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Abstract: This paper is concerned with magnetic attitude control of spacecraft. The operation
of the magnetic actuators is usually on a duty cycle; during the off times in this duty cycle the
magnetometers are used to measure the magnetic field around the spacecraft. This alternate operation
of magnetic actuators and sensors avoids the noise effect on the magnetometers coming from the
magnetic actuators. This alternate operation results in longer maneuver times. This paper presents an
estimation approach for the magnetic field, as well as the spacecraft attitude, that increases the duty
cycle of the magnetic rods while reducing the rate of collecting the magnetometer data. A modified
Multiplicative Extended Kalman Filter (MEKF) is used in the proposed approach. A relatively simple
and fast dynamic model is developed for use in the MEKF. Monte Carlo simulations presented in this
paper show that the proposed approach results in less maneuver time, and less power consumption
by the magnetic rods when compared to a standard magnetic control approach. The magnetic field
estimation process is verified using data collected from the CASSIOPE spacecraft using its telemetry
system and the results are presented.

Keywords: magnetic attitude control; attitude estimation; magnetic field estimation; magnetic rods’
duty cycle

1. Introduction

The Attitude Determination and Control System (ADCS) plays an essential role in
all spacecraft missions. A high-performance spacecraft ADCS is usually more expensive,
such as those that use star trackers, gyroscopes, and momentum exchange devices as
attitude actuators. Small low-cost spacecraft, on the other hand, are being considered for
several types of missions. Because of their dependability, low cost, lightweight, and energy
efficiency, these spacecraft typically employ low-cost components such as magnetic rods
and magnetometers [1–3]. A worldwide survey of small satellite missions revealed that
the foremost commonly used sensors are sun sensors and magnetometers. Furthermore,
about 40% of the nanosatellites have magnetic rods for active magnetic attitude control [4].
There are, however, some challenges. The magnetic rods usually suffer from poor accuracy
and instantaneous under actuation [5,6]. The generated torque is constrained to be in
the plane that is orthogonal to the ambient magnetic field vector. Therefore, a three-axis
magnetic attitude control is merely possible if the orbit sees a magnetic field variation that
is sufficient to ensure the spacecraft stability, which is a requirement that is usually fulfilled
in inclined orbits [1]. Furthermore, as mentioned in [7], there are additional restriction
criteria on the spacecraft inertia tensor to ensure controllability.

Measuring the spacecraft’s external magnetic field using magnetometers serves two
purposes. The first is to use magnetic field data to compute the magnetic dipole mo-
ment (attitude control) and the second purpose is to estimate the spacecraft attitude
and rate. There are several approaches that can be used for the latter purpose. Psi-
aki et al. [8] proposed an Extended Kalman Filter (EKF) for attitude, rate, and constant
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disturbance torque estimation based on magnetic field measurements and their time deriva-
tives. Tortora et al. [9] proposed a fast angular rate estimation scheme using magnetometer
readings, assuming that the inertial ambient magnetic field vector does not significantly
change during the short sampling time. An analytic approach is used in [9] that does not
require attitude information. Humphreys et al. [10] developed a spinning spacecraft with
wire booms, a filter, and smoother based on magnetometer information for estimating the
attitude, rate, and boom orientations. Abdelrahman and Park employed magnetometer
measurements and their time derivatives with Sigma-Point Kalman Filter for spacecraft
three-axis attitude control and rate estimation. This filter’s capability in estimating the
attitude is better than 5 deg, and the rate error is on the order of 0.03 deg/s in each axis [11].
In the above-cited studies, the magnetometer measurements are compared with the geo-
magnetic field information from a high-order Earth magnetic field model, such as the World
Magnetic Model (WMM) or the International Geomagnetic Reference Field (IGRF) or (T89)
model. It is worth noting that these models are used for calibrating magnetometers also
as in [12–15]. Based on magnetometer and Sun sensor information, Soken and Sakai [16]
developed an inertial vector attitude estimate approach for small spacecraft. The technique
starts with a basic attitude determination using the TRIAD approach, then introduces the
estimated attitude to an Unscented Kalman filter for accurate estimation via magnetometer
calibration in real-time. Altuntas et al. [17] proposed a cascaded filtering scheme in which
the QUEST method was employed to update the Multiplicative Extended Kalman Filter at
low angular rates with just magnetometer readings. Ivanov et al. [18] developed, uploaded
to SiriusSat-1, and analyzed an extended Kalman Filter in real time to follow the magne-
tometer bias induced by the onboard magnetic dipoles in order to improve the accuracy of
attitude motion estimates. The attitude of a spacecraft spinning at about orbital speed is
measured with 3–4° accuracy, with magnetometer bias estimation accuracy in the 400 nTesla
range [18]. Using magnetometer and sun vector readings, Pourtakdoust et al. [19] con-
structed a modified Square Root unscented Kalman filter with bounded noise characteristics
for attitude and angular rate estimation. Furthermore, the authors proposed a strategy for
optimizing the installed sensor orientation in order to decouple the residual signal, which
impacts attitude estimate accuracy [19]. To that purpose, several recent research studies,
such as [20–22], have employed magnetometer readings to determine attitude.

Other different sensors for low-cost missions, such as the Sun sensor, Earth horizon
and even the gyroscope are utilized for attitude estimation as in [23,24]. There is a variety of
attitude estimation techniques that can be found in the survey of nonlinear attitude filtering
methods in [25], and also in the review on the quaternion-based methods for spacecraft
attitude determination in [26].

Magnetometer measurements are also used in feedback control in several algorithms of
spacecraft attitude stabilization, and detumbling maneuver, as in [27–42] and in the survey
papers by Silani and Lovera [1], and by Ovchinnikov and Roldugin [43]. In these algorithms,
the control analysis and design assume continuous-time magnetometer measurements and
continuous actuation of the magnetic rods. The fact is magnetometer measurements are
often degraded by the time-varying magnetic field generated by the currents in magnetic
rods and other spacecraft electronics. Furthermore, the measurements themselves are
prone to several types of errors; these errors include null-shift error, the non-linearity error,
non-orthogonality error, the sensor noise, hard-iron error and soft-iron errors, in addition
to the static and time-varying biases [12,13].

One mitigation technique is to use a boom to have a physical separation between the
magnetometer and the other spacecraft electronics [44,45]. The boom structure, however,
results in more complexity for the whole spacecraft system. Another mitigation technique
that is usually performed in small low-cost spacecraft missions is to operate the magnetic
rods and the magnetometers at alternate times, to eliminate the effect of the rods on the
magnetometers [2,46,47]. Celani [46] presented a magnetic state feedback attitude control
law, taking into account the intermittent activation of the magnetic rods and magnetometers
during the operation, where a systematic method is proposed for the choice of the sampling
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period of the updated command and in which, the generated dipole moment is on the basis
of piece wise constant command. Celani [46] assumed that the period that is dedicated to
the magnetometer measurements is small enough to be ignored. Celani [47] extended his
work by considering the magnetometer measurement period during the design phase of
the control law. A design method and systematic approach are obtained for the selection
of the controller’s parameters and actuation interval length, respectively [47]. The design
analysis of magnetic attitude control systems usually neglects this intermittent operation
of the magnetic rods, leading to under-estimation of the required maneuver time and
the rod’s power consumption [2]. Desouky and Abdelkhalik [2] developed an algorithm
featured by its low frequency in collecting magnetometer measurements with a higher
magnetic rod duty cycle ratio. This algorithm resulted in improvements in the required
maneuver time and magnetic rod power consumption at the expense of the required
computational demands.

