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Abstract: With the increasing bandwidths of servo control systems and decreasing mode frequencies,
aeroservoelastic (ASE) stability evaluation has become an essential part of flight vehicle design.
However, the theoretical method is limited by the modeling errors of numerical models, and the dry
wind tunnel method is limited by the complex design of force controllers. Given these limitations,
anovel ASE stability evaluation method for slender vehicles based on the ground frequency response
test (FRT) is proposed in this paper. FRTs are implemented for a slender vehicle to obtain the
frequency response functions (FRFs) of the real structure and servo control systems. The low-order
unsteady aerodynamic FRFs established in physical coordinates are calculated by the quasi-steady
aerodynamic derivative method. An ASE open-loop FRF is established for stability evaluation via
the Nyquist criterion. Comparison with the theoretical results shows that the proposed method is
feasible and accurate for different positions of the inertial measurement unit, different control laws,
and different Mach numbers. To deal with the unavoidable influence of hanging supports in the test,
an FREF fitting and resynthesis method is used to remove the hanging modes and provide an accurate
ASE open-loop FRF with free—free boundary conditions.

Keywords: aeroservoelastic stability; frequency response test; quasi-steady aerodynamic derivative
method; aerodynamic condensation; slender vehicle

1. Introduction

Aeroservoelasticity (ASE) is a phenomenon arising from the interaction of unsteady
aerodynamic forces, elastic structures, and servo control systems [1]. The mode frequencies
of many slender vehicles are very low because of their high slenderness ratio. On the
other hand, the bandwidths of flight control systems (FCSs) and actuators are high enough
to satisfy the demand for high maneuverability. As a result, the phenomenon of ASE
instability is common in slender vehicles and may result in serious accidents. In 2001 [2],
the X-43A Hyper-X research vehicle went out of control because of a control anomaly
characterized by a diverging roll and yaw oscillation of the vehicle near 2 Hz, which is
a typical ASE instability accident. Therefore, ASE stability evaluation has become
an essential part of flight vehicle design.

Classical ASE stability analysis is based on the assembly of relatively detailed nu-
merical models of structures, unsteady aerodynamic forces, and servo control systems.
Servo control systems include an inertial measurement unit (IMU) system, an actuator
system, and an FCS. Generally, modally based structures, frequency-domain unsteady
aerodynamic forces, and servo control systems established by the transfer function model
or the state-space model are used in classical ASE stability analysis [3-5]. For the structural
modeling of slender vehicles, early studies mainly described simple beam models, such as
a uniform free beam model [6] and a uniform, free—free, Timoshenko beam model [7]. With
the development of finite element methods (FEMs) [8], many studies have used mature
commercial finite element software to establish structural models [9-11]. These numerical
modeling methods inevitably require the adoption of various simplifying assumptions,
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which resulting in modeling errors. Therefore, such models are unable to fully reflect
the real characteristics of structures and servo control systems of real slender vehicles.
As a consequence of these modeling errors, the accuracy of ASE stability analysis is insuffi-
cient for engineering requirements, and the analysis results should be verified and adopted
very carefully.

To improve the modeling accuracy for structures and servo control systems, various
types of ground tests are used to verify and update the numerical models, including the
ground vibration test (GVT) and the structural coupling test (SCT). The GVT, also known
as the modal test, generally uses a hammer or shakers to apply excitation forces to obtain
the mode parameters, including mode frequencies, mode shapes, and mode damping [12].
The SCT is used to evaluate the coupling between the elastic structure and servo control
systems [13]. Generally, the control surfaces (fins) are used for excitation. The collected
signals generally include IMU signals and command signals of the FCS so as to obtain
the frequency response functions (FRFs) of the servoelastic system. Allen and Pollock [14]
carried out an ASE evaluation of a digital FCS for the AFTI/F-16 airplane, and the FRFs
acquired from the SCT were mainly used to verify the numerical model and simplify
model updating. Compared with numerical models, test data are more accurate for the
damping and digital FCS. Zislin et al. [15] used ground test data to correct sensor mode
shape, sensor position, and FCS. Vaccaro et al. [16] described in detail the process of using
ground test data to modify the ASE model, in which the mode parameters identified by
the GVT are used to update the mass and stiffness of the FEM model, and IMU factors are
introduced to modify the servoelastic system based on the SCT results. In these updating
methods, the accuracy of model tuning is highly affected by the experience of researchers.
It is generally easy to obtain high-precision results for simple models, but with increasing
model complexity, updating becomes very difficult and less accurate.

To directly consider the characteristics of real structures and servo control systems,
a ground simulation test method using shakers for real-time loading of unsteady aerody-
namic forces was developed, which is also called the dry wind tunnel (DWT) method [17].
In this method, the aerodynamic condensation method is used to concentrate the dis-
tributed unsteady aerodynamic forces at a limited number of excitation points, and
a multi-input, multi-output (MIMO) force controller is used to load the forces in real
time. This approach was first applied to flutter analysis by Kearns in 1962 [18]. In 2011,
Zeng et al. [17] further improved the unsteady aerodynamic condensation method and
used a mixed-sensitivity (He) force controller to improve the test accuracy. In the ensuing
years, Wu et al. [19,20], Wang et al. [21], and Yun et al. [22] have made contributions to
this method in terms of condensation of aerodynamic forces and force controller design.
Wau et al. [23] applied this approach to the ASE stability evaluation of slender vehicles and
used a proportional-integral controller for force control. In contrast to numerical models
and updating models, the DWT method is carried out directly on real flight vehicles; there-
fore, it may be theoretically more accurate. However, the accuracy of this method is highly
affected by the characteristics of the force controller. The difficulties in achieving a satisfac-
tory force controller have restricted the development of this method and its application to
complex models.

