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Abstract: The global path planning of planetary surface rovers is crucial for optimizing exploration
benefits and system safety. For the cases of long-range roving or obstacle constraints that are
time-varied, there is an urgent need to improve the computational efficiency of path planning.
This paper proposes a learning-based global path planning method that outperforms conventional
searching and sampling-based methods in terms of planning speed. First, a distinguishable feature
map is constructed through a traversability analysis of the extraterrestrial digital elevation model.
Then, considering planning efficiency and adaptability, a hierarchical framework consisting of step
iteration and block iteration is designed. For the planning of each step, an end-to-end step planner
named SP-ResNet is proposed that is based on deep reinforcement learning. This step planner
employs a double-branch residual network for action value estimation, and is trained over a simulated
DEM map collection. Comparative analyses with baselines demonstrate the prominent advantage of
our method in terms of planning speed. Finally, the method is verified to be effective on real lunar
terrains using CE2TMap2015.

Keywords: planetary rovers; global path planning; deep reinforcement learning; hierarchical framework;
computational efficiency

1. Introduction

The path planning of planetary rovers is crucial for improving exploration benefits
and system safety in extraterrestrial exploration. The existing lunar and Mars rovers
mainly rely on man-involved local planning for path determination due to the limited local
perception ability and surface mobility. For instance, the Yutu and Yutu-2 rovers move
towards an object of interest for exploration through a series of waypoints and segmented
paths that are terrestrially planned [1,2]. The present path planning systems seem to be
reliable, but they are less efficient, and they can only plan as far as a rover can see. Orbital
imageries of extraterrestrial planets can be provided at an effectively unlimited distance,
which provides the possibility, as well as the basis, for long-range global path planning
for extraterrestrial surface robotic activities [3,4]. High-precision orbital images can be
further processed into digital elevation models (DEMs) carrying vivid three-dimensional
topographical data, such as the CE2TMap2015 [5,6] for the Moon and the HiRISE [7] data
for Mars.

Generally, global path planning for planetary roving is divided into two stages, namely,
map construction and path searching. First, the original orbital images are interpreted
into computable configuration spaces in which free space and obstacle space are iden-
tified. Then, the right path can be identified by some path searching algorithms, such
as the A* [8,9], the rapidly exploring random trees (RRT) [10,11], the ant colony algo-
rithm [12], and the genetic algorithm [13], etc. These methods are operable in most in-
stances, but may suffer from the exponential explosion of computation time when it comes
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to wide-range or high-resolution maps. Learning methods, such as deep learning and deep
reinforcement learning (DRL), have been applied to the global path planning of planetary
rovers in pursuit of improving computing efficiency [14] and reducing dependence on
human experience [15–17]. However, there are still some questions that remain unsolved
in learning-based methods. For the artificial neural network (ANN)-based planners, one
very important issue is the difficulty of adapting to maps with various sizes due to their
specific network structures.

In this paper, we propose a novel learning-based planning method for the global
path planning of planetary roving, which can significantly improve the planning speed
for long-range roving and which, meanwhile, can adapt to arbitrarily sized maps. First,
a kind of binary feature map is obtained from the original extraterrestrial DEM through
topography and illumination analysis. The feature map is designed to provide more
distinguishable information for learning and planning. Then, a hierarchical planning
framework is designed to resolve the issue into two hierarchies, namely, step iteration and
block iteration. For the planning within step iteration, an end-to-end step planner named
SP-ResNet is constructed using DRL. The planner employs double branches of residual
networks for feature reasoning and action value estimation, and is trained over a simulated
extraterrestrial DEM collection. In the results, comparative large-range planning tests
with A*, RRT, and goal-biasing RRT (Gb-RRT) [18] are conducted, demonstrating the
prominent advantage of the proposed method in terms of planning efficiency. Furthermore,
the effectiveness and the feasibility of the method are validated on real lunar terrains from
CE2TMap2015.

The main contributions of this paper can be summarized as follows:

(1) A novel learning-based method combining a hierarchical planning framework and
an end-to-end step planner improves the computational efficiency for long-range
path planning.

(2) The step planner learns and conducts path planning on binary feature maps without
relying on any label supervision or imitation.

(3) The hierarchical planning framework solves the problem that a single ANN-based
planner only adapts to specifically sized maps.

