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Abstract: This paper investigates the issue of integrated guidance and control (IGC) design for
strap-down hypersonic flight vehicles with partial measurement information and unmatched uncer-
tainties. A constrained IGC scheme is proposed by combining the barrier Lyapunov function-based
backstepping methodology and the specific output-based finite-time disturbance observer. Different
from the existing methods, which require the state information and matched disturbances, the main
features of the presented approach is capable of addressing the partial measurement knowledge
and unmatched uncertainties simultaneously. The IGC model of hypersonic flight vehicles is first
formulated, and based on that, the specific output-based finite-time disturbance observer (OFTDO) is
proposed to achieve the finite-time estimation of the unmatched uncertainties through the output.
Then, the constrained IGC strategy is constructed via the backstepping technique. The stability of the
closed-loop system including the estimation and tracking errors dynamics is analyzed in detail. The
effectiveness of the proposed method is verified by numerical simulations and Monte-Carlo tests.

Keywords: integrated guidance and control; partial measurement; disturbance observer; unmatched
uncertainties; strap-down hypersonic flight vehicles

1. Introduction

Much research on hypersonic flight vehicles (HFV) has been conducted for a long
time in both military and civil fields [1–3]. The significant merits over the traditional flight
vehicles are provided in many fields, such as the near-space accessibility at affordable
costs [4–7]. In particular, the strap-down HFV is capable of sufficiently decreasing the cost
due to the equipment of the strap-down seeker and has attracted much attention [8,9]. The
attitude control of the strap-down HFV has been researched extensively; however, the
integrated guidance and control (IGC) issue is still challenging since it plays an important
role in the mission completion [10]. Different from the attitude or guidance law, the IGC
scheme combines both systems and is capable of achieving a small miss distance. In
particular, the separation principle of attitude and guidance systems is no longer satisfied
for the HFV in the large envelope flight, and thus the IGC method can consider both
systems in an integrated manner and guarantee the success of the mission.

In the IGC design, many methods have been proposed to cope over the past decades.
Some classical control strategies, including backstepping control [10], sliding mode con-
trol [11,12] and model predictive control [13], have been employed for IGC designs. In these
methods, the backstepping approach can deal with the IGC model due to the structure of
the IGC model and has been investigated in many articles. The sliding mode control can
achieve strong robustness due to the unchanged condition during the sliding mode surface.
The IGC method has been surveyed in [14]. Unfortunately, these methods cannot deal
with the constraint issue for the strap-down hypersonic flight vehicles. This type of HFV
has a low-cost strap-down seeker, which causes field-of-view (FOV) limitation. Once the
limitation is violated, the target will be missed in the view and the mission of the HFV will
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fail. Hence, the IGC design for the strap-down HFV should consider the FOV constraint
carefully. However, few articles focus on this issue, especially with the consideration of the
unmatched uncertainties and partial measurement. Recently, the barrier function-based
constrained control method has been developed to effectively address the constrained
issue [15–18], and has been applied in many engineering cases [19–21]. Thanks to this
technique, we can consider and introduce it into the IGC law design to deal with the
FOV constraint.

The disturbance observer (DO) technique has attracted much attention in the research
field since it has strong ability in the enhancement of the robustness for the nominal
controller. The disturbance observer is capable of effectively estimating and canceling
out the matched and unmatched disturbances so as to obtain better disturbance rejection
performance. Moreover, it provides a framework for the control design to involve the
classical control, such as PID, dynamic inverse control and the backstepping method, to
successfully enhance their robustness and construct a DO-based control version. The DO
was proposed in [22] for the first time, and has been applied in the industrial examples in
the time domain and frequency domain. The unknown input observer is a representative
version of the linear DO and the nonlinear version was proposed in [23]. The extended
state observer is a part of the active disturbance rejection control and can achieve the fine
estimation of the uncertainties [24]. An overview of the disturbance observer technique
can be found in [25]. Recently, the disturbance observer has been developed for the
function-constrained disturbance, which further extended and relaxed the requirement of
the uncertainties. The DO technique has been applied to the attitude control of hypersonic
flight vehicles [3,5] and guidance system design [12]. In particular, the integrated guidance
and control system [26] has also been researched by virtue of the DO method to combine
with the sliding mode control and backstepping control [27,28]. However, the above
DO requires that the state is completely measured, which is not always satisfied in the
engineering. For the strap-down hypersonic flight vehicles, the strap-down seeker is
equipped fixed with the body of the vehicles, and the sensors are usually used to measure
the body line-of-sight angle. The complete states may not be measured for the aim of low
cost. Thus, there only exists partial information in the IGC model, which makes the use of
the existing DO methods difficult.

