the assumptions needed for the
combustor energy balance documented in Equation (28).

The results obtained for both maneuvers are documented in Figure 13, where the
measured total temperatures are compared to the diabatic and adiabatic prediction. Here,
adiabatic prediction refers to the performance model without using the neural network to
account for the engine’s thermal response. In Figure 13c,d, the end of the acceleration is
marked by a vertical line. To analyze the quality of the transient model, the predictions are
corrected for deviations in the stationary performance model, so that

Tt,prediction(t→ ∞) = Tt,measured(t→ ∞). (33)

It becomes obvious that adiabatic modeling of the compressor does not lead to a
time series of Tt3, which matches the time constant and the temperature level of the
measurements. Diabatic compressor modeling using the non-dimensional transient heat
transfer maps significantly improves the prediction of time constant and temperature level.

Figure 13. Comparison of measurement, adiabatic prediction (performance model without the
neural network to model heat transfer), and diabatic prediction (same performance model with
the neural network). Predictions are corrected for deviations in the stationary performance model;
see Equation (33). (a) Compressor exit temperature, deceleration, (b) turbine exit temperature,
deceleration, (c) compressor exit temperature, acceleration (accel), and loading, and (d) turbine exit
temperature, acceleration (accel), and loading.

Consequently, the discussion regarding the turbine exit temperature Tt5 is based only
on diabatic compressor modeling. The measured time series of turbine exit temperature
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Tt5 is matched well by the enhanced gas turbine model. The deviations visible can be
explained with higher measurement uncertainty in Tt5 and more noise present in the signal.
This makes transfer learning more difficult, which is also evident in Figure 12b.

Figure 13 shows that the thermal transient of the turbine is faster than the thermal
transient of the compressor. This is in accordance with the larger thermal mass of the
centrifugal compressor.

8. Generalization of the Method

Generally, the proposed method is directly usable for large gas turbine engines. It
relies on typical measurement positions in such turbines. Different methods to derive
the combustor exit temperature Tt4, such as combustor heat balance or turbine capacity
method, are directly applicable.

However, the ranges for Biot number and ϑchar are quite different for larger engines [18].
This can be accounted for by expanding the ranges of the parameters in the two-dimensional
FEM simulation. Additionally, tip clearance changes may play an important role in larger
aero engines [9]. Hence, so-called cold stabilization maneuvers are not suited to support the
required transfer learning. Hot reslam maneuvers featuring high heat flows are suggested
for transfer learning. Different start and end conditions of the hot reslams should be chosen
to increase the variability in the data. Furthermore, slam accelerations might be used, if the
effects of heat transfer is significantly bigger than the effect of tip clearance changes.

The most time-consuming part of the proposed approach is the FEM simulation and
the training of the original network encoding the results of the FEM. Transfer learning takes
only a small amount of time. If the parameter range of the FEM simulation is chosen to be
wide enough, the first two steps have to be carried out only once. The results of these steps
could then be used to transfer the thermal behavior of an entire fleet.

Due to the dimensional analysis, this method is applicable to any system that can be
be based on a system according to Figure 1 and Table 1. Additionally, the system and the
dimensional analysis can be expanded to explicitly model further effects, such as cooling
flows, by including the relevant parameters. The resulting non-dimensionals from the
expanded dimensional analysis need to be included into the FEM simulation and used as
features of the neural network used to encode the simulation results.

9. Conclusions and Outlook

Modeling transient turbomachinery heat transfer using non-dimensional heat transfer
maps and neural networks is successfully demonstrated using a very small gas turbine
as an example. Such a small gas turbine represents a worst case scenario, since the heat
transfer within the components is superimposed by significant heat conduction between
the components. Scaling of the non-dimensional transient heat transfer maps and trans-
fer learning are required to match the engine thermal transients. The approach to use
transfer learning has the advantage that only a limited amount of data is needed to obtain
sufficient accuracy.

In a next step, the transferred networks can be used to regenerate the transient heat
transfer maps. Those maps can then be directly implemented into the performance program
as lookup tables. This should lead to very fast calculation times of the thermal transients.
In addition, the results of the transfer learning and, therefore, the thermal transients can be
interpreted by looking at the regenerated maps.
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Nomenclature
The following nomenclature are used in this manuscript:

Symbols
A Surface area
Bi Biot number
cp Specific heat at constant pressure
d Diameter
Fo Fourier number
h Heat transfer coefficient
ht Specific total enthalpy
kl Total number of layers in neural network (hidden layers + output layer)
kfl Thermal conductivity of fluid
kmat Thermal conductivity of solid material
lg Logarithm to base 10
log Natural logarithm
l Length
lref Reference length of non-dimensional heat flow lref = δ/Ai
LHV Lower heating value
ṁ Mass flow rate
Max Axial Mach number
n Rotational speed
nin,j Number of inputs of j-th layer
nout,j Number of outputs of j-th layer
nparam Number of trainable parameters
Nu Nusselt number
P Power
p Static pressure
pt Total pressure
Q̇ Heat flow rate
Q̇par Nondimensional heat flow rate
R Specific gas constant
r Radius
T Temperature
t Time
t63.2% Time constant
Tt Total Temperature
U95 Expanded uncertainty
V Volume
V̇fuel Volumetric fuel flow rate
∆p Differential pressure of inlet nozzle
δ Characteristic thickness
η Efficiency
λ Fitting parameter of Box-Cox transform
ρ Density
τ Torque
Θ Nondimensional temperature
ϑchar Characteristic nondimensional temperature difference

Subscripts
Comp Compressor
dia Diabatic
equ Equivalent



Aerospace 2022, 9, 49 17 of 18

free Free convection
ini Initial
i Inner
mat Material
max Maximum
min Minimum
o Outer
surf Surface
trans Transformed
0 Ambient
2 Compressor inlet
3 Compressor exit
4 Turbine inlet
5 Turbine exit

Acronyms
Accel Acceleration
Brk Brake
FEM Finite Element Method
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
NARX Nonlinear Autoregressive Network with Exogenous Inputs
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
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