A novel ASE stability evaluation method for slender vehicles based on the FRFs of
the structure and servo control systems acquired from ground frequency response tests
(FRTs) is proposed in this paper. Combined with the calculated aerodynamic FRFs in
physical coordinates, the ASE open-loop FREF is established for stability evaluation via the
Nyquist criterion. Compared with the numerical models and updating models used in the
theoretical ASE method, the proposed method can more accurately reflect the frequency-
domain characteristics of the real structure and servo control systems. The FRFs acquired
from tests contain fewer identification errors than identified mode parameters. Compared
with the DWT method, there is no risk of instability and no need to use a complex and
difficult force controller in the ground test, which makes the proposed method safe and
easy to implement, avoiding the influence of force control errors. For a slender vehicle,
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FRTs of shaker excitation and fin excitation are carried out, the unsteady aerodynamic
FRFs established in physical coordinates are calculated by the quasi-steady aerodynamic
derivative method, and the ASE stability of the pitch channel is evaluated using the
proposed method. Statistical results with different positions of IMU, different control
laws, and different Mach numbers are compared with the theoretical results to verify the
feasibility and accuracy of the proposed method. To deal with the unavoidable influence of
hanging supports in the test, an FRF fitting and resynthesis method is proposed to remove
the hanging modes and obtain an ASE open-loop FRF with free—free boundary conditions.

The present paper is organized as follows. In Section 2, the proposed ASE system
proposed is established based on the improvement of a theoretical ASE system and SCT
system. Section 3 introduces the proposed ASE stability evaluation method for slender
vehicles; the relevant methods include the acquisition of FRFs in the FRT, the calculation of
unsteady aerodynamic FRFs, and the use of the Nyquist criterion for stability evaluation.
Descriptions of the modeling and testing techniques and processes adopted for a slender
vehicle are the focus of Section 4. In Section 5, the results of the proposed method are
presented and discussed, including a comparison of the results with the theoretical method
and the FRF fitting and resynthesis method to remove the influence of hanging supports.
Finally, Section 6 summarizes the findings and conclusions of the study.

2. ASE System Modeling

The ASE system proposed in this paper is an improvement of the theoretical ASE
system and the SCT system. The theoretical ASE system is mature and established in
generalized coordinates. The SCT system only evaluates the coupling of the structure
and the servo control systems. On this basis, the improved ASE system is established in
physical coordinates, and the order of the system is reduced by the unsteady aerodynamic
condensation method.

2.1. Theoretical ASE System

As shown in Figure 1, the theoretical ASE system is composed of an elastic vehicle,
unsteady aerodynamics, an actuator, IMU, and FCS. It is assumed that the structural mode
order is N; and the degree of freedom of the fin deflection is N (generally, there are roll,
pitch, and yaw channels). For the fin deflection command input, the aeroelastic equation of
motion established in generalized coordinates can be expressed as

. ) 1 1 -
Mgyqgq + Cyqq + Kggq = §PV2Qqqq + EPVZQW‘; — M50 )

where My,, Cqq, and Ky, are the generalized mass matrix, the generalized damping matrix,
and the generalized stiffness matrix, respectively, all of which have dimensions of Nj x Ng;
Q,, and Q, are the generalized aerodynamic influence coefficient (AIC) matrices associated
with generalized displacements (g) and fin deflections (J), with dimensions of N; x N,
and Ny x Ny, respectively; My; is the N; X Ny mass coupling matrix between control and
structural modes; p is the atmospheric density; and V is the flight speed.

Unsteady .
aerodynamics
"=C> > Ac;uator »| Elastic vehicle =
A4 d
= Open/Close
u FCS |, MU |
G, G,

Figure 1. Block diagram of the theoretical ASE system.
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Introducing the N;, X Nj coefficient matrix (Gy) from the generalized displacements
to the IMU acquisition signals (w) (a Ny X 1 vector), the transfer function of unsteady
aerodynamics and an elastic vehicle can be expressed in the Laplace domain as

1 11 -

w(s) = Gw(squqq +5Cyqq + Kgqq — EpVZQqq) (EpVZQq(g - Squ5)5(S) = Gquql Gys9(s) ()
The transfer function matrix of IMU, FCS, and the actuator are denoted by G;, G, and

G, respectively, with dimensions of Ny, X Ny, N; X Ny, and Ny x Nj, respectively, where

N, is the number of control channels, usually including roll, pitch, and yaw channels. The

open-loop transfer function of the theoretical ASE system can be expressed as

Gopen (5) = _GCGIGwG(;;lezSGd 3)

The theoretical ASE analysis can consider the numerical models of structure, servo
control systems, and unsteady aerodynamic forces. Compared with real flight vehicles,
modeling errors cannot be avoided.

2.2. SCT Systems

The SCT is a ground test method for flight vehicles with FCS to evaluate the stability
of the servoelastic system, in which the unsteady aerodynamic forces are not considered.
A block diagram of the classical SCT system is shown in Figure 2. For an ASE system with
fins as control input, the SCT uses fins to excite and collect the control command signals of
the FCS. The open-loop FRF acquired from the SCT is used to evaluate the stability of the
servoelastic system. The open-loop transfer function of the SCT system can be written as

Gopen (5) = —G.G1P11M;Gy (4)

where Py is the transfer function matrix of the fin deflection inertial forces (f;) to the IMU
acquisition signals, and Mj is the transfer function matrix of the fin deflection angles to the
inertial forces.

Inertial force . .
u=<> > Actuator J »  (fin deflection) Ji > Elastic vehicle .
A+ Gd Md I)ll
= Open/Close
u FCS |, IMU |
G, G,

Figure 2. Block diagram of the SCT system.
2.3. Improved ASE System

To directly use the experimental frequency-domain characteristics of the test model,
which is the same as in the SCT, and to introduce unsteady aerodynamic forces, we propose
an improved ASE system, as shown in Figure 3. In contrast to the theoretical ASE system,
the proposed ASE system is established in physical coordinates. The elastic vehicle system
(P11) in the SCT system is only a block matrix in the proposed ASE system. Forces acting
on the elastic vehicle can be divided into unsteady aerodynamic forces generated by elastic
vibration, unsteady aerodynamic forces generated by fin deflections, and inertial forces
generated by fin deflections. To facilitate the implementation of the FRTs, the order of phys-
ical coordinates used to calculate the unsteady aerodynamic forces should be condensed to
a small number, including N, excitation points and N;; measurement points, which are the
application points of the concentrated unsteady aerodynamic forces and the control points
for calculating aerodynamic forces generated by elastic vibration, respectively.
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Unsteady aerodynamics f f Unsteady aerodynamics
> (fin deflection) ed :C): < (elastic vibration) <
H ed H em
f. | Elastic vehicle T
Inertial force P, P,
® =<> > Actustor g »  (fin deflection) i » p="1 12 s
A+ Gy M Py Py,
d
= Open/Close
U FCS |, IMU |
Gt‘ GI

Figure 3. Block diagram of the improved ASE system.