The remainder of this paper is organized as follows. The related work is reviewed in
Section 2. Section 3 formulates the path planning problem in an end-to-end style. Section 4
presents the learning-based planning methodology in detail, including the feature map,
the hierarchical planning framework, and the SP-ResNet planner. Section 5 explains the
planning application of the method. Section 6 illustrates the numerical results and analysis,
and this is followed by an overall conclusion in Section 7.

2. Related Work

Global path planning methods for long-range planetary roving can be generally
divided into two categories, namely, the conventional searching-based methods as well as
the learning-based methods.

Conventionally, given computable configuration spaces, such as the Voronoi diagrams
or grid maps, the right path from the start point to the target can be solved by a wide
range of searching algorithms, such as the A* [8,9], the SD*lite [1], the RRT [10,11], and the
ant colony algorithm [12], etc. Various improvements have been made to these methods.
For instance, surface constraints, such as the terrain slope, roughness, and illumination over
the original DEM, were considered in the cost function of the A* algorithm, which improved
the feasibility and usability of the planned paths [19,20]. YU X Q et al. [21] introduced
a safety heuristic function for the A* algorithm to raise the overall security of the planned
paths in large-range lunar areas. Sutoh M et al. [22] discussed the influence of rover
motion forms and isolation conditions on the planned paths with Dijkstra’s algorithm.
However, there are some shortcomings in the conventional path planning methods. For one
thing, the path planning performance depends on configuration space interpretation,
which partly relies on human experience. For another, these path planning methods are
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usually searching-based, meaning that the computation time increases exponentially with
the increase in the size of the solution space and it, thus, cannot meet the requirements
of long-range roving and complex obstacles, or when some time-varying factors, such as
illumination, temperature, or communication, must be considered.

Learning-based methods have also been explored by the researchers for the global path
planning of planetary roving. Wang J. et al. [14] trained a deep learning-based path predictor
using label paths generated by A* that could directly generate a probability distribution
of the optimal path on an obstacle map. The distribution was used for the guidance of
RRT-based final path planning, which significantly improved the path planning speed.
In addition, the value iteration network (VIN) was applied to end-to-end path planning
for the Mars remote images [15]. Furthermore, a soft action policy was applied to generate
a soft VIN that outperformed the standard VIN in terms of the path planning accuracy [16].
Zhang J. et al. [17] proposed an end-to-end planner based on deep reinforcement learning
(DRL) that could directly solve the sequenced nodes of a safety path for Mars remote
sensing imageries through the iterative application of the planner. It can be concluded that
learning-based methods are preferable alternatives that can not only provide end-to-end
planning directly from pixel images without the need for artificial computable configuration
space representation, but they can also get rid of the problem that the planning time
increases exponentially with the problem space size. Nevertheless, the current learning-
based methods mainly employ artificial neural networks (ANNs) to build the planning
policy, and hence have difficulty adapting to planning tasks on maps with various sizes
due to the limitations of the specific network structures. It is really not advisable to plan on
reshaped maps, since this may lead to a serious loss of accuracy and the impracticability of
the planned path.

This work is devoted to proposing a novel learning-based planning method, which
can remarkably improve the computing speed of global path planning for long-range
planetary roving and, meanwhile, improve the previous learning-based methods’ poor
adaptability to the maps of various sizes. An DRL-based path planner, employing double
branches of residual networks, is built to directly plan on binary feature maps. Furthermore,
a hierarchical planning framework is designed in pursuit of high planning speed and
adaptability to arbitrarily sized maps. The method is able to plan faster than the baselines
and is validated to be effective in planning tasks with real lunar terrain maps.

3. Problem Formulation

Generally, path planning is intended to solve a finite path from a start point to a target
point on a map, with no collision with obstacles. For the development of a learning-based
planning system, we further arranged the elements into the input and output of a step
planner. For the global path planning based on the planetary DEM, the input consists of
the current rover position, the target point, and the global map containing some form of
environment information, which we call the feature map. The output refers to the best
moving direction suggested by the planner at each step. For ease of understanding, some
related elements should be further explicitly defined, as follows:

Step planner: An end-to-end planner designed based on ANNs, which suggests
an optimal action for one step according to the rover position, the target position, and a
specifically sized feature map.

