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Abstract: The onboard adaptive model is essential to the model-based control and diagnosis of the
engine. However, current methods, such as the Kalman-based and the data-driven ones, cannot meet
the demands of performance estimation well. Their self-tuning processes lead to a long period of
model mismatch and, thus, degrade the quality of control and diagnosis, even causing engine failures.
To overcome this disadvantage, a novel onboard adaptive model with fast estimation capability is
proposed. The proposed method employs a component level model as the benchmark and introduces
some scaling factors as the model tuners. These tuners are derived from the measurements and
defined to quantify the characteristic deviations of the engine components at a certain operating
condition. An algorithm with memory function is introduced to store the correlations between
the tuners and the operating condition and, thus, predict these tuners according to the operating
condition of inputs. By feeding the predicted tuners to the benchmark model, the engine performance
can be estimated rapidly. Simulations are implemented to demonstrate the effectiveness of the
proposed model. The results show that it has not only a high estimation accuracy at steady operating
states, but also a short dynamic response time and the memory ability to avoid repeated self-tuning
processes when the operating state of the engine varies.

Keywords: onboard adaptive model; fast estimation; scaling factor; operating condition; algorithm
with memory function

1. Introduction

With the development of computer science, some advanced techniques, such as model
predictive control [1], performance seeking control [2], direct thrust control [3], and model-
based fault diagnosis [4], are emerging in the field of engine control in recent years. These
techniques all require an onboard model to provide either measurable or unmeasurable
parameters of the engine for control, monitoring, and diagnostics [5,6]. However, the
engine inevitably suffers various physical faults (e.g., foreign object damage, blade erosion
and corrosion, worn seals, excess clearances) during its service life. These faults lead
to performance deterioration and, thus, mismatch between the onboard model and the
engine [7,8]. Maintenance and installation would also cause a slight performance difference
between individual engines of the same type [9,10]. These facts press the onboard model to
have the self-tuning capability to eliminate the deviation. In addition, when the degradation
degree or the operating state of the engine varies, a new self-tuning process is necessary
to accommodate the changed deviation [11]. A slow estimation process can lead to a
longtime mismatch and, thus, degrade the quality of control, monitoring, and diagnosis,
even causing engine failures in severe scenarios. Therefore, establishing an onboard model
with self-tuning and fast estimation capability is a key task in these above techniques.

To acquire the self-tuning capability, Luppold firstly employed a Kalman filter, which
is implemented with a recursive algorithm and can estimate both system states and unmea-
surable parameters in real-time, to provide a set of tuners that would adapt a piecewise
state variable model to output a better match with the actual performance [12]. The tuners
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are derived by the residuals between the model and the measurements and consist of
health parameters such as efficiencies and flow parameters [13,14]. Besides that, Panov
proposed a Kalman-based performance tracking tool, in which the tuners generated by the
filter were fed to a dynamic real-time model to match the degraded measurements [15].
Since the Kalman filter is an estimator applied to linear systems, the modeling error of
the onboard model has a corruptive effect on the estimation results [16]. To address this
problem, Volponi added an empirical neural network module, and Pang proposed an im-
proved incremental linearized Kalman filter [17,18]. On the other hand, non-linear Kalman
filters, such as the extended Kalman filter [19,20] and unscented Kalman filter [21,22], were
introduced to construct a nonlinear onboard adaptive model due to a better estimation
accuracy than the linear one. Burnell utilized the extended Kalman filter to establish an
adaptive component level model and realized the nonlinear model predictive control based
on the model [23]. Dewallef applied the unscented Kalman filter to monitor performance by
estimating health parameters [24]. Yang compared the estimation results of these Kalman
filters and concluded that the constant gain extended Kalman filter can achieve a better
balance in accuracy and computation time [25].