Motivated by the above challenges, this paper presents an attitude estimation and
control algorithm that improves the maneuver time and power consumption that is required
by magnetic rods. This algorithm estimates the spacecraft attitude, the spacecraft angular
rate, and the magnetic field using a modified version of the Multiplicative Extended
Kalman Filter (MEKF). The proposed approach uses a magnetometer, gyroscope, and a
measurement for an inertial vector such as the direction of the Sun (Sun sensor). For three-
axis attitude control, it is assumed that only magnetic actuators are used. The proposed
concept is to eliminate the need to turn off the magnetic rods, in some cycles, to increase
the rod’s operation time. This is achieved by using the estimated magnetic field in these
cycles instead of the measured one. The key concept of estimating the magnetic field starts
by computing a pseudo magnetic field measurement, leveraging the existing spacecraft’s
angular velocity feedback loop to probe the magnetic field. This pseudo-measurement
is further refined inside the MEKF using a proposed simple magnetic field model. It is
shown in this paper that the proposed algorithm can achieve improvements in the power
consumption and the maneuver time. The proposed work is assessed via Monte Carlo
simulations. The magnetic field estimation is validated using data from the CASSIOPE
spacecraft obtained through its telemetry system.

This paper is an extension of the work in [3] and different than the work in [2] in
the following aspects: (1) computing the pseudo measurements of the magnetic field by
measuring the spacecraft response to a known control command is implemented here from
a geometric point of view, as opposed to the Tikhonov regularization technique used in [2],
(2) this work uses an attitude sensor, in addition to the magnetometers, in the MEKF, as op-
posed to using only magnetometers measurements in [2], and (3) the computational load of
the proposed work here is much less than that in [2], and is comparable to the computa-
tional load of most exciting magnetic control techniques within the literature, as are going
to be shown within the simulation results. This paper is organized as follows. Section 2
briefs the spacecraft models. The proposed ADCS is presented in Section 3. Section 4
presents the Monte Carlo simulation results. A validation process using real telemetry data
with detailed procedures to verify the proposed algorithm is presented in Section 5.

2. Spacecraft Dynamic Model

This part contains standard information that is used to complete the presentation.
Here the coordinate reference frames are presented, as well as the kinetic and kinematic
models. For the attitude determination and control algorithm, the following reference
frames are used:

1. Earth-Centered Inertial frame (ECI). The Earth’s center is the ECI frame origin. This
reference frame is denoted i, and the earth rotates around its Z-axis. The X-axis
points towards the vernal equinox, where the Y-axis complies with the right-handed
triad system.
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2. Satellite body frame: This frame’s origin is at the satellite’s centre of mass. The axes
are chosen to align with the central principal axes of the spacecraft. The body frame is
denoted b.

In the remainder of this paper, [.] represents a matrix, bold symbols represent vector
such as A, [A]x is a skew-symmetric matrix whose elements are the elements of the vector
A that represents the cross product of A× B = [A]xB, where B is a vector, B̃ represents an
estimation of the vector B, δB represents an error vector added to vector B to obtain the
estimated vector B̃, as B̃ = B + δB, Ĉ represents a unit vector in the direction of the vector
C, and D̄ represents the linearization point of the vector function D (the linearizion process
is carried out at D̄). The iv represents vector v defined in the inertial frame i. For notation
simplification, any vector without a pre-superscript is defined in the (b) frame. The ωbi
represents the angular velocity of the (b) frame with respect to the (i) frame , expressed in
the (b) frame.

The spacecraft attitude in this study is represented by the quaternion to avoid singu-
larity. The attitude kinematics can be written as:

q̇bi =

[
q̇0(bi)
q̇v(bi)

]
=

1
2

[
−qT

v(bi)
q0(bi)[13x3] + [qv(bi)]x

]
ωbi, (1)

where ωbi ∈ R3 is the spacecraft angular velocity of the body frame with respect to
the inertial frame, expressed in the body frame. The vector qbi ∈ R4 is the quaternion,

and qbi =
[
q0(bi) qT

v(bi)

]T
. Let qv(bi) =

[
q1(bi) q2(bi) q3(bi)

]T
. The matrix [13x3] ∈ R3×3 is

unity matrix. The transformation matrix [R(q)]bi from the i to the b frame is computed
using the quaternion as follows:

[R(q)]bi = (q2
0(bi) − qT

v(bi)qv(bi))[13x3]

+ 2qv(bi)q
T
v(bi) − 2q0(bi)[qv(bi)]x (2)

The attitude dynamics of a rigid spacecraft are expressed using Euler’s equations as
follows [48,49]:

[I] ω̇bi = −ωbi × [I] ωbi + T + Td, (3)

where [I] ∈ R3×3 denotes the spacecraft inertia matrix. As previously stated, the inertia
matrix [I] is fixed in the body frame and is a diagonal matrix since the body frame is
aligned with the principal axes. The disturbance torque Td here represents the sum of the
solar radiation torque Tsr ∈ R3, the aerodynamic torque Taero ∈ R3, the gravity gradient
torque Tgg ∈ R3, the residual magnetic torque Trsd ∈ R3 due to the residual magnetic
field generated by spacecraft electronics including the magnetic These torque models are
summarised in [28,42]. The control torque on the spacecraft, T ∈ R3, is here assumed to be
due to only the three magnetic coils, and hence it is not feasible to create a torque along the
magnetic field vector, since

T = M× B, (4)

where B ∈ R3 and M ∈ R3 represent the ambient magnetic field vector and dipole moment
vector, respectively. A detailed description of The dipole moment model as a function of
the current that is generated by the magnetic rods is presented in [28,42].

3. Attitude Determination and Control System

This section presents the proposed algorithm for spacecraft attitude stabilization and
control. First, a reference ADCS algorithm is discussed highlighting the challenges that
will be addressed in the proposed algorithm. This reference ADCS algorithm is utilized for
comparison and performance evaluation of the proposed ADCS.

In the reference ADCS algorithm, the magnetic rods and the magnetometers are
assumed to operate at alternate times, to avoid high noise on the magnetometers’ measure-



Aerospace 2022, 9, 833 5 of 27

ments during the operation of the magnetic rods. This alternate operation means that the
magnetic rods operate with a certain duty cycle, as shown in Figure 1. The sampling time
Ts = ti+1 − ti (sometimes referred to as the cycle period) depends on the rate of update in
the control system.

Let Tdc be the magnetic rods duty cycle which is the maximum time period in which
the magnetic rods can be turned on, in one cycle period, and let δ ≤ 1 be the duty cycle per-
centage or ratio. Hence, we can write: Tdc = δ Ts. Usually, each cycle period includes also a
period for magnetometer measurements, a period for raising the magnetic rods currents
from zero to the required value (ic), and a period for magnetic rods desaturation dedicated
to reducing the generated field in the rods. The fall period, in which the current drops to
zero, is part of the desaturation period. The lower part of Figure 1 shows several cycles of
the magnetic rods and the magnetometer activation periods. The attitude estimation algo-
rithm typically updates the estimates for the quaternion q̃, the spacecraft angular velocity
ω̃, and/or gyroscope bias β each cycle. The upper part of Figure 1 shows the estimated
and measured quantities, and the times at which they are collected. The measurements are:
the angular velocity ω, the magnetic field B, and the sun direction Vsun.