Feature map: F, an M×M image representing distinguishable obstacle information.
Block: B, a feature map with a specific size, e.g., N × N, which is intercepted or

deformed from F, to be directly fed to the step planner for planning. Due to the fixed
network architecture of the planner, the planner can only plan on a specifically sized map,
which is why the block is introduced. The next section addresses the role that the block
plays in adapting the end-to-end planner to maps with arbitrary sizes.

Start point: (sx, sy), the initial position of a planning task.
Target point: (tx, ty), the target position of a planning task.
Rover position: (rxk, ryk), rover position at the current step. k is the step index.
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Action: ak, one of the eight directions pointing to the surrounding grid points sug-
gested by the step planner, based on which (rxk, ryk) is updated.

Path: ψ = {ϕk|k = 0, 1, 2, · · ·} = { (rxk, ryk)|k = 0, 1, 2, · · ·}, the sequenced nodes
determined by the planner. If O is used to represent the obstacle area of the map, a safe
path is attributed to ∀ϕk /∈ O, k = 0, 1, 2, · · · .

4. Learning-Based Path Planning Methodology
4.1. Feature Map

The planetary DEM data include 3D elevation information for extraterrestrial surfaces
that is not suitable for learning and planning with the ANNs. For feature reasoning and
planning by the end-to-end planner, a kind of binary feature map with more distinguishable
characteristics is constructed based on the local traversability analysis, including the terrain
amplitude, slope, and illumination.

4.1.1. Traversability Analysis

(1) Terrain amplitude
The terrain amplitude, essentially referring to the local relative elevation, directly

reflects the locations and shapes of the craters and highlands in the DEM. The terrain
amplitude can be calculated with |e(px, py)− e0|. (px, py) represents the pixel coordinates,
e represents the elevation, and e0 represents the local level. A terrain amplitude traversabil-
ity map Tamplitude can be filled by Tamplitude(px, py) = 1 if |e(px, py)− e0| < εamplitude,
and Tamplitude(px, py) = 0 if |e(px, py)− e0| ≥ εamplitude. On the traversability map,
1 represents the traversable area, and 0 represents the untraversable area. εamplitude repre-
sents the safety threshold of the terrain amplitude.

(2) Slope
It is preferable for planetary rovers to move on areas with gentle slopes. A 3 × 3 grid

rolling window around (px, py) is created to determine the local slope, which can be
calculated with:

S(px, py) = max

{
arctan

(∣∣e1 − ei
∣∣

d

)∣∣∣∣∣i = 2, 3, . . . , 8

}
, (1)

where arctan
(
|e1−ei|

d

)
represents the slope along the eight directions around (px, py),

and e1 = e(px, py), ei = e
(

pxi, pyi), and d = res
√(

px− pxi
)2

+
(

py− pyi
)2. A slope

traversability map Tslope can be constituted using Tslope(px, py) = 0 if S(px, py) ≥ εamplitude,
and Tslope(px, py) = 1 if S(px, py) < εslope. εslope is the safety threshold for the slopes,
and res represents the DEM resolution.

(3) Illumination
Illumination is an essential condition for the rovers to maintain warmth and ample

solar power. The accessibility of sunlight depends on the angle between the solar ray
vector

→
a and the normal vector of the local surface

→
n . The angle can be quantitatively

expressed with

β(px, py) = arccos

 →
n•→a∣∣∣→n ∣∣∣•∣∣∣→a ∣∣∣

, β ∈ [0, π]. (2)

The illumination is determined to be accessible only if β is larger than some threshold.
An illumination traversability map Tillumination can be filled using Tillumination(px, py) = 0
if β(px, py) < εillumination, and by Tillumination(px, py) = 1 if β(px, py) ≥ εillumination.
εillumination represents the safety threshold of β, and εillumination > π

2 .
→
n can be calculated

based on the 3 × 3 grid rolling window with:

→
n = (res, 0, e(px + 1, py)− e(px, py))⊗ (0,−res, e(px, py− 1)− e(px, py)). (3)
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4.1.2. Feature Map Calculation

Based on the traversability maps, operations are conducted with pixels, and a compre-
hensive feature map F is constructed; that is, F can be obtained with:

F = Tamplitude ∩ Tslope ∩ Tillumination. (4)

Figure 1 shows an example of the traversability maps and the added comprehensive
feature map, which is based on a 10 × 10 km2 DEM at the bottom of a crater near the
south lunar pole from the CE2TMap2015. The thresholds are set as: εamplitude = 20(m),
εslope = 15(deg),εillumination = 102(deg), and

→
a = (2, 2,−1)T . It can be seen that the feature

map, with consideration of the topography and illumination traversability, conveys the
obstacle areas in a more distinguishable way than the original DEM.