However, the usage of nonlinear Kalman filters brings a heavy computation burden.
To improve the real-time property, data-driven methods were proposed [26]. By establish-
ing the mapping relationship between measurable output parameters and unmeasurable
parameters offline, these methods can finish parameter estimation in a short period of com-
puting time. Wang adopted a BP neural network to train the mapping relationship between
the measured output biases and unmeasured ones so that the outputs of the onboard model
were adapted to those of the real engine [27]. Wang constructed the mapping relationship
between some measurable parameters and three deterioration condition parameters, based
on a multi-input and multi-output recursive reduced least squares support vector regres-
sion algorithm, to realize the self-tuning capability of a turbo-shaft engine onboard model
under the degraded condition [28]. Nevertheless, the drawback of the data-driven methods
is that ensuring the model’s accuracy needs a lot of effective data [29]. In addition, the
generalization ability of the algorithms used should be considered [30].

Although the Kalman-based methods and the data-driven methods have achieved
satisfactory results in adaptive estimation, the capability of fast estimation is still an aspect
that needs attention and a solution. In fact, the Kalman-based methods employ a multi-step
iterative process to obtain optimal estimation results. The iterative process often spends
several seconds to complete it. And the data-driven methods are influenced by the dynamic
response of measurable output parameters, especially those measured by temperature
sensors, which makes the results also have a dynamic response process of about 9 s [28]. As
a consequence, the applications of the Kalman-based methods and the data-driven methods
to model-based control and diagnosis are somewhat restricted.

Aiming at the defect of existing methods in fast estimation capability, a novel onboard
adaptive model is proposed in this paper. The main contributions are as follows: (1) To
speed up performance estimation, a novel modeling method is developed, which can
eliminate the repetitive and long-time model mismatch. (2) A model tuner with quick
availability is adopted in the model, which helps to assess the characteristic deviations of
components rapidly. (3) An algorithm with memory function is employed to predict the
tuners and, thus, shorten the time of self-tuning.

The remainder of this paper is organized as follows: Section 2 details the methodology
of the proposed onboard adaptive model. Section 3 shows and discusses the simulation
results to demonstrate the effectiveness of the model. Finally, Section 4 concludes this paper.

2. Methodology

Without loss of generality, a typical civil high-bypass twin-shaft turbofan engine,
which belongs to the General Electric CF6 series, is selected as the research object. The
construction of this engine is shown in Figure 1, with components of intake, fan, booster,
high-pressure compressor (HPC), combustor, high-pressure turbine (HPT), low-pressure
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turbine (LPT), duct and nozzle of bypass, and core. In addition, the engine has the following
performance parameters at the design point: the thrust is 254.6 kN, the pressure ratio is
29.6, the fuel mass flow rate is 2.5236 kg/s, the high-pressure rotor speed is 10,270 rpm,
and the low-pressure rotor speed is 3390 rpm.
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Figure 1. Schematic of typical civil high-bypass twin-shaft turbofan engine8.

The component level model of this turbofan engine is implemented using the Simulink
Toolbox for the Modeling and Analysis of Thermodynamics Systems (T-MATS), which is
an open-source modeling package on behalf of NASA [31]. The modeling procedures are
summarized as follows: firstly, each component is modeled based on aero-thermodynamics
principles. Then, considering the cooperation equations, which include the flow continuity
equations, pressure balance equations, and power balance equations or rotor dynamics
equations, the cooperation relationship among the component models is established. Finally,
using the Newton–Raphson method to solve the formulated nonlinear equations, the
measurable performance parameters, such as the rotor speeds, pressures, and temperatures
in the flow path, and the unmeasurable parameters, such as thrust, can be derived. All the
engine performance maps and relevant data are acquired from the gas turbine simulation
program (GSP) [32].

The constructed model can be expressed with a system of non-linear differential
equations in state space:

.
x = f (x, u, v, ζ)
y = g(x, u, v, ζ)

(1)

where x is the state vector, u is the input vector, v is the flight condition vector, ζ is the
characteristic vector, and y is the output vector. All the vectors are column vectors, and the
same are below, unless otherwise specified.