Figure 1. In the reference ADCS algorithm, the magnetic rods operate on a duty cycle principal,
alternating with magnetometers to avoid high noise on the latter.

Control algorithms that do not account for the above magnetic rod’s duty cycle usually
underestimate the maneuver time and the rod’s power consumption [2]. Increasing the
duty cycle ratio δ would reduce the actual maneuver time, and enhance the steady-state
error and system stability [6].

In this study, the proposed ADCS algorithm increases the activation time of the
magnetic rods, i.e., the duty cycle ratio. This is achieved by estimating the magnetic
field parameters at some of the cycles and hence eliminating the need for magnetic field
measurements in these cycles. The lower part of Figure 2 illustrates a scenario where the
magnetic field is measured every three cycles while counting on the estimated magnetic
field in the cycles that do not have magnetometer measurements at times t2 and t3. At the
core of the proposed ADCS is an algorithm that estimates the magnetic field in these
cycles (at times t2 and t3) when the magnetometer measurements are not available; this
algorithm is presented in Section 3.2. The upper part of Figure 2 illustrates the measured
and estimated quantities in each cycle. At each of the times, t2 and t3, a calculated magnetic
field Bsdo is used as a pseudo measurement input to the estimator to estimate the magnetic
field B̃ that is used for control. While, at times t1 and t4, the direct true magnetic information
measurements B are used for control and attitude estimation.

Hence, a longer duty cycle for the magnetic rods becomes possible. The equivalent
duty cycle ratio δeqv for the proposed ADCS can be computed as follows:

δeqv = 1− 1− δ

ε
(5)
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where ε is the number of cycle periods between the real magnetometer measurements in
the proposed algorithm.

Figure 2. The proposed magnetic rod operation.

The lower section of Figure 2 depicts a situation in which ε = 3. Consider the following
standard (reference) control algorithm: δ = 0.7 and Ts = 0.1 [s]. The proposed control
algorithm’s duty cycle would be δeqv = 0.9 for ε = 3. Let fc be the update frequency in
the control system. For the sake of comparison, fc is assumed constant in this research
at the rate fc = 1/Ts, where Ts is the sampling time of the reference ADCS. Section 3.1
presents the control law. Section 3.2 presents the magnetic field pseudo measurement Bsdo
computation algorithm. The modified Multiplicative Extended Kalman Filter used in the
proposed ADCS is presented in Section 3.3.

3.1. Control Law

In this paper, the PD-like control logic presented in references [41,50,51] is adopted.
The process of computing the control torque starts with computing a control term Treq, for
inertial pointing maneuvers as follows:

Treq = −(ζ2kpqv(err)bi + ζkdδωbi), (6)

where qv(err) is the quaternion error vector part between the desired attitude and the
current one, δωbi is the spacecraft angular velocity error between the desired rate and
the current one, kp > 0 is the proportional gain, kd > 0 is the derivative gain, and ζ
is a parameter introduced to limit the controller gains due to the time-varying nature
of the ambient magnetic field and consequently limit the settling time of the attitude
orientation. The control limit parameter is bounded: 0 < ζ < ζ∗. This control ensures
that the equilibrium point is locally exponentially stable [41,50]. Due to the singularity
caused by the cross product in Equation (4) [52], the required dipole moment cannot be
determined from a given command control torque. Furthermore, the resultant torque is
limited to acting directly in the plane perpendicular to the magnetic field vector for a given
dipole moment. To solve this issue, consider Treq to be the desired torque vector, and T
to be the torque vector equal to the projection of Treq on the plane perpendicular to the
ambient magnetic field vector B. The vector T is located in the plane in such a way that
the Euclidean norm of the residual vector (or the angle between the vectors Treq and T) is
reduced [1,34]. Using the estimated magnetic field vector B̃, the required dipole moment,
at times t2 and t3 in Figure 2, is calculated as follows:

M =
B̃× Treq

‖B̃‖2 (7)
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Combining Equations (4) and (7), the applied torque becomes:

T = −B×
B̃× Treq

‖B̃‖2 = [Γ(t)]
Treq

‖B̃‖2 , (8)

where the matrix [Γ(t)] = [B]x[B̃]Tx is semi-positive definite, when B̃ ≈ B. In this case,
the estimated magnetic field B̃ is used for computing the required dipole moment, at times
t2 and t3 in Figure 2.

As demonstrated in reference [53], this time-varying non-autonomous system is con-
trollable over an indefinite time. The stability of such a system is discussed in various
references, including [54], where the generalized average theory was used to demonstrate
that the trajectories of non-autonomous systems remain near to the trajectories of its aver-
age if ζ < ζ∗. As a result, the non-autonomous term [Γ(t)] in this issue may be substituted
by its average, [Γav], which is defined as follows [50]:

[Γav] = lim
t→∞

1
t

∫ t

0
[B]x[B̃]Tx dt (9)

References [50,53] show that when B̃ = B, the average matrix [Γav] is positive definite.
Further, if we assume that the equilibrium is at δωbi = 0 and qerr = [1 0 0 0]T , then
reference [55] shows that, as time goes to infinity, the control law guarantees δωbi and
qerr go to equilibrium. Moreover, it was shown in references [41,50,51] that this control
law guarantees local asymptomatic stability at the equilibrium point, given the positive
definiteness of [Γav]. References [55,56] as well prove this asymptomatic stability using a
Lyapunov approach, assuming that ζ is bounded by ζ∗, and that ζ∗ is a decreasing function
of kp and kd [57]. The above-mentioned analysis about the control law (6) assumed that
the magnetic rods are operated in a continuous mode by ignoring the duty cycle effect.
Desouky and Abdelkhalik [6] presented analytically that increasing the duty cycle ratio
will reduce the attitude steady-state error. Which can be considered another benefit of the
proposed work here.

3.2. Computation of Magnetic Field Pseudo Measurement

The following discussion is dedicated to finding the best guess of the ambient magnetic
field vector around the spacecraft when the magnetometer measurements are not available.
This best guess, Bsdo, is used as a pseudo measurement. Knowing the kinetic model of the
spacecraft (Equation (3)) it is possible to use the angular velocity measurements to obtain
an estimate for the spacecraft applied torque, T̃. This torque T̃ is then used to compute the
pseudo measurement of the magnetic field Bsdo.

The numerical evaluation of ω̇ has a significant impact on the accuracy of the obtained
results in this approach. Hence, the five-point stencil method [58] is used to evaluate the
time rate of change of ω. The formula for computing ω̇ is:

ω̇k−3h =
−ωk + 8ωk−h − 8ωk−3h + ωk−4h

12h
+

h4

30
ω5

k−3h, (10)

where h is the time step of the angular velocity measurement. It is worth noting that
increasing the number of points for the stencil method leads to more accuracy in estimating
the applied torque at the expense of the computational cost. According to Abramowitz [58],
the inaccuracy of the five-point stencil approach is of order h4 compared to h2 for the
two-point difference method. It is assumed in this study that five gyroscope readings
are taken within Ts, see the upper part of Figure 2. It is also assumed that an average
torque value is constant within each Ts period. It is noted that this assumption of having a
frequency of gyroscope measurements collection at least five times higher than the control
command frequency, is a reasonable assumption, as discussed in [24].