To address the issues above, this paper proposes the specific output-based finite-time
disturbance observer to achieve the finite-time estimation of the unmatched uncertainties
through the output, and presents a constrained IGC law for the FOV limitations. The main
features of this paper are listed as follows:

(1) Considering the partial information and unmatched uncertainties in the IGC model,
the paper proposes a novel output-based finite-time disturbance observer to achieve the
finite-time estimation of the unmatched uncertainties through the output. The detailed
algorithm and the stability of the disturbance observer are also provided.

(2) The constrained IGC law is presented to achieve the satisfaction of the FOV lim-
itation, which ensures the body line-of-sight angle inside the constrain and guarantees
the success of the mission of the hypersonic flight vehicles. The stability analysis of the
closed-loop system is carried out in detail.

The remainder of the paper is organized as follows. Section 2 lays down the problem
formulation and some key issues. The out-based finite-time disturbance observer is de-
signed in Section 3, and Section 4 presents the main results in the IGC law and the stability
analysis. Section 5 illustrates simulation studies to verify the proposed control approach.
The paper concludes in Section 6.
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2. Problem Statement
2.1. Integrated Guidance and Control Dynamics for Strap-Down Hypersonic Flight Vehicles

Consider the geometry of a planer interception depicted in Figure 1, where (XI , ZI)
denotes the inertial reference frame. The longitudinal dynamics of the integrated guidance
and control system for strap-down missiles can be represented as: [12]

Ṙ = VT cos(q− θT)−VM cos(q− θM)

Rq̇ = −VT sin(q− θT) + VM sin(q− θM)

α̇ = wz +
−Y + mg cos θM

mVM

ẇz =
Mz

Jz

(1)

where R is the relative distance between a maneuver target and the missile, q is the angle of
line-of-sight (LOS), and α, wz represent the angle of attack and the pitch rate, respectively.
The velocities of the missile and the target VM and VT are assumed to be constant. The
terms θM and θT are their flight path angles. Additionally, m denotes the mass of the missile,
and Jz is the moment of inertia around the z-axis.

 
Figure 1. Longitudinal missile–target engagement geometry.

The aerodynamic lift force Y and moment Mz are approximated as follows:

Y = 57.3QS(cα
yα + cδz

y δz)

Mz = 57.3QSL(mα
z α +

L
57.3VM

mwz
z wz + mδz

z δz)
(2)

where Q = 1
2 ρV2

M is the dynamic pressure with the air density ρ, and δz represents the ele-
vator deflection. The terms S and L are the reference area and reference length, respectively,
and cα

y , cδ
y, mα

z , mwz
z , mδz

z represent aerodynamic coefficients, which are set as:

a1 =
57.3QScα

y

mVM
, a2 =

57.3QScδz
y

mVM
, a3 =

57.3QSLmα
z

Jz

a4 =
57.3QSL2mwz

z
JzVM

, b =
57.3QSLmδz

z
Jz

(3)



Aerospace 2022, 9, 840 4 of 21

Taking the derivative and combining (1) yield that:

2Ṙq̇ + Rq̈ = −V̇T sin(q− θT) + V̇M sin(q− θM) + aT cos(q− θT)− aM cos(q− θM) (4)

where aM = VM θ̇M and aT represent the accelerations of the hypersonic flight vehicle and
the target, respectively. In this paper, the target is assumed to be stationary, which leads to
V̇T = 0 and aT = 0. Then, (4) can be rewritten as:

2Ṙq̇ + Rq̈ = −aM cos(q− θM) + V̇M sin(q− θM) (5)

Let Vq = Rq̇; then, according to (5) one has that:

V̇q = − Ṙ
R

Vq − aM cos(q− θM) + V̇M sin(q− θM) (6)

Consider the relationships α = ϑ− θM and ϑ̇ = wz, where ϑ denotes the pitch angle
of the hypersonic flight vehicle. Define that x1 =

Vq
−57.3QScα

y
, x2 = α, x3 = wz +

g cos θM
VM

, u =

δz, b = 57.3QSLmδz
z

Jz
; then models (1) and (2) can be rewritten as:

ẋ1 = x2 + d1

ẋ2 = x3

ẋ3 = a3x2 + a4x3 + bu + d3

(7)

where:

a3 =
57.3QSLmα

z
Jz

, a4 =
QSL2mwz

z
JzVM

d1 = − Ṙ
R

x1 +
g cos θM cos(q− θM)

−57.3QScα
y/m

− x2[1− cos(q− θM)]+V̇M sin(q− θM) + w1

d3 =
d( cos(θM)

VM
)

dt
− a4

g cos θM
VM

+ w3

(8)

where a3 and a4 represent the simplified aerodynamic coefficients, d1 and d3 denote the time-
varying unmatched uncertainties, and w1 and w3 denote the time-varying perturbations
caused by variations of aerodynamics parameters. In this paper, there are several focuses in
the IGC model, which causes the difficulties in designing the IGC law for the strap-down
hypersonic vehicles, which are analyzed in detail in the following subsections.