P is the transfer function matrix of the unsteady aerodynamic forces (f,) and the fin
deflection inertial forces (f;) to the vibrational displacements (z;,) in physical coordinates
and the IMU signals (w), which can be written as

)= el ®
Zm Pyy Py |f,
where w and z,;, are Ny, X 1 and Nj;; x 1 vectors, respectively, and f; and f, have dimensions
of Ns x 1 and N, x 1, respectively.

The transfer function matrices in physical coordinates of unsteady aerodynamic forces

generated by elastic vibration and fin deflections are denoted by H,;, and H,, respectively.
The unsteady aerodynamic forces at the excitation points can be written as

fe :fem +fed = Hemzm +Hed‘$ (6)
The inertial forces generated by fin deflections can be written as
fr =My @)

Upon substituting Equations (6) and (7) into Equation (5), the IMU signals can be
written as

w = [PnMd + PyyH,y + PipHey (I — PyyHpy) ™t (P2yMy + PzzHed)} ) 8)

The open-loop transfer function of the positive-feedback ASE system can be expressed as

Gopen(s) = —GcGP11MyGy — GG P13HoyGy — GG P1Hem (I — PooHew) ™' (P2iMyGy + P0H,yGy) 9)

where the first term is the transfer function matrix obtained from the SCT, and the other
terms are introduced after unsteady aerodynamic forces have been taken into consideration.
G.GP11M;G;, P)1M;G,4, and G, are the transfer function matrix of the fin deflection
command signals to FCS command signals, vibrational displacements at the measurement
points, and fin deflection response signals, respectively. G.GPq; and Py, are the transfer
function matrix of the forces at the excitation points to the FCS command signals and the
vibrational displacements at the measurement points, respectively.

3. ASE Stability Evaluation for Slender Vehicles
3.1. Preliminaries

A schematic representation of the slender vehicle studied in this paper is shown in
Figure 4. The X axis is directed backward along the centerline of the body. The Z axis is
vertically upward, and the Y axis is determined by the right-hand rule. The aerodynamic
surface comprises the body and fins. The IMU collects the vibrational response of the body,
and the FCS calculates the control command to drive the actuators. The vehicle is divided
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into N, aerodynamic grids, with N,; on the body (subscript b) and N, on the fins (subscript
7). The N, excitation points and N;;, measurement points are also divided between the body
(Ngp and Nyp) and fins (Ney and Ny,;). The ASE system is established by one of the roll,
pitch, or yaw channels, i.e., N5 = 1and N, = 1.

Fin
Actuator

Figure 4. Schematic diagram of the slender vehicle.

3.2. FRFs Acquired from the FRT

The FRT for slender vehicles described in this paper includes an independently im-
plemented shaker excitation test and a fin excitation test, as shown in Figure 5. In general,
the FRT is conducted with free-free boundary conditions using hanging supports, the
stiffness of which is adjusted such that hanging-mode frequencies are kept far below the
first elastic mode. The shaker needs to apply excitation separately at each excitation point
in the single-input and multi-output (SIMO) shaker excitation test. The fins are deflected
for excitation in the fin excitation test, which is also a SIMO test. Vibration sensors are used
to collect the displacement signals or acceleration signals of the measurement points. Force
sensors are used to collect the force signals in the shaker excitation test. The FCS command
signals and the fin deflection response signals must also be collected.

Hanging support

Fin

Actuator
IMU [ FCS b Q—':'I
Shaker _—~ Force sensor Fin \ 1

excitation excitation

/ Vibration sensor
I

Shaker

Figure 5. Schematic diagram of the FRT.

3.2.1. Shaker Excitation

The FRT of shaker excitation is used to obtain the FRFs of the structure and servo
control systems in Equation (9), which includes Py, and G.GP1;. A block diagram of
shaker excitation is shown in Figure 6. The shaker is used to excite each excitation point,
and the output signals comprise the vibrational displacement signals (Output 1) at the
measurement points and the FCS command signal (Output 2). The FRFs acquired from the
test are

Fme(jw) = Py

; 10
Feo(jc0) = G.G1Ppy (10)

where j is the imaginary unit, w is the simple harmonic oscillation frequency, F(jw) is the
matrix of FRFs of the forces at the excitation points to the displacements at the measurement
points, and F,(jw) is the matrix of FRFs of the forces at the excitation points to the FCS
command signal.
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Elastl;vehlcle w | MU N FCS
12 >
1. P, G, G,
- U

Figure 6. Block diagram of shaker excitation.

3.2.2. Fin Excitation

The FRT of fin excitation is used to obtain the FRFs of the structure and servo control
systems in Equation (9), which include G.G;P11M;G4, P»1M;G;4, and G;. The block dia-
gram of fin excitation is shown in Figure 7. The input signal is the fin deflection command
signal, and the output signals comprise the fin deflection response signal (Output 1), the
displacement signals at the measurement points (Output 2), and the FCS command signal
(Output 3). For Output 2, it is difficult to distinguish the displacements caused by fin
deflections from those caused by elastic vibration of the fins, and the unsteady aerodynamic
forces generated by the fin deflections are much greater than those generated by elastic
vibrations. Therefore, the elastic vibrational displacements at the measurement points
of the fins are not considered during the fin excitation test, i.e., the matrix Fy; (jw) only
considers the block matrix of elastic vibration of the body. The FRFs acquired from the
test are

Fau(jw) = Gy

Py, MGy } (1)

Fyy (jw) = [ 0

F. (]a]) = GCG1P11Mde
where Fy, (jw) is the FRF of the fin deflection command signal to the fin deflection response
signal, Fy, (jw) is the matrix of FRFs of the fin deflection command signal to the displace-

ments at the measurement points, and F, (jw) is the FRF of the fin deflection command
signal to the control law command signal.