Gyroscope drift rate bias, random walk, scaling factor error, non-linearity error,
and misalignment error can all affect gyroscope measurements. In this study, all of the
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aforementioned errors—aside from the drift rate bias—are treated as a single normal distri-
bution error with a zero mean. This is a reasonable assumption given that the manufacturer
often provides the gyroscope’s noise characteristics. On the other hand, gathering several
gyroscope observations over an extended period of time is one method for determining
the drift rate bias vector. These observations can be compared to those from other sensors,
such as star tracker readings, that reveal information about the angular velocities of the
spacecraft, where the bias vector can be estimated using an estimation method, such as the
least squares method. In accordance with the manufacturer’s recommendations, such as
once a month, this procedure can be repeated to update the drifting bias.

However, numerous estimating approaches can estimate the bias in cases where
another sensor that provides data on the angular velocities of the spacecraft is unavailable,
as is the situation in this work. Such as the Kalman filter, where the manufacturer or
customer laboratory studies provide the noise characteristic of the gyroscope inaccuracies
and drift bias. In this work, whenever the gyroscope measurements are available, an EKFω

is employed to estimate the spacecraft’s angular velocity and bias vector. Between times
t1− t2 and t2− t3, this EKFω outputs the estimated angular velocity that is needed to
compute the ω̇ that is shown in the upper portion of Figure 2. It is important to remember
that updating the drift rate bias onboard can be implemented periodically to lessen the
computing load once an adequate assessment of the drift rate bias has been calculated.
However, in this study, evaluating the bias vector will be completed at each sampling time
in an effort to provide an idea of the worst-case scenario, in terms of computation load,
regarding the use of the proposed work

It is worth noting that the five-stencil approach effectively reduces the drift bias error’s
impact on the computation of the ω̇. For instance, failing to account for drift rate bias
0.5 ◦/hr may result in an error when computing ω̇ equal (2.68 × 10−32)h4 [rad/s2].

The derivative of the angular velocity ω̇ can be computed using Equation (10). Then,
an estimation of the torque T̃ can be computed using the Euler dynamic model Equation (3).
Equations (7) and (8) imply that the torque, dipole moment and magnetic field vectors are
orthogonal to each other in the ideal case when B̃ = B. Assuming that B̃ remains close to B,
and given M and T̃, it is possible to compute the pseudo measurement vector, Bsdo, from a
geometric point of view. The unit vector of the Bsdo vector can be computed as follows:

B̂sdo =
T̃
‖T̃‖
× M
‖M‖ = ˆ̃T× M̂ (11)

In addition, the magnitude of the pseudo measurement of the ambient magnetic field
vector can be computed as follows:

‖Bsdo‖ =
‖T̃‖
‖M‖ (12)

Therefore, the pseudo measurements of the ambient magnetic field vector are:

Bsdo =
‖T̃‖
‖M‖

ˆ̃T× M̂ =
T̃×M
‖M‖2 (13)

Further analysis over the computation of Bsdo is carried out to check the effect of the
error in the torque and the dipole moment vectors, δT and δM, respectively. The torque
error is due to the noises in the gyro measurements and the errors in modeling the external
disturbance torques such as gravity gradient, residual dipole moment, and aerodynamic
drag, in addition to the sensitivity of the spacecraft dynamic model to the uncertainty in the
moment of inertia. The error in the dipole moment vector δM is due to the uncertainty in
the actuator’s model and the noises and digitization process in the measured commanded
current to the actuators. The estimate of the torque applied on the spacecraft is expressed as:

T̃ = M̃× Bsdo (14)
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Therefore, the torque error vector is as follows:

δT = M× δB + δM× B + δM× δB (15)

The most dominant term in Equation (15) on the right-hand side is the first term.
Therefore, Equation (15) can be approximated as follows:

δT ≈M× δB (16)

where a bound γ ∈ R3 on the ambient magnetic field error vector, |δB| ≤ γ, is added.
To make this analysis easier to visualize, we express the error in each vector in terms of the
corresponding angle. The angle λ is the angle between the computed torque T̃ and the true
torque T. While the angle η is the angle between the estimated dipole moment vector M̃
and the true dipole moment vector M, see Figure 3. Considering Figure 3, it is possible to
express the error vector in the ambient magnetic field, δB in terms of the angle α as follows:

|α| < αγ, (17)

where the angle α between the optimal Bsdo vector and the true one B should be kept under
a threshold angle αγ. Figure 4 shows the typical relation between the angles α and η for
different values of λ where η is presented on the right vertical axis. For a wide range of the
angle η, there is almost no change in the angle α. In the same figure, the relation between
the angles α and λ for different values of η is plotted, where λ is presented on the left axis.
The correlation between α and λ is strong; consequentially λ has a significant impact on δB,
in compliance with Equation (16).

Figure 3. The desired Treq and the projected T torques for a given B vector.

The angle λ can be used as a measure for the accuracy of computing the estimated
torque T̃. Neglecting Td, Figure 5 shows the angle λ history for a test case scenario. In that
test case, there is an agreement between the computed torque and the true one to an
acceptable accuracy as demonstrated in Figure 5. The angle error λ between the two vectors
is very small. Hence, it can be concluded that the error in α is small in the estimation
process described above, and hence the error δB is small. This completes the process of
computing the vector of the geomagnetic field Bsdo, and completes the calculations needed
in the proposed control algorithm.
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Figure 4. The relation between α and each of λ (the left vertical axis) and η (the right vertical axis).
These results are obtained by changing the angles λ and η and the corresponding change in α is
computed at a single sampling time of one of the simulation results.

Figure 5. The angle λ, in degrees, between the actual torque T and the estimated torque T̃ using the
five-point stencil method for computing ω̇ numerically.

3.3. Attitude Estimation

The continuous-discrete MEKF in [59] is modified here to estimate the following: the
attitude quaternion q̃, the angular velocity ω̃, and the magnetic field B̃.

The measurements used by this MEKF are the angular velocity from the gyroscope,
the direction of the sun from the sun sensor, and magnetic field pseudo measurements
Bsdo at times t2 and t3, see Figure 2. For inertial pointing maneuvers, the state vector is
xk = [ωT

bi qT
bi BT ]T ∈ R10, and the error state vector is δxk = [δωT

bi δqT
v(bi) δBT ]T ∈ R9, where

δqv ∈ R3 is the quaternion vector part error. Let xk|k−1 be the a prior estimate from the
propagation step, and xk|k be the posterior estimate from the update step. The propagation
and update steps of the MEKF are presented below.
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3.3.1. State Propagation

During the propagation step, the angular velocities and the quaternion state variables
are integrated numerically, using a 4th order Runge–Kutta integration for the nonlinear
kinetic Equation (3), and for the kinematic model in Equation (1), to obtain a prior estimate
of the angular velocities ωk|k−1 and the quaternion qk|k−1. The magnetic field state, however,
will be propagated using a simple model as shown below.