The state vector x contains the low-pressure rotor speed nl and the high-pressure rotor
speed nh: x = [nl , nh]

T . The flight condition vector v is composed of altitude H and Mach
number Ma: v = [H, Ma]T . The output vector y comprises measurable parameters ym and
unmeasurable parameters yn: y = [ym, yn]

T .
The input vector u = [

.
m f , αVGV , αBOV ]

T consists of the following control variables:
.

m f —fuel flow, αVGV—variable guide vane angle, and αBOV—bleed/blow-off valve angle.
Together with the flight condition vector, it constitutes the engine’s operating condition. In
fact, the engine’s operation is inseparable from the control system. For a closed-loop system
containing the engine and the control system, the input vector is selected as the command
of power level angle (PLA) for convenience: u = PLA. Correspondingly, Equation (1)
describes the equations of the closed-loop system. It is worth mentioning that, in the



Aerospace 2022, 9, 845 4 of 17

closed-loop system, the PLA can still be translated to the engine’s control variables through
the control system.

The characteristic vector ζ contains the characteristics of each component. Taking the
HPC as an example, its characteristics include corrected mass flow, efficiency, pressure ratio,
and corrected speed. When the components’ characteristics are at their nominal value, the
component level model is a benchmark model. However, the characteristics would deviate
from their nominal value and, thus, cause a mismatch between the benchmark model
and the actual engine, when the engine is in deterioration. Therefore, for the component
level model, obtaining the actual characteristics accurately and quickly is the key to its
performance estimation capability.

2.1. Actual Characteristics Calculation

It seems like an inverse mathematical problem of Equation (1) to calculate the com-
ponents’ actual characteristics according to the measurements. The known information is
the operating condition and the measurable parameters, which contain the input vector
u, the flight condition vector v, the state vector x, and the pressure and temperature of
some stations, whereas the actual characteristics are unknown. To compute the charac-
teristics of all components, a single point adaptation method is developed from existing
approaches [33–36] and described as follows. It should be noted that data handling is
required to eliminate the abnormal data before applying the method.

Let the known information be defined as the known parameters z and the unknown
components’ characteristics defined as the to-be-adapted parameters ζ. It should be noted
that some characteristics can be obtained directly from z, such as the corrected speed of the
fan. In the engine, the thermodynamic relationship between the known parameters and the
unknown characteristics can be represented with Equation (2):

z = h(ζ) (2)

where z ∈ Rm×1 and m is the number of the known parameters, ζ ∈ Rn×1 and n is the
number of the to-be-adapted parameters, and h are nonlinear functions.

Given a guess of the to-be-adapted parameters, which is denoted by subscript “0”,
z0 can be obtained by substituting ζ0 into Equation (2). If z0 deviates far from z, it is
obvious that ζ0 is not appropriate to be the solution. Using Taylor expansion at point
(ζ0, z0), a linearized relationship between the deviation of the known parameters ∆z and
the deviation of the to-be-adapted parameters ∆ζ can be expressed as:

∆z = H·∆ζ (3)

where H ∈ Rm×n is the influence coefficient matrix, and it can be calculated by differential
or difference. By properly selecting the known parameters in z, the rank of H is guaranteed
to be min (m, n).

If H is reversible, i.e., m = n, then a ∆ζ = H−1·∆z = H−1·(z− z0) can be calculated
and used to modify ζ0 to ζ1 = ζ0 + H−1·(z− z0). The first iteration is described above,
and the iterative process using the Newton–Raphson method is illustrated in Figure 2.

After the ith iteration, a converged solution ζ i is obtained if the deviation between z
and h(ζ i) is smaller than a threshold set ε. It is not difficult to find that the closer the guess
of the to-be-adapted parameters to the exact solution is, the faster the calculation of the
components’ actual characteristics is. Within the range of operating conditions, several
pre-determined results are used to interpolate an appropriate guess. Thus, the converged
solution can be obtained by no more than 50 iterations in practice.
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In addition, the number of the known parameters m may not be equal to the number
of the to-be-adapted parameters n. If n > m, Equation (3) is under-determined, which leads
to an infinite number of solutions. While if n < m, Equation (3) is over-determined and
there are redundant equations. In a least-squares sense, pseudoinverses can be defined as
Equations (4) and (5), separately, to derive the best solution of these two cases.