Inertial force Elastic vehicle

5 /i

. ActGuator - (fin deflection) Ly B, LN DMy > ng
d M, P, G, e

Figure 7. Block diagram of fin excitation.

3.3. FRFs of Unsteady Aerodynamics
3.3.1. Unsteady Aerodynamics of Elastic Vibration

In the proposed method, the unsteady aerodynamics transfer function matrix (He)
is acquired using frequency-domain unsteady aerodynamics calculation methods, which
are fast, and the accuracy generally meets the needs of engineering applications. The
calculation methods commonly used in engineering, such as the subsonic and supersonic
doublet-lattice method (DLM) [24,25], piston theory [26], and the quasi-steady aerodynamic
derivative method [27], can be used to establish the unsteady aerodynamic forces in
physical coordinates. The aerodynamic forces (f,) at the aerodynamic pressure points can
be calculated from the displacements (z.) and their streamwise derivatives (z/;) at the
aerodynamic control points, i.e.,

o= gvia)| 3| (12)
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where A(w) is the N, x 2N, aerodynamic influence coefficient (AIC) matrix in physical
coordinates, and f,, z., and Z'c are all N, x 1 vectors.

To improve the accuracy of the unsteady aerodynamics calculation, a large number of
aerodynamic grids is generally used. If the same number of excitation and measurement
points as the aerodynamic grids is directly used in the FRT, the experiment is difficult
to implement. Therefore, it is necessary to use the unsteady aerodynamics condensation
method to ensure equivalence of the distributed unsteady aerodynamic forces at the
aerodynamic pressure points with the concentrated forces at the excitation points [17,19].

The spline interpolation methods commonly employed in general aeroelastic anal-
ysis can be used for the interpolation of displacements and forces, including, among
others, the beam spline method, which considers only distributed transverse loads [28];
the infinite-plate spline method (IPS) [29]; and the thin-plate spline method (TPS) [30].
The interpolation matrix is related to the position coordinates of interpolation points and
interpolated points but has nothing to do with the quality, stiffness, and other material
properties of the structure.

zc and Z can be interpolated from the displacements (z,,) at the measurement points
using the interpolated matrix, B;; and Cy:

l:zz/CC:| = l:g:] Zm (13)

The displacements (z,) at the pressure points can be interpolated from the displace-
ments (z,) at the excitation points using the interpolated matrix, B,:

Zq = Bez, (14)

According to the principle of virtual work, the conversion relationship between the
aerodynamic forces (f,) at the pressure points and the concentrated aerodynamic forces (f,)
at the excitation points can be obtained as

f.=B.f, (15)

Substitution of Equations (13) and (15) into Equation (12) yields
1 B
fo= 50V2BIAW) |2 (16)

It should be noted that because the body and fins are interpolated separately, all the
terms in Equation (16) are divided according to the body and fins:

T
fo=[fo fol
Zn= [z Zir |
B, = diag|B,;, Bur| (17)

Cy = diag[Cyp, Cinr|
B, = diag|B,, Ber|

To apply the proposed method to ASE stability evaluation, as an example in this
paper, we use the quasi-steady aerodynamic derivative method, which is commonly used
for slender vehicles and the calculation accuracy of which generally meets the needs of
engineering applications. The body is divided into N,; aerodynamic segments, and fins are
taken as an independent aerodynamic segment (i.e.,N;+ = 1). The unsteady angle of attack
of each aerodynamic segment is equal to the instantaneous angle between the resultant
velocity vector and the chord [23], i.e.,

.w
o :]Vzmhz’c (18)



Aerospace 2022, 9, 850

9 of 24

The aerodynamic forces of aerodynamic segments can be expressed as
1 W
f, = —pV2sct (]Vzc+z’c) (19)

where S is the N, x N, area diagonal matrix of the aerodynamic segments, and C7 is the
N, x N, aerodynamic derivative diagonal matrix, the diagonal elements of which are the
derivatives of the normal force coefficient of each aerodynamic segment with respect to the
angle of attack (or fin deflection angle for fin segment). The aerodynamic derivative can
generally be obtained by a computational fluid dynamics (CFD) solver or by a scaled-model
wind tunnel test.

A schematic diagram of aerodynamic condensation is shown in Figure 8, in which
the distributed aerodynamic forces of the aerodynamic segments are equivalent to the
concentrated aerodynamic forces at the excitation points. In this paper, we need to obtain
the unsteady aerodynamic FRFs (H,, (w)), i.e., substitution of Equations (13) and (15) into
Equation (19), by which the required aerodynamic FRFs can be obtained:

1 W
Hen(w) = —5pV?BISCY (]VBm + cm) (20)

ittthrsterersthrott]

T Distributed aerodynamic forces of the aecrodynamic segments

T Concentrated aerodynamic forces at the excitation points

Figure 8. Schematic diagram of aerodynamic condensation for the quasi-steady aerodynamic deriva-
tive method.