It is assumed here, that the derivative of the B vector in the inertial frame does not
change (i.e., iḂ = 0) during the propagation of the magnetic field vector B. This assumption
is acceptable for a small time step [9]. Consider the posterior estimated magnetic field
vector Bk−1|k−1, computed at the time step k− 1. The quaternion conjugate of the posterior
quaternion update at the time step k− 1 is q−1

k−1|k−1. Then we can write:

Bk|k−1 ≈ [R(qk|k−1)]bi[R(q−1
k−1|k−1)]biBk−1|k−1, (18)

where [R(q−1
k−1|k−1)]bo is the transformation matrix from the body frame to the inertial

frame at the time step k− 1. The iBk−1|k−1 can be transformed to the body frame using the

transformation matrix [R(qk|k−1)]bi; hence for small time step we can assume that iḂk = 0,
and hence iBk−1|k−1 ≈ iBk|k−1; we can then write:

Bk|k−1 ≈ [R(qk|k−1)]bi[R(q−1
k−1|k−1)]biBk−1|k−1

≈ [R(qk|k−1)]bi
iBk−1|k−1

≈ [R(qk|k−1)]bi
iBk|k−1 (19)

Equation (19) can be used to propagate the magnetic field vector to acquire a prior
estimate of the magnetic field Bk|k−1 at step time k. The covariance matrix [P] propagates
in time according to the Joseph form [59], which has been shown to be numerically stable
but requires more computational power [59]. In the interest of having a simpler numerical
implementation that requires less computational power, the following approximation is
adopted [59,60]:

[P]k|k−1 = [φtk ,tk−1 ][Pk−1|k−1][φtk ,tk−1 ]
T + [Qk−1], (20)

where [Qk−1] is the discrete-time process covariance matrix, and [φtk ,tk−1 ] is the state tran-
sition matrix. In order to find the state transition matrix [φtk ,tk−1 ], a linearization for this
model is carried out as detailed below.

The derivative of Equation (19) is as follows:

Ḃ ≈ [R(q)]bi
iḂ + [Ṙ(q)]bi

iB

≈ −[ωbi]x[R(q)]bi
iB

≈ B×ωbi, (21)

where [Ṙ(q)]bi = −[ωbi]x[R(q)]bi [49]. It is worth noting that the same derivative equation
can be obtained using the transport theorem as follows (assuming iḂ = 0) [49,61,62]:

Ḃ = [R(q)]bi
iḂ + [B]x ωbi

≈ B×ωbi (22)

The linearized first-order Taylor expansion version of Equation (22) results in the
small-signal dynamic equation of the magnetic field as follows:

δḂ(t) ≈ [B̄]x δωbi − [ω̄bi]x δB (23)
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Using Equation (3), the small-signal dynamic equation of the angular velocity becomes:

δω̇bi(t) ≈
[
[I]−1[[Iω̄bi]x − [ω̄bi]x[I]]

]
δωbi

+ [I]−1([M̄]xδB− [B̄]xδM) (24)

The quaternion small-signal dynamic equation is:

δq̇v(bi)(t) ≈ 0.5[13x3]δωbi − [ω̄bi]xδqv(bi) (25)

The state transition matrix can be approximated as [φ] ≈ [19x9] + [F(x)] dt for small
time step dt [63], where [F(x)] is the Jacobian matrix. The Jacobian matrix can be computed
from Equations (23)–(25) to give:

[F(x)] =

 F11 [03x3] [I]−1[M̄]x
0.5[13x3] −[ω̄bi]x [03x3]
[B̄]x [03x3] −[ω̄bi]x

, (26)

where
F11 = [I]−1[[Iω̄bi]x − [ω̄bi]x[I]], (27)

where the nominal values [ .̄ ] are the a priori propagated values of the state vector.

3.3.2. State Update

A linearization of the measurement model about the a priori state estimate is here
carried out for use inside the MEKF. The sun sensor measurement is Vsun, where:

Vsun(k|k−1) = [R(qk|k−1)]
iVsun(k), (28)

Assuming small angles, the transformation matrix can be approximated as
[R(q)] = [R(q̄)][R(δq)] ≈ [R(qk|k−1)]([13x3]− 2[δqv]x). Using this approximation, the er-
ror in the sun direction can be approximated as follows:

Vsun(k|k−1) − V̄sun(k|k−1) ≈ 2[V̄sun(k|k−1)]x δqv (29)

The linearized small error measurement model about the apriori state estimate can be
written as follows:

Zk = [Hk] δx =

[13x3] [03x3] [03x3]
[03x3] 2[V̄sun(k|k−1)]x [03x3]

[03x3] [03x3] [13x3]

 δx (30)

where Zk is the small-signal (error) measurement vector. At each measurement time,
a Kalman gain is computed using Equation (31).

[Kk] = [Pk|k−1][Hk]
T
(
[Hk][Pk|k−1][Hk]

T + [Rk]
)−1

(31)

The states error vector δx is computed as follows:

δx =

δωk|k
δqv

δBk|k

 = [Kk]

 ωmes − β−ωk|k−1

V̂sun(mes) − ˆ̄Vsun(k|k−1)
Bsdo − Bk|k−1

, (32)

where ωmes and V̂sun(mes) are the measurements from the gyroscope and sun sensor re-
spectively. The β is the bias vector that will be estimated using the equations of the
EKFω that are given in Appendix A. The update step is carried out for each of the q, ω,
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and B states differently. The quaternion is updated using a quaternion multiplication as
shown in Equation (33).

qk|k =

[√
1− ‖δqv‖2

δqv

]
⊗ qk|k−1, (33)

where ⊗ represents the quaternion product. The term
√

1− ‖δqv‖2 is used for preserving the
quaternion normalization of the computed quaternion error δq, as shown in Equation (33).

The magnetic field B, on the other hand, is updated in two steps. Recall that the
propagation step of B in Equation (19) used qk|k−1. Now that qk|k is available, the latter is used
to achieve a better propagation of B. This is carried out as follows: B+

k|k−1 = [R(δqk)]Bk|k−1.

Then the magnetic field is updated using this new propagated vector B+
k|k−1 along with the

error in magnetic field vector δBk|k, which is computed using the associated part of the Kalman
gain and the measurements (or pseudo measurements), Equation (32):

Bk|k = B+
k|k−1 + δBk|k (34)

ωk|k = ωk|k−1 + δωk|k (35)

where the spacecraft angular velocity is updated using the standard approach in Equation (35).
The estimated angular velocity bias vector (in the intervals ti − ti+1) from EKFω is

used here to update the angular velocity and will not be estimated at times ti to reduce the
computational cost. The estimation error covariance matrix [P] is updated as follows:

[Pk|k] = ([19x9]− [Kk][Hk])[Pk|k−1] (36)

3.4. Stability and Performance of the Modified MEKF

The estimation error covariance matrix [P], which could turn into a non-positive
matrix throughout the propagation and update processes, is one of the elements that affects
the stability of the MEKF. Numerical instabilities could cause this. In order to confirm the
stability, the eigenvalues of the matrix [P] are always confirmed to be positive during the
simulation of the Monte Carlo runs in the following section.