H∗ = HT(H·HT)
−1

(4)

H∗ = (HT ·H)
−1

HT (5)

2.2. Scaling Factor Definition

Normally, the components’ actual characteristics do not comply with their nominal val-
ues. Taking a compressor characteristic map, for example, a hollow point A (nA, ωA, πA, ηA)
that represents the calculated characteristics is not on the corresponding speed line where
n = nA, as shown in Figure 3. To find the matching point on the map, a reasonable as-
sumption, that the speed line n = nA is shifted along a scaling line where the auxiliary map
coordinate β is constant to pass through point A, is introduced [37]. Under this assumption,
a solid point B can be located at the intersection of the speed line and the scaling line.
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A scaling factor (SF) is defined to quantify the deviations between the actual charac-
teristics and their nominal values [38–40]. By comparing point A with point B, the SF of
compressors can be calculated:

SF =

SFω

SFπ

SFη

 =

 ωA/ωB
(πA − 1)/(πB − 1)

ηA/ηB

 (6)

The SF of turbines is similar to that of compressors and can also be determined by
Equation (6). However, there is a slight difference: that the scaling line with constant β
is exactly the same line with constant pressure ratio, i.e., SFπ = 1 always holds in the
turbines.

From its definition and calculation process, it is obviously revealed that the SF is
related to the operating condition and degradation degree of the engine. Figure 4 depicts
the variation of the SF caused by the variation of either the operating condition or the
degradation degree on a compressor map. The left figure represents an example of the
SF changing with the operation condition when the degradation degree remains constant,
while the right one is opposite. Therefore, the defined SF represents the characteristic
deviations at a certain operating condition and degradation degree.
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Usually, engines degrade very slowly during a small temporal scale, such as a day or
an hour, in its early life stage. It can be considered that the degradation degree keeps the
same attribute. However, the engine’s operating condition varies significantly with the
aircraft flight mission. Thus, the influence of the operating condition on the SF exceeds
that of the degradation degree and becomes the focus of this paper below.

2.3. Scaling Factor Prediction

By introducing the SF, Equation (1) can be rewritten as Equation (7):

.
x = f (x, u, v, ζ∗, SFs)
y = g(x, u, v, ζ∗, SFs)

(7)
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where vector ζ∗ contains the nominal values of each component’s characteristics, and vector
SFs comprises the SF of concerned components.

Undoubtedly, the SFs can be seen as model tuners. When the engine is in deterioration,
the actual components’ characteristics can be obtained by using the SFs to modify ζ∗; thus,
the degraded performance of the real engine can be estimated accurately.

However, the engine inevitably will vary its operating condition. When the operat-
ing condition changes, the SFs calculation often corresponds to the operating condition
several seconds prior due to the dynamic response of the measurable parameters. Then,
employing the SFs directly in Equation (7) would also cause hysteretic estimation results.
For performance fast estimation, the SFs at present operating condition should be acquired
quickly.

Since the SFs relate to the operating condition, a mapping relationship for each SF
with the operating condition is constructed as Equation (8):

{u, v} → SF (8)

With the aid of the mapping relationship established, an algorithm with memory
function is designed to predict the SFs at present operating condition. And the prediction
problem of each SF can be formulated as:

SF = fSF(u, v, u′, v′, SF′) (9)

where u′, v′, and SF′ mean the operating conditions and their corresponding SF at the past
time; u, v, and SF are those at the present time.

The designed algorithm can be divided into two parts: the first is to store the historical
data, i.e., u′, v′, and SF′, and the second is to predict the SF at the present time.

During the engine’s operation, measurements are continuously generated. Thus, each
SF can be calculated from the measurements continuously. The calculated SF together with
its corresponding operating condition forms the mapping relationship as Equation (8) and
is regarded as the historical data.