3.3.2. Unsteady Aerodynamics of Fin Deflections

Using the frequency-domain unsteady aerodynamic calculation method, the AIC
matrix (A;(w)) in physical coordinates of fin deflections is calculated; the body remains
stationary, and the fins rotate around the fin axis through 1 rad. The unsteady aerodynamic
forces generated by fin deflections can be expressed as

Joi = %pV2Ad(w)5 1)

According to the principle of virtual work, with the introduction of the interpolation
matrix (Be), the unsteady aerodynamic forces generated by fin deflections at the excitation
points can be written as

fet = Befua (22)

Substitution of Equation (22) into Equation (21) yields
L 2pT
fea = Hea(w)d = 5pV°B, Ag(w)d (23)

Taking the quasi-steady aerodynamic derivative method as an example, the aerody-
namic forces of aerodynamic segments are still as shown in Equation (19). The difference is
that the displacements and their streamwise derivatives of the aerodynamic control points
are generated by fin deflections, which are recorded as z4 and z’ 4.
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The fin deflection mode is defined as a rigid mode generated when the body remains
stationary and the fin deflects for 1 rad. The artificially constructed fin deflection mode
shape (®.4) and mode slope (®’.;) are only related to the position coordinates of control
points and the fin axis. It should be noted that in the fin deflection mode, only the control
points of fins have non-zero values, and the values of the control points of the body are
all zero. Using the fin deflection angle and mode, the displacements and their streamwise

derivatives can be written as
sz — ¢Cd :| 5 24
==l (24)

With the substitution of Equations (22) and (24) into Equation (19), the FRFs of the
unsteady aerodynamic forces generated by fin deflections can be written as

1 W
Hoi(w) = —50V2BISCL (1 Pt + @'ca) (25)

3.3.3. Placement of Excitation and Measurement Points

The calculation accuracy of unsteady aerodynamic condensation is closely related
to the number and locations of the excitation and measurement points. The placement
of these points can be determined by the error between the interpolated modes and the
original modes (the target modes) at the aerodynamic pressure and control points [19,31].

As with displacement interpolation, the interpolated mode shapes and mode slopes
(@, 51321-, and ®,;) at the aerodynamic control points and pressure points can be interpolated
from the mode shapes (®,,; and ®,;) at the measurement and excitation points:

?ci = Bmiq>mi
@/, = Cpi®pi (26)
P, = B,;®,;

where the subscripts i = b and i = r refer to the body and fins, respectively, and ®,,; and
®,; can be interpolated from the experimental mode shapes.
Interpolation errors are defined as

Di = ||(Pei — @ei)pll ¢ + |[(B; — @) ll (27)

Ay = H(q)ui - q’ai)’f”F

where ®;, ®';, and ®,; are the original mode shapes and mode slopes, which can be
interpolated from the experimental mode shapes, and  is the weight coefficient matrix de-
termined from practical engineering experience and the ASE characteristics of the research
model, which indicate the importance of each order mode in ASE analysis.

For the general model, a genetic algorithm can be used to search the excitation and
measurement points, and the optimization objective is to minimize the interpolation errors.
It should be noted that for the placement of excitation and measurement points of slender
vehicles, generally, approximately uniform distribution along the axis of the body can
obtain high interpolation accuracy because it is a one-dimensional interpolation problem
with a simple elastic mode.

3.4. Stability Evaluation

As shown in the flow chart in Figure 9, the FRFs of the structure and servo control
systems acquired from the FRT (Equations (10) and (11)) and those of the unsteady aerody-
namic forces (Equations (16) and (25)) are introduced into Equation (9). The ASE open-loop
FRF is expressed as

Gopen (](U) = _Fcu - FceHngdu - FceHem (I - FmeHem)il (qu + FmeHedeu) (28)
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Slender Aerodynamic
vehicle model
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Figure 9. Flow chart of ASE stability evaluation.

The Nyquist criterion is used for stability evaluation [32]. Because the elastic vehicle
system is stable and the open-loop control system is stable, the Nyquist criterion can be
expressed as follows: a necessary and sufficient condition for the closed-loop system to
be asymptotically stable is that the Nyquist diagram does not touch or encircle the critical
point, —1 4 j0. The distance of the Nyquist diagram from the critical point is usually
expressed in terms of the gain margin and phase margin.

The gain margin (L) is the inverse of the gain of the function Gypex (jw) at the phase
crossover frequency (wp), for which ZGopen (jwy) = —7 (i.e., when the Nyquist diagram
intersects the negative real axis):

L = —201g|Gopen (jwp)| (29)

The phase margin (7) is the phase of the function Gopen (jw) at the gain crossover
frequency (wg) for which |Gopen (jwg)| = 1 (i.e., when the Nyquist diagram intersects the
unit circle) minus —7t:

¥ = 7T+ £LGopen(jwy) (30)

4. Application of the Proposed Method
4.1. Description of the Slender Vehicle
4.1.1. Structural Parameters

In order to verify the feasibility and accuracy of the proposed method, a slender vehicle
with an FCS was designed and manufactured. As shown in Figure 10, the body is composed
of 14 cylindrical aluminum compartments, which are connected by steel counterweights.
Only the horizontal fins were designed, and an ASE stability evaluation of the pitch channel
is carried out. The FCS and actuators are located inside the body, and the IMU located on
the upper surface. The measured mass is 310.6 kg, and the pitching moment of inertia is
652.0 kg.m?. The modal parameters of the slender vehicle are obtained through GVTs, using
an LMS SCADAS data acquisition system and LMS Test Lab software [33]. The PolyMAX
method is used for modal parameter identification. A spring hanging support is used to
realize the free—free boundary conditions, for which the pitch and plunge frequencies are
1.10 Hz and 1.30 Hz, respectively, with damping ratios of 6.0% and 3.0%, respectively. The
measured mode frequencies of the first and second bending modes are 18.0 Hz and 50.2 Hz,
respectively, with damping ratios of 0.45% and 0.55%, respectively.
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Figure 10. Schematic diagram of the slender vehicle.

4.1.2. Servo Control Systems

The servo control systems of the slender vehicle are composed of an IMU, FCS, and
actuator system, with a working cycle of 5 ms. The IMU is an SBG Ellipse2 miniature
inertial system, and the FCS is a TMS320C6747 fixed- and floating-point digital signal
processor. The IMU is placed at two positions of the body: 0.625 m (U1) and 1.725 m (U2)
away from the head. Using pitch-rate feedback, two different control laws (C1 and C2) are
used in this paper, which can be written as

G =01
G 444,13 (31)
€2 7 $71113.10s+8882.6
The experimental FRF of the actuator system is shown in Figure 11.
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Figure 11. Experimental FRF of the actuator system.