4.2. Hierarchical Planning Framework

Trying to cope with a planning task on a feature map with an arbitrary size directly
based on an end-to-end planner does not work due to the defects of fixed network architec-
tures. Even if the feature map could be deformed to match the planner input, a serious loss
of accuracy and feasibility might occur. A hierarchical planning framework is designed
to break through this defect, which divides the issue into two levels of iteration, namely,
step iteration and block iteration. It should be noted that step iteration is carried out on the
block with a size of N × N, which matches the input of the end-to-end planner, while the
block iteration is carried out on the original feature map with an arbitrary shape of M×M.

4.2.1. Step Iteration

An end-to-end step planner is designed to solve the optimal moving action ak for
the rover at the current step according to the input rover position (rxi, ryi), the target
position (tx, ty), and the block map B. Through the iterative application of the step planner,
a complete path from the start point to the target point can be worked out, which is known
as step iteration, or SI for short.

4.2.2. Block Iteration

Block iteration employs SI to plan a segmented path using blocks on the original map
along a rough initial path; that is to say, the planning is divided into two phases, including
the initial rough planning and the accurate block planning, as shown by Si 0 and SI j in
Figure 2, respectively. The final path on a feature map with an arbitrary size is usually
obtained by splicing the segmented paths that are planned on multiple blocks.
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Given an original feature map F with a size of M×M, the map is first deformed into
an N × N block B0, for which an initial rough path is planned through SI 0. The initial
path is denoted by ψ0 =

{
ϕ0

k

∣∣k = 0, 1, 2, · · ·
}
=
{(

rx0
k , ry0

k
)∣∣k = 0, 1, 2, · · · , L

}
, which can

be calculated with:

rx0
k = rx0∗

k × K, ry0
k = ry0∗

k × K, k = 1, 2, . . . , L, (5)

where K = M/N represents the transformation ratio, and L indicates the initial path length.
We use •j to indicate the variables solved by SI j, and we use •∗ to distinguish the variable
for the block coordinate system.

Along ψ0, a series of guide nodes
(

gxj, gyj), j = 1, 2, . . . , J are determined that serve
as the endpoints of the precise block planning of the second phase. The guide nodes are
illustrated by gj in Figure 2. J is up to the length of the initial path by J = 2LK

N . The guide
nodes can be determined by:

gxj = rx0
Nj
2K

, gyj = ry0
Nj
2K

, j = 1, 2, . . . , J. (6)

Each block Bj is located using a pair of adjacent guide nodes
(

gxj, ryj) and
(

gxj+1, gyj+1)
as follows: 

Bj = F
(

pxj − N/2 : pxj + N/2, pxj − N/2 : pxj + N/2
)

pxj = gxj+gxj+1

2

pyj = gyj+gyj+1

2

, (7)

where
(

pxj, pyj
)

indicates the center position of Bj. The segmented path on the block is
then planned with SI j. The path coordinates for block Bj and the original feature map F
can be converted using the following formula:{

rxj
k = rxj∗

k + pxj − N/2
ryj

k = ryj∗

k + pyj − N/2
, k = 0, 1, 2, . . . . (8)
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4.3. SP-ResNet Planner
4.3.1. DRL Model

Step planning is based on DRL, which can be essentially modeled by the Markov
decision process. At the kth time step, the navigator observes a state sk and selects
an action ak from the action set A. This decision is guided by the policy π(θk), in
which θk represents the weights in the Q-network [23]. Afterward, the agent reaches
the next state sk+1 and obtains an instant reward rk. The state-action value qπ(s, a) is
introduced as qπ(sk, ak;θk) = Eπ [Gk|sk, ak] and used to evaluate the current policy π(θk),

where Gk =
∞
∑

t=0
γtrk+t+1 represents the expected cumulative sum of rewards, and γ ∈ (0, 1)

is a discount factor. The best action choice for the current policy is determined by qπ(s, a),
according to:

ak = argmax
a′

qπ(sk, a′). (9)