2.2. Field-of-View Constraint

Due to the use of the strap-down seeker in the hypersonic vehicles, there exists the
hard limitation in the body line-of-sight (BLOS), which is represented by qb, which is
denoted as the angle between the axis of the body and the line of the vehicle-target. In fact,
the FOV constraint is little considered for the flight vehicles with the platform seeker. Since
the platform has a gimbal structure, it can provide a wide FOV range. However, for the
hypersonic vehicles equipped with a strap-down seeker, the detective range depends on
the FOV. Once the FOV is escaped, the target will be missed and result in mission failure.

For the strap-down hypersonic vehicle, the optical axis of the seeker is connected
fixedly with the vehicle’s body, and the BLOS angle qB should be strictly limited in the
range of the seeker’s effective field of view, which can be represented as qbmin ≤ qb ≤ qbmax,
where qbmin and qbmax denote the lower and upper limitations of the BLOS, respectively.
During the final phase of the engagement, the BLOS constraint should always be met, and
its representation is obtained by the following relationship:
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qb = q− ϑ

q̇b = q̇−ωz
(9)

In this paper, to simplify the researched issue, the FOV constraint is set as a symmetric
form, which can be expressed as:

|qb| ≤ Qc (10)

where kc is a positive constant.

Define that x0 = qb; then, we have that ẋ0 = a0x1 + d0, where a0 = − 57.3QScα
y

R ,
d0 = −ωz. Thus, the IGC model is updated as the following expression:

ẋ0 = x1 + d0

ẋ1 = x2 + d1

ẋ2 = x3

ẋ3 = a3x2 + a4x3 + bu + d3

(11)

2.3. Issues of Unmatched Uncertianties and Partial Measurement

As demonstrated in model (11), the IGC model for strap-down hypersonic vehicles is
obtained, which exhibits the following two features.

As seen in (11), the IGC model is formulated as a model with the unmatched uncer-
tainties d0, d1, d2, d3. The uncertainties d0, d1 do not occur in the control channel and thus
cannot be dealt with using the traditional control methods. These unmatched uncertainties
will cause steady-state errors in the tracking control and even result in the instability and
large miss distance of the whole guidance and control system.

On the other hand, the model information may be not completely known. Generally,
the state information is obtained through the measurement by the sensors. However, for
several types of flight vehicles, some state measurements may be not available. Thus,
differently from the general hypersonic vehicles, the output of the whole IGC model is set
as y = [x0, x1, x2]

T , and the controller should be designed under the output measurement.

2.4. Control Objective

In this paper, the control goal of the integrated guidance and control system is to design
an IGC law δz to ensure the success of the interception under the partial measurement and
unmatched uncertainties d0, d1, d3. Moreover, the FOV constraint |qb = x0| ≤ Qc is always
guaranteed in the overall flight envelope.

3. Output-Based Finite-Time Disturbance Observer

The important task for addressing the control goal is to deal with the unmatched
uncertainties issue by using the partial measurement information. The disturbance observer
is a type of estimator used to obtain the disturbance observation, which is capable of solving
the problem of the unmatched uncertainties. However, the existing disturbance observers
usually estimate the uncertainties using the complete state information, and it is difficult
for them to obtain the unmatched uncertainties only by virtue of the output. Therefore, in
this part, we first propose a novel output-based finite-time disturbance observer (OFTDO),
which not only estimates the unmatched uncertainties precisely, but also can achieve the
finite-time convergence of the estimate errors.

Consider an uncertain system:{
ẋ = Ax + Bu + Gd

y = Cx
(12)

where x ∈ Rn, u ∈ Rm, y ∈ Rp denote the state, input and output, respectively, and
d ∈ Rq(q ≤ n) is the lump disturbance. Matrices A, B, C, G have proper dimensions. First
of all, some necessary assumptions are listed bellow.
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Assumption 1. The system (12) is controllable and strongly observable.

Assumption 2. The matrix G has a column full rank.

Assumption 3. The disturbance d and its derivatives up to order r are bounded, where r is a
known constant greater than zero.

Remark 1. The strongly observability in Assumption 1 means that y = Cx ≡ 0 implies that
x ≡ 0 on every nondegenerate interval [t1, t2] (t1 < t2) and for every piecewise continuous (or
integrable) function (control) u(t) on [t1, t2]. It is a necessary condition to construct the state and
uncertainties estimates in this paper. More details can be found in [29].

Note that the standard DOs require the complete knowledge of the states when
the unmatched uncertainties exist, and thus they are not suitable for the IGC system in
this paper where the partial measurement and unmatched uncertainties are considered.
Therefore, in the following part a novel OFTDO is presented to estimate the disturbance
precisely via the system output.