4.1.3. Aerodynamic Derivative

The quasi-steady aerodynamic derivative method is used to calculate the aerodynamic
forces. The body is divided into 28 aerodynamic segments, and each fin (right and left) is
taken as an independent aerodynamic segment, as shown in Figure 12. The aerodynamic
derivatives of each segment of the slender vehicle are calculated using a commercial CFD
solver. The structured mesh that satisfies the grid independence test is shown in Figure 13,
in which ¢ represents the length of the slender vehicle, and the total number of nodes is
about 3.56 million. The altitude is taken as sea level, and the calculated Mach numbers
are 0.5, 1.5, and 2.0. The aerodynamic force on each segment is the resultant force of all
its aerodynamic grids, and the projected areas of each segment in the X-Y plane are used
as the area of the segment. The aerodynamic derivatives of each segment of the body are
obtained by calculating the aerodynamic forces at 0° and 2° angles of attack. The pressure
distribution diagram at Ma = 1.5 is shown in Figure 14. For Mach numbers of 0.5, 1.5, and
2.0, the aerodynamic derivatives of each segment of the body are shown in Figure 15, and
the aerodynamic derivatives of the fin are 3.068/rad, 3.132/rad, and 2.603/rad, respectively.
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Figure 13. Computational mesh and boundary conditions.
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Figure 14. Pressure distribution at Ma = 1.5. (a) Angle of attack is 0°. (b) Angle of attack is 2°.
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Figure 15. Aerodynamic derivatives of the body segments.
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4.2. Model of Theoretical ASE

The nominal results of the slender vehicle acquired from the theoretical ASE stability
analysis are used for comparison with the results of the proposed method. The theoretical
ASE model is established under free—free boundary conditions, and the numerical models
of the structure and servo control systems are updated according to the test values. The
updated mode shapes are shown in Figure 16. It can be seen that the FEM values are in
good agreement with the test values. A diagram of the MAC (modal assurance criterion)
values between test and FEM mode shapes is shown in Figure 17. MAC values of the
first bending mode and the second bending mode are 0.99 and 0.95 respectively, which
means that the test and FEM mode shapes are highly correlated and almost identical. The
measured mode frequencies and mode damping ratios are used directly in the theoretical
model, as in the experimental FRF of the actuator system. The control law is the discrete
transfer function model of Equation (31) and the sampling delays of digital servo control
systems are considered. The servo control systems have a pure delay of 15 ms according to
the FRT of fin excitation. The numerical models are modified by the test date and use the
same aerodynamic data as the proposed method; therefore, the theoretical ASE stability
analysis results can be considered to be relatively accurate and used as the nominal results.

O Testvalues - FEM values
O Tostvalues - FEMvalues

mode shape
mode shape

(b)
Figure 16. Mode shapes of test and FEM. (a) First bending mode. (b) Second bending mode.

ENINRNN

Figure 17. MAC value between test and FEM mode shapes.

4.3. Locations of Excitation and Measurement Points

The ASE stability of the slender vehicle described in this paper is mainly affected by
the plunge, pitch, and first bending modes. Within the interest frequency range, the fins
conform to rigidity and symmetry assumptions. The rigidity assumption is illustrated
by the mode shapes shown in Figure 16, in which the fins can be regarded as rigid in
the first bending mode. The symmetry assumption is that the motion and the unsteady
aerodynamic forces of the fins in the pitch channel are symmetrical, and the resultant
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forces are located on the centerline of the body. According to these two assumptions, the
projection point on the body of the pressure point of the fin can be selected as the excitation
point, and the measurement points are arranged at the leading and trailing edges of the
chord line. For the body, the excitation and measurement points can be approximately
evenly distributed. The locations are listed in Table 1 and illustrated in Figure 18. The
beam spline method is adopted for the body, and the rigid-body interpolation method is
adopted for the fin. A mode comparison is shown in Figure 19. It can be seen that the
interpolated modes are in good agreement with the target modes for the first and second
bending modes, which indicates that the locations of excitation and measurement points
are appropriate.

Table 1. Locations of excitation and measurement points.

Excitation Points (m) Measurement Points (m)

Body 0.358, 1.758, 3.508, 4.806 0.05, 1.058, 2.108, 3.158, 4.208, 4.876
Fin (4.806, 0.0, 0.0) (4.656, —0.21, 0.0), (4.876, —0.21, 0.0)
05 A Excitation points I I ‘
@ Measurement points &m
E to—a ° A @ e A ° 29|
> “
L
—0.5 1 1 | 1 1 1 1 L L
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x (m)

Figure 18. Locations of excitation and measurement points.
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Figure 19. Comparison of target modes and interpolated modes. (a) ®, and ®,. (b) ®. and ®,.
(c) ®c and ®.

4.4. FRT Procedure
4.4.1. FRT Setup and Implementation

In the FRTs, a spring hanging support is used, and the pitch and plunge frequencies are
1.10 Hz and 1.30 Hz, which are kept far below that of the first elastic mode. A shaker (MB
Dynamics Model 110) is used in the test, accelerometers (PCB 333B30) are used to collect the
acceleration signals, and a force sensor (Kisler 9712b250) is used to collect the force signals.
The FRFs of the excitation forces to the displacements are obtained by frequency-domain
integration of the acceleration signals. For signal generation and acquisition, a real-time
PXIe module is used, with a sampling frequency of 200 Hz. An embedded controller (PXIe-
8840) is used for two-way communication between the host computer and the PXIe module.
An analog input module (PXIe-4309) is used to collect the acceleration and force signals.
An analog output module (PXIe-6738) is used to output the drive signals of the shaker.
A serial interface module (PXIe-8431/8) is used for two-way communication between the
FCS and the PXIe module, which includes the acquisition of the FCS command signals and
transmission of the actuator drive signals.
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The FRTs involve two processes, with the frequency of the excitation signals in the
range of 1-30 Hz and with a frequency resolution of 0.1 Hz:

(1) Shaker excitation: Photographs of the test implementation are shown in Figure 20.
A shaker is used to excite four excitation points, with a burst random signal. The signals
to be collected synchronously for each excitation comprise the excitation force signal, the
acceleration signals, and the control law command signal. The H1 method is used for
identification of the FRFs [34].