To store the historical data, a grid of Nd is generated, where d is the number of
parameters in the operating condition, and N is the intervals of each parameter divided
in equal proportion. After normalization, the N intervals of each parameter are expressed
as [0 , 1

N ), [ 1
N , 2

N ), . . . , [ (N−1)
N , 1]. Then, each section of the grid can be characterized by

the interval of d parameters. For each group of u′, v′, and SF′, which section of the grid it
belongs to can be judged according to the d parameters in u′ and v′, and the value of the
SF′ can be stored in this section. Each section has a storage space to record M values and
adopts a first-in–first-out principle.

To predict the SF at the present time, firstly the corresponding section according to
the d parameters in u and v are found, which is the operating condition at the present
time. Then, the values in the section are read and the average as the SF at the present
time is taken. When the section has no value, the value of the SF at the previous time is
maintained. Then, the initial value of SF is set to 1. The prediction result will be transmitted
to Equation (7).

By applying the algorithm in parallel multiple times, all the SFs at present operating
condition can be acquired. Thus, the ζ∗ in Equation (7) can be modified to the actual
characteristics, and the engine performance can be estimated rapidly.

In terms of memory consumption, a double type number takes up 8 bytes. So, the max
memory consumption of the algorithm is about 8M·Nd/1024 kB. It is not difficult to find
that the number of parameters has the greatest impact on the memory consumption.

Eliminating irrelevant variables can help to save memory and curtail the computa-
tional complexity [41]. To reveal a concise relationship between the SF and the operating
condition, four cases are considered and summarized in Table 1.
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Table 1. Summary of the mapping relationship cases between the SF and the operating condition.

Case Mapping Relationship

1 SF = constant
2 SF = fSF(u)
3 SF = fSF(v)
4 SF = fSF(u, v)

From Case 1 to Case 4, the operating condition in the mapping relationship is consid-
ered gradually comprehensive. In Case 1, neither u nor v is included, and the SF is regarded
as a constant. Case 2 and Case 3, separately, select u and v of the operating condition to
form the mapping relationship. With no simplification, both u and v are involved in the
last case.

The case can be determined by comparing the estimation accuracy of multiple operat-
ing conditions. Specifically, each operating condition and corresponding calculated SF are
reckoned as one sample, and these samples can form a dataset. In the dataset, revealing
the mapping relationship of each case is a regression problem. Multivariate polynomial
is adopted to solve it. The coefficient and order of the polynomial can be determined
based on the least squares principle. All the polynomials will be used to calculate the SF
again at these operating conditions, and, thus, the estimation results will be obtained for
comparison.

2.4. Onboard Adaptive Model Framework

In combination with the contents of the above subsection, an aeroengine onboard
adaptive model for performance fast estimation is established, the framework of which is
shown in Figure 5.
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3. Simulation and Discussion

For the proposed onboard adaptive model, the self-tuning and fast estimation capa-
bility are the main problems that need careful consideration. In this section, simulations
in four aspects are implemented to illustrate the self-tuning and fast estimation capability
of the model when the engine is in deterioration. Since the target is to demonstrate the
effectiveness of the proposed method, it is reasonable to apply the synthetic data in the
simulation processes. The engine performance deterioration is imitated by changing the
flow capacity and efficiency of different components together. Five major components
highlighted in Figure 1 are considered to have degraded flow capacity and efficiency at a
certain period, as summarized in Table 2.
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Table 2. Assumed degradation of the concerned component.

Flow Capacity Efficiency

Fan 95% 95%
BST 97% 95%
HPC 98% 95%
HPT 96% 95%
LPT 97% 95%

3.1. Single Point Accuracy Analysis

In this subsection, the accuracy of the onboard adaptive model at single operating
conditions is analyzed. The simulation is firstly implemented at the operating condition
(H = 0, Ma = 0, PLA = 60◦). Based on the proposed method described in Sections 2.1 and 2.2,
the SFs corresponding to this operating condition are calculated and shown in Table 3.
The calculation is under the case of m = n in Section 2.1, and the value of unlisted SF
in Table 3 is 1. Then, the outputs of the onboard adaptive model are obtained according
to Equation (7). Measurable parameters nl and nh, and unmeasurable parameters inlet
temperature of HPC T4 and net thrust FN , are chosen to compare with those of the actual
engine. Another operating condition (H = 11,000 m, Ma = 0.8, PLA = 60◦) duplicates the
above process. The simulation and comparison results of these two points is described in
Table 4.