Theorem 1. For System (12), if Assumptions 1–3 are satisfied, and the proposed OFTDO is
designed as: 

ż = Az + Bu + L(y− Cz)
x̂ = σκ−1 + z
d̂ = (GTG)−1GT(σκ − Ā1σκ−1)

σ̇0 = k0L
1

`+1
p Φ

`
`+1 (σ0 − H) + σ1

σ̇j = k jL
1

`+1−j
p Φ

`−j
`+1−j (σj − σ̇j−1) + σj+1

σ̇` = k`Lpsgn(σ` − σ̇`−1)

(13)

where ` = r + κ − 2 is the differentiator order, and the gain k j(j = 1, . . . , `− 1) can be obtained
as in [30]. The matrix L is selected such that A − LC is Hurwitz. The function Φa(v) =
[|v1|asgn(v1), . . . , |vn|asgn(vn)]T for a vector v = [v1, . . . , vn]T and a constant a > 0. The

vector H = M+
κ

[
Jκ−1 0

0 I

]
Y where Y =

[
yT

e , . . . , (y[κ−1]
e )T

]T
. Herein, ye = C(x− z) and y[i]

e

represent the ith anti-differentiator of ye, i.e., y[i]
e =

∫ t
0 · · ·

∫ t
0 yedτi . . . dt. The matrices Mκ and

Jκ−1 are constructed in the proof. The parameter Lp is the Lipschitz constant of Y`. Then, the
estimation x̂ and d̂ will converge to the actual values in finite time.

Proof. The proof is shown in the following three steps.
(1) Define that e = x− z and one has ė = ẋ − ż = (A− LC)e + Gd. Therefore, the

following error dynamics are obtained:{
ė = Āe + Gd
ye = Ce

(14)

where the matrix Ā = A− LC is Hurwitz.
(2) Let M1 = C and J1 = (M1G)⊥. Herein, the symbol ⊥ is defined as follows. For

a matrix K ∈ Rn×m with rank(K) = q, the matrix K⊥ ∈ R(n−r)×n with rank(K) = n− q is
defined such that K⊥K = 0.

The matrix Mκ can be defined in a recursive way as follows:

Mκ =

[
(Mκ−1G)⊥Mκ−1 Ā

M1

]
Jκ−1 = (Mκ−1G)⊥

[
Jκ−2 0

0 I

] (15)
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If the system is strongly observable, there exits a unique positive integer κ ≤ n such
that the matrix Mκ satisfies the relationship rank(Mκ) = n [31,32]. Therefore, the following
expression can be obtained:

Mκe =
dκ−1

dtκ−1

[
Jκ−1 0

0 I

]
ye
...

y[κ−1]
e

 =
dκ−1

dtκ−1

[
Jκ−1 0

0 I

]
Y (16)

where y[i]
e represents the ith anti-differentiator of ye, i.e., y[i]

e =
∫ t

0 · · ·
∫ t

0 yedτi . . . dt. Note

that H = M+
κ

[
Jκ−1 0

0 I

]
Y , and thus, we can obtain that e = dκ−1

dtκ−1 H.

(3) Using the high-order sliding mode (HOSM) differentiator
σ̇0 = k0L

1
`+1 Φ

`
`+1 (σ0 − H) + σ1

σ̇j = k jL
1

`+1−j Φ
`−j

`+1−j (σj − σ̇j−1) + σj+1
σ̇` = k`Lsgn(σ` − σ̇`−1)

(17)

to estimate the vector H, the variable e can be obtained. It is proven that with the proper
choice of the constants k j, the equality σj =

dj

dtj H is satisfied after a finite time [30]. Hence,
we have that e = σκ−1, and x̂ = σκ−1 + z holds after a certain time. Moreover, for the error
dynamics (14), we have e = σκ−1, ė = σκ , and thus

d̂ = (GTG)−1GT(σκ − Āσκ−1) (18)

can be obtained. The proof is completed.

The schematic diagram of the proposed OFTDO algorithm is provided in Figure 2. As
shown in Figure 2, the presented estimation approach achieves a finite-time observation
for the unmatched by introducing a sliding mode technique when only partial information
can be measurable.

Reconstruction by the output

Formulation of Error Dynamics 

Estimation by HOSM

Unmatched
uncertainties estimation

Figure 2. Schematic diagram of the proposed OFTDO.

Remark 2. The high-order sliding mode differentiator differentiates a continuous signal and obtain
its derivative up to r. Assumption 3 is necessary for the introduction of the HOSM technique.
Moreover, the HOSM method is capable of ensuring the continuousness of the control signal since
the sign function is hidden in the integral part, rather than introducing the discontinuous term in
the control in the standard sliding mode control.
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4. Constrained IGC Scheme Design

As shown in the context above, the predefined requirement on the BLOS constraint is
|qb| < Qc, and the designed constrained IGC scheme should ensure that the state converges
to the origin and the BLOS is always inside the prescribed limitations. First, some necessary
lemmas are given to facilitate the control design and stability analysis.