% Spring
£ hanging

o nﬁu!-_w! ) o

S —

Accelerometer

s o e e e e st :
— 1 )

Figure 20. FRTs of shaker excitation.

(2) Fin excitation: A sine-step-sweep signal is used. The FCS receives the actuator
driving command signal from the PXle module to drive the fins. The synchronously
collected signals comprise the acceleration signals of the six measurement points on the
body, the fin deflection response signal, and the control law command signal. A least-
squares frequency response evaluation method is used [13].

To avoid the error and uncertainty arising from a single test and considering that
there are inevitably nonlinear factors in real structures, six groups of shaker excitation tests
with different excitation force peaks and two groups of fin excitation tests with different
deflection angles are carried out.

According to the different positions of the IMU (U1 and U2) and the different control
laws (C1 and C2), the FRTs have four states, which are recorded as U1C1, U1C2, U2C1,
and U2C2.

4.4.2. FRF Identification

Taking a group of U1C1 test data as an example, we compare the FRFs identified by the
test data with the theoretical FRFs. Figure 21 shows the FRFs of the excitation forces at the
E1 excitation point to the displacements at the eight measurement points. Figure 22 shows
the FRFs of the fin driving command signal to the displacements at the six measurement
points of body. Figure 23 shows the FRFs of the E1 excitation forces and the fin driving
command signal to the control law command signal. It can be seen that the FRFs obtained
from the tests are of high quality and in good agreement with the theoretical values in
the interest frequency range. Affected by the spring hanging, there is a certain deviation
between the test values and the theoretical values in the low-frequency range (three times
the hanging frequencies in general). There is obvious noisy interference in the FRFs close
to the frequency boundaries of the excitation signal (1 Hz and 30 Hz). In general, the
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experimental values provide a more accurate reflection of the frequency characteristics of
the real structure and servo control systems than the theoretical values.
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5. Results and Discussion
5.1. Stability Results of Single Group Test Data

A group of test data of the four states is selected as an example, and the ASE open-loop
FRF is calculated in combination with the aerodynamic FRFs at Ma = 1.5. For the open-
loop FRF obtained from the test data, the upper envelope of the gain—frequency curve is
constructed after removing obviously abnormal data and is then used to calculate the gain
margin. The phase crossover frequency is calculated according to the Nyquist criterion,
and the gain of the upper envelope at this frequency obtained by linear interpolation is
regarded as the gain margin.

Comparisons between the test results and the theoretical results are shown in Figure 24.
Local enlargements of the gain curves near the phase crossover frequency are shown in
the insets. It can be seen that the test curves are in good agreement with the theoretical
curves in most frequency ranges. The test curve fluctuates significantly, owing to noisy
interference, so it is difficult to accurately judge the gain margin. Therefore, it is preferable
to use the upper envelope.
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Figure 24. Comparison of ASE open-loop FREF for the four states at Ma = 1.5. (a) U1C1 state. (b) U1C2
state. (c¢) U2C1 state. (d) U2C2 state.

Although the hanging frequencies are far lower than the first elastic mode frequency,
the test data are still affected by the spring hanging in the low-frequency range. The
test results in the low-frequency range are obviously different from the theoretical results
under the free—free boundary conditions. Because the gain crossover frequency of this
vehicle is located in the low-frequency range, it is not appropriate to analyze the phase
margin directly via the test data. Therefore, the phase margin can be obtained only after
the influence of hanging supports has been removed (as shown in Section 5.3).
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Deviation of L (dB)

5.2. Statistical Results of Stability Evaluation

Using the six groups of shaker excitation data and two groups of fin excitation data,
2592 groups of ASE stability evaluation results at Ma = 1.5 are obtained. The mean values
of the gain margin are listed in Table 2. It can be seen that the gain margins of the four states
are close to the theoretical results. Figure 25 shows the deviations of the gain margin and
phase crossover frequency from the mean values of all test results. It can be seen that for the
U1C1 and U2C1 states, the phase crossover frequency is far from that of the first bending
mode, and where the gain—frequency curve is relatively flat, the deviation of the gain
margin is small. The deviations between the minimum gain margins and the mean values
are no more than 1.3 dB. For the U1C2 and U2C2 states, the phase crossover frequency is
close to that of the first bending mode, and where the slope of the gain—frequency curve is
large, the deviation range of the gain margin is relatively large. The deviations of minimum
gain margins are no more than 3.0 dB.

Table 2. Stability margin of the slender vehicle at Ma = 1.5.

Mean Values of Test Theoretical Results
State . . Phase Crossover . . Phase Crossover
Gain Margin (dB) Frequency (Hz) Gain Margin (dB) Frequency (Hz)
Ul1C1 8.72 9.89 9.04 9.88
U1C2 5.55 19.12 5.93 19.21
U2C1 10.37 9.91 10.49 9.88
U2C2 10.44 19.22 10.61 19.23
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Figure 25. Deviations of gain margin and phase crossover frequency from their mean values for
different states at Ma = 1.5. (a) Gain margin. (b) Phase crossover frequency.

Using the test data of the U1C1 state, the ASE stability evaluation results at different
Mach numbers (0.5, 1.5, and 2.0) are determined. The mean values of the stability margins
are listed in Table 3. Box diagrams of the deviation between the results of all the test
data and the mean values are shown in Figure 26. Compared with the theoretical results,
the results of the proposed method are accurate, and the deviation of the minimum gain
margins relative to the mean values are no more than 1.3 dB.

Table 3. Stability margin of the slender vehicle at different Mach numbers (U1C1 state).

Mean Values of Test Theoretical Results
Ma . . Phase Crossover . . Phase Crossover
Gain Margin (dB) Frequency (Hz) Gain Margin (dB) Frequency (Hz)
0.5 31.13 10.32 31.50 10.33
1.5 8.72 9.89 9.04 9.88

2.0 5.88 9.83 6.38 9.84
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Figure 26. Deviations of gain margin and phase crossover frequency from their mean values at
different Mach numbers (U1Cl1 state). (a) Gain margin. (b) Phase crossover frequency.