Table 3. The SFs of operating condition (H = 0, Ma = 0, PLA = 60◦).

SFFan SFBST SFHPC SFHPT SFLPT

SFω SFπ SFη SFω SFπ SFη SFω SFπ SFη SFω SFη SFω SFη

0.96 0.979 0.937 0.986 0.994 0.952 0.986 0.985 0.949 0.96 0.95 0.97 0.95

Table 4. Simulation and comparison results at single points.

Operating Condition Parameters
Value

Adaptive Model Actual Engine Relative Error (%)

H = 0, Ma = 0, PLA = 60◦ nl (%) 100 100 0
nh (%) 99.51 99.51 0
T4 (K) 1672.428 1672.427 8.9 × 10−5

FN (N) 245,004.86 245,004.82 1.95 × 10−5

H = 11,000 m, Ma = 0.8,
PLA = 60◦ nl (%) 92.12 92.12 0

nh (%) 91.05 91.05 0
T4 (K) 1429.677 1429.677 9.15 × 10−6

FN (N) 111,016.22 111,016.22 4.54 × 10−7

The results show that the accuracy of the adaptive model is extremely high at these two
operating conditions. Obviously, applying the SFs calculated at the operating condition
can guarantee the self-tuning capability of the proposed model at single points.

3.2. Multiple Points Accuracy Analysis

A large operating condition range is covered in this subsection to analyze the accuracy
of the onboard adaptive model at multiple operating conditions. The setting of the PLA is
listed in Table 5. The flight conditions are selected as the red points in Figure 6.
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Table 5. Model input u: Command of the PLA.

No. PLA (◦) No. PLA (◦)

1 20 7 44
2 24 8 48
3 28 9 52
4 32 10 56
5 36 11 60
6 40
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The SFs are calculated at each operating condition. Taking SFω, HPC as an example,
its scatter at different operating conditions is displayed in Figure 7. It should be noted
that the fan inlet pressure P2 is used to indicate the flight condition for the convenience of
plotting, since the P2 is a function of the flight condition and uniformly distributed in its
range. Other parameters, such as the fan inlet temperature T2, can also be adopted.

Aerospace 2022, 9, x FOR PEER REVIEW 11 of 18 
 

 

No. PLA (°) No. PLA (°) 
1 20 7 44 
2 24 8 48 
3 28 9 52 
4 32 10 56 
5 36 11 60 
6 40   

The SFs  are calculated at each operating condition. Taking , HPCSFω  as an example, 
its scatter at different operating conditions is displayed in Figure 7. It should be noted that 
the fan inlet pressure 2P  is used to indicate the flight condition for the convenience of 
plotting, since the 2P  is a function of the flight condition and uniformly distributed in its 
range. Other parameters, such as the fan inlet temperature 2T , can also be adopted. 

 
Figure 7. The scatter of the , HPCSFω . 

A tendency that the , HPCSFω  varies with the PLA and the 2P  can be obviously seen 
from Figure 7. But the numerical interval [0.986, 0.995] is quite small. Thus, the classifica-
tion in Table 1 is reasonable. According to the method described in the last paragraph of 
Section 2.3, mapping relationships between the SFs  and the operating condition are es-
tablished. Citing the same SFω , for example, the results of regression analysis are as fol-
lows: For Case 1, the , HPCSFω  is a constant 0.9887. From Case 2 to Case 4, the functions 
between the , HPCSFω  and the operating condition are displayed in Figure 8, Figure 9, and 
Figure 10, respectively. 