As the agent learns from interacting experiences within the environment, qπ(sk, ak;θk)
can be optimized using the Bellman equation:

qπ(sk, ak;θk+1) = qπ(sk, ak;θk) + α

[
rk + γmax

a′
qπ(sk+1, a′)− qπ(sk, ak;θk)

]
. (10)

The Q-network can then be trained by minimizing the loss function, which can be
expressed as follows:

Loss(θk) = E[(rk + γmax
a′

qπ

(
sk+1, a′;θ−k

)
− qπ(sk, ak;θk))

2], (11)

where θ−k represents the weights in a target Q-network that are only updated for a specific
number of steps [24].

4.3.2. SP-ResNet Planner

The Q-network is the predominant learner as well as the planner for step planning,
which determines features and holds the planning policy. We designed a novel Q-network
consisting of double branches of residual networks [25] for global and local obstacle
abstraction, as shown in Figure 3. The planner is named “the step planner based on
ResNet”, or “SP-ResNet” for short.
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The global branch employs ResNet18 to extract the global information, including
(rx, ry), (tx, ty), and B. The block size is denoted by N × N. To provide a more direct
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spatial relationship for the rover position and the target position for the branch, (rx, ry)
and (tx, ty) are marked on an N × N blank layer as a bright pixel. The added layers are
denoted as R and G, individually. Therefore, the input of the global branch is arranged
as a three-layered state cube with dimensions of 3× N × N. The local branch employs
ResNet6 to work on a local area around (rx, ry) on B, which contains three BasicBlocks.
The local area is a matrix denoted as Blocal , whose size is denoted by X× X. Blocal can be
obtained with:

Blocal = B(rx− X/2 : rx + X/2, ry− X/2 : ry + X/2). (12)

The outputs of the two branches are fused through two fully connected layers for the
value estimation of eight actions ai ∈ A, i = 1, 2, . . . , 8, which denote the motions in the
eight directions. The optimal motion at each step can be planned using Equation (9).

4.3.3. Step Planning Iteration

It is important to specify how the SP-ResNet works in the step planning iteration.
For each step, B, R, and Blocal are updated according to the current (rx, ry), while the action
selection is achieved by the one-time reasoning of the Q-network. The operation flow of
the step iteration is summarized in Table 1.

Table 1. The step iteration by the SP-ResNet planner.

Step Iteration (SI)

a. Block input: B, G, sx, sy, tx, ty
b. Block initialization: rx0 = sx, ry0 = sy, X

c.

Step planning:
c.1. Obtain R and Blocal according to (rxk, ryk)
c.2. Obtain qk(sk, a) with Q-network reasoning
c.3. Action: ak = argmax

a′
qπ(sk, a′)

d.
Position update:
If rxk = tx and ryk = ty, output ψ = { (rxk, ryk)|k = 1, 2, 3, · · ·} and quit;
else, rxk = rxk+1, ryk = ryk+1, go to Step planning.

5. Training and Planning
5.1. Rewards for Training

In fact, it is hard work to train an ANN to learn image-based path planning without
supervision or imitation [18,21]. A comprehensive reward strategy is designed for our
SP-ResNet planner to help it to efficiently learn the behaviors required to approach the
target, avoid obstacles, optimize the accumulated length, and smooth the path.

The reward for arrival is denoted as rarrival
k . If the rover arrives at the target posi-

tion, rarrival
k = 1, and the current episode is ended, while at other moments, rarrival

k = 0.
The reward for a hazard is denoted by rhazard

k . If the rover enters any hazard area, a penalty
of −1 is given to rhazard

k , and the current episode is ended; else, rhazard
k = 0. The hazard

area can be classified by T(rx, ry) = 0. The reward for approaching rapproach
k is designed

as a linear function of the distance variance between (rxk, ryk) and (tx, ty), denoted as
rapproach