The test results show that the proposed method can accurately evaluate ASE stability
for different positions of IMU, different control laws, and different Mach numbers. In
practical engineering applications, adopting a conservative approach and taking safety into
account, it is preferable to take the lower bound of the gain margin from the test results as
the final result of the ASE stability evaluation.

5.3. Removal of the Influence of Hanging Supports

Even if the hanging frequencies are much lower than the first elastic mode frequency,
the hanging supports have little effect on the elastic modes (this needs to be achieved in
the FRTs) but still influence the FRFs in the low-frequency range. For the FRFs acquired
from the tests, the influence of hanging supports can be eliminated by curve fitting using
the least-squares method, and the FRFs can be resynthesized under free—free boundary
conditions. For a vehicle with hanging modes and elastic modes, the theoretical expression
for the structural transfer function of excitation forces to vibrational displacements can be
written as

hanging A j B B* upper B B*
F(s) = . : . . ) (32
(s) Z MHSZ+CnS+Kn+Z(S—Sn+5—s*>+ Z ( +s—s*> 32)

n n—i n/ =41 \% T Sn n

The first term on the right-hand side is the transfer function of the hanging modes,
the second term is the transfer function of the elastic modes within the frequency range of
interest, and the third term is the transfer function of higher-order elastic modes outside
this frequency range. B, and B;, are the residue and conjugate residue of the nth-order
mode of the transfer function, respectively, and s, and s;, are the pole and conjugate
pole, respectively.

Without loss of generality, the FRF fitting and resynthesis method is derived by taking
the test data presented in this paper as an example. Because the experimental FRFs include
that for servo control systems, the theoretical model of these transfer functions for the
slender vehicle considered in this paper can be expressed as

Fie(s) = F(s)

Fee(s) = sGe(s)F(s)

Fuu(s) = —s*F(s)Gy(s)
Feu(s) = —s°Ge(s)F(s)Ga(s)

(33)

The higher-order modes beyond the frequency range of interest are difficult to identify
from the test data, but they can be approximated using the FEM model and introduced as
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higher-order residuals. For the hanging-mode term, the mass, inertia, hanging stiffness,
and hanging damping measured in the test and the rigid-body modes are brought into
Equation (32) to calculate the coefficients A,, My, Cy;, and K;,. This can be written as

hanging A j B B* upper B B*
Fis)= Y S +2("+ ”>+Z<”+ ”)(34)

2 _ _ oX _ _ oX
Test Mns + Cus + Ky, —\s—sp Ss—sj v \S—Sn  S—5;

For the experimental FRFs, the least-squares method is used for curve fitting, and
only M, in the hanging-mode term is retained for resynthesis of the FRFs with free—free
boundary conditions, i.e.,

free A j B B* upper B B*
F(s) = 5+ ( 4 >+ ( L ) 35
(s) TgstMnsz nZ::l S—s; S—sk F§A S—%,  s—st (35)

Taking a group of test data for the four types in Equation (33) as an example, the fitting
and resynthesized results are shown in Figure 27, where fitting values are the results with
hanging modes, and the resynthesized values are the results after removal of the hanging
modes. It can be seen that the fitting values are in good agreement with the test values,
which shows the accuracy of the fitting.
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Figure 27. Examples of FRF fitting and resynthesis.

Taking a group of test data of the U1C1 state as an example, the proposed method is
used to fit and resynthesize the experimental FRFs, and the ASE open-loop FRF is obtained
at Ma = 1.5, as shown in Figure 28. It can be seen that in the frequency range not affected
by hanging modes, the fitting results and resynthesized results are in good agreement
with the test results. In the frequency range affected by the hanging modes, the fitting
results are in good agreement with the test results, which include the hanging modes,
whereas the resynthesized results are in good agreement with the theoretical results, which
are established with free—free boundary conditions. The gain margin and phase margin
are listed in Table 4. For the phase margin, the resynthesized results are more consistent
with the theoretical results than the test results and the fitting results, and the deviation
of the phase margin from the theoretical results is reduced from 6.5° (test results) to 0.15°
(resynthesized results). The data processing results show that the proposed FREF fitting
and resynthesis method can effectively remove the hanging modes and obtain the ASE
open-loop FRF with free—free boundary conditions.
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Figure 28. Comparison of open-loop FRF for the U1C1 state at Ma = 1.5.

Table 4. Comparison of stability margins for the U1C1 state at Ma = 1.5.

. . Phase Crossover PN Gain Crossover

Gain Margin (dB) Frequency (Hz) Phase Margin (°) Frequency (Hz)
Test results 8.50 10.01 71.19 2.99
Fitting results 8.21 9.92 65.42 3.13
Resynthesized results 8.30 9.86 64.84 2.78
Theoretical results 9.04 9.88 64.69 2.80

6. Conclusions

A novel ASE stability evaluation method for slender vehicles based on the ground FRT
has been proposed in this paper. The FRFs of the real structure and servo control systems
were obtained through the FRTs of a slender vehicle with shaker and fin excitation. Using
a frequency-domain unsteady aerodynamic condensation method, low-order unsteady
aerodynamic FRFs established in physical coordinates were obtained. The established ASE
open-loop FRF was used for stability evaluation via the Nyquist criterion.

An experimental implementation of the proposed method was performed for the pitch
channel of a slender vehicle. Accurate ASE stability evaluation results can be obtained
by calculating the gain margin through the upper envelope of the gain—frequency curve
and using the statistics of multiple groups of test results. The calculation method of gain
margin represents a conservative approach with due emphasis on safety. The test results
show that the proposed method is feasible and can provide accurate results for different
IMU positions, different control laws, and different Mach numbers. To deal with the
unavoidable influence of hanging supports in the test, an FRF fitting and resynthesis
method was proposed. By resynthesizing the ASE open-loop FRF with free—free boundary
conditions, an accurate result of the phase margin can be obtained. The feasibility and
accuracy of the proposed method were verified through an experimental study of a slender
vehicle. The application of the proposed method to other ASE stability evaluation problems
is the objective of future work.
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