 
Figure 8. Regression analysis result of the mapping relationship: Case 2. 
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A tendency that the SFω, HPC varies with the PLA and the P2 can be obviously seen
from Figure 7. But the numerical interval [0.986, 0.995] is quite small. Thus, the classifi-
cation in Table 1 is reasonable. According to the method described in the last paragraph
of Section 2.3, mapping relationships between the SFs and the operating condition are
established. Citing the same SFω, for example, the results of regression analysis are as
follows: For Case 1, the SFω, HPC is a constant 0.9887. From Case 2 to Case 4, the functions
between the SFω, HPC and the operating condition are displayed in Figure 8, Figure 9, and
Figure 10, respectively.
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The regression results are fed to the benchmark model. Then, the model is simulated
at the above operating conditions. An unmeasurable parameter FN and a measurable
parameter P3 are chosen for comparison with the actual engine. The comparison results of
the four cases are shown in Figures 11 and 12.
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Figure 11. Relative errors of the parameter FN .

For the parameter FN , the maximum relative errors of these four cases are 3.85%,
1.04%, 3.46%, and 0.66%, respectively, and the mean relative errors are 0.69%, 0.38%, 0.6%,
and 0.21%. These two relative errors are both the largest in Case 1, followed by Case 3 and
Case 2, and the smallest in Case 4. In Case 1, the SFs are constant sets. Since the influence
of the operating condition on the SFs is not considered, the relative errors change with
the PLA and the P2, as illustrated in Figure 11a. The maximum relative error appears in
the region of small PLA, H, and Ma. In Case 2, the mapping relationships between the
SFs and the PLA are established. Since there is a strong linear correlation between the SF
and the PLA, as indicated in Figure 8, the accuracy of the adaptive model is improved
significantly, compared with Case 1. However, the influence of the flight condition is
not considered, so the relative errors fluctuate with the P2 at the same PLA, as shown in
Figure 11b. Compared with Case 2, Case 3 replaces the PLA with the P2 correspondingly.
So, the results of Case 3 are similar to those of Case 2. However, the correlation between the
SF and the flight condition is weaker than the PLA, as revealed in Figure 9. The accuracy
is, thus, not obviously improved, compared with Case 2. In Case 4, the SFs are functions of
the PLA and the P2, as shown in Figure 10. Since the influence of the operating condition
on the SFs is taken into account thoroughly, small relative errors are obtained in the whole
range, as demonstrated in Figure 11d. Similar results of the parameter P3 can be seen in
Table 6.
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Table 6. Relative errors (absolute value) of parameters FN and P3.

Parameter Relative Error
Case

1 2 3 4

FN
max (%) 3.85 1.04 3.46 0.66

mean (%) 0.69 0.38 0.6 0.21

P3
max (%) 1.8 1.15 1.8 0.48

mean (%) 0.39 0.26 0.37 0.15

The above results reveal that Case 4 can achieve better estimation accuracy compared
with other cases. In addition, the onboard adaptive model using the mapping relationship
of Case 4 is verified to have the self-tuning capability at multiple points. For further
verification, an operating condition (H = 1000 m, Ma = 0.05, PLA = 22◦), which is not in
the aforementioned range, is selected as the test point. In this operating condition, the
SFs are calculated based on the four regression functions separately. The simulation and
comparison results are shown in Table 7. And the relative errors of this point support the
above discussion results.
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Table 7. Simulation and comparison results of operating condition (H = 1000 m, Ma = 0.05, PLA = 22◦).

FN (N) Relative Error (%) P3 (kPa) Relative Error (%)

Actual engine 49,541.24 845.958
Adaptive model: Case 1 47,064.88 −5 823.594 −2.64
Adaptive model: Case 2 49,145.35 −0.8 842.878 −0.36
Adaptive model: Case 3 47,302.22 −4.52 825.142 −2.46
Adaptive model: Case 4 49,511.37 −0.06 845.616 −0.04