k = λ
(

dtarget
k−1 − dtarget

k

)
. If the rover approaches the target, rapproach

k takes a positive
value, while if the rover leaves the target, the value is negative. The reward for the en-
ergy cost rcost

k is introduced for the path length optimization, whose value is based on ak.
If ak goes along the grid edge, rcost

k = c, but if ak goes along the diagonal, rcost
k =

√
2c,

where c stands for the energy cost per unit length. The reward for smoothing rsmoothing
k

can also be considered to be a turning cost for the rover whose value relies on the actions
taken in adjacent moments. If ak is along the same direction with ak−1, rsmoothing

k = 0;
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else, rsmoothing
k = s, s < 0. The schematics of rcost

k and rsmoothing
k are illustrated in Figure 4.

The final reward at the kth step is obtained with the sum of the above rewards:

rk = rarrival
k + rhazard

k + rapproach
k + rcost

k + rsmoothing
k . (13)
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(a) reward for energy cost and (b) reward for path smoothing.

5.2. Planning Application

This sub-section introduces the application of our hierarchical framework to the
SP-ResNet planner for path planning according to the specific operation flow, which is
presented in Table 2 in brief.

• Task initialization: The start position (sx, sy), the target position (tx, ty), the original
DEM for planning, and the map resolution res are given;

• Feature map acquisition: The feature map F is constructed using traversability analysis;
• Deformation: The original feature map is deformed into B0, and the transformation

ratio can be determined with K = M/N;
• Initial rough planning: The initial rough path on the size-reduced map is solved with

SI 0, according to Equation (6);
• Guide node determination: Along the initial path, a series of guide nodes is determined

by Equation (7);
• Precise planning: Precise block planning based on the guide nodes is conducted. First,

the blocks are determined according to Equation (8); then, SI j is called to plan a fine
path on Bj until j = J − 1. The input of SI j can be obtained with:

sxj∗ = gxj − pxj + N/2
syj∗ = gyj − pyj + N/2
txj∗ = gxj+1 − pxj + N/2
tyj∗ = gyj+1 − pyj + N/2

(14)

Table 2. The application flow of the learning-based planning method.

Application Flow of Path Planning.

a. Task initialization: DEM, (sx, sy), (gx, gy), res
b. Feature map acquisition: DEM→ F
Phase 1: SI 0
c. Deformation: F→ B0, sx0∗ , sy0∗ , gx0∗ , gy0∗ , K = M/N
d. Initial rough planning: ψ0 = KSI(B∗, sx0∗ , sy0∗ , gx0∗ , gy0∗ )
Phase 2: SI j, j = 1, 2, 3, . . .
e. Guide node determination:

(
gxj, gyj

)
f. Precise planning:

f.1. Block index initialization: j = 1
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Table 2. Cont.

Application Flow of Path Planning.

f.2. Block input: Bj, sxj∗ , syj∗ , gxj∗ , gyj∗

f.3. If j < J − 1, ψj = SI(Bj, sxj∗ , syj∗ , gxj∗ , gyj∗ ), j = j + 1.
Else, go to Step g.
f.4. Back-calculation: ψj

g. Path splicing.

After this, the path on the block should be back-calculated into the original F coordinate
system with Equation (8);

• Path splicing: The segmented paths ψj. are spliced in sequence to form the final path
on the original map, which can be expressed as follows:

ψ =
{
ψj
∣∣∣j = 1, 2, · · · , J − 1

}
. (15)

6. Numerical Results and Analysis
6.1. Planner Training and Evaluation
6.1.1. Training Settings

Without loss of generality, an SP-ResNet planner is instantiated by N = 100. and
X = 10, which means that the planner plans on the 100 × 100 block and has a 10 × 10
input for the local branch. To meet the application of block iteration, the planner needs to
adapt to various scaled obstacles, although the block size is unified. The planner is trained
on a map collection containing 10,000 frames of 100 × 100 blocks, each of which contains
obstacles with random quantities and various scales. Figure 5 illustrates the constitution of
the training map collection based on the simulated DEMs of craters and highlands.
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Figure 5. The training map collection.

At the beginning of each training episode, the start position and the target position are
randomly initialized. Experiences in the form of [sk, ak, rk, sk+1] are collected according to
Equation (9) for each step, and the loss function in Equation (11) is optimized by an Adam
optimizer. Finally, we managed to train the planner with a final planning success rate of
85% for the map collection (over 20,000 episodes for about 48 h), as shown by the training
curves in Figure 6.