Performance of the filter is significantly influenced by the kind of measurement and
process noise errors. The performance of the filter might be substantially hampered by
inaccurate noise error representation. In order to obtain the best approximation, a filter
tuning method is typically used to modify the filter’s parameters. It is possible to tune filters
offline using numerical optimization methods or online using adaptive algorithms [64].
However, according to [64], manual optimization is more common in practise. To give the
measurements the maximum weight possible during manual optimization, choose small
values for the measurement error covariance matrix, smaller than what the manufacturer
or a laboratory test supplied. After that, modify the original estimate and process the
noisy covariance matrices to obtain an acceptable level of performance. The method is
then repeated until the needed performance is achieved, as noted in [64]. According to the
statistical analysis of the outcomes of the Monte Carlo simulation, a manual optimization
approach for the covariance matrices is used and validated in this study.

4. Numerical Simulations

The goal of this section is to compare the proposed algorithm in this paper, which is
shown in Figure 2, to a reference standard algorithm. In the reference algorithm, both the
magnetic rods and the magnetometers are turned on, alternately, during each cycle period,
as shown in Figure 1. Monte Carlo (MC) simulation is conducted for this comparison.
To highlight the impact of the proposed algorithm compared to the reference one, the output
results from the proposed algorithm are normalized by the results from the reference
algorithm. The hardware configuration and spacecraft parameters are the same for both
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algorithms and are similar to those in reference [2]. Table 1 shows both the spacecraft
parameters and sun-synchronous orbital parameters.

Table 1. Spacecraft and orbital parameters.

Parameter Value [Unit], [Uncertainty]

[Ix, Iy, Iz]T [0.196, 0.202, 0.202]T [kg ·m2] , [10%]
Max. dipole moment vector ±[1.83 1.83 1.83]T [Am2]
Altitude 639.212 [km]
Inclination 97.868◦

Right ascension of the ascending 157.305◦

True anomaly at initial time 277.29◦

Eccentricity 0

The orbital position and velocity of the spacecraft are propagated in time using a model
that accounts for the J2 gravitational effect. For orbit propagation, the J2000 inertial frame of
reference is used. The orbit propagator output is used to calculate the spacecraft’s location
with regard to the earth and sun, as well as the aerodynamic density and geomagnetic field.

To replicate the uncertainty in the spacecraft and environment models, a random
Gaussian process is applied. An additional Gaussian random-direction torque is provided
to address unknown torque sources, modeling flaws in the gravity gradient torque model,
and inertia uncertainty in Equation (3). The mean value of this torque is chosen to be zero,
with a standard deviation of 1× 10−9 [N ·m]. The uncertainty in the spacecraft inertia tensor
when computing the torque in Section 3.2 is modeled as an additive Gaussian variable with
a mean of 10%. The simulation parameters are presented in Table 2. The measurements
of the sun sensor and the magnetometers are assumed to have random Gaussian noises
and a static bias. The mean value of this white noise is adjusted to zero for both the sun
sensor and the magnetometer, with standard deviations of 1× 10−4 and 5× 10−3 [Tesla],
respectively. The gyroscope is assumed subject to a drift bias and stochastic white noise.
This white noise’s mean value is set to zero, with a standard deviation of 1× 10−4 [rad/s].

Table 2. Disturbance Parameters.

Parameter Value [Unit] Uncertainty

ρ * 2.01× 10−14 [kg ·m3] –
Rmp [9 11 12] [mm] 10%
CD 2 –
Spacecraft dimension [23 23 29] [cm] –
‖Mrds‖ 1× 10−4 [Am2] 10%
Crk 1.5 –
Fsolar 1366 [w/m2] –

* ρ is computed using an empirical formula provided in http://www.braeunig.us/space/atmmodel.htm
(accessed date 17 November 2022).

The parameters of the control algorithms are as follows: Ts = 0.25 [s] and δ = 0.7.
Therefore, the control command frequency is fc = 1/0.25, and the gyroscope measurements
frequency is selected to be fω = 5/0.25. The control gains are: ζ = 0.001, kp = 0.01,
and kd = 0.4. A confirmation window of 5-min is utilized after settling to the specified attitude.

4.1. Case Study

Before presenting the statistical MC analysis, the results from a sample run for the
proposed ADCS algorithm are presented. In this example, each of the satellite’s initial
angular velocity (true and estimated), and the initial attitude (true and estimated) are
selected randomly. The simulation runs for 10 orbits. To make this presentation more
clear, the attitude error will be represented in terms of the principal rotation error angle φ
between the current attitude and the desired one. Figure 6 shows the principal rotation

http://www.braeunig.us/space/atmmodel.htm
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error angle for the reference case and the proposed algorithm with ε = 6 , (labeled “Ref”
and “Proposed ε = 6” respectively). As shown in Figure 6, the proposed algorithm is able
to settle at the desired attitude faster than the reference algorithm. Further notice, as can
be shown for the zoom part of Figure 6, that the average attitude steady-state error of the
proposed algorithm is less than the one from the reference case. This is due to increasing the
duty cycle of magnetic rods that leads to decreasing the steady state error as analyzed in [6].

Figure 7 depicts the time behavior of the satellite’s angular velocity magnitude of the
body frame. The figure shows that almost a zero angular velocity magnitude is preserved
by the proposed algorithm after settling the spacecraft at the specified attitude. Figure 8
represents the magnetic field time history of the estimated and true values. As are often
seen, a good match has been achieved. Later, six parameters will be presented to assess the
ambient magnetic field estimation performance.

Figure 6. Attitude error history in terms of principal rotation angle φ between the real and desired attitude.

Figure 7. Spacecraft angular velocity magnitude history.
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Figure 8. Ambient magnetic field history over time.

The above simulation is repeated for several ε values of the proposed algorithm.
In this section, two parameters are used for comparison. The first parameter is the Power
Consumption (PC) of the magnetic rods. The second parameter is the Maneuver Time
(MT), which is defined here as the time until the spacecraft’s attitude is less than 1◦ error
around the desired attitude plus the confirmation window of five minutes in which the
spacecraft attitude remains within the error bounds. Regarding the Computational Load
(CL) of the proposed algorithm, a measure of the total computational time per maneuver
is computed using the Matlab built-in function (tic/toc). The above three parameters are
computed for the proposed algorithm, and then are normalized w.r.t. the same parameters
of the reference algorithm.

Figure 9 shows the normalized maneuver time (N(MT)), the normalized power
consumption (N(PC)) (on the left axis) and the normalized computational load (N(CL))
(on the right axis,) for different values of ε. The N(PC) and N(MT) are always less than 1,
which means less power consumption and less maneuver time compared to the reference
algorithm, for all ε. Both the PC and the MT improve (decrease) as ε increases, up to a point.
As ε increases beyond the value of 6, the change in δeqv becomes very small. For example,
the proposed duty cycle is δeqv = 0.95 at ε = 6, while at ε = 10, it is δeqv = 0.97, see
Equation (5). Increasing ε, however, increases the CL as shown on the right vertical
axis in Figure 9.