3.3. Fast Estimation Capability: Response Time Analysis

A scenario including transition is simulated to evaluate the fast estimation capability
of the onboard adaptive model. In the scenario, the operating condition is implemented as
follows: The flight condition is H = 0 and Ma = 0, and the PLA is given in Figure 13.
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Based on the mapping relationships of Case 4, the SFs are predicted by the algorithm
with memory function and then applied to the onboard adaptive model. For comparison,
an adaptive model using the Kalman filter is established by referring to [15] and a data-
driven adaptive model by referring to [28]. The simulation results are shown in Figure 14,
taking the unmeasurable parameter FN , for example.
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The simulation process contains several transitions. When the engine operating state
changes after a transition, the adaptive models need to be updated so that they can estimate
the changed parameters. For example, a transition locates at 20–22 s. When the engine
enters a new steady state at 22 s, the relative errors of the proposed model, the Kalman filter-
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based model and the data-driven model, are −0.28%, −1.93%, and −1.6%, respectively,
comparing the estimated results with the actual engine. The proposed model has higher
accuracy at the initial stage of estimation. From the first two panels in the figure, it can be
seen that the dynamic response time of these three models is 0.3 s, 6.5 s, and 9 s, separately.
The proposed model has a much shorter estimation time. When the adaptive models enter
the steady state, the relative errors of the proposed model and the Kalman filter-based
model are almost 0, while the relative error of the data-driven model is 0.05%, as the
third panel shows. This may be caused by the lack of training data, which is exactly a
disadvantage of the data-driven methods. Compared with the other two methods, the
proposed method has a much shorter dynamic response time and, thus, a shorter period of
model mismatch. Besides that, the proposed method also has a higher estimation accuracy
in the self-tuning process. The above results show that the proposed method has the
capability of fast estimation.

3.4. Fast Estimation Capability: Memory Ability Analysis

For the proposed method, the change of each SF in the simulation process of Section 3.3
is shown in Figure 15, taking the SFω, HPC, for example.
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Based on the SF calculated by the method described in Section 2.1 and 2.2 (the black
line), the SF at present operating condition can be predicted as the red line in Figure 15.
The employed algorithm has the memory ability to deal with historical data. At 22 s, since
there is no historical data of this state, the predicted SF takes the value of the previous
time and causes a slight deviation from the actual value. While at 62 s, there is a great
quantity of historical data at 22–40 s, so the predicted SF directly derives the actual value.
Correspondingly, the estimation result has a small relative error at 22 s, whereas the actual
thrust is almost immediately estimated at 62 s, as shown in the first and fourth panels of
Figure 14. In addition, it is obvious to find from these panels that the Kalman filter-based
model and the data-driven model repeat their previous self-tuning process. Compared
with the other two methods, the proposed method has the memory function to avoid a
repeated estimation process, and the fast estimation capability of the proposed model is
thus enhanced.

4. Conclusions

In this paper, an onboard adaptive model with fast estimation capability is proposed.
Considering that a benchmark model can be adapted to the actual engine by employing
some tuners, a component level model is constructed, and some scaling factors are intro-



Aerospace 2022, 9, 845 16 of 17

duced. The scaling factors can be derived from the measurements and are represented as
mapping relationships with the operating condition. An algorithm with memory func-
tion is designed to rapidly obtain the scaling factors at the present operating condition.
Finally, feeding the scaling factors to the benchmark model, the engine performance can be
estimated accurately and quickly. Simulation scenarios are implemented to illustrate the
effectiveness of the proposed model. The results are as follows:

(1) By employing the SFs as the model tuners, the proposed model has high estimation
accuracy at both single points and multiple points when the engine is in deterioration.
The relative errors of the model are almost 0 at single points and no more than 0.66% at
multiple points.

(2) The correlation between the SF and the operating condition is thoroughly consid-
ered. Representing the SF as a function of u and v can achieve a better estimation accuracy
compared with other cases.

(3) Compared with the Kalman-based and the data-driven methods, the proposed
model has smaller relative errors and shorter dynamic response time when the engine
varies the operating state. With the aid of an algorithm with memory function, the proposed
model can avoid repeated self-tuning processes.

Overall, all the results demonstrate that the proposed model has self-tuning and
fast estimation capability and is a potential for application in engine control, monitoring,
and diagnostics.
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