4.1. Preminaries

Lemma 1 ([15]). For any positive constants k, k̄, let Z = z ∈ R : −k < z < k̄ ⊂ R and N =
Rl × Z ⊂ Rl+1 are an open set. Consider the system:

η̇ = h(t, η) (19)

where η = [ω, z]T ∈ N, h : R+ × N → Rl+1 is piecewise continuous in t, and locally Lipschitz in
h, uniformly in t, on R+ × N. Suppose that there exist positive definite functions U : Rl → R+

and V1 : Z → R+, both of which are continuously differentiable in their respective domains,
such that V1 → ∞ as z → −k or z → k̄. Let V(η) = V1(z) + U(ω), and z(0) ∈ (−k, k̄),
if the inequality

V̇ =
∂V
∂η

h ≤ 0 (20)

holds in the set z ∈ (−k, k̄), then z ∈ (−k, k̄) for all t ≥ 0.

Lemma 2 ([16]). For any positive constant A, the following inequality holds for all z in the interval
|z| < A:

log(
A2p

A2p − z2p ) <
z2p

A2p − z2p (21)

where p is a positive constant.

Lemma 3 ([19]). For any δ > 0 and η ∈ R, the following inequality always holds:

0 ≤ |η| − η tanh(
η

δ
) ≤ kpδ, kp = 0.2785 (22)

Remark 3. Lemma 1 provides the fundamental theory for guaranteeing the stability of the system
with a state constraint. In other words, the constraint issue has been solved through the establishment
of the proper Lyapunov function. Lemma 2 gives an important inequality for the stability analysis.

4.2. OFTDO Design

For the application in the IGC system (11), the following assumption is given for the
design of the OFTDO.

Assumption 4. The lump uncertainties di(i = 0, 1, 3) their its first and second derivatives are bounded.

Remark 4. Note that only the aerodynamic perturbations are considered, and thus the wind gusts
are not involved in the paper. In (8), the unmatched uncertainties are functions of the states, and
thus d0, d1, d3 and their first- and second-order derivatives can be considered to be bounded in the
flight. Therefore, Assumption 4 is reasonable.

First, it can be checked and confirmed that Assumptions 1 and 2 are satisfied.

For the IGC model (11), it can be obtained that C =

1 0 0 0
0 1 0 0
0 0 1 0

, B =


0
0
0
b

, and
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G =


0 1 0
0 0 1
0 0 0
b 0 0

. The disturbance is reconstructed by d =
[

d3
b d0 d1

]T
to adapt the

use of Theorem 1. Then, it can be verified that the system is strongly observable according
to [29].

Then, following (15), it can be calculated that M1G = CG =

0 1 0
0 0 1
0 0 0

, thus J1 =

(M1G)⊥ =
[
0 0 1

]
. If the matrix L is set as L = lij(i = 1, 2, 3, 4; j = 1, 2, 3, 4), thus

Ā = A− LC =


−l11 1− l12 −l13 0
−l21 −l22 1− l23 0
−l31 −l32 −l33 1
−l41 −l42 a3 − l43 a4

. Then, it follows that

M2 =

[
(M1G)⊥M1 Ā

M1

]
=


−l31 −l32 −l33 1

1 0 0 0
0 1 0 0
0 0 1 0

, (23)

which is a column full rank, and thus κ = 2.
According to Assumption 4, it can be found that Assumption 3 means that r = 2, and

thus we have that ` = r + κ − 2 = 2. Therefore, the following HOSM differentiator:
σ̇0 = −k1Φ

1
3 (σ0 − H) + σ1

σ̇1 = −k1Φ
1
2 (σ1 − σ̇0) + σ2

σ̇2 = −k2sgn(σ2 − σ̇1)

(24)

is used to estimate the variable Y = [ye,
∫ t

0 yedτ]T , where the output error ye = [x0, x1, x2]
T .

Then, the estimate of d is obtained by d̂ = (GTG)−1GT(σ2 − Āσ1). Note that the sign
function will cause some unnecessary oscillation in the control input, and thus we instead
use the saturation function to replace it in the simulation.