Aerospace 2022, 9, 101 12 of 17

Aerospace 2022, 9, x FOR PEER REVIEW 12 of 18 
 

 

6. Numerical Results and Analysis 
6.1. Planner Training and Evaluation 
6.1.1. Training Settings 

Without loss of generality, an SP-ResNet planner is instantiated by 100N = . and 
10X= , which means that the planner plans on the 100 × 100 block and has a 10 × 10 input 

for the local branch. To meet the application of block iteration, the planner needs to adapt 
to various scaled obstacles, although the block size is unified. The planner is trained on a 
map collection containing 10,000 frames of 100 × 100 blocks, each of which contains obsta-
cles with random quantities and various scales. Figure 5 illustrates the constitution of the 
training map collection based on the simulated DEMs of craters and highlands. 

At the beginning of each training episode, the start position and the target position 
are randomly initialized. Experiences in the form of 1[ , , , ]k k k ka r +s s  are collected according 
to Equation (9) for each step, and the loss function in Equation (11) is optimized by an 
Adam optimizer. Finally, we managed to train the planner with a final planning success 
rate of 85% for the map collection (over 20,000 episodes for about 48 h), as shown by the 
training curves in Figure 6. 

 
Figure 5. The training map collection. 

 
Figure 6. Training curves for the block planner. 

  

Figure 6. Training curves for the block planner.

6.1.2. Visualized Evaluation of the Block Planner

(1) Value map
A value map displaying the state value of the pixels all over the map in color map-

ping is an effective way to visually evaluate the learning-based planning methods [19,21].
With the trained SP-ResNet, the value maps in three cases are plotted, as shown in Figure 7a,
including a map with flat terrain, a local perspective map with large-scale obstacles,
and a global perspective map with small-scale obstacles. It should be noted that the SP-
ResNet planner can clearly distinguish between the obstacles, safety areas, and target
positions in all three cases.
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(2) Action map
Furthermore, a type of action map is drawn to directly look over the planned motion

all around the original map. On the action map, for a given target position, the best motion
direction at each pixel is planned and marked by arrows. Figure 7b depicts the action
maps of the previous three cases. The figure shows that the SP-ResNet can identify the
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optimal motion direction at almost all traversable positions, though for some minor areas,
the planned results are suboptimal, indicating that the training is effective and reliable.
It should be noted that the original maps for visualized evaluation in the three cases are
beyond the training collection. With the end-to-end mechanism, the value map and the
action map can be solved by one instance of network reasoning in a batch.

6.2. Comparative Analysis with Baselines

This section compares the learning-based method with the baselines, namely A*,
RRT, and Gb-RRT, for the metrics of planning time consumption and path length. A* has
been provided with complete theoretical proofs to find the optimal path, if it exists [8],
which serves as the basic basis for the comparative analysis. Gb-RRT is an efficient method
based on the heuristic mechanism of goal-biasing growth, which greatly improves the plan-
ning speed of RRT [18]. The planning methods involved are tested on several 500 × 500 m2

maps. The SP-ResNet is applied following the hierarchical planning framework. A* adopts
an action space of eight motions toward eight directions, which is the same as the SP-ResNet
planner. The RRT and Gb-RRT methods take a constant step size of one grid (1.0 m), and the
Gb-RRT adopts a classical target biasing probability of 0.05. Figure 8 depicts the results of
four planning tests, in which the planning methods are distinguished by color. Intuitively,
the quality of the path planned with our method is close to the quality of the A* algorithm,
and is apparently better than that of the RRT series algorithms.
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The planning time costs and the final path lengths of the four methods are presented
in Table 3. It can be seen that our learning-based method performs the best in terms of the
planning speed among the baselines, whose planning time consumptions are less than half
of the A*. Moreover, longitudinal comparisons demonstrate that the longer the path is,
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the greater the advantage of computational efficiency our end-to-end method has. As we
expected, however, the final paths generated by the learning-based method are always
partly greater than those by A*. Due to the strong randomness of the RRT series algorithm,
the time costs and the path lengths of RRT and Gb-RRT are statistically averaged over
20 repeated planning instances. It can be noted that the Gb-RRT’s planning speed is very
unstable, although on some occasions it can nearly match that of our method. In addition,
the paths created by the RRT series algorithm are significantly longer than those of the end-
to-end algorithm. It can be concluded that the method based on the hierarchical planning
framework and the SP-ResNet planner has the advantages of a rapid planning speed and
robust stability, which makes it better suited for scenarios with long-range maneuvers and
complex environments. The above planning tests are run on a platform of Intel Core i9 with
a CPU @2.40 GHz (32 GB) and NVIDIA GeForce RTX 2080 Super with Max-Q Design (8G).