For further assessment of estimating the ambient magnetic field, six parameters are
used. The first is the correlation coefficient (CC) between the estimated and true values of
the magnetic field. When the CC is close to 1, it indicates a strong correlation, and when the
CC is close to 0, it indicates weak correlation. The scatter index (SI) indicates statistically
how the computed quantity is scattered around the true one, the smaller the SI the higher
is that the performance. The normalized root mean square error (NRMSE), mean absolute
error (MAE), bias, and root mean square error (RMSE) are also computed for the obtained
simulation data. Figure 10 shows the change of the CC with ε on the left axis. On the right
axis, the NRMSE and SI are depicted. The CC is close to 1, and the SI and NRMSE are very
small, indicating a strong correlation with less scattering between the estimated and the true
magnetic fields. Figure 11 shows the bias, RMSE, and MAE. The variation of all parameters
confirms that the lower the ε the better ambient magnetic field estimation. In the following
Monte Carlo analysis, the ε value is selected to be 6 which means δeqv = 0.95 compared to
δ = 0.7 in the reference algorithm.
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Figure 9. N(MT), N(PC), and N(CL) versus ε.

Figure 10. CC, SI and NRMSE of the estimated B̃ vector.

Figure 11. Bias, MAE and RMSE of the estimated B̃ vector.
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4.2. Monte Carlo Simulation Analysis

Results are here presented for 45,000 Monte Carlo runs; 22,500 for the reference
algorithm and 22,500 for the proposed algorithm. Normal distribution is used for noises
seeds, with a different distribution for each run.

The 22,500 categories have different initial angular rates (true and estimated), and ini-
tial quaternion (true and estimated), from all other categories. These values are generated
randomly and are equivalent for both algorithms. So, the results are reported in terms
of improvement percentage in PC, MT, and CL. Here, the percent improvement Pprm is
computed as follows:

Pprm = 100×
(

1− prmP
prmR

)
, (37)

where prm represents the MT or the PC or the CL, the subscript P represents the computed
prm values for the proposed ADCS, the subscript R represents the computed prm values
for the reference ADCS, and Pprm represents the percentage improvement in the prm. As a
measure of the estimation error, the CC, SI, NRMSE, MAE, Bias, and RMSE are computed
and averaged. All the disturbance torques mentioned in this paper are simulated. Table 3
shows the estimate of the magnitude of these disturbance torques, in the worst-case of the
entire MC runs.

Table 3. Worst-case disturbance torque magnitudes.

Disturbance Magnitude [N ·m]

Aerodynamic drag 5.19× 10−9

Gravity gradient 1.04× 10−8

Residual dipole 4.06× 10−9

Solar radiation 1.07× 10−9

Figure 12 depicts the Gaussian distribution and histogram of PMT . Figure 12 shows that
the maneuver time of the proposed algorithm is significantly less than that of the reference
case. In some cases, the proposed algorithm achieves PMT of about 50%, whereas in other
cases there is almost no improvement, compared to the reference algorithm. The mean
value of the PMT is 23.17%, with 8.53% standard deviation.

Figure 12. Gaussian distribution and histogram of improvement percentage in maneuver time.

In terms of power consumption, the proposed algorithm increases the mean value
of the PPC significantly as shown in Figure 13. The PPC, using the proposed algorithm,
goes up to about 45% in some cases. The mean value for the PPC is 19.62%, with a 10.63%
standard deviation.
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The computational load is computed for the whole maneuver. Overall, the proposed
algorithm has a higher computational load compared to the reference algorithm because
of the additional computations in evaluating Bsdo and in the MEKF magnetic propagation
step. It is noticed that the computational load of the proposed algorithm roughly needs
about 30% more computational resources at every time step. It should be noted that,
while this approach provides an approximate estimate of the CL when run on the Matlab
environment, it does not explain the CL of the suggested technique when run on flying
hardware. In reality, the technique may be considerably more effective in terms of CL
after implementation than Matlab suggested, since the CL may be substantially improved
throughout the implementation.

However, when the savings in the maneuver time are significant, the computational
time of the proposed algorithm becomes less than that of the reference algorithm, sim-
ply because the whole maneuver is completed in a significantly shorter period of time,
and hence the computations stop much sooner compared to the reference algorithm. This
observation is evident in Figure 14, where there is a strong correlation between the PMT
and the PCL.

Figure 13. Gaussian distribution and histogram of improvement percentage in power consumption.

Figure 14. Improvement percentage in computational load versus Improvement percentage in
maneuver time. The tendency of the CL is shown by the red average line.
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Finally, regarding the estimated magnetic field parameters within the above MC
simulations, all six parameters are computed as follows. Each one run resulted in a
time history for B̃ and B vectors. The six parameters are computed for each component
of B̃ resulting in three components. For each run, an average of the three components
is computed.

The mean and standard deviation values for the six parameters for the entire MC runs
are presented in Table 4. The results show a strong correlation and less scattering in these
MC runs.

Table 4. Mean and standard deviation of the parameters used for comparison for the entire MC runs.

Parameters Mean Standard Deviation

PMT 19.62% 10.63%
PPC 23.17% 8.53%
PCL −0.24% 10.13%
MAE 4.36× 10−7 [Tesla] 9.366× 10−9 [Tesla]
Bias 7.861× 10−8 [Tesla] 2.063× 10−8 [Tesla]
RMSE 6.428× 10−7 [Tesla] 4.084× 10−8 [Tesla]
NRMSE 0.0343 0.0022
SI 0.0339 0.002
CC 0.99 0.0002

5. Verification Using Real Data

This section is devoted to validating the estimation of the magnetic field. Real telemetry
data from the CASSIOPE spacecraft are used for verification. The CASSIOPE is a multi-
mission satellite from Canadian Space Agency (CSA). Its objectives are space weather
operation and high-speed communications concepts verification [44,65]. Three-star trackers
are used for attitude determination. Two magnetometers are installed on two different
booms. The magnetic rods’ maximum dipole moment is 30 [Am2] and they have activated
alternately with the magnetometers, with a duty cycle of δ = 0.7.

The technical team provided real telemetry information for the ground station tracking
maneuvers, that is performed on 21 February 2019. These telemetry data consists of the
time history of angular velocity measurements ω, magnetic field measurements B, reaction
wheels torques Tw, magnetic rods torques T, controller dipole moment M, control term or
designed torque Treq and Ephemeris. The designed torque Treq is the magnetic controller
output. The Ephemeris includes the attitude (in terms of the Euler angles roll, pitch
and yaw,) the spacecraft position and velocity in an inertial frame, latitude, longitude,
and altitude (in the World Geodetic System 1984 (WGS84) frame, and in the Earth-centered
inertial (J2000) frame). The telemetry data sampling time is 0.1 s, whereas the Ephemeris
sampling time is 5 s, for two maneuvers with periods 200 s and 360 s, respectively. The duty
cycle will be δ = 0.7× 0.1 = 0.07 s as a result.

The star tracker provides the attitude. Therefore, no attitude estimation is performed
in this verification process. However, this attitude information will be used in Equation (18)
to propagate the magnetic field.