4.3. Constrained IGC Law Design

In the procedure of IGC law design, the backstepping technique is used. We define
the tracking error as e0 = x0 − x0,d where x0,d denotes the desired reference. In this paper,
the reference is set as x0,d = 0. Then, one has that:

ė0 = ẋ0 − ẋ0,d = x1 + d0 (25)

We introduce the virtual control x1,d, which is designed as:

x1,d = −k0e0 −
e0

2(Q2
c − e2

0)
− d̂0 (26)

where the term d̂0 is the estimation from the proposed OFTDO and k0 is a positive constant.
Then, substituting (26) into (25) yields:

ė0 = −k0e0 + x1 − x1,d −
e0

2(Q2
c − e2

0)
+ d̃0 (27)

where d̃0 = d0 − d̂0 represents the estimation of the uncertainties.
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To avoid the “explosion of terms” problem, the dynamic surface technique is applied,
and the following filter is presented in this paper:

ẋ1,c = −
x1,c − x1,d

τ1
− ξ1 tanh(c1(x1,c − x1,d)), x1,c(0) = x1,d(0) (28)

where ξ1, c1, τ1 are positive constants. The hyperbolic tangent function term
ξ1 tanh(c1(x1,c − x1,d)) is a typical nonlinear function that is capable of accelerating the
convergence when the filter errors are far away from zero and avoiding the chattering
around zero. Consequently, the performance of the filter can be effectively improved
compared with the standard first-order filter.

Next, we define the error variable as e1 = x1 − x1,c, and the derivative of e1 is obtained by:

ė1 = ẋ1 − ẋ1,c = x2 − ẋ1,c + d1 (29)

Then, we introduce the virtual control x2,d as the following form:

x2,d = −k1e1 −
e0

Q2
c − e2

0
− d̂1 (30)

where d̂1 denotes the estimation error of the uncertainties d1, and k1 is a positive constant.
Similarly, the filter is used as ẋ2,c = − x2,c−x2,d

τ2
− ξ2 tanh(c2(x2,c − x2,d)), x2,c(0) = x2,d(0),

where ξ2, c2, τ2 are positive constants.
Next, we define the error variable as e2 = x2 − x2,c, and the virtual control is designed as:

x3,d = −k2e2 − e1 (31)

Similarly, the filter is used as ẋ3,c = − x3,c−x3,d
τ3

− ξ3 tanh(c3(x3,c − x3,d)), x3,c(0) =

x3,d(0), where ξ3, c3, τ3 are positive constants.
Finally, the controller is obtained by:

u =
1
b
(−a3x2 − a4 x̂3 − k3e3 − e2 − d̂3) (32)

where the error variable is defined as e3 = x̂3 − x3,c, where x̂3 is estimated by the OFTDO.
The term d̂3 denotes the estimation error of the uncertainties d3 by the proposed OFTDO,
and k3 is a positive constant.

4.4. Stability Analysis

This part provides the stability analysis of the closed-loop system under the proposed
IGC law (32).

Define that:

ē3 = x̂3 − x3, e f ,i = xi,c − xi,d, d̃i = di − d̂i(i = 0, 1, 3) (33)

where ē3 denotes the estimation error of the state x3, and d̃i represents the estimation error
of the disturbance di and the filter error.

A Lyapunov function candidate is selected as:

V0 =
1
2

log(
Q2

c

Q2
c − e2

0
) (34)

where log denotes the natural logarithm. Note that x1 − x1,d = e1 + e f ,1 and taking the
derivative of V0 yields:
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V̇0 =
Q2

c − e2
0

2Q2
c

−Q2
c

(Q2
c − e2

0)
2
(−2e0 ė0)

=
e0 ė0

Q2
c − e2

0

= −
k0e2

0
A2

c − e2
0
−

e2
0

2(Q2
c − e2

0)
2
+

e0(x1 − x1,d)

Q2
c − e2

0
+

e0d̃0

Q2
c − e2

0

= −
k0e2

0
A2

c − e2
0
−

e2
0

2(Q2
c − e2

0)
2
+

e0(e1 + e f ,1)

Q2
c − e2

0
+

e0d̃0

Q2
c − e2

0

(35)

Substituting (30) into (29) yields that:

ė1 = x2 − ẋ1,c + d1

= e2 − ē2 + e f ,2 + x2,d + d1 − ẋ1,c

= −k1e1 + e2 + e f ,2 −
e0

Q2
c − e2

0
+ d̃1 − ẋ1,c

(36)

Combining (31) and taking the derivative of e2 yields that:

ė2 = ẋ2 − ẋ2,c

= x3 − ẋ2,c

= e3 − ē3 + e f ,3 + x3,d − ẋ2,c

= −k2e2 + e3 − ē3 + e f ,3 − e1 − ẋ2,c

(37)

Calculating the derivative of e3 and substituting the controller (32), one has that:

ė3 = ˙̂x3 − ẋ3,c

= a3x2 + a4x3 + bu− ẋ3,c + d3 + ˙̄e3

= −a4 ē3 − k3e3 − e2 + d̃3 − ẋ3,c + ˙̄e3

(38)

We choose a new Lyapunov function as:

V = V0 +
1
2

3

∑
i=1

e2
i +

1
2

3

∑
i=1

e2
f ,i +

1
2

ē2
3 (39)

Note that:
ė f ,i = −

e f ,i

τi
− ξi tanh(cie f ,i)− ẋi,d (40)

and taking the derivative of V yields:

V̇ = V̇0 +
3

∑
i=1

ėiei +
3

∑
i=1

ė f ,ie f ,i + ˙̄e3 ē3

= −
k0e2

0
Q2

c − e2
0
−

e2
0

2(Q2
c − e2

0)
2
+

e0(e1 + e f ,1)

Q2
c − e2

0
+

e0d̃0

Q2
c − e2

0

− k1e2
1 + e1e2 + e1e f ,2 −

e1e0

Q2
c − e2

0
+ e1d̃1 − e1 ẋ1,c

− k2e2
2 + e2e3 − e2 ē3 + e2e f ,3 − e2e1 − e2 ẋ2,c

− k3e2
3 − a4e3 ē3 − e3e2 + e3d̃3 − e3 ẋ3,i + e3 ˙̄e3

+
3

∑
i=1

(−
e2

f ,i

τi
− ξie f ,i tanh(cie f ,i)− e f ,i ẋi,d) + ˙̄e3 ē3

(41)
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Reorganizing the derivative of V yields that:

V̇ = −
k0e2

0
Q2

c − e2
0
−

3

∑
i=1

kie2
i − e2 ē3 − a4e3 ē3

−
e2

0
2(Q2

c − e2
0)

2
+

e0e f ,1

Q2
c − e2

0
+ e1e f ,2 + e2e f ,3

+
e0d̃0

Q2
c − e2

0
+ e1d̃1 + e3d̃3 − e1 ẋ1,c − e2 ẋ2,c − e3 ẋ3,c + 2 ˙̄e3 ē3

+
3

∑
i=1

(−
e2

f ,i

τi
− ξie f ,i tanh(cie f ,i)− e f ,i ẋi,d)

(42)

Utilizing Young’s inequality, the following relationships are satisfied:

e0e f ,1

Q2
c − e2

0
≤

e2
0

4(Q2
c − e2

0)
2
+ e2

f ,1, e1e f ,2 ≤
e2

1
4
+ e2

f ,2, e2e f ,3 ≤
e2

2
4
+ e2

f ,3 (43)

− e2 ē3 ≤ e2
2 +

ē2
3
4

(44)

e0d̃0

Q2
c − e2

0
≤

e2
0

4(Q2
c − e2

0)
2
+ d̃2

0, ei d̃i ≤
e2

i
4
+ d̃2

i (45)

− ξie f ,i tanh(cie f ,i) ≤ −ξi|e f ,i|+
ξikp

ci
(46)

− e f ,i ẋi,d ≤
e2

f ,i

2
+

ẋ2
i,d

2
(i = 1, 2, 3) (47)

and substituting (43)–(47) into (42) yields:

V̇ = −
k0e2

0
Q2

c − e2
0
− (k1 −

3
2
)e2

1 − (k2 −
3
2
)e2

2 − (k3 −
9
4
)e2

3 +
3

∑
i=1

((
3
2
− 1

τi
)e2

f ,i − ξi|e f ,i|)

+
3

∑
i=0

d̃i +
1 + a2

4
4

ē2
3 +

3

∑
i=1

ẋi,d

2
+

3

∑
i=1

ξ3kp

ci
+ 2 ˙̄e3 ē3

(48)

According to Lemma 3, one has that:

V̇ ≤ −k0 log(
Q2

c

Q2
c − e2

0
)− (k1 −

3
2
)e2

1 − (k2 −
3
2
)e2

2 − (k3 −
9
4
)e2

3

+
3

∑
i=1

5τi − 1
τi

e2
f ,i +

1 + a2
4

4
ē2

3 + M
(49)

where M = d̃0 + d̃1 + d̃3 + ∑3
i=1

ẋi,d
2 + ∑3

i=1
ξi
4 + ∑3

i=1
ξikp

ci
+ 2 ˙̄e3 ē3. Note that the estimation

of the states and uncertainties are achieved in finite time, and thus x̂3 = x3 and d̂i = di
(i = 0, 1, 3) hold after a finite time moment t f . Assume that the term ẋi,d is also bounded;
then we have M ≤ M̄, in which M̄ is a positive constant. Therefore, one has:

V̇ ≤ −2µV + M̄ (50)

where µ = min{k0, k1 − 3
2 , k2 − 3

2 , k3 − 9
4 , 5τi−1

τi
, 1+a2

4
4 }. Then, the following theorem

is obtained.
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Theorem 2. Consider the IGC system (11). If the controller is designed as (26), (30), (31) and (32),
the initial value satisfies |qb(0)| < Qc, and ki, τi(i = 1, 2, 3) are chosen such as µ > 0, then the
system will have the following properties:

(a) The tracking errors of the system state are ultimately bounded.
(b) The constraint requirement |qb| < Qc will not be violated.

Proof. Integrating (50), we obtain:

V ≤ (V(0)− M̄
2µ

)e−2µt +
M̄
2µ

(51)

therefore, the function V is bounded, which implies that all of the states of the closed-loop
system are bounded, and the tracking errors are ultimately bounded.

Moreover, from (39) and (50), we can conclude that |e0| < Qc holds if the initial value
satisfies |e0| < Qc according to Lemma 1. Therefore, the constraint requirement is not
violated during the dynamic process. The proof is completed.

Remark 5. It is worth noting that the estimation errors ēi and d̃i will converge to zero in finite
time by the proposed OFTDO. Therefore, the convergence boundary M̄ is only related to the terms

∑3
i=1

ẋi,d
2 , ∑3

i=1
ξi
4 and ∑3

i=1
ξikp

ci
. If ci is selected to be large enough, we have ξikp

ci
→ 0. If the

command ξi is chosen to be small, the final convergence domain will be decreased.

The schematic diagram of the proposed control scheme is provided in Figure 3. As
shown in Figure 3, the presented approach achieves a control framework that covers the
FOV requirement, partial measurement and unmatched uncertainties.

Figure 3. Schematic diagram of the proposed control.

5. Simulation and Discussion
5.1. Simulation Settings

The initial conditions were set as R = 60 km and zm = 27 km, and the location of the
target was set as xT = 53 km and zT = 0. The initial angles of the hypersonic flight vehicle
were α(0) = 0.1◦, ωz(0) = 0.1◦/s. The missile and the target were set to fly with constant
velocities of 6 Ma and 0 m/s, respectively. The aerodynamic coefficients were set as:

a1 =
57.3QScα

y

mVM
= 0.3487, a2 =

57.3QScδz
y

mVM
= 0.068, a3 =

57.3QSLmα
z

Jz
= −17.801

a4 =
57.3QSL2mwz

z
JzVM

= −0.2741, b =
57.3QSLmδz

z
Jz

= −31.267

(52)

The control input was restricted as |u| ≤ 25 deg. The FOV constraint was set as
Qc = 12◦. Parameters of the proposed control method were chosen as k1 = 1, k2 = 2,
r3 = 1, τ1 = τ2 = τ3 = 0.1, ξ1 = ξ2 = ξ3 = 0.5, c1 = c2 = c3 = 2.
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5.2. Results and Discussions

The simulation results are shown in Figures 4–10 and the estimations of the distur-
bances are shown in Figures 11–13. As seen in Figures 4 and 5, the final miss of distance is
small, which means that the fine engagement has been achieved by the proposed IGC law
u = 1

b (−a3x2 − a4 x̂3 − k3e3 − e2 − d̂3) in (32). Moreover, the BLOS angle qb is constrained
in the prescribed FOV limitations, which shows that the FOV constraint Qc is not violated
in the flight procedure. The angle of attack α, pitch rate ωz and evaluator δz are shown in
Figures 8–10. Meanwhile, the estimation d0, d1, d3 of the uncertainties in Figures 11–13
demonstrates that the proposed OFTDO has achieved the finite-time estimation of the
unknown unmatched uncertainties successfully.

0 1 2 3 4 5 6
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4
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0.5

1

1.5
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2.5

3

z m
/
m
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4

Figure 4. Curve of trajectory on the x and z axes.

0 5 10 15 20 25 30

T ime/s

0

1

2
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4
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R
/
k
m

×10
4

Figure 5. Curve of the relative distance R.
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Figure 6. Curve of body line-of-sight angle qb.
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Figure 7. Curve of line-of-sight angle q.
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Figure 8. Curve of the angle of attack α.
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Figure 9. Curve of the pitch rate ωz.
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Figure 10. Curve of the elevator δz.
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Figure 11. Curve of the estimation d0.
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Figure 12. Curve of the estimation d1.
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Figure 13. Curve of the estimation d3.
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To further test the robustness and effectiveness of the proposed IGC law, Monte-Carlo
tests were carried out in the simulation. The number of the tests was set as 500 times, and
the final location on the x and z axes and the missed distance are shown in Figures 14 and 15,
respectively. The mean and the standard deviation can be calculated as 0.501 m and
0.7741 m, respectively. As seen in these figures, the distribution of the missed distance is
smaller than 1 m, which shows the strong robustness of the proposed IGC law.
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Figure 14. Curve of Monte-Carlo results on the x and z axes.
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Figure 15. Curve of the missed distance in the Monte-Carlo tests.
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6. Conclusions

An integrated guidance and control law for strap-down hypersonic flight vehicles
was proposed, with partial measurement information and unmatched uncertainties. A
constrained IGC scheme was proposed by combining the barrier Lyapunov function-based
backstepping methodology and the specific output-based finite-time disturbance observer.
The effectiveness of the presented scheme was verified by numerical simulations and
Monte-Carlo tests. Future researches include the the constrained performance optimization,
and consideration of the actuator dynamics and wind gust disturbance.
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