Table 3. Comparative analysis of path planning tasks on 500 × 500 m2 maps.

Planning Tasks Metrics A* RRT Gb-RRT SP-ResNet

Task 1
Time cost/s 8.93 42.38 5.16 2.87

Path length/m 413.55 512.50 525.10 473.27

Task 2
Time cost/s 4.71 62.11 3.64 2.18

Path length/m 291.61 564.00 383.00 340.36

Task 3
Time cost/s 11.87 36.74 11.55 2.79

Path length/m 395.54 539.10 529.40 430.28

Task 4
Time cost/s 6.62 36.80 1.03 2.30

Path length/m 333.65 530.90 425.80 348.98

6.3. Tests with CE2TMap2015

The feasibility and the effect of our planning method were evaluated using the real
lunar terrain data in CE2TMap2015 [5]. Two 20 m/pixel areas were selected as the test
maps, as shown in Figure 9. For each of these maps, several path planning tests were
conducted to validate our SP-ResNet planner and the hierarchical planning framework,
as shown in Figure 10. Map 1 is a 10 × 10 km2 area in the east of the Sinus Iridum area
that is relatively flat overall, and there are a few craters. Map 2 is a 10 × 10 km2 area at the
bottom of a crater near the south pole that is covered by dense craters and highlands.
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south pole.
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Figure 10. Path planning tests on real lunar terrains: (a) planning results with Map 1 and (b) planning
results with Map 2.

Figure 11 depicts the results planned by blocks during the implementation process of
a planning task on Map 2, in which B0 shows the initial rough path on the size-reduced
map, and B1–B8 shows the path planning results for the blocks along the initial path. In the
visualized results in Figures 10 and 11, the blue stars indicate the start points, the black
cube indicates the target points, and the guide points are marked by red triangles.
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It can be seen from the above test results that the SP-ResNet planner performs well
for the real lunar natural terrain, whether it is deformed from an original feature map
with small-scale obstacles or from a precise block with large-scale obstacles, though the
planner is trained using a map collection of simulated terrains. It can also be concluded
that the hierarchical planning framework is effective for long-range path planning on
lunar surfaces.

7. Conclusions

It is of great significance to improve the computational efficiency of planetary roving
path planning, especially for the cases of long-range maneuvers or obstacle constraints
that are time-varied, such as illumination. This research is devoted to investigating a novel
learning-based global path planning method that can plan a safe path directly using
a binary feature map in a fast and stable way. A binary feature map is constructed based on
topography and illumination traversability analyses. A hierarchical planning framework
containing step iteration and block iteration is designed that not only breaks through the
defect of the poor adaptability of ANN-based methods, but also improves the planning
speed. A step planner is constituted based on DRL, which determines features and plans
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paths through a double-branch ResNet. The step planner is trained with a map collection
based on simulated terrains, achieving a final planning success rate of 85%. Then, both
a value map and an action map are generated to validate the step planner’s ability of
feature abstracting and path planning. Comparative analyses with A*, RRT, and Gb-RRT
for long-range planning tasks demonstrate the prominent planning speed and stability of
our method. Finally, the proposed learning-based planning system is verified to be effective
on real lunar terrains using CE2TMap2015.

The study is an important attempt to improve the path planning efficiency in long-
range extraterrestrial roving based on a learning method. The performance of the involved
planning system may be further improved in several ways. In fact, the reward and sampling
mechanisms need further investigation to improve the optimality of the SP-ResNet planner,
which seems to still have a certain gap from A*. In addition, DRL algorithms for continuous
action space can be introduced into the planner constitution to produce smoother paths.
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