The CASSIOPE is modeled in this paper as a rigid body, and its moments of inertia are
optimized to account for unmodeled structural flexibility. The initial inertia tensor matrix
is given as follows:

[I] =

186.5202 −0.6839 −5.2728
−0.6839 194.4095 4.2445
−5.2728 4.2445 214.1428

[kg ·m2] (38)

The magnetic field estimation verification process is as follows:

(1) Computing the pseudo measurement Bsdo as described in Section 3.2. The spacecraft
angular velocities provided by the gyroscope have bias and noise. Hence a batch
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optimization process is first conducted to estimate this bias. This optimization process
searches for the spacecraft’s initial angular velocity that minimizes the difference
between the true attitude qt (obtained from the star trackers) and the propagated one
qprog (obtained using the attitude kinematics Equation (1)). The objective function J is:

J =
∫ t f

t0

‖qprog − qt‖dt (39)

The bias vector is here assumed to be the difference between the mean value of
the propagated angular velocity (using the initial angular velocity output from the
optimization process) and the measured angular velocity from the gyroscope (the
mean value of a polynomial fit for the measurements). This step is performed on just
one occasion only. Therefore the output unbiased angular velocity measurements are
shown in Figures 15 and 16, (labeled “Unbiased Measurement”).

(2) An Extended Kalman Filter (EKF) is used to estimate the noises from these unbi-
ased angular velocity measurements. The EKF uses the following three diagonal
covariance matrices: initial state covariance [P] = diag(1 1 1)× 10−5, measurement
noise error covariance [R] = diag(1 1 1)× 10−2, and process noise error covariance
[Q] = diag(1 1 1) × 10−5, where diag(x) means a diagonal matrix whose diago-
nal elements are x. The covariance matrices are chosen manually, as indicated in
the Section 3.4, which follows the procedure provided in [64]. Euler Equation (3) is
used for propagating the spacecraft angular velocity in the EKF, while the unbiased
angular velocity is used as the measurement input to the EKF. The output angular
velocity from EKF is shown in Figures 15 and 16. The equations of this EKF are
given in Appendix B.

(3) The numerical calculation of the spacecraft angular speed derivative ω̇ using the
five-stencil approach requires at least five consecutive angular velocity readings,
in one cycle period (in which the torque is constant). Therefore, interpolation is em-
ployed to compute these velocities. Once the ω̇ is computed numerically, the pseudo
measurement Bsdo is computed as discussed in Section 3.2.

(4) Another EKF is used for magnetic field estimation, where the pseudo measurement Bsdo
is the EKF input measurement. The magnetic field propagation model Equation (18)
propagates the magnetic field. The following three diagonal covariance matrices are used:
initial state covariance [P] = diag(2 2 2)× 10−6, measurement noise error covariance
[R] = diag(0.5 0.5 0.5)× 10−4, and [Q] = diag(0.5 0.5 0.5)× 10−8 is used as the process
noise error covariance. The equations of this EKF are given in Appendix C.

Figure 15. Angular velocities history from unbiased gyroscope measurements and the EKF output
for 1st maneuver.
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Figure 16. Angular velocities history from unbiased gyroscope measurements and the EKF output
for 2nd maneuver.

It is worth noting that the two EKFs can be combined together. However, they are
implemented separately in this study.

For the first 200 s maneuver, using ε = 5, Figure 15 shows the un-biased angular
velocity measurement versus the estimated one using the EKF. The matching proves that
the rigid body Euler model can reasonably render the CASSIOPE dynamics. Figure 17
shows the comparison between the X components of each of the real magnetic field mea-
surement (labeled “True"), the pseudo measurement Bsdo (labeled “Computed",) and the
EKF estimated values (Labeled “Estimated").

Figures 17–19 render the good performance of the estimation process in the X, Y, and
Z directions, respectively. The six-validation parameters are computed for different values
of ε and the results are plotted in Figures 20 and 21. The results here are in agreement with
the conclusions from the Monte Carlo analysis; the lower the ε the better the magnetic field
estimation accuracy.

Figure 17. Magnetic field history in the X direction for 1st maneuver.
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Figure 18. Magnetic field history in the Y direction for 1st maneuver.

Figure 19. Magnetic field history in the Z direction for 1st maneuver.

Figure 20. CC, SI and NRMSE of the estimated magnetic field for 1st maneuver.
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Figure 21. Bias, MAE and RMSE of the estimated magnetic field for 1st maneuver.

Another maneuver of 300 s duration is also verified. The angular velocities histories
are shown in Figure 16. The magnetic field estimation values compared with the pseudo
measurements and the true measurement are plotted in Figure 22. The magnetic field
estimation accuracy is good, as evident from Figure 22. This is also confirmed by the values
of the six validation parameters, which are listed in Table 5, for this maneuver, using ε = 5.

Figure 22. Magnetic field histories for the 2nd maneuver.

Table 5. Validation parameters for the second maneuvers.

CC SI NRMSE RMSE [Tesla] MAE [Tesla] Bias [Tesla]

0.997 0.021 0.022 3.357× 10−7 4.852× 10−8 1.844× 10−7

6. Conclusions

An estimation algorithm was presented for spacecraft attitude that enables more effi-
cient operation of the magnetic rods in inertial pointing attitude maneuvers. The proposed
algorithm estimates the spacecraft attitude, in addition to the magnetic field, at the times
when the magnetometer is not used. It was demonstrated via Monte Carlo simulations
that the proposed algorithm results in shorter maneuver times of around 23% as well as
less power consumption of around 19% by the magnetic rods. The results also show a less
attitude steady state error due to increasing the duty cycle of the magnetic rods that are com-
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patible with the analytical study in [6]. The magnetic field estimation process was tested
against real data from the CASSIOPE mission and demonstrated good estimation accuracy.
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Appendix A. Angular Velocity and Bias Estimation

The Angular velocity is filtered when estimating the bias vector in the EKFω . The sys-
tem model equations are Equations (3), (A1) and (A2):

ωmes = ω + β + ηv (A1)

β̇ = ηu (A2)

where ωmes ∈ R3 is the gyroscope output, β ∈ R3 is the gyroscope bias vector, ηv ∈ R3

is the random drift noise and ηu ∈ R3 is the random walk drift noise. The sate vector is
x = [ωT βT ]T . The Jacobean matrix that will be used for computing the state transition
matrix [φ] is as follows:

[F(x)] =
[
[I]−1([Iω̄]x − [ω̄]x[I]) −[13x3]

[03x3] [03x3]

]
(A3)

The state transition matrix [φ] is approximated by [φ] ≈ [13x3] + [F(x)] dt for small
time step dt [63]. The linearized form of the measurements matrix is

[H] =
[
[13x3] [03x3]

]
(A4)

Appendix B. Angular Velocity Estimation

The Angular velocity is filtered and estimated for the real data case where the system
model equations are Equation (3). The Jacobean matrix that will be used for computing the
state transition matrix [φ] is as follows:

[F(x)] = [I]−1([Iω̄bi]x − [ω̄bi]x[I]) (A5)

The linearized form of the measurements matrix is

[H] = [13x3] (A6)

Appendix C. Magnetic Field Estimation

The magnetic field is filtered and estimated for the real data case where the system model
equation is Equation (18) and the measurement is the pseudo measurements, see Section 3.2.
The Jacobean matrix that will be used for computing the state transition matrix [φ] is as follows:

[F(x)] = [R(qk|k−1)][R(q
−1
k−1|k−1)] (A7)

The linearized form of the measurements matrix is as in Equation (A